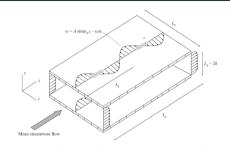
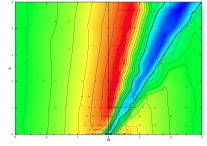

Turbulent drag reduction using spanwise forcing in compressible regime

F. Gattere¹, A. Chiarini¹, M. Zanolini¹, D. Gatti², M. Bernardini³ & M. Quadrio¹

September 2022, European Drag Reduction and Flow Control Meeting 2022

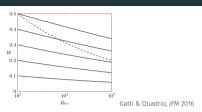
¹Politecnico di Milano, ²Karlsruhe Institute of Technology, ³La Sapienza Università di Roma


Skin friction drag reduction by spanwise forcing


Travelling waves of spanwise oscillation

(Quadrio et al., JFM 2009)

$$W(x,t) = A\sin(\kappa_x x - \omega t)$$


- At $Re_{\tau}=$ 200 and $A^{+}=$ 12 Drag reduction up to \approx 48%
- Steady waves and oscillating wall are obtained for $\omega=0$ and $\kappa_{\rm x}=0$

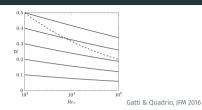
Towards real-world applications

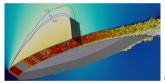
• Reynolds number dependence

Towards real-world applications

• Reynolds number dependence

• Effect on the other drag sources in complex bodies

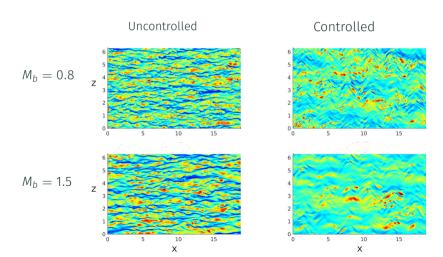



Towards real-world applications

· Reynolds number dependence

• Effect on the other drag sources in complex bodies

· Effect of the Mach number


Quadrio et al., JFM 2022

pprox Yao & Hussain, JFM 2019

In this work

We extend the work by Yao & Hussain (JFM, 2019) and study streamwise travelling waves for drag reduction in the compressible regime at different Mach numbers

4

Simulation details

- Direct Numerical Simulations of a perfect heat-conducting gas
- · STREAmS solver (Bernardini et al, CPC 2021)
- $M_b = U_b/c_w = 0.3, 0.8$ and 1.5
- Constant flow rate (CFR)
- For the uncontrolled case: $Re_{\tau} = 400$
- For each M_b: 1 uncontrolled and 42 controlled simulations
- $\cdot A^{+} = 12$ for the controlled simulations
- $(L_x, L_y, L_z) = (6\pi h, 2h, 2\pi h)$ with L_x that is adjusted depending on λ_x
- $\cdot (N_x, N_y, N_z) = (1024, 258, 512)$

Two possibilities for the time evolution of

$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho u T \rangle \mathrm{d}y$$

• T_b freely evolves in time

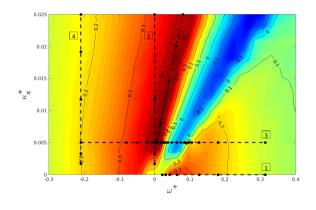
• T_b/T_w is kept constant

Two possibilities for the time evolution of

$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho u T \rangle dy$$

• T_b freely evolves in time

- T_b/T_w is kept constant
- The asymptotic value is reached when the heat produced within the flow is balanced by the heat flux at the isothermal walls
- · As in Yao & Hussain (JFM 2019)


Two possibilities for the time evolution of

$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho u T \rangle dy$$

- T_b freely evolves in time
- The asymptotic value is reached when the heat produced within the flow is balanced by the heat flux at the isothermal walls
- · As in Yao & Hussain (JFM 2019)

- T_b/T_w is kept constant
 - $\cdot \frac{T_b}{T_w} = \frac{1}{1+s\frac{\gamma-1}{2}rM_b^2}$ to set the ratio of bulk flow kinetic energy converted into wall heat flux s
 - s = 0.75, meaning that 75% of the kinetic energy is transformed into thermal energy

Simulations

- · Line 1: Oscillating wall
- · Line 2: Steady wave
- Line 3: Travelling wave with $\kappa_{\rm x}^+ = 0.005$
- Line 4: Travelling wave with $\omega^+ = -0.21$
- Line 5: Optimum ridge for drag reduction

Performance indicator

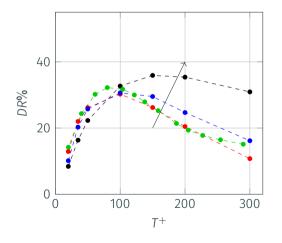
Drag reduction rate DR

$$DR = \frac{P_0 - P}{P_0}$$

where

$$P = \frac{U_b}{T_{ave}L_xL_z} \int_{t_i}^{t_f} \int_0^{L_x} \int_0^{L_z} \tau_x dz dx dt$$

