
Molten Salt Reactors
and Thorium Energy
Second Edition

Edited by

THOMAS JAMES DOLAN

IMRE PÁZSIT

ANDREI RYKHLEVSKII

RITSUO YOSHIOKA

Woodhead Publishing Series in Energy



Woodhead Publishing is an imprint of Elsevier
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
125 London Wall, London EC2Y 5AS, United Kingdom

Copyright © 2024 Elsevier Ltd. All rights are reserved, including those for text and data
mining, AI training, and similar technologies.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by
the Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods, professional practices,
or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information, methods, compounds, or experiments described
herein. In using such information or methods they should be mindful of their own safety
and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or
editors, assume any liability for any injury and/or damage to persons or property as a matter
of products liability, negligence or otherwise, or from any use or operation of any methods,
products, instructions, or ideas contained in the material herein.

ISBN: 978-0-323-99355-5 (print)
ISBN: 978-0-323-99356-2 (online)

For information on all Woodhead Publishing publications
visit our website at https://www.elsevier.com/books-and-journals

Publisher: Megan Ball
Editorial Project Manager: Joshua Mearns
Production Project Manager: Fizza Fathima
Cover Designer: Greg Harris

Typeset by MPS Limited, Chennai, India

http://www.elsevier.com/permissions
https://www.elsevier.com/books-and-journals


Contents

List of contributors xxi

Preface to the second edition xxv

Preface to the first edition xxvii

Part 1 Applications
Editor: THOMAS JAMES DOLAN

1. Introduction 3

Thomas James Dolan

1.1 Need for molten salt reactor 3
1.2 Molten salt reactor origin and research curtailment 4
1.3 Molten salt reactor activities 5

1.4 Fissile fuels 6
1.5 Thorium fuel advantages 7

1.6 Liquid fuel molten salt reactor 8

1.7 Advantages of liquid fuel molten salt reactor 10

1.7.1 Safety advantages 10

1.7.2 Economic advantages 11

1.7.3 Environmental advantages 12

1.7.4 Nonproliferation advantages 13

1.8 Molten salt reactor development issues 13

1.9 Tritium issues 15

References 16

2. Electricity production 19

Lindsay Dempsey and Charles Forsberg

2.1 Electricity production 20

2.2 Energy storage for electricity production 21

2.3 Heat engines 26

2.4 Rankine cycle (steam turbines) 29

2.5 Helium Brayton cycles 31

2.6 Supercritical CO2 Brayton cycles 33

2.7 Metal vapor binary cycles 34

2.7.1 Mercury/steam binary cycle 34

2.7.2 Potassium/steam binary cycle 35

2.8 Nuclear air Brayton power cycles 35

2.9 Summary 43

References 44

v



3. Other applications 47

Stephen Boyd and Christopher Taylor

3.1 Introduction 48
3.2 Remote power sources 48

3.2.1 Historical context 48

3.2.2 Nuclear powered marine propulsion 48

3.2.3 Radioisotope thermoelectric generators and betavoltaic cells
as remote power sources: extracting electrical work from molten
salt properties waste 49

3.2.4 Space-based nuclear reactors as remote power sources 51

3.2.5 Materials considerations for space-based molten salt properties 53

3.2.6 Fueling the molten salt properties on Mars and its employment
as elemental production platform 56

3.3 Heat exchangers 60
3.4 High-temperature commercial applications 61

3.4.1 Ammonia production 61

3.4.2 Hydrogen production 64

3.4.3 Catalytic cracking 67
3.5 Actinide burning 69

3.5.1 Historical context 69

3.5.2 Fluoride preprocessing and spent nuclear fuel fission 70

3.6 Medical isotopes 70

3.7 Desalination 71

3.7.1 Desalination plant types 72

3.7.2 Global reliance on desalinated water and the nuclear role 72

3.7.3 Comparison of nuclear versus renewables for desalination 74

3.7.4 Nuclear versus renewables financial perspective 77

3.8 Optical applications 78

3.9 Summary and conclusions 78

Acknowledgment 80

References 80

Part 2 Technical issues
Editor: IMRE PÁZSIT

4. Molten salt reactor physics: characterization, neutronic
performance, multiphysics coupling, and reduced-order modeling 87

