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Abstract 

Background  With the rise of publicly available genomic data repositories, it is now common for scientists to rely 
on computational models and preprocessed data, either as control or to discover new knowledge. However, different 
repositories adhere to the different principles and guidelines, and data processing plays a significant role in the quality 
of the resulting datasets. Two popular repositories for transcription factor binding sites data - ENCODE and Cistrome - 
process the same biological samples in alternative ways, and their results are not always consistent. Moreover, the out-
put format of the processing (BED narrowPeak) exposes a feature, the signalValue, which is seldom used in consist-
ency checks, but can offer valuable insight on the quality of the data.

Results  We provide evidence that data points with high signalValue(s) (top 25% of values) are more likely to be con-
sistent between ENCODE and Cistrome in human cell lines K562, GM12878, and HepG2. In addition, we show that fil-
tering according to said high values improves the quality of predictions for a machine learning algorithm that detects 
transcription factor interactions based only on positional information. Finally, we provide a set of practices and guide-
lines, based on the signalValue feature, for scientists who wish to compare and merge narrowPeaks from ENCODE 
and Cistrome.

Conclusions  The signalValue feature is an informative feature that can be effectively used to highlight consistent 
areas of overlap between different sources of TF binding sites that expose it. Its applicability extends to downstream 
to positional machine learning algorithms, making it a powerful tool for performance tweaking and data aggregation.
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Background
Transcription Factors (TFs) are critical components of 
the DNA transcription machinery. Their role is to bind 
their target motifs on TF binding sites and increase or 
decrease their accessibility. Positional knowledge of 
Transcription Factor Binding Sites (TFBSs) is critical for 
understanding, predicting, and acting upon the RNA pol-
ymerase machinery. Such knowledge is obtained directly 
from in  vivo Chromatin ImmunoPrecipitation followed 
by Sequencing (ChIP-Seq) experiments [1]. Data from 
ChIP-Seq is typically processed, stored, and analysed in 
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the form of large datasets with table-like structures, and 
computational methods have become increasingly popu-
lar for mining ChIP-Seq experiment results.

Several repositories are available that host large quan-
tities of such datasets. The ENCODE database [2] has 
become a reference for the community in terms of pro-
cessing, storing, and distribution. Users may freely 
download hundreds of TFBS datasets from different cel-
lular environments and experimental setups. Data are 
contributed by the ENCODE Consortium, according to 
a pipeline designed to maximise consistency between 
replicates [3]. However, alternative pipelines have been 
developed to extract different aspect of the biological 
data. For example, the Cistrome research group [4] col-
lected experimental data from several projects, includ-
ing but not exclusively ENCODE, and processed them 
using an in-house pipeline [5]. The goal of Cistrome is to 
apply an alternative, less strict approach to data filtering 
and quality control, and thus preserve binding sites with 
informational content that would otherwise be discarded 
by stricter quality control. Nevertheless, quality control 
and analysis pipelines applied to Cistrome datasets need 
to be robust with respect to a broader set of ChIP-Seq 
protocols.

Since ENCODE and Cistrome share a portion of their 
source data, it seems reasonable to use them interchange-
ably to feed computational pipelines. For example, over-
laps between transcription regions in the two could be 
considered to be “high confidence” areas to be analysed; 
furthermore, it is often the case that not a lot of data is 
available in a single database for a particular biological 
TF or cell line, so having multiple, compatible sources 
is desirable. However, data processed by different pipe-
lines are not equivalent. For example, in Fig. 1 we show a 
small sample of TFBS data from ENCODE and Cistrome 

pertaining to the same portion of the genome. It is clear 
that many binding sites are not concordant, neither in 
quantity nor in position.

One output feature of ChIP-Seq peak callers that is 
rarely discussed is the signalValue. The signalValue is 
defined as the average enrichment of a region (cf. https://​
genome.​ucsc.​edu/​FAQ/​FAQfo​rmat.​html). Enrichment is 
defined as the number of reads found at a location during 
an experiment, viz., the higher the signalValue, the more 
genomic material of interest was found. Binding sites are 
typically considered in binary terms as either “enriched” 
or not; however, some algorithms employ signalValue(s) 
to estimate the strength of binding at a binding site and 
in the background [6, 7].

In this study, we investigate the overlap between the 
two databases (ENCODE and Cistrome), and ask if the 
signalValue feature of narrowPeaks may be used to fil-
ter for locations that have a high correspondence. This 
is not a straightforward question. First, it is not obvious 
under which parameters should the two data sources 
be compared, as different applications require different 
data types and accuracy metrics [8]. Second, data nor-
malisation is of concern: even though both ENCODE 
and Cistrome take care in ensuring their experiments are 
reproducible, their datasets are not immediately com-
parable without processing. Third, it is not clear how to 
validate the results of such an analysis.

