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The Importance of Non-Markovianity in Maximum State Entropy Exploration
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Abstract

In the maximum state entropy exploration frame-
work, an agent interacts with a reward-free en-
vironment to learn a policy that maximizes the
entropy of the expected state visitations it is in-
ducing. Hazan et al. (2019) noted that the class of
Markovian stochastic policies is sufficient for the
maximum state entropy objective, and exploiting
non-Markovianity is generally considered point-
less in this setting. In this paper, we argue that
non-Markovianity is instead paramount for maxi-
mum state entropy exploration in a finite-sample
regime. Especially, we recast the objective to
target the expected entropy of the induced state
visitations in a single trial. Then, we show that
the class of non-Markovian deterministic policies
is sufficient for the introduced objective, while
Markovian policies suffer non-zero regret in gen-
eral. However, we prove that the problem of find-
ing an optimal non-Markovian policy is NP-hard.
Despite this negative result, we discuss avenues
to address the problem in a tractable way and how
non-Markovian exploration could benefit the sam-
ple efficiency of online reinforcement learning in
future works.

1. Introduction

Several recent works have addressed Maximum State En-
tropy (MSE) exploration (Hazan et al., 2019; Tarbouriech
& Lazaric, 2019; Lee et al., 2019; Mutti & Restelli, 2020;
Mutti et al., 2021; Zhang et al., 2021; Guo et al., 2021; Liu &
Abbeel, 2021b;a; Seo et al., 2021; Yarats et al., 2021; Mutti
et al., 2022; Nedergaard & Cook, 2022) as an objective for
unsupevised Reinforcement Learning (RL) (Sutton & Barto,
2018). In this line of work, an agent interacts with a reward-
free environment (Jin et al., 2020) in order to maximize an
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entropic measure of the state distribution induced by its be-
havior over the environment, effectively targeting a uniform
exploration of the state space. Previous works motivated this
MSE objective in two main directions. On the one hand, this
learning procedure can be seen as a form of unsupervised
pre-training of the base model (Laskin et al., 2021), which
has been extremely successful in supervised learning (Erhan
et al., 2009; 2010; Brown et al., 2020). In this view, a MSE
policy can serve as an exploratory initialization to standard
learning techniques, such as Q-learning (Watkins & Dayan,
1992) or policy gradient (Peters & Schaal, 2008), and this
has been shown to benefit the sample efficiency of a variety
of RL tasks that could be specified over the pre-training
environment (e.g., Mutti et al., 2021; Liu & Abbeel, 2021b;
Laskin et al., 2021). On the other hand, pursuing a MSE
objective leads to an even coverage of the state space, which
can be instrumental to address the sparse reward discov-
ery problem (Tarbouriech et al., 2021). Especially, even
when the fine-tuning is slow (Campos et al., 2021), the MSE
policy might allow to solve hard-exploration tasks that are
out of reach of RL from scratch (Mutti et al., 2021; Liu
& Abbeel, 2021b). As we find these premises fascinating,
and of general interest to the RL community, we believe
it is worth providing a theoretical reconsideration of the
MSE problem. Specifically, we aim to study the minimal
class of policies that is necessary to optimize a well-posed
MSE objective, and the general complexity of the resulting
learning problem.

All of the existing works pursuing a MSE objective solely
focus on optimizing Markovian exploration strategies, in
which each decision is conditioned on the current state of
the environment rather than the full history of the visited
states. The resulting learning problem is known to be prov-
ably efficient in tabular domains (Hazan et al., 2019; Zhang
et al., 2020). Moreover, this choice is common in RL, as
it is well-known that an optimal deterministic Markovian
strategy maximizes the usual cumulative sum of rewards
objective (Puterman, 2014). Similarly, Hazan et al. (2019,
Lemma 3.3) note that the class of Markovian strategies
is sufficient for the standard MSE objective. A carefully
constructed Markovian strategy is able to induce the same
state distribution of any history-based (non-Markovian) one
by exploiting randomization. Crucially, this result does not
hold only for asymptotic state distributions, but also for state
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Figure 1. Illustrative two-rooms domain. The agent starts in the
middle, colored traces represent optimal strategies to explore the
left and the right room.

distributions that are marginalized over a finite horizon (Put-
erman, 2014). Hence, there is little incentive to consider
more complicated strategies as they are not providing any
benefit on the value of the entropy objective.