Jiri Krepel and Jean C. Ragusa

4.1 Molten salt reactor characterization and neutronic performance 87

vi Contents



4.1.1 Definition and taxonomy 88

4.1.2 Neutronic characterization of considered nuclides 89

4.1.3 Reactor physics characterization 98

4.1.4 Neutronic performance parameters 106

4.1.5 Fuel cycle types, core sizes, and performance 121

4.1.6 Safety relevant features 134

4.2 Molten salt reactor multiphysics coupling and reduced-order modeling 144

4.2.1 Various aspects of multiphysics coupling in molten salt reactors 146

4.2.2 Governing laws 151

4.2.3 Reduced-order model 162

References 191

5. Kinetics, dynamics, and neutron noise in stationary molten
salt reactors 199

Imre Pázsit and Victor Dykin

5.1 Introduction 200

5.2 The molten salt reactor model 202

5.3 The static equations 204

5.3.1 The adjoint property 204

5.3.2 Interpretation of the equation and some limiting cases 206

5.3.3 The case of no recirculation 208

5.3.4 The case of infinite fuel velocity 208

5.3.5 The full solution 210

5.3.6 Alternative solution of the molten salt reactor equations 212

5.3.7 Quantitative results 213

5.4 Space-time-dependent transient during startup 215

5.4.1 The space-time-dependent equations for the transient 216

5.4.2 Solution for u-N 221

5.5 Dynamic equations in the frequency domain: neutron noise 231

5.5.1 The Green's function 234

5.5.2 Solution for u5N 235

5.5.3 Quantitative analysis: comparison with traditional systems 236

5.5.4 Results with finite velocity 239

5.6 The point kinetic approximation and the point kinetic component 240

5.6.1 Introduction and background 241

5.6.2 Derivation of the linearized point-kinetic equations 243

5.6.3 Point kinetic equation with static fluxes 249

5.6.4 Derivation of the point kinetic component from
the full solution 251

viiContents



5.7 The neutron noise in a molten salt reactor, induced by propagating
perturbations 254

5.8 Conclusions 258

Acknowledgment 259

References 259

6. Thermal hydraulic analysis of liquid-fueled molten salt reactors 263

Antonio Cammi, Valentino Di Marcello, Alessandro Pini and Lelio Luzzi

6.1 Introduction 263

6.2 Preliminary approach to thermohydraulics of internally
heated molten salts 265

6.2.1 Analytic framework for validation purposes 265

6.2.2 Laminar flow 267

6.2.3 Turbulent flow 267

6.3 Heat transfer and pressure losses 269

6.3.1 Laminar flow 272

6.3.2 Turbulent flow 273

6.4 Effects of internal heat generation on natural circulation stability 276

6.5 Conclusions 283

Acknowledgments 284

Abbreviations 284

References 284

7. Materials 289

Ritsuo Yoshioka, Motoyasu Kinoshita, Ian Scott and Christopher Taylor

7.1 Molten salt 289

7.1.1 Fluoride salt, mostly FLiBe 289

7.1.2 Other molten fluorides 295

7.1.3 Chloride salt 295

7.2 Solid fuels with molten salt coolants 301

7.3 Thorium fuel cycle 301

7.4 Moderators 302

7.4.1 Graphite 303

7.4.2 Beryllium 304

7.4.3 Lithium 306

7.5 Structural materials 308

7.5.1 Requirements for good structural materials 308

7.5.2 Development of corrosion-resistant alloys 309

7.5.3 Reduction of the corrosive potential of molten salts 310

viii Contents



7.5.4 Hastelloy N and other Nickel-based superalloys 312

7.6 Corrosion of materials in molten salts 317

7.6.1 Introduction 317

7.6.2 Molten salts, alloys and materials, and current topics of research 318

7.6.3 Methods for evaluating materials performance in molten salts 319

7.6.4 Materials performance in molten salts 322

7.6.5 Heat exchangers and materials embrittlement challenges 325

7.7 Conclusions 331

References 332

8. Physical�chemical properties of molten salts and chemical
technology of MSR fuel cycle 335

Stephen Boyd and Jan Uhlíř
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6.1 Introduction

Liquid-fueled1 molten salt reactors (MSRs) are usually considered nonclassi-
cal reactor types because of the specific nature of the fuel, which is typically
constituted by a molten fluoride salt mixture circulating in the primary
circuit. The fission material (uranium and/or transuranium elements) is
dissolved in the molten salt carrier, which also acts as coolant. Thanks to
the potentialities of this liquid fuel, several MSR concepts were investigated

1 Solid-fueled MSRs are not considered in this chapter since they are featured by different
thermo-hydraulic issues, the molten salt acting only as coolant.
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at Oak Ridge National Laboratory in the past (see http://www.energy-
fromthorium.com/pdf/), and in recent years, MSRs have been the subject
of renewed interest in the framework of Generation IV nuclear reactors
(GIF, 2002, 2020; Serp et al., 2014; IRSN, 2015). These concepts differ
mainly by neutron balance (critical or subcritical), neutron spectra (thermal,
epithermal, or fast), the presence/absence of the graphite matrix as modera-
tor, and the fuel salt chemical composition.

The physics of circulating nuclear fuels involves a strong coupling
between neutronics and thermo-hydrodynamics, which would require in
general the adoption of a multiphysics modeling approach (e.g., see, Luzzi
et al., 2012b; Aufiero et al., 2014; Ramzy et al., 2020; Tiberga et al.,
2020; Wan et al., 2020, and also Chapter 4.2, “Molten salt reactor multi-
physics coupling and reduced order modeling”, as well as Chapter 25,
“Dual-fluid reactor” of this book). However, in this chapter, analyses are
performed assuming that the neutronic term is decoupled from fluid
dynamics and appears like a heat source within the fuel/coolant molten
salt. The aim is to investigate only the thermo-hydrodynamic behavior.
Reference is made to a simple axial-symmetric cylindrical geometry repre-
sentative of a typical graphite-moderated MSR power channel, taking into
account the thermodynamic and transport properties of the molten salt as
well as its local flow conditions and heat transfer. Even if this assumption
simplifies the equations to be solved, the thermo-hydrodynamic behavior of
the molten salt remains complex. In this context, a preliminary analytic
approach (Di Marcello et al., 2008; Luzzi et al., 2010) to evaluate the tem-
perature radial profile in both fuel and graphite is reported in Sections 6.2
and 6.3, which are intended to offer the reader a useful validation frame-
work for testing more sophisticated computer codes, in view of their adop-
tion for more realistic and complex 3-D geometry analyses.