Ultimately, we are interested in deriving sound, vali-
dated guidelines for merging and intersecting ENCODE 
and Cistrome databases. It should be noted that we are 
interested in mirroring the use case of an investigator 
who wants to employ publicly available data and cannot 
or does not want to replicate the peak-calling procedure. 
As such, we will use the datasets “as-is” and do not per-
form the peak-calling a second time.

Fig. 1  Slice of human chromosome 1, showing ENCODE (orange) and Cistrome (blue) data of the same TF (Nuclear Respiratory Factor 1 (NRF1)) 
in the same cell line (HepG2). Several ENCODE sites are not replicated by Cistrome, and viceversa

https://genome.ucsc.edu/FAQ/FAQformat.html
https://genome.ucsc.edu/FAQ/FAQformat.html
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Results
In this section, we show results obtained in three dif-
ferent cell lines: HepG2, GM12878, and K562. We only 
report plots for cell line HepG2, as there are more Tran-
scription Factors (TFs) and samples in said cell line, and 
thus results are more detailed. Plots for the other cell 
lines are reported in Supplementary Materials, Figures S2 
through S7. Results are similar, and will be highlighted in 
the text for comparison.

Jaccard Index and Alroy‑Forbes coefficient analysis 
confirms lack of overlap
In Fig.  2a we report the general Jaccard Indices of 
ENCODE and Cistrome regions in cell line HepG2.

The minimum and maximum values for the general 
Jaccard Index in HepG2 are 0.001 and 0.318 respec-
tively (GM12878: 0.021-0.233, K562: 0.007-0.317). This is 
a clear indication that, at face value, there is little to no 
overlap of the peak summit windows between ENCODE 
and Cistrome. Even when we consider the conditional 
overlaps, the Jaccard Index does not exceed 0.5, stabi-
lizing around the 0.25 to 0.4 range (all cell lines). One 

might observe that the general Jaccard Index does not 
tell the full story. Indeed, we expect the Jaccard index to 
be artificially lower if one dataset has many more regions 
than the other, even though one of them might be a per-
fect subset of the other (Fig. 2a and b). Nevertheless, the 
Alroy-corrected Forbes coefficient also peaks at 0.450 to 
0.550 (Fig.  2c, Supplementary Figures  S2 and S5), well 
below the 0.600 threshold, providing stronger evidence to 
our claim (cf. [9] for a discussion of the range of values of 
the Alroy-corrected Forbes coefficient).

Conditional probabilities indicate higher than expected 
overlap of medium‑ and high‑signal binding sites
In spite of this lack of spatial overlap, we can look for 
a different kind of coherence that considers the sig-
nalValue as well. To do so, we investigated whether it 
is more likely that binding sites with a high signalValue 
overlap each other. To do so, we plotted the ratio of the 
observed probability of each of the 9 possible sub-joins 
based on signal (L matching L, L matching M, and so 
on) for each of the 30 eligible Transcription Factors 
(TFs) in HepG2 (Fig. 3, Supplementary Figures S3 and 

Fig. 2  In all graphs, a dot represents a single TF. a General JaccardIndex scatterplot for HepG2. x axis: number of basepairs occupied by all regions 
for this TF in ENCODE (log10) y axis: number of basepairs occupied by all regions for this TF in Cistrome (log10) Color: General JaccardIndex. Darker 
color represent higher values. b Alroy-Forbes coefficient scatterplot for HepG2. x axis: number of basepairs occupied by all regions for this TF 
in ENCODE (log10) y axis: number of basepairs occupied by all regions for this TF in Cistrome (log10) Color: Alroy-corrected Forbes coefficient. 
Darker color represent higher values. c Distribution of Jaccard Index and Alroy-corrected Forbes coefficient values in HepG2. Note that a value 
of 1 of the Alroy-Forbes coefficient denotes high-correlation. d Conditional Jaccard Index scatterplots on HepG2. x axis: Conditional JaccardIndex 
with respect to ENCODE. y axis: Conditional JaccardIndex with respect to Cistrome
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S6), divided by the expected probability of the same 
under independence assumption. Recall that we binned 
the distribution of signalValue(s) in each database 
in 3 baskets (Low, Medium, High) such that the rela-
tive ratios are 1:2:1. In other words, P(E = L) = 0.25 , 
P(E = M) = 0.5 , P(E = H) = 0.25 (and ditto for Cis-
trome). Now, if we assume that the probability of two 
Transcription Factor Binding Sites (TFBSs) matching 
between databases is independent of the signalValue, 
we can easily compute the joint probabilities, e.g. 
P(E = H ∧ C = H) = 0.25 ∗ 0.25 = 0.0625.