However, the intuition suggests that exploiting the history
of the interactions is useful when the agent’s goal is to uni-
formly explore the environment: If you know what you have
visited already, you can take decisions accordingly. To this
point, let us consider an illustrative example in which the
agent finds itself in the middle of a two-rooms domain (as
depicted in Figure 1), having a budget of interactions that is
just enough to visit every state within a single episode. It is
easy to see that an optimal Markovian strategy for the MSE
objective would randomize between going left and right
in the initial position, and then would follow the optimal
route within a room, finally ending in the initial position
again. An episode either results in visiting the left room
twice, or the right room twice, or each room once, and all
of this outcomes have the same probability. Thus, the agent
might explore poorly when considering a single episode, but
the exploration is uniform in the average of infinite trials.
Arguably, this is quite different from how a human being
would tackle this problem, i.e., taking intentional decisions
in the middle position to visit a room before the other. This
strategy leads to uniform exploration of the environment in
any trial, but it is inherently non-Markovian.

Backed by this intuition, we argue that prior work does not
recognize the importance of non-Markovianity in MSE ex-
ploration due to an hidden infinite-samples assumption in
the objective formulation, which is in sharp contrast with the
objective function it is actually optimized by empirical meth-
ods, i.e., the state entropy computed over a finite batch of
interactions. In this paper, we introduce a new finite-sample
MSE objective that is akin to the practical formulation, as it
targets the expected entropy of the state visitation frequency
induced within an episode instead of the entropy of the ex-
pected state visitation frequency over infinite samples. In
this finite-sample formulation non-Markovian strategies are
crucial, and we believe they can benefit a significant range of
relevant applications. For example, collecting task-specific
samples might be costly in some real-world domains, and

a pre-trained non-Markovian strategy is essential to guar-
antee quality exploration even in a single-trial setting. In
another instance, one might aim to pre-train an exploration
strategy for a class of multiple environments instead of a
single one. A non-Markovian strategy could exploit the
history of interactions to swiftly identify the structure of
the environment, then employing the environment-specific
optimal strategy thereafter. Unfortunately, learning a non-
Markovian strategy is in general much harder than a Marko-
vian one, and we are able to show that it is NP-hard in
this setting. Nonetheless, this paper aims to highlight the
importance of non-Markovinaity to fulfill the promises of
maximum state entropy exploration, thereby motivating the
development of tractable formulations of the problem as
future work.

The contributions are organized as follows. First, in Sec-
tion 3, we report a known result (Puterman, 2014) to show
that the class of Markovian strategies is sufficient for any
infinite-samples MSE objective, including the entropy of
the induced marginal state distributions in episodic settings.
Then, in Section 4, we propose a novel finite-sample MSE
objective and a corresponding regret formulation. Espe-
cially, we prove that the class of non-Markovian strategies
is sufficient for the introduced objective, whereas the opti-
mal Markovian strategy suffers a non-zero regret. However,
in Section 5, we show that the problem of finding an optimal
non-Markovian strategy for the finite-sample MSE objec-
tive is NP-hard in general. Despite the hardness result, we
provide a numerical validation of the theory (Section 6), and
we comment some potential options to address the problem
in a tractable way (Section 7). In Appendix A, we discuss
the related work in the MSE literature, while the missing
proofs can be found in Appendix B.

2. Preliminaries

In the following, we will denote with A(X) the simplex of
a space X, with [T'] the set of integers {0,...,7 — 1}, and
with v & wu a concatenation of the vectors v, u.

Controlled Markov Process A Controlled Markov Pro-
cess (CMP)is atuple M := (S, A, P, ), where S is a finite
state space (|S| = 5), A is a finite action space (| A| = A),
P :S8x A — A(S) is the transition model, such that
P(s'|a, s) denotes the probability of reaching state s’ € S
when taking action a € Ainstate s € S, and 1 € A(S) is
the initial state distribution.