The circulating “already molten” fuel offers positive peculiarities to be
exploited in the safety approach as well as in the fuel cycle of liquid-
fueled MSRs (LeBlanc, 2010; Luzzi et al., 2012a; Křepel et al., 2014; Qiu
et al., 2016; Chisholm et al., 2020; Pathirana et al., 2021). For instance,
the fluid nature of the fuel means that the reactor core meltdown is an
irrelevant instance. Moreover, the reactor has almost no excess of nuclear
reactivity, which reduces the risk of accidental reactivity insertion. On the
contrary, the decay heat produced by the liquid fuel dissolved into the
molten salt and distributed along a closed loop may impair the natural cir-
culation features, leading to undesired behavior of the reactor. Actually,
natural circulation in the presence of internal heat generation (IHG) is
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characterized by a particular dynamics that needs to be carefully studied.
In this context, Section 6.4 presents a preliminary investigation of IHG
effects on natural circulation with reference to the stability maps of single-
phase rectangular loops.

6.2 Preliminary approach to thermohydraulics of internally
heated molten salts

This section presents a preliminary approach to the thermohydraulics of
internally heated molten salts useful to assess and compare the numerical
solutions achievable by different computer codes. For the computational
fluid dynamics (CFD) analyses, we have chosen two software packages:
COMSOL Multiphysics as the finite element software and ANSYS
FLUENT (referred to as FLUENT throughout the rest of the chapter) as
the finite volume software. The validation framework adopts the well-
established analytic solution of flow in long smooth pipes, both in laminar
and turbulent regimes, and has been set up in analogy with other works
performed for innovative reactors, like the supercritical water reactor
(Yang et al., 2007; Cervi and Cammi, 2018) and the accelerator-driven
system (Cheng and Tak, 2006). It can be also an “excellent building-
block case for testing turbulence models” (Wilcox, 2006), but such inves-
tigation is outside the scope of the present section.

6.2.1 Analytic framework for validation purposes
We refer to the analytic solution of the radial temperature profile, in the
presence of a volume-heat source within the fluid, for a circular-pipe
system in cylindrical coordinates (r, θ, z) in the case of both laminar and
turbulent flow. The solution was found by Poppendiek (1954) under the
following assumptions:
• Axial-symmetric conditions are taken into account.
• Thermal and hydrodynamic patterns are established (long pipes).
• Fluid axial conduction is neglected.
• Steady state exists.
• Uniform volume-heat source exists within the fluid.
• Physical properties are not a function of temperature.
• Heat is transferred uniformly to or from the fluid at the pipe wall.
• In the case of turbulent flow, an analogy exists between heat and

momentum transfer.
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Under the above assumptions, the differential Eq. (6.1) and the bound-
ary conditions in Eqs. (6.2) and (6.3) describing the heat transfer in the pipe
system for laminar or turbulent flow can be written according to the fol-
lowing 1-D formulation:

d
dr

α1 εð Þr dT ðrÞ
dr

� �
5

uðrÞ
umρcP

qw2
2
r0
qvW

� �
r2

qwr
ρcP

(6.1)

qvW 52λðdT=drÞjr5r0 (6.2)

T ðr5 rDÞ5TD (6.3)

where T is the fluid temperature, function of the radial coordinate r; α, λ, ρ,
and cP are the thermal diffusivity, the thermal conductivity, the density, and
the specific heat capacity of the fluid, respectively; ε is the fluid eddy diffu-
sivity, function of both the radial coordinate and the axial component of
the fluid velocity u(r); um is the mean fluid velocity; r0 is the pipe radius; qw
and qvW are the volume-heat source and the uniform wall-heat flux, respec-
tively. The second boundary condition, expressed by Eq. (6.3), is some
reference temperature TD such as wall, center-line, or mixed-mean fluid
temperature (rD being the radial coordinate at which TD is evaluated).

As far as CFD simulations are concerned, steady-state conditions are
considered with reference to a 2-D axial-symmetric (r,z) computational
domain. It is assumed that the fluid is incompressible, homogeneous, and
its physical properties are not a function of temperature. Moreover, the
action of gravity is neglected. For the analyses in turbulent regime, the
standard k�ε model has been selected, which is the two-equation model
most widely used as a reference among the several turbulence models
available in the literature (Pope, 2000; Wilcox, 2006; Davidson, 2015).

As for the modeling of the near-wall region, in the COMSOL simula-
tions we have adopted the logarithmic wall-functions, assuming that the compu-
tational domain begins at a certain distance, which depends on the mesh
size, from the real wall. Instead, for FLUENT calculations, the enhanced wall
treatment approach has been chosen.

Great effort was spent in setting up the mesh elements/cells size, par-
ticularly at walls and interfaces, by means of a mesh sensitivity analysis that
is not reported here for brevity. It must be noted that, even for the simple
circular-pipe geometry herein adopted as validation framework, the accu-
racy of numerical results depends on the fluid properties, the meshing
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strategy, and the turbulence model, as clearly demonstrated by analogous
studies performed for other fluids in the same geometry (Cheng and Tak,
2006; Yang et al., 2007; Ali et al., 2017).

Concerning the numerical strategy, the segregated algorithm has been
used in both codes. A complete description of the fluid flow modeling
and of the different available options is given in the FLUENT and
COMSOL user’s guides (COMSOL, 2020; FLUENT, 2021).