We notice that the vast majority of the overlaps 
fall into the M x M, M x H, H x M, and H x H bins, 
which are strongly over-represented compared to the-
oretical distribution (ratio greater than 1, red color). 
Conversely, most bins that include the L label are 
underrepresented (ratio less than 1, blue color). Some 
outliers can be observed, for example Nuclear factor 
interleukin 3 regulated (NFIL3) in HepG2 or Specificity 
Protein 1 (SP1) in K562. We note that these (and other) 
outliers display a large imbalance in the number of 
binding sites between databases (e.g., ENCODE has 8.6 
times the number of Cistrome binding sites in NFIL3, 
after preprocessing). Despite these outliers, there is 

a trend for matched binding sites to fall in high signal 
bins.

Using the above, we can also investigate if the condi-
tional distributions P(E|Ch) (the probability distribu-
tion of the signalValue in ENCODE sites that match 
Cistrome-high sites) and P(C|Eh) (vice versa) are close to 
the expected values. This is interesting for us because it is 
direct evidence of whether high signalValue points tend 
to bind with each other.

In Fig. 4a and b we chart the observed distributions of 
the conditional probabilities in HepG2, along with the 
null conditional probabilities (solid and dashed red lines). 
In supplementary Figures S4 and S7, we report the same 
for GM12878 and K562 respectively.

We observe in all cases a disproportionate amount of 
high signal sites matching another high signal site, and a 
below average number of low signal sites matching a high 
signal site. This observation, combined with the previous 
ones, strongly suggests that the independence assump-
tion does not hold for these dataset(s). We also observe 
that ENCODE-medium has a higher than expected prob-
ability of matching with Cistrome-high, while the reverse 
is not true (consistent across all 3 cell lines). By combin-
ing the inset figures for ENCODE recall and Fig. 3 (and 

Fig. 3  Heatmaps of the signal distribution among joined binding sites in HepG2. Top row: size ratio between ENCODE and Cistrome. A size ratio 
x means that the number of binding sites in ENCODE divided by the number of those in Cistrome equals x (red: ENCODE has more binding sites, 
blue: Cistrome has more). Bottom rows: for each TF (columns), ratio of joined binding sites that fall into each bin compared to the expected null 
distribution under independence assumption. Red: bin is over-represented compared to the null; blue: bins is underrepresented
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Supplementary Figures  S4 and S7), we note that this 
EC-M over-representation is due to Transcription Fac-
tors (TFs) that have a strong imbalance in the relative 
sizes of ENCODE and Cistrome datasets, in favour of the 
latter.

Filtering on high‑signal improves the performance 
of location dependent machine learning algorithm
We now investigate the effect of filtering according to 
high signalValue binding sites (and where they match) on 
the Transcriptional Interaction and Coregulation Ana-
lyser (TICA). TICA attempts to find co-locating pairs 
of TFBS, and exploits the distribution of their distances 
to predict whether two Transcription Factors (TFs) are 
interacting.

We ran the TICA pipeline on all the different JOINs 
between ENCODE and Cistrome described in Methods. 
We used the default settings for the HepG2 cell line, as 
described in [10]. To validate our results, we used the 
following approach: consider the three interactions 
databases that we used to tabulate our list of accepted 
positives. For BioGRID and TRRUST, we extracted all 
the interactions reported that only mention eligible 
Transcription Factors (TFs) (i.e., those found in HepG2 
in both databases). There is some nuance when dealing 
with CORUM, as it reports complexes of both Tran-
scription Factors (TFs) and non Transcription Factors 

(TFs). Thus, we extracted all complexes that contains at 
least two eligible Transcription Factors (TFs), and con-
sider two Transcription Factors (TFs) to be interact-
ing if they are found in at least one of such complexes 
together. This results in a set of 29 validated interac-
tions out of 435 possible ones (after reducing for sym-
metry and factoring in that TICA does not predict self 
interactions).

We evaluate the effect of the filtering by comparing 
recall, precision, and accuracy of the predictions, using 
the above reference set. Care should be taken as we 
define the above terms, because of two reasons: 

1	 The test set is unbalanced.
2	 It is not self-evident what a negative case means in 

this situation. The fact that these databases do not 
report a particular interaction does not mean that 
there is none, but only that no evidence has been 
found yet. This is relevant in particular when consid-
ering “false positive”, as some of them are likely to be 
new, undetected interactions. For example, Forkhead 
Box A1 (FOXA1) and Forkhead Box A2 (FOXA2) 
are known to bind to “FOXA” sites and interact to 
regulate human Type I Iodothyronine Deiodinase 
(hDIO1) [11].

Keeping this in mind, we give the following definitions:

Fig. 4  a Conditional probability of ENCODE signal when matched with Cistrome-high binding sites. Red Lines: theoretical expected values 
assuming signal is independent of matching. Inset graphs: top - distribution of the size ratio between ENCODE sites and Cistrome sites among all 
Transcription Factors (TFs); bottom - distribution of the percentage of ENCODE sites recalled by Cistrome among all Transcription Factors (TFs). b 
Conditional probability of Cistrome signal when matched with ENCODE-high binding sites. Red Lines: theoretical expected values assuming signal 
is independent of matching. Inset graphs: as left, with reverse databases
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•	 A “validated” interaction as one where evidence is 
found in at least one of the databases above.