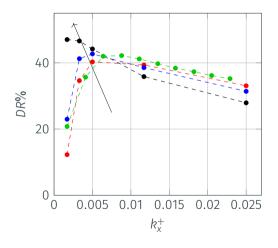
Power required to create the wall forcing P_{in}


$$P_{in} = \frac{1}{T_{ave}L_xL_z} \int_{t_i}^{t_f} \int_0^{L_x} \int_0^{L_z} W\tau_z dz dz dt$$

Net energy saving rate P_{net}

$$P_{net} = DR - \frac{P_{in}}{P_0}$$

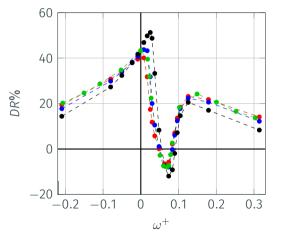
Line 1: Oscillating wall


$$- \bullet - M_b = 0.3 - \bullet - M_b = 0.8$$

 $- \bullet - M_b = 1.5 - \bullet - GQ-2016$

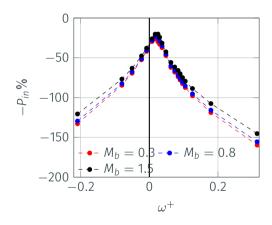
- For $M_b = 0.3$: $T_{\rm max}^+ \approx 100$, like in the incompressible regime
- When $M_b \uparrow$, the DR T trend qualitatively does not change
- When $M_b \uparrow$
 - $DR \downarrow \text{ for small } T$
 - $DR \uparrow for large T$

Line 2: steady wave


$$- \bullet - M_b = 0.3 - \bullet - M_b = 0.8$$

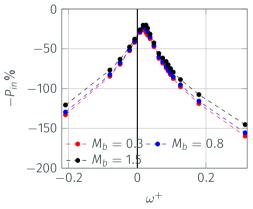
 $- \bullet - M_b = 1.5 - \bullet - GQ-2016$

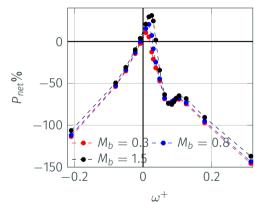
- For $M_b=0.3$: $\kappa_{\rm X,max}^+\approx 0.005$, like in the incompressible regime
- When $M_b \uparrow$
 - DR \uparrow for small $\kappa_{\scriptscriptstyle X}$
 - DR \downarrow for large $\kappa_{\scriptscriptstyle X}$


Line 3: Travelling waves with $\kappa_{\rm x}^+=0.005$

$$- \bullet - M_b = 0.3 - \bullet - M_b = 0.8$$

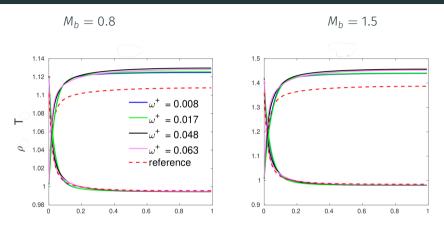
 $- \bullet - M_b = 1.5 - \bullet - GQ-2016$


- For $M_b = 0.3$: results agree with the incompressible regime
- When $M_b \uparrow$:
 - DR \downarrow for $\omega^+ <$ 0 and $\omega^+ >$ 0.06
 - DR \uparrow for 0 $< \omega^+ < 0.06$
- When $M_b \uparrow$
 - the global $\it DR$ peak moves towards larger $\it \omega$
 - the second local DR peak moves towards smaller ω
- When $M_b \uparrow$ the *DI* region shrinks


Power budgets: Line 3

• $|P_{in}|\% \downarrow$ when $M_b \downarrow$

Power budgets: Line 3



• $|P_{in}|\% \downarrow$ when $M_b \downarrow$

- $P_{net}\% \uparrow$ when $M_b \uparrow$.
- $P_{net} = 10\%, 20\%$ and 30% for $M_b = 0.3, 0.8$ and 1.5.

The bulk temperature T_b : Line 3 ($\kappa_{\chi}^+ = 0.005$)

- $T_b \uparrow$ when $M_b \uparrow$
- $T_b \uparrow$ when the control is active and $\Delta T_b = T_b T_{b,0} \uparrow$ with M_b

Is the increase of ΔT_b the dominant effect?