6.2.2 Laminar flow
The solution of the boundary-value problem defined by Eqs. (6.1�6.3)
was achieved by Poppendiek (1954) in the case of laminar flow, consider-
ing that the eddy diffusivity is null in laminar regime, and the fluid veloc-
ity attains a parabolic profile along the pipe radius once the hydrodynamic
pattern is established. The solution is given by Eq. (6.4):

T ðrÞ2TC

qwr20=2λ
5

2F2 1
2

r
r0

� �2

2
F
4

r
r0

� �4

(6.4)

where TC is the center-line temperature and F5 12 ð2qvW=qwr0Þ,
namely {1 � fraction of heat generated within moving fluid that is trans-
ferred at wall} (El-Wakil, 1978; Todreas and Kazimi, 1990).

The dimensionless radial temperature profile given by Eq. (6.4) is
plotted in Fig. 6.1 for several values of the function F and is compared
with the CFD simulation results obtained by means of COMSOL and
FLUENT. As can be noticed, both numerical solutions are practically
superimposed on the analytic one.

6.2.3 Turbulent flow
For the case of turbulent flow, the boundary-value problem defined by
Eqs. (6.1�6.3) can be separated into the following two simpler boundary-
value problems, whose solutions can be superimposed to yield the solu-
tion of the “original problem”:
1. A problem representing a flow system with a volume-heat source, but

with no wall-heat flux.
2. A problem representing a flow system without a volume-heat source,

but with a uniform wall-heat flux.
The solution for problem (1) was found by Poppendiek (1954) with the

following procedure. At first, the radial heat flux profile is calculated assum-
ing that the velocity profile may be satisfactorily represented by two regions
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(a laminar layer and a turbulent core with the so-called “venerable” one-
seventh power law for the velocity; see Nikuradse, 1950; Todreas and
Kazimi, 1990; De Chant, 2005). Therefore, the radial heat flux is replaced
with simple monomials and polynomials and is integrated layer by layer
(laminar sublayer, buffer layer, outer turbulent layer, and inner turbulent
layer) to find the radial temperature profile. The dimensionless radial tem-
perature profile turns out to be a function of both Reynolds (Re) and
Prandtl (Pr) numbers (Martinelli, 1947; Poppendiek, 1954).

The solution for problem (2) was originally found by Martinelli (1947)
assuming three layers (laminar sublayer, buffer layer, and turbulent layer)
for the calculation of both the velocity and the temperature profiles. It is
worth mentioning that in the buffer and turbulent layer, Martinelli pre-
ferred a logarithmic law for the velocity based on experimental data (i.e.,
the so-called generalized velocity profile). In this work, we follow an
alternative analytic solution based on the same approach of Poppendiek,
briefly described above for problem (1), adopting the one-seventh power
law for the velocity and the same four layers of Poppendiek for the radial
temperature. The comparison between the Martinelli and this work
approaches is shown in Fig. 6.2 in terms of the temperature difference
with respect to the center-line pipe temperature as a function of the

Figure 6.1 Comparison between the different evaluations of the dimensionless radial
temperature profile in a pipe with laminar flow.
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dimensionless distance n from the pipe wall (n�1�r/r0). The two
approaches substantially agree with little differences at lower Reynolds
numbers and in the center of the pipe.

The temperature profile of the “original problem” can be easily
achieved by superimposing the temperature profiles of problems (1) and
(2). In Fig. 6.3, results of the CFD analyses for the “original problem” are
compared with the analytical ones achievable following the Martinelli and
this work approaches for the problem (2).

The numerical results in terms of velocity (Fig. 6.3A) and temperature
(Fig. 6.3B) profiles follow very well those provided by both analytic
approaches, which are very close to each other.

As for the velocity, numerical results provided by both codes are in
good agreement, whereas the analytical profiles show some little differences
due to the modeling assumptions (i.e., logarithmic and one-seventh laws).

As far as the temperature is concerned, it must be pointed out that a
more accurate agreement can be found by means of FLUENT in the
near-wall region thanks to the enhanced wall treatment approach of the
boundary layer.

6.3 Heat transfer and pressure losses

In graphite-moderated MSRs, a notable characteristic is that while the
energy from nuclear fission reactions is primarily released directly in the
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Figure 6.2 Comparison between the different evaluations of the radial temperature
profiles in a pipe with turbulent flow for several Reynolds numbers and Pr5 1 �
problem (2).
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fuel, the graphite channels experience heating from gamma and neutron
radiation. This additional heat source often leads to a radial temperature
gradient from the fuel towards the graphite. In other words, the liquid
fuel practically cools down the graphite in steady-state operation (Křepel
et al., 2005; Křepel et al., 2007).

The investigation of the heat exchange properties between molten
salt and graphite is performed with reference to an axial-symmetric geom-
etry representing a typical MSR core channel, idealized as a circular pipe
with circulating molten salt that is surrounded by a hollow cylinder of
graphite.
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Figure 6.3 Comparison between the different evaluations of (A) the dimensionless
velocity profile, and (B) of the radial temperature profile in a pipe with turbulent
flow for several Reynolds numbers and Pr5 1 � “original problem”5 (1)1 (2).
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By coupling the analytic approach described in Section 6.2 for
modeling the fully developed flow of molten salt inside the pipe with
the heat conduction problem for the graphite, it is possible to find the
radial temperature profile in the channel (graphite1molten salt). The
previous solutions (1) and (2) can be used for the molten salt, while for
the graphite the following radial profile is obtained by solving the 1-D
heat conduction equation between the inner (Ri) and the outer (Ro)
radii of graphite:

T rð Þ5 qwg
2λg

R2
i 2 r2

2
1R2

o ln
r
Ri

� �� �
1TW (6.5)

where qwg and λg are the volume-heat source and the thermal conductiv-
ity of the graphite, and Tw is the interface molten salt-graphite tempera-
ture. The heat flux at the interface, qvW, is given by Eq. (6.6):

qvW 52 qwgðR2
o 2R2

i Þ=2Ri (6.6)

To calculate the wall temperature TW, it is necessary to first solve the
heat transfer problem in the molten salt. This involves applying the wall
heat flux given by Eq. (6.6) as a boundary condition, and specifying the
values of the volume-heat source in both the molten salt (qws) and the
graphite (qwg). In the next analyses, a ratio qwg/qws of about 3% is adopted
(Mandin et al., 2005).

Once the radial temperature profile is known, it is possible to calculate
analytically the Nusselt number as Nu5 (Dh/λ) � qvW/(TW2Tb) and con-
sequently the heat transfer coefficient between the molten salt and the
graphite as h5Nu �λ/Dh, where Tb and Dh are the bulk (or mixed-
mean) temperature of the molten salt and the channel hydraulic diameter,
respectively.

It must be pointed out that in the case of heat source within the fluid,
the Nusselt number is not only a function of Reynolds and Prandtl num-
bers but also of the ratio between the heat source and the wall heat flux
(Poppendiek, 1954; Fiorina et al., 2014).

Two different cases are considered for the CFD analyses: (I) no volume-
heat source within the molten salt and (II) molten salt with volume-heat
source. The first case (whose results are shown for both the laminar and the
turbulent flow) is important not only for the above statement about the
Nusselt number but also because heat transfer properties of molten salt are of
interest for its usage in the intermediate-heat exchanger (Mandin et al., 2005).
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The second case is more representative of an MSR core channel, and the
respective results are shown for brevity only in turbulent flow, which is
expected to occur during reactor operating conditions. For what concerns
molten salt and graphite properties, MSR design specifications, and the
volume-heat sources, we refer to Mandin et al. (2005), while the most
important data are summarized in Table 6.1.

6.3.1 Laminar flow
A Reynolds number Re5 80 is chosen for this analysis, referring to the
case with no volume-heat source within the molten salt. In Fig. 6.4, the
local Nusselt number achieved by the CFD simulations (considering a
length of 15 m in order to reach fully developed flow conditions) is com-
pared with the following correlation given by Bird et al. (1960), which is
valid for thermally developing flow with constant wall heat flux:

Nuz5
1:302 z�ð Þ21=32 1:0 for z�# 5U1025

1:302 z�ð Þ21=32 0:5 for 5U1025 # z�# 1:5U1023

4:3641 8:68 103Uz�
� �20:56

Uexp 2 41Uz�ð Þ for z�$ 1:5U1023

8<
:

(6.7)

where z� 5 z/(Re � Pr �Dh). COMSOL and FLUENT codes supply the
same results, which are in very good agreement with the correlation given
by Bird et al. as well as with the analytical evaluation of the local Nusselt
number (see also Table 6.2). The friction pressure losses are numerically
evaluated considering a parabolic profile of the inlet velocity and are

Table 6.1 Main reference data of the analyzed molten salt reactor channel.

Symbols/quantities Molten salt Graphite

cP, specific heat capacity [ J/kg �K] 1357 1760
Dh, channel hydraulic diameter [m] 0.16 �
H, channel length [m] 4.8 4.8
Pr, Prandtl number [�] 11 2
qw, volume-heat source [W/m3] 1.3 � 108 3.4 � 106
Ri, interface radius [m] 0.08 0.08
Ro, outer radius [m] 2 0.12
Tin, channel inlet temperature [K] 900 2
η, dynamic viscosity [kg/m � s] 0.01 2
λ, thermal conductivity [W/m �K] 1.23 31.2
ρ, density [kg/m3] 3330 1843
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compared in Table 6.2 with the classical Darcy formula for the friction
coefficient f in the Hagen-Poiseuille flow (i.e., f5 64/Re). As can be
noticed, a very good agreement exists.

6.3.2 Turbulent flow
A Reynolds number Re5 8 � 104 is chosen for the turbulent flow. In this
subsection, the effect of the standard k-ω turbulence model is also investi-
gated, and results are compared to the analytic solution and those obtained
with the standard k-ε model for both the considered cases (I) and (II). For
the numerical simulations, COMSOL and FLUENT codes have been
adopted. Radial temperature profiles are shown in Fig. 6.5, while the
Nusselt number and the friction pressure losses calculations are given in
Tables 6.3 and 6.4, respectively.
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Figure 6.4 Comparison between the different evaluations of the local Nusselt num-
ber in the molten salt reactor channel with laminar flow.

Table 6.2 Comparison between analytic and numerical calculations of the local Nu
and friction pressure losses in the MSR channel with laminar (fully developed) flow.

Analytic COMSOL Err (%) FLUENT Err (%)

Local Nu
(z 5 13 m), [�]

4.364 4.393 0.7 4.389 0.6

Pressure losses
(z 5 H), [Pa]

9.00 � 1022 8.99 � 1022 0.1 8.97 � 1022 0.3
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As a result, there is good agreement of the numerical evaluations of
both the Nusselt number and the temperature profiles with those obtained
analytically. The well-known Dittus-Boelter correlation can be used for
molten salt (El-Wakil, 1978; Todreas and Kazimi, 1990; Mandin et al.,
2005) giving a reasonable result in the case of no heat source with a

Figure 6.5 Comparison between the different evaluations of the temperature profile
in the molten salt reactor channel with turbulent flow (z5 4.4 m): (I) without, and
(II) with volume-heat source.