•	 A “validated prediction” is a positive TICA prediction 
that is also a validated interaction.

•	 Conversely, a “non validated” interaction is one 
where no evidence is found in any database, and a 
“non validated prediction” is a positive but non vali-
dated TICA prediction.

In this framework, true positives are validated predic-
tions, false positives are non validated predictions, false 
negatives are validated interactions that are not predicted 
as such, and true negatives are non validated interac-
tions that are not predicted either. In Fig. 5 we show the 
performance metrics of TICA using the different data-
base JOINs that we described in 5. The chart is sorted by 
recall. This is done because as we mentioned, our pre-
sumed reference contains very few positive cases.

While using Cistrome-high peaks (solid, cyan rectangle 
in Fig. 5) leads to the best recall, the best dataset to use is 
arguably ENCODE after filtering based on Cistrome-high 
(dashed, magenta rectangle in Fig.  5). This is because 
while this filtering achieves lower levels of recall (0.480 
versus 0.620), it has much more specificity (0.760 versus 
0.560). Using ENCODE-high matching Cistrome-high 

also yields good performance, with slightly lower recall 
(0.414) and higher specificity (0.830). Notably, there is a 
stark difference in performance between using only Cis-
trome and using only ENCODE (black ovals in Fig.  5). 
Such difference adds further evidence that our initial 
question is justified, and that the two data sets are not 
equivalent as they are.

Finally, we show in Fig. 6 the effect of filtering on the 
prediction themselves. In particular, we compare the 
predictions of between using ENCODE (with no filters), 
ENCODE-high, and ENCODE matching Cistrome-high. 
Firstly, we observe that the majority of TF-TF combina-
tions are reported as “true negatives” (i.e., non interac-
tions). This is be expected, because a majority of proteins 
do not interact with each other [12]. Secondly, we observe 
that simply limiting ourselves to high signals in ENCODE 
is not sufficient to improve recall, but matching Cistrome 
high-signal peaks significantly improves it (from 2 to 14). 
This is a significant improvement over using ENCODE 
on its own. Consequently, we also note that the number 
of non-recalled interactions (“false negatives”) is reduced 
with the addition of Cistrome peaks (from 27 to 15). This 
is also quite good, because it means we can recover more 
of the existing biological network. Finally, the number 
of “false positives” (non validated predictions) increases 

Fig. 5  Performance measures of TICA predictor, using various combinations of ENCODE and Cistrome. Notation: EC-h stands for ENCODE-high, 
viz., those TFBS in ENCODE whose signal is above the 75th percentile; ditto for CI-h (Cistrome-high). Histograms sorted by recall. Dashed 
rectangle: recommended datasets for general data analysis; solid rectangle: best datasets for recall-dependent applications; ovals: ENCODE-full 
and Cistrome-full performances for comparisons (see main text for details)
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(from 36 to 97). While some of these will be incorrect 
predictions, we speculate that a good amount of them 
will be predictions of novel co-operative TF-TF interac-
tions,. Alternatively, some of these could be predictions 
of competitive TF-TF interactions (e.g. the earlier men-
tioned FOXA1-FOXA2 interaction [11]); this is because 
BioGRID, CORUM, and TTRUST could only be used to 
validate co-operative TF-TF interactions.

Discussion
By considering only positional information of bind-
ing sites, one can already observe a nontrivial differ-
ence between ENCODE and Cistrome (Fig.  2). Part 
of this difference can be explained by the fact that Cis-
trome includes additional data sources, such as ROAD-
MAP Epigenomics. In addition to this, the CistromeDB 
research group has chosen to add some lower-quality 
samples that nonetheless may include useful clues to 
some aspect of regulatory biology not represented by 
other samples in the database [13]. However, this still 
does not adequately explain the low fraction of regions 
that ENCODE can match (also Fig.  2). With an average 
percentage of sites recalled around 30 to 50% for both 
databases, it does not seem reasonable to the use the two 
data sources interchangeably.

The Cistrome research team has collated the raw data 
from all sources and reanalysed it using the ChiLin pipe-
line [13, 14]. This pipeline is subtly different from the 
standard ENCODE pipeline. In particular, sequences 
are aligned using the Burrows-Wheeler Aligner (BWA) 
in the former and bowtie2 in the latter; ChiLin pre-
serves regions with high overlap with blacklist sites, 
while ENCODE does not; and ChiLin preserves 1 tag if 
multiple overlapping ones are found in a location, while 

ENCODE preserves all. The latter two points in particu-
lar could help explain the observed differences: blacklist 
areas [15] are sites that have shown consistent patterns of 
high signal and low binding affinity, independent of cell 
line. A difference in how these regions are implemented 
could lead to substantial differences in the reported 
binding events. The ChiLin pipeline also handles repli-
cates in a different fashion, namely by calculating Pear-
son correlation of reads per million (wigCorrelate) and 
computing the percentage of overlapping peaks. This 
approach is quite different from ENCODE’s Irreprodu-
bile Discovery Rate (IDR) method and is possibly a cause 
of the observed differences. Tellingly, the difference in 
magnitude and distribution of signalValues between the 
ENCODE and Cistrome samples are far larger than the 
observed differences of the same between samples com-
ing from either ENCODE of Cistrome alone. In fact, sam-
ples from the same database tend to have quite similar 
values and distributions of signalValue, likely due to the 
fact that they are derived from the same pipeline (cf. Sup-
plementary Materials, Figure S1).