Policies A policy 7 defines the behavior of an agent inter-
acting with an environment modelled by a CMP. It consists
of a sequence of decision rules 7 := (m;){2,. Each of
them is a map between histories h := (s;,a;)_y € H,;
and actions 7, : H; — A(A), such that 7, (alh) defines
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the conditional probability of taking action a € A having
experienced the history i € H;. We denote as ‘H the space
of the histories of arbitrary length. We denote as II the set of
all the policies, and as TIP the set of deterministic policies
m = (m)$2, such that 7; : H; — A. We further define:

* Non-Markovian (NM) policies IInn, where each m €

IInw collapses to a single time-invariant decision rule
7= (m,7,...)suchthatm : H — A(A);

* Markovian (M) policies IIy;, where each m € Il is
defined through a sequence of Markovian decision rules
m = (m)2, such that m; : S — A(A). A Markovian
policy that collapses into a single time-invariant decision
rule 7 = (m, 7, . ..) is called a stationary policy.

State Distributions and Visitation Frequency A policy
m € II interacting with a CMP induces a ¢-step state
distribution df(s) := Pr(s; = s|m) over S (Puterman,
2014). This distribution is described by the temporal rela-
tion df (s) = [g [, di_1(s',a’)P(s]s',a") ds’ da’, where
dy(-,-) € A(S x A) is the t-step state-action distribution.
We call the asymptotic fixed point of this temporal relation
the stationary state distribution d7_(s) := lim;_, . d7 (s),
and we denote as d7(s) := (1 — ) 327" df (s) its 7-
discounted counterpart, where v € (0,1) is the discount
factor. A marginalization of the ¢-step state distribution
over a finite horizon T, i.e., d5(s) := + >terr) di (5),
is called the marginal state distribution. The state vis-
itation frequency dp(s) %ZtG[T] 1(sy = s|h) is
a realization of the marginal state distribution, such
that Eppr [din(s)] = df(s), where the distribution
over histories pJ. € A(Hr) is defined as pT.(h) =
11(50) [er—1) w(ae|he) P(set1]a, se).

Markov Decision Process A CMP M paired with a re-
ward function R : S x A — R is called a Markov Deci-
sion Process (MDP) (Puterman, 2014) ME := M U R.
We denote with R(s,a) the expected immediate reward
when taking action a € Ain s € S, and with R(h) =
>ter) B(s¢e, ar) the return over the horizon 7". The per-
formance of a policy 7 over the MDP M is defined as
the average return Jyr(m) = Ep~pz [R(h)], and 7% €
arg max, i Jar () is called an optimal policy. For any
MDP M¥%, there always exists a deterministic Markovian
policy m € IIY; that is optimal (Puterman, 2014).

Extended MDP The problem of finding an optimal non-
Markovian policy with history-length 7" in an MDP M,
ie., my € argmax, oy, Jar (), can be reformulated
as the one of finding an optimal Markovian policy my; €

argmax, ¢, Jyz(7) in an extended MDP /\7¥ The
T

extended MDP is defined as ME := (S, A, P, R, 1), in

which S C H[T] =HiU...UHr,and 5 := (g(),. .. 7gfl)

corresponds to a history in MP of length [3], A = A,
P(F5a) = P(s =3 ,|s = 5.1,a = @), R(3,a) =
R(s=%_1,a=7a),and ji(3) = pu(s = 3) forany 5 € S of
unit length.

Partially Observable MDP A Partially Observable
Markov Decision Process (POMDP) (Astrom, 1965;
Kaelbling et al, 1998) is described by ME =
(S, A, PR, 11,Q,0), where S, A, P, R, i1 are defined as in
an MDP, () is a finite observation space, and O : S x A —
A(Q) is the observation function, such that O(o|s’, a) de-
notes the conditional probability of the observation o € 2
when selecting action a € Ainstate s € S. Crucially, while
interacting with a POMDP the agent cannot observe the state
s € S, but just the observation o € ). The performance of
a policy 7 is defined as in an MDP.

3. Infinite Samples: Non-Markovianity Does
Not Matter

Previous works pursuing maximum state entropy explo-
ration of a CMP consider an objective of the kind

Exo(m) = H(d"(-)) == E [logd"(s)], (1)

where d™ (-) is either a stationary state distribution (Mutti &
Restelli, 2020), a discounted state distribution (Hazan et al.,
2019; Tarbouriech & Lazaric, 2019), or a marginal state
distribution (Lee et al., 2019; Mutti et al., 2021). While it
is well-known (Puterman, 2014) that there exists an optimal
deterministic policy 7* € II; for the common average
return objective J4r, it is not pointless to wonder whether
the objective in (1) requires a more powerful policy class
than II;. Hazan et al. (2019, Lemma 3.3) confirm that
the set of (randomized) Markovian policies Il is indeed
sufficient for £, defined over asymptotic (stationary or
discounted) state distributions. In the following theorem
and corollary, we report a common MDP result (Puterman,
2014) to show that ITy; suffices for £, defined over (non-
asymptotic) marginal state distributions as well.