Table 6.3 Nu comparison with the analytic solution in the MSR channel (turbulent
flow).

Local Nu (z 5 4.4 m) Case (I) Err (%) Case (II) Err (%)

Analytic solution 523 � 418 �
Dittus-Boelter correlation 502 4.0 502 20
COMSOL k-ε 512 2.1 474 13
COMSOL k-ω 517 1.2 472 13
FLUENT k-ε 584 12 469 12
FLUENT k-ω 526 0.7 422 1.1

Table 6.4 Pressure losses comparison with the McAdams correlation in the molten
salt reactor channel for the turbulent flow (z 5 H).

Friction pressure losses [Pa] Err (%)

McAdams correlation 2163 �
COMSOL k-ε 2021 6.6
COMSOL k-ω 2036 5.9
FLUENT k-ε 2332 7.8
FLUENT k-ω 2193 1.4
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discrepancy of 4% in comparison with the analytic solution, but it should
be used carefully in the presence of a heat source within the fluid because it
does not take into account the dependence of heat transfer on the ratio
between wall heat flux and volume-heat source. As a consequence, the
heat transfer coefficient could be excessively overestimated (see Table 6.3).
This last issue has been the subject of several works (e.g., Di Marcello et al.,
2010; Luzzi et al., 2010, 2012a; Fiorina et al., 2014) to which the reader is
referred. Here, we just retrieve from Fiorina et al. (2014) an example con-
cerning the core channels of the molten salt breeder reactor (Robertson,
1971). As can be noticed in Fig. 6.6, traditional correlations (Dittus and
Boelter, 1930; Sieder and Tate, 1936; Gnielinski, 1976; Bin et al., 2009;
Yu-ting et al., 2009) predict a higher Nusselt number compared to the cor-
relation proposed by Di Marcello et al. (2010) that takes into account the
volume-heat source in the molten salt. This leads to an underestimation of
the graphite temperature, whose importance depends also on the channel
diameter and the strength of heat source in the fuel.

A good agreement can be found between the numerical evaluations
of the pressure losses and the well-known McAdams correlation (see
Table 6.4).

Figure 6.6 Nusselt number in the core channels of the molten salt breeder reactor.

275Thermal hydraulic analysis of liquid-fueled molten salt reactors



As a general comment on the analyses presented in this section, we
can observe that the numerical results provided by COMSOL and
FLUENT codes are close to each other in terms of temperature profiles,
Nusselt number, and pressure losses. Some differences have been found,
which are related to the choice of different turbulence models, but it is
not the aim of this chapter to enter into such details. Moreover, the influ-
ence of the volume-heat source on the heat transfer properties may be
relevant at low Reynolds numbers and needs to be carefully taken into
account.

6.4 Effects of internal heat generation on natural
circulation stability

Analytical, numerical, and experimental studies on the stability and tran-
sient behavior of single-phase natural circulation loops (NCLs) have been
performed in recent years by several authors. An overview can be found
in Misale (2014). However, all these works performed the analysis of
NCLs with localized hot and cold heat sinks, mainly focusing on the
influence of the loop geometry on natural circulation instabilities, while
the instance of an internal and distributed power source inside the system
has been little investigated. In this regard, the first studies have been con-
ducted by Pini et al. (2014), Ruiz et al. (2015), Pini et al. (2016), Cammi
et al. (2016b), Cammi et al. (2017), Luzzi et al. (2017), and Battistini et al.
(2021). Referring the reader to these two studies for a detailed description
of the methods developed for the stability analysis, as well as of the main
modeling assumptions adopted, hereafter the main results are summarized.
They are expressed in terms of dimensionless stability maps, which are a
compact way to describe the dynamic behavior of a given system.

Reference is made to the two vertical loop configurations with con-
stant diameter D shown in Fig. 6.7 that can be characterized by large
instability regions, namely the HHHC (horizontal heater�horizontal
cooler) and the VHHC (vertical heater�horizontal cooler) loops.

Their geometrical features (Vijayan et al., 2007) are given in
Table 6.5. A single cooling section (called cooler) is considered and is
modeled as a constant wall temperature heat exchanger, while two heat
sources can be taken into account. The first is a localized external heater
(called heater) and is treated as a localized heat flux (LHF) source, qv.
The second represents the heat generation inside the fluid (e.g., the cir-
culating fuel in MSRs) and is modeled as a homogeneous distributed
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volumetric source2, qw. The fluid flow is considered one-dimensional
along the curvilinear coordinate s (adopted to describe the position

Figure 6.7 Rectangular loop configurations: (A) horizontal heater�horizontal cooler;
(B) vertical heater�horizontal cooler (not to scale).

Table 6.5 Dimensions (in meters) of the horizontal heater�horizontal cooler and
vertical heater�horizontal cooler loops.