This raises the question of whether it is reasonable or 
not to use the common locations between ENCODE 
and Cistrome. On a superficial level, it would seem rea-
sonable to assume that binding sites that are supported 
by two databases are more likely to be real. While this is 
indeed the case, more nuance must be applied. If there is 
no correlation between the binding signal and the prob-
ability of matching, the distributions of the signal bins in 
Fig.  3 would behave roughly like the expected averages 
column. Clearly, experiments do not show this. On the 
contrary, there seems to be a tendency for matches to 
be between high or at most medium signal binding sites 
(Fig. 4). This is important for two reasons. First, it makes 

Fig. 6  Validation matrices of TICA results using ENCODE data. Legend. White: validated POS; dark red: validated NEG; orange: non validated 
POS; purple: non validated NEG; black: NA. a Full ENCODE database. b ENCODE using only high signal binding sites. c ENCODE sites matching 
Cistrome-high sites
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it statistically very improbable that there is no correlation 
between the levels of signalValue and the chance that 
the input sources are in agreement. Second, high quan-
tities of tag reads detected at a location is typically con-
sidered evidence of binding events in that location [16]. 
Given that ChIP-Seq experiments involve assaying pro-
tein-DNA binding in vivo [17], and given that the target 
cell lines are immortalized [18] and thus essentially the 
same, it seems reasonable to assume the areas of high-
est binding should be consistent between the two data-
bases. We tested whether binding sites from ENCODE 
and Cistrome are likely to be found in the blacklist / 
High-Occupancy Target (HOT) regions provided by [19]. 
Specifically, we counted the number of bases that exhibit 
a binding event from ENCODE and Cistrome and also 
overlap with a HOT region; we did this for different levels 
of signal, as well in the case where regions are matched 
(Supplementary Materials, Figure S9). We can see that 
when ENCODE and Cistrome are matched, the propor-
tion of loci which overlap HOT region is rarely more 
than 5%, as opposed to the general case, and the pres-
ence of high signal slightly reduces this proportion. This 
support the theory that high signal-value area are sites of 
actual binding, made easier to detect by intersecting the 
two databases.

We turned to our previously published algorithm, 
TICA, to investigate whether binding sites filtered by 
signalValue improve the quality of downstream posi-
tional analysis. It is important to note that TICA does not 
require information about the signalValue, but nonethe-
less does include a reduction to 100bp windows around 
the peak summits [10]. This makes it a highly suitable 
candidate to test the effect of signalValue filtering.

The results of this analysis are quite telling. On the one 
hand, ENCODE datasets appear to employ protocols that 
are very stringent, being unable to capture some of the 
interesting biological information (i.e., only a recall of 7% 
at best). On the other, Cistrome datasets capture more of 
the interactions between transcriptions factors inscribed 
in ChIP-Seq datasets, but this comes with the cost of 
increasing the false alarm rate to levels that research-
ers may not be comfortable with (prediction heatmaps 
for Cistrome are reported in Supplementary Materials, 
Figure S8). Filtering ENCODE (resp., Cistrome) TFBS 
that match corresponding ones in Cistrome (ENCODE) 
improve the recall (in the case of ENCODE) and speci-
ficity (for Cistrome) of the predictions. While in theory 
this filtering reduces info and should lead to lower recall, 
in practice it doesn’t, so it is likely that most ENCODE 
peaks removed this way are noise peaks. However, we 
found that additional filtering by restricting putative 
matches to only those sites that have high signal lead to 
even better metrics for our predictor (cf. Fig.  5, dashed 

rectangle, Fig. 6). This suggests that restricting the input 
data to binding sites with high signalValue removes an 
additional set of noise peaks, which is in line with our 
assumption that TFBS with high signalValue are more 
likely to be real.

Finally, our initial hypothesis that ENCODE and Cis-
trome datasets are not directly comparable is supported 
by looking at the metrics for the two (cf. Fig.  5, ovals). 
While it may appear that Cistrome has the overall advan-
tage, one should remember that the assumed reference 
is strongly imbalanced in favour of negative cases. Thus, 
having lower specificity will, in general, result in a large 
number of false positives added to the result set. We 
therefore recommend, as best practice, to use ENCODE 
as a base and filter it using Cistrome, as this combines the 
high recall of Cistrome with preserving a good amount 
of specificity from ENCODE (cf. Fig. 5, dashed rectangle, 
and Fig. 6).