Theorem 3.1. Let x € {c0,v, T}, and let DGy = {dZ(-) :
m € Unmt, D = {dE()) : m € I} the corresponding
sets of state distributions over a CMP. We can prove that:

(i) The sets of stationary state distributions are equivalent
DX = Px-
NM = P
(ii) The sets of discounted state distributions are equivalent
Dy = Dy for any ~;

(iii) The sets of marginal state distributions are equivalent
DIy = DI forany T.

Proof Sketch. For any non-Markovian policy 7 € IIny in-
ducing distributions d7 (), df (-, -) over the states and the
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state-action pairs of the CMP, we can build a Markovian
policy n’ € Iy, 7" = (7})$2, through the construction
m(als) = d7 (s,a)/d}(s),Vs € S,Va € A. From (Puter-
man, 2014, Theorem 5.5.1) we know that d7(s) = d7 (s)
holds for any ¢t > 0 and Vs, € S. This im/plies that
d%,(-) = d (), d5() = 7 (), dE() = df (), from
which D, = Dy, follows. See Appendix B.1 for a de-
tailed proof. O

From the equivalence of the sets of induced distributions,
it is straightforward to derive the optimality of Markovian
policies for objective (1).

Corollary 3.2. For every CMP, there exists a Markovian
policy ™ € Iy such that 7 € arg max oy Eoo (7).

As a consequence of Corollary 3.2, there is little incentive
to consider non-Markovian policies when optimizing objec-
tive (1), since there is no clear advantage to make up for the
additional complexity of the policy. This result might be
unsurprising when considering asymptotic distributions, as
one can expect a carefully constructed Markovian policy to
be able to tie the distribution induced by a non-Markovian
policy in the limit of the interaction steps. However, it is
less evident that a similar property holds for the expectation
of final-length interactions alike. Yet, we were able to show
that a Markovian policy that properly exploits randomization
can always achieve equivalent state distributions w.r.t. non-
Markovian counterparts. Note that state distributions are
actually expected state visitation frequency, and the expec-
tation practically implies an infinite number of realizations.
In this paper, we show that this underlying infinite-sample
regime is the reason why the benefit of non-Markovianity,
albeit backed up by intuition, does not matter. Instead, we
propose a relevant finite-sample entropy objective in which
non-Markovianity is crucial.

4. Finite Samples: Non-Markovianity Matters

In this section, we reformulate the typical maximum state
entropy exploration objective of a CMP (1) to account for a
finite-sample regime. Crucially, we consider the expected
entropy of the state visitation frequency rather than the
entropy of the expected state visitation frequency, which
results in

E(m) = E E

h~pZ. s~dp

hIE" [H(dn()))] =— [log d(s)].
~pL.

2
We note that £(m) < Eoo () for any 7 € I, which is trivial
by the concavity of the entropy function and the Jensen’s
inequality. Whereas (2) is ultimately an expectation as it
is (1), the entropy is not computed over the infinite-sample
state distribution d7.(-) but its finite-sample realization dp, (-).
Thus, to maximize £(7) we have to find a policy inducing

high-entropy state visits within a single trajectory rather

than high-entropy state visits over infinitely many trajecto-
ries. Crucially, while Markovian policies are as powerful
as any other policy class in terms of induced state distribu-
tions (Theorem 3.1), this is no longer true when looking at
induced trajectory distributions p7.. Indeed, we will show
that non-Markovianity provides a superior policy class for
objective (2). First, we define a performance measure to
formally assess this benefit, which we call the regret-to-go.!

Definition 4.1 (Expected Regret-to-go). Consider a policy
w € Il interacting with a CMP over T' — t steps starting
from the trajectory hi. We define the expected regret-to-go
Rr_t, ie., from step t onwards, as

RT,t(ﬂ', ht) = ITI-},< - E

H(d :
h—impT_, [ ( ht@hT—t( ))]v
where H* = maxz-cni Ep.  _one [H (dn,enz:_, ()] is
the expected entropy achieved by an optimal policy 7. The
term