Loop L1 L2 L3 L4 L5 L6 Lc Lh Lt D

HHHC 0.31 2.20 0.40 0.40 2.20 0.31 0.80 0.62 7.24 0.0269
VHHC 0.31 2.20 1.42 0.35 1.12 0.31 0.80 0.73 7.24 0.0269

2 In MSRs, the heat production inside the fluid takes place through fission reactions in the
reactor core and through nuclear decays of the fission products in the whole primary cir-
cuit. However, the decay heat variation along the primary circuit is small. The strongest
heat release takes place inside the core (or at the core exit, when it is generated by the
fastest decaying fission products). After the core shutdown, during an emergency condi-
tion, the decay heat along the primary circuit can be considered uniform.
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inside the loop), and it is assumed that the same flow regime (laminar,
laminar turbulent transition, or fully turbulent) exists in the whole loop.

For comprehension of the stability maps, which are obtained by per-
turbing the system equilibrium, the following steady-state quantities are to
be defined: the temperature variation due to the external heat flux in the
heater section (ΔTqv) and the temperature variation of the fluid induced
by the internal generation outside the cooler (ΔTqw):

ΔTqv5
qv P=A
� �
G0Cp

Lh (6.8)

ΔTqw 5
qw

G0Cp
Lt 2Lcð Þ (6.9)

where G0 is the mass flux, Cp is the fluid reference specific heat (taken at
the cooler entrance), P and A are the perimeter and the cross-section area
of the pipes, respectively, Lh is the heater length, Lc is the cooler length,
and Lt is the total length of the loop. At this point, it is also possible to
define the total temperature variation outside the cooler (ΔTtot), the ratio
α between ΔTqv and ΔTtot, and the modified Stanton number (Stm0):

ΔTtot 5ΔTqv1ΔTq0v (6.10)

α5
ΔTqv

ΔTtot
0#α# 1ð Þ (6.11)

Stm0 5 4St0
Lt

D
5 4

Nu0
Re0Pr0

Lt

D
5

h0 P=A
� �
G0Cp

Lt (6.12)

where St0 is the Stanton number, Nu0 is the Nusselt number, Re0 is the
Reynolds number, Pr0 is the Prandtl number, h0 is the convective heat
transfer coefficient, and the subscript 0 indicates steady-state values. The α
ratio can assume all values between 0 and 1. For α5 1, there is only the
localized external heat source (conventional natural circulation). For α5 0,
only a homogeneously distributed IHG is present in the system. An
example of steady-state distribution, both for α5 1 and α5 0, is shown
in Fig. 6.8. This parameter has a great influence on the NCL dynamic
behavior, because a variation of α directly implies a change in the ratio
between the heat produced by the LHF in the heater and the distributed
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IHG. When α is changed, the same system can experience stable or
unstable natural circulation flow regimes. Actually, as will be shown, the
stability maps strongly depend on α.

Another important parameter, generally not considered in the litera-
ture, but affecting the dynamic behavior of the system as well, is herein
denoted B. It reads:

B5
G0

h0

@h
@G

� �
0

(6.13)

The parameter B has been evaluated in Pini et al. (2016), to which
we refer for details, and has the trend shown in Fig. 6.9 for different
values of the Prandtl number. It represents the variation of convective
heat transfer coefficient due to mass flux perturbations. If B is equal to
zero, this relation is not taken into account, and the heat transfer coeffi-
cient h is treated as a fixed parameter at the steady state value (h0), by
neglecting its dependence on the mass flow rate (and hence on the
Reynolds number).

Given the above definitions of the α and B parameters, we can now
summarize some significant results in terms of stability maps for the two
considered loop configurations. Natural circulation may occur at different
flow regimes, from the laminar to the turbulent, depending on the ther-
mal power given to the system. The steady-state condition is reached
when a dynamic equilibrium is established between the buoyancy and the

Figure 6.8 Horizontal heater�horizontal cooler loop: steady-state temperature field
for α 5 0 (internal generation only) and α 5 1 (conventional natural circulation).
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frictional effects. This equilibrium can be stable or unstable. In the last
case, the instabilities can lead to large pulsations in the fluid flow rate and
unwanted behavior of the system. For a given loop configuration and a
given value of α, in a Re versus Stmo diagram, the geometrical locus of the
points for which the mass flux remains constant (after the perturbation of
the steady state) sets a boundary separating the couples (Re0, Stm0) for
which the equilibrium is asymptotically stable from those for which the
equilibrium is unstable. This is the definition of the stability map.

As already mentioned, IHG can significantly modify the dynamic
behavior of natural convection loops. Fig. 6.10 shows the stability maps of
the HHHC and VHHC systems for B5 0 (fixed heat transfer coefficient),
from α5 1 (only localized external heating) to α5 0 (only IHG). As can
be noticed, the unstable regime increases when IHG is present.

The HHHC loop configuration represents a very critical situation
since, for any value of α, it always remains a symmetric system (see
Fig. 6.7A), and therefore the fluid does not have any preferable flowing
direction. When B 6¼ 0 (see Fig. 6.11A), the heat exchange varies with the
mass flux perturbation and induces a strong stabilization. This effect is

Figure 6.9 Trend of B with respect to the Reynolds and the Prandtl numbers.
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larger in the range of Reynolds numbers for which the value of B is high-
er (see Fig. 6.9). Moreover, the stabilization becomes stronger as the frac-
tion of the power given by the internal generation increases (from α5 1
to α5 0). Since the influence of the volumetric heat generation is small,
the effect of B is able to reverse the stability behavior of the system for
laminar-turbulent transition and fully turbulent zones (where B is bigger
compared to the laminar zone, as Fig. 6.9 shows). Hence, the system is
more stable for α5 0 than for α5 1 when Re . 2500.