Two possibilities for the time evolution of

$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho u T \rangle dy$$

• T_b freely evolves in time

• T_b/T_w is kept constant

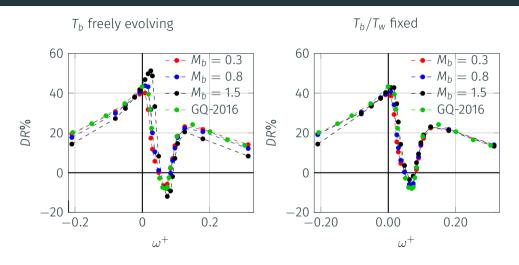
Two possibilities for the time evolution of

$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho u T \rangle dy$$

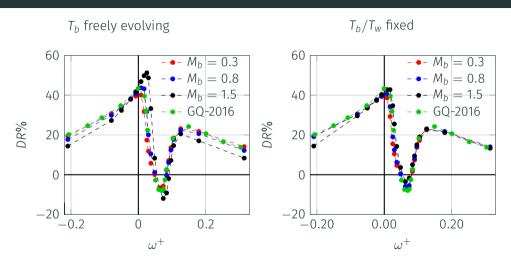
• T_b freely evolves in time

• T_b/T_w is kept constant

- The asymptotic value is reached when the heat produced within the flow is balanced by the heat flux at the isothermal walls
- · As in Yao & Hussain (JFM 2019)


Two possibilities for the time evolution of

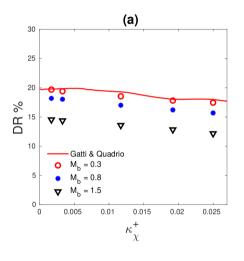
$$T_b = \frac{1}{2h\rho_b U_b} \int_{-h}^{h} \langle \rho u T \rangle \mathrm{d}y$$

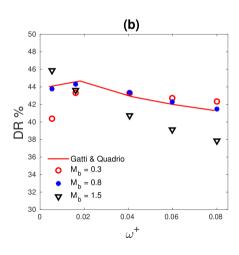

• T_b freely evolves in time

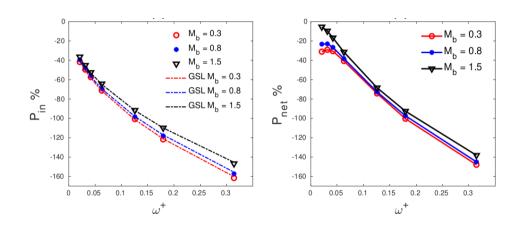
- T_b/T_w is kept constant
- $\frac{T_b}{T_w} = \frac{1}{1 + s\frac{\gamma 1}{2}rM_b^2}$ to set the ratio of bulk flow kinetic energy converted into wall heat flux s
- 75% of the kinetic energy is transformed into thermal energy (s = 0.75)
- Same T_b/T_w for the reference and controlled cases

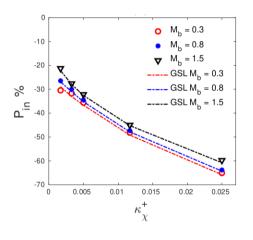
Line 3 ($\kappa_{\rm x}^+=0.005$): Effect of T_b

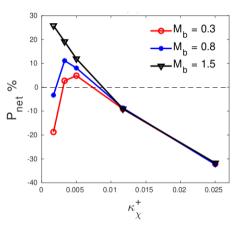
Line 3 ($\kappa_{\rm x}^+=0.005$): Effect of T_b

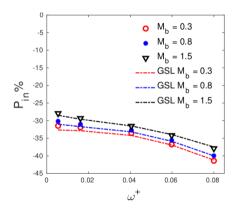

• When T_b/T_w is fixed the DR curves almost collapse

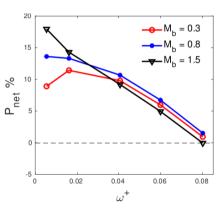

Conclusions


- Influence of the compressibility on the performance of spanwise forcing
- $M_b = 0.3, 0.8 \text{ and } 1.5 \text{ at } Re_{\tau} = 400$
- The effect of the control depends on how T_b is set
- If T_b is left free to evolve the maximum *DR* increases by 27%, when the Mach number increases from $M_b = 0.3$ to $M_b = 1.5$
- If T_b/T_w is kept constant the DR curves almost collapse


Thanks for your attention!


DR for lines 4 and 5





Governing Equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \sigma_{ij}}{\partial x_j} + f \delta_{i1}$$
 (2)

$$\frac{\partial \rho e}{\partial t} + \frac{\partial \rho (e + p/\rho) u_j}{\partial x_j} = \frac{\partial \sigma_{ij} u_i - \partial q_j}{\partial x_j} + f u_1 + \Phi$$
 (3)

where: $e = c_V T + u_i u_i / 2$, $\sigma_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right)$

 q_j is the heat flux vector, modelled as $q_j = -k \frac{\partial T}{\partial x_j}$, and $k = c_p \mu/Pr$ where Pr = 0.72.

 Φ is a uniformly distributed cooling term (heat sink) to control the value of T_b and to absorb, when needed, the heat produced by viscous dissipation. It is zero when T_b is left freely to evolve in time. When T_b/T_w is constant Φ is evaluated at each time step.