We summarize below our main findings concerning the 
use of ENCODE and Cistrome TF binding signals and 
provide some guidelines for use in the context of machine 
learning pipelines: 

1	 ENCODE and Cistrome binding site “as is” datasets 
are far from optimal when used by themselves. Bind-
ing sites exhibit significant discrepancies in terms of 
positioning and signalValues, even among Transcrip-
tion Factors (TFs) in the same cell line.

2	 Under the assumption that high signalValue binding 
sites are more likely to be real, this discrepancies can 
be lessened. By ranking binding sites according to the 
magnitude of their signalValue, and extracting only 
those with high values, the resulting sets are much 
more likely to be overlapping.

3	 If both ENCODE and Cistrome are available as input 
data for position-based algorithms, we recommend 
that ENCODE data is used after filtering for bind-
ing sites overlapping with Cistrome-high sites. This 
ensures the best compromise between quantity and 
quality of the binding sites.

4	 However, if the ability to uncover existing informa-
tion (as opposed to discarding artifact binding sites) 
is critical, using Cistrome as a base is recommended; 
filtering for high signalValue(s) provides better 
results.

Conclusions
In this study, we set forth to investigate whether the sig-
nalValue attribute of Browser Extensible Data (BED) 
narrowPeak samples could be used to locate area of con-
sistency between ENCODE and Cistrome datasets. We 
showed that a) the probability of matching two binding 
sites with high signalValue is significantly higher that 
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expected, and b) if a binding site with high signal matches 
another, it is highly likely that the second one will have 
high signalValue as well. Finally, we used TICA to show 
that combining the two databases yields improved 
results, especially when filtering for high signalValue.

Our selection of high, medium, and low binding sites is 
based on the mediocrity principle (we assume the major-
ity of binding sites will have “medium” values) and is the 
same for both databases. One could investigate whether 
the signalValue labeling is database-dependent. Figure 4 
seems to suggest that the ENCODE high signalValue 
threshold should be relaxed beyond the top 25% percen-
tile. Further research will be required to estimate an opti-
mal threshold.

The 100bp size for peak summit windows was chosen 
to account for the natural uncertainty of narrowPeak 
binding sites [20] in a simple way. The wide range of 
overlaps shown in Fig. 2 suggests that it could potentially 
affect the overlap areas and thus the downstream analy-
sis. Based on preliminary experiments, it appears that 
this phenomenon does not perturb our conclusions, but 
additional work could be done to estimate the optimal 
size of the window itself.

Finally, it is important to note that while our observa-
tions so far support these recommendations, one must 
take care when generalising them to an arbitrary machine 
learning algorithm. Investigators should make sure that 
their pipelines rest on similar hypotheses (namely, posi-
tional-based analysis based on binding site distances and 
not on the signalValue). Also, while false positive data can 
contain a significant number of true positives, the rest is 
still likely false positives and thus the precision value can-
not be entirely discounted.

Methods
Data sources
We downloaded ChIP-Seq experiment data concern-
ing human TFBS from both ENCODE and Cistrome 
(with permission). In the case of ENCODE, we limited 
ourselves to datasets processed using conservative IDR 
thresholding [1, 21]. Data format is BED narrowPeak. 
All datasets are aligned using the Genome Reference 
Consortium human build 38 (GRCh38). Data was down-
loaded from the relevant websites in March 2020. Data 
between different cell lines is not directly comparable 
due to differing biological conditions; thus, we limited 
the scope of the analysis to three cell lines: GM12878 
(lymphoblastoid), HepG2 (liver carcinoma), and K562 
(myelogenous leukemia). We used the list provided in 
[22] to filter our protein list and keep only human Tran-
scription Factors (TFs). Furthermore, we removed all 
Transcription Factors (TFs) that have significantly more 
samples in the datasets than others (due to being the 

object of more experiments). In our datasets, all Tran-
scription Factors (TFs) except for 6 (CCCTC-binding 
Factor (CTCF) in HepG2, K562 and GM12878, RE1 
Silencing Transcription Factor (REST) in GM12878, and 
NRF1, V-Myc Avian Myelocytomatosis Viral Oncogene 
Homolog (MYC), and GATA Binding Protein 1 (GATA1) 
in K562) have less than or exactly 9 samples. These are 
non tissue specific Transcription Factors (TFs) with gen-
eral functions; we also note that many of these belong to 
the zinc-finger family. Thus, it is reasonable to impose an 
upper limit of 9 samples and exclude them. The reason 
for this is that those Transcription Factors (TFs) would 
skew our descriptive statistics down the line. The final 
datasets are described in Table 1.

Signal filtering and sample merging
Before beginning the process of normalisation and com-
parison, we removed from our input all TF binding sites 
whose signalValue lies above the 90th percentile of the 
signalValue distribution. This was done because sig-
nificant outliers in the right tail are unlikely to be actual 
biological phenomena as opposed to artifacts from the 
experiments. We show the effect of this filter in Supple-
mentary material, Figure S1. Notably the Cistrome dis-
tribution do not change in shape after the filter, but we 
decided to do it anyway to preserve the ratios of regions 
found in the databases. This threshold is not a sensitive 
one: removing signalValues above the 85th or 95th per-
centile does not significantly alter the results (data not 
shown).

In order to effectively compare binding sites across 
databases, one must deal with signal duplication. If two 
binding sites in two different samples represent the same 
biological phenomenon, it is unwise to keep them both, 
as it would result in data duplication. To solve this, we 
merge overlapping binding sites belonging to different 
samples of the same TF. Two genomic regions are over-
lapping if they are co-located in at least 1 base pair. Each 

Table 1  Descriptive statistics of TFBS datasets used in this study

Number of sample per TF reported as a range for improved legibility. Median is 
reported for the number of records per TF due to the presence of outliers

Cell Database Number of TFs Number of 
samples per 
TF

Median 
records 
per TF

HepG2 ENCODE 94 2 14737

Cistrome 88 3 19711

GM12878 ENCODE 47 2 to 3 11193

Cistrome 85 1 to 2 18083

K562 ENCODE 159 3 to 5 10429

Cistrome 149 2 to 3 17377



Page 10 of 13Perna et al. BMC Genomics          (2024) 25:817 

narrowPeak region comes a peak attribute (punctual 
location of highest signal, or point-source). The peak is a 
prime candidate for the initial base of the putative bind-
ing site, so it is desirable to retain this location. Moreover, 
it is possible for two binding sites to overlap over a large 
number of base-pairs while having distant peak summits. 
To simply merge two such peaks if they have any overlap 
would be unwise, as doing so would result in potentially 
large regions (400-600bps) and artificial peak summits. 
Therefore, we collected all TFBS of each TF (grouping 
by cell line) and shrank each binding site to a window 
of 100bp before and after the peak summit. The value of 
100bp for the half window was chosen as a nominal value 
to approximate the uncertainty of narrowPeak peak sum-
mits [20]. Then, we merge overlapping regions into a new 
region which is the union of all base pairs occupied by 
either input, and we assign to the output the average sig-
nalValue of the inputs. The output region has a new peak 
summit equal to the average of the original peak sum-
mits. Regions that are not overlapping with others of the 
same TF are retained as they are. In Fig. 7, we describe 
this procedure in three difference cases. For simplicity, in 
the rest of the paper we shall refer to these 201bp-wide 
windows as “regions”.

Dataset matching according to overlaps
Intuitively, one could say that ENCODE and Cistrome 
have a large amount of concordance if many of their 
regions overlap, and the overlapping areas have similar 
levels of signalValue. To test this, we designed a two-
fold approach: first, we estimate the conditional Jaccard 

Indices of the regions that compose each dataset. This 
is done by dividing the combined size of all overlapping 
areas between regions of the same TF (one dataset from 
ENCODE, the other from Cistrome) by the total size of 
each contributing sample. The closer this number is to 1, 
the more the corresponding dataset is recalled by regions 
in the other. However, the Jaccard Index is known to be 
sensitive to dataset size [23]. Thus, we also implement the 
Alroy correction of the Forbes coefficient [9]. The Alroy-
corrected Forbes coefficient is defined as follows:

where a is the number of basepairs where both ENCODE 
and Cistrome report a peak, b is the number of base-
pairs where only ENCODE reports a peak, c is the same 
for Cistrome, and n = a+ b+ c . This is shown to be 
less sensitive to dataset size and more precise in detect-
ing relationships between samples. Second, we designed 
a signalValue-wise method to estimate overlap, as fol-
lows. We split the signalValue distribution of the regions 
described in Signal filtering and sample merging section 
into three bins: low signal (bottom 25% of the distribu-
tion, denoted L), medium signal (between 25% and 75% of 
the distribution, denoted M), and high signal (upper 25% 
of the distribution, denoted H). The resulting bins have a 
1:2:1 size ratio. We then ranked each region according to 
its signalValue. This is a form of normalization where we 
forget the actual value of the signal, and only consider the 
rank, making signalValues from ENCODE and Cistrome 

(1)
a(n+

√
n)

(a+ b)(a+ c)+ a
√
n+ 1

2
bc

Fig. 7  Various examples of how overlapping binding sites are processed. Legend: sV stands for signalValue associated with a peak. Highlighted 
boxes: original binding site extension. Black inner boxes: point sources. Blue boxes: 100bp windows around the pointed sources. a This binding sites 
is filtered at the beginning because its signal is above the 90% percentile. b After shrinking to 100bp windows, the two regions do not overlap, 
so they are retained. c An overlap is found, and a new binding site is returned as the union of the two. The new binding site is given a signal of 14 
(average of 20 and 8) and a new peak summit that is the average of the original two
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comparable. Finally, we intersected samples of binding 
sites for the same TF that belong to different databases 
(viz., ENCODE and Cistrome), looking for areas of over-
lap. We used the genometric JOIN operators (with the 
condition “overlap”) described in [24] to detect overlap-
ping genomic regions. Each overlapping pair of regions 
defines a tuple of signalValue tags (i.e., (L,L), (L,H), and 
so on). The distribution of these will later be used to 
evaluate the consistency of signalValues between the 
databases.

All the joins performed are listed below. EC 
(“ENCODE-Full”) represents the entire set of ENCODE 
binding sites, and similarly for CI (“Cistrome-Full”).

•	 a ⊲⊳g b : a ∈ {EC-H, EC-M, EC-L}, b ∈ {CI-H, CI-M,CI-L}   , 
i.e., the nine symmetrical joins used to estimate the 
actual distribution of the pairs of signalValue tags;

•	 EC  CI, CI  EC-H, CI-H  EC-H, EC-H  
CI-H, i.e., the left joins to check how many of the EC 
and EC-h peaks are confirmed by a CI-h peak (and 
viceversa);

where ⊲⊳g denotes the genometric JOIN described above 
and  the left outer genometric JOIN; EC-H stands for 
ENCODE-high, the set of all binding sites in ENCODE 
that are tagged with the high-signal (H) label. Similarly, 
we denote EC-M for ENCODE-medium, CI-L for Cis-
trome-low, and so on.

All extractions are performed by TF and by cell, viz., 
only binding sites that belong to the same TF in the same 
cell line are joined. Additionally, we limit this extrac-
tion only to those Transcription Factors (TFs) that are 
found in both databases and in the same cell line (viz., 
a TF is eligible if its ChIP-Seq samples are available 
both in ENCODE and Cistrome in the same cell line). 
This results in 30 eligible Transcription Factors (TFs) 
in HepG2, 19 eligible Transcription Factors (TFs) in 
GM12878, and 93 eligible Transcription Factors (TFs) 
in K562. The full joining pipeline is described in Supple-
mentary Materials.

Target metrics for database comparisons
There are many different types of machine learning algo-
rithms and pipelines that process TFBS data. Many of 
them rely on a combination of: binding site positions on 
the chromosome [10, 25, 26]; statistical significance of 
the binding event, such as p-value or q-value [27, 28]; size 
of the binding site itself and position of its predicted peak 
summit [29].

Since our ultimate goal is to provide guidelines in the 
context of machine learning algorithms, we compared 
the two databases when used as input data for predic-
tion pipelines. As an example, we used TICA, introduced 

in [10]. TICA is an algorithm and related web service 
that predicts whether two transcription factors interact 
(both co-operative and competitive interactions) based 
on the relative position of their closest binding sites. 
TICA relies on two reasonable assumptions: one, that 
most TF pairs do not interact; and two, that close range 
positioning between TFBS is a strong indicator of physi-
cal interaction. Given two candidate Transcription Fac-
tors (TFs), TICA extracts those pairs of TFBS (one from 
each) that are at minimal distance (named minimal dis-
tance TFBS couples) and computes their genomic dis-
tances, then compares their distance distribution to the 
null distribution of minimal distance TFBS couples of 
all possible TF-TF combinations in the same cell line. 
It predicts interactions based on p-value cutoffs on said 
distributions. Notably, TICA requires the input datasets 
to be provided in BED narrowPeak format, but does not 
employ the signalValue as a feature. Thus, we can esti-
mate the effect of filtering based on signalValue with-
out introducing bias in the result of the algorithm itself. 
To do so, we run the TICA pipeline using as input the 
various JOIN extractions described above. We evaluate 
the quality of the output by comparing it to three data 
sources:

•	 BioGRID v4.3 [30] (MultiValidated, Physical interac-
tions only)

•	 CORUM [31]
•	 TRRUST [32]

While none of the above data source singles out TF-TF 
dimer pairs, each of them provides partial evidence of 
experimentally detected protein-protein interaction. In 
particular, TRRUST lists pairs of TF and regulation tar-
gets, and CORUM contains a list of protein complexes. 
We assume that evidence of protein-protein physical 
interaction between two TFs translate to evidence of 
direct co-operative TF-TF interaction. Thus, we built 
a positive set of “validated” interaction as the union of 
all interactions reported by any of the three sources. 
It should be noted that we are not training a predic-
tion model in the classical sense, but rather evaluating 
the effect of differing data sources on an existing, pre-
trained model. Thus, even though in the following we 
will use language typical of supervised machine learn-
ing methods (such as recall and precision), we do not 
need to split this validated set into training and testing 
sets.

Software
Dataset joining was performed using the GMQL JOIN 
and MAP frameworks [24], implemented using Synchrony 
iterators [33]. TICA is available at www.​gqml.​eu/​tica.

http://www.gqml.eu/tica
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