Figure 6.10 Stability maps of horizontal heater�horizontal cooler (A) and vertical
heater�horizontal cooler (B) loops for various internal heat generation levels. The
effect of heat exchange is neglected (B 5 0). Stable and unstable regions are on the
right and on the left of the curves, respectively.

Figure 6.11 Stability maps of horizontal heater�horizontal cooler (A) and vertical
heater�horizontal cooler (B) loops with (B 6¼ 0) and without (B 5 0) the effect of
heat exchange, for different internal heat generation levels. Stable and
unstable regions are on the right and on the left of the curves, respectively.
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The behavior of the VHHC configuration is completely different with
respect to the previous case. As a matter of fact, when the power is given by
the localized heater (α5 1), the flow has a preferred direction for its
motion, that is the clockwise one (see Fig. 6.7B). On the contrary, as α
becomes zero, the loop progressively acquires a symmetric configuration,
and hence, the system becomes more unstable. The destabilization induced
by the IHG is so marked (see Fig. 6.10B) that the case of α5 0 remains the
most unstable also considering the heat exchange effect (see Fig. 6.11B).

Fig. 6.11 clearly shows that the overall effect of the B parameter is that
of stabilizing the system dynamics. This can be explained as follows. If the
mass flux oscillations increase, the convective heat transfer in the cooler is
enhanced. Since the power given to the system is constant, when the heat
exchange increases, the mean temperature difference between hot and
cold legs of the loop becomes smaller. The final consequence of this
mechanism is the weakening of the buoyancy force, which is induced by
the density variation caused by the nonuniform temperature field.

To summarize, it has been found that IHG combined with heat
exchange effect can induce a stabilization or a destabilization of the system
dynamics depending on its action on the loop symmetry. For the HHHC
loop, which presents a perfect axial symmetry for every value of α, IHG
together with the heat transfer phenomena induces stabilization. On the
other hand, for the VHHC loop, which does not have any symmetry for
α5 1, IHG combined with the heat exchange effect causes a destabiliza-
tion because it increases the symmetry of the loop. By considering the
two effects in a separate way, the heat exchange (B 6¼ 0) acts on the sys-
tem oscillations with a negative feedback, whose influence increases as the
fluid IHG becomes larger. On the contrary, the volumetric power source
destabilizes the system.

We believe that it is fundamental to validate the predictions of the
presented stability maps with experimental data. For this purpose, the
DYNASTY testing facility, built at the Department of Energy (Politecnico
di Milano), can give a fundamental support (Cammi et al., 2016a; Battistini
et al., 2021), also providing useful information on some effects that were not
discussed in this work, such as nonuniform power generation, cross-stream
temperature gradients effects, and nonuniformity of the fluid parameters. The
experimental campaign started in the Spring of 2022 and will conclude its
first phase in 2023. The acquired knowledge will constitute the background
necessary for understanding how the decay heat distributed along the primary
circuit of an MSR can modify the dynamics of natural circulation, potentially

282 Molten Salt Reactors and Thorium Energy



leading to the dangerous behavior of the reactor. Such an occurrence needs
to be carefully avoided through an appropriate design based on the outcomes
of the planned investigations. In other words, the study of the dynamic
behavior of natural circulation with IHG is important in order to achieve
high levels of intrinsic safety, which is one of the pillars of the Generation IV
International Forum.

6.5 Conclusions

In this chapter, a preliminary approach to thermohydraulics of a typical
(graphite-moderated) MSR channel has been presented by assuming that
the neutronic problem is decoupled from fluid dynamics and referring to
a simple axial-symmetric geometry. Some relevant aspects of this system,
featured by a heat source within the fuel/coolant molten salt, have been
analyzed. In particular, a validation framework has been proposed in order
to test different computer codes. In the presented analyses, we have
adopted COMSOL and FLUENT, whose numerical results in terms of
temperature profiles and pressure losses turned out to be very close to
each other and substantially in good agreement with the analytical solu-
tions and data given by empirical correlations. However, more detailed
analyses are required in the case of more complex and design-oriented
geometries, taking into account the effects concerning the geometry itself,
the influence of the volume-heat source on the heat transfer, and the
choice of both the mesh structure and the turbulence model. For this pur-
pose, the strong coupling between neutronics and thermohydraulics,
which is a specific and intrinsic feature of liquid-fueled MSRs, needs to
be considered as well.

The presented results on the natural circulation stability, although pre-
liminary, have clearly shown that the behavior in the presence of IHG is
characterized by a particular dynamics. Actually, system equilibria that are
asymptotically stable for NCLs with conventional LHF can become
unstable when IHG is present. The stability maps have proved that IHG,
when it dominates the localized external heat source, can modify the
shape and area of the stability regions. These findings contribute to the
development of the natural circulation modeling, introducing physical
phenomena previously neglected, and suggest that IHG effects should be
taken into account when designing convective loops with internally
heated fluids. As far as future developments are concerned, the influence
of the thermal properties of the pipe walls is currently under investigation
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at Politecnico di Milano, and loop configurations featured by significant
3-D effects and with different positions of the localized heater and of the
cooling section will be considered as well.
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Křepel, J., Grundmann, U., Rohde, U., Weiss, F.P., 2007. DYN3D-MSR spatial dynam-
ics code for molten salt reactors. Ann. Nucl. Energy 34, 449�462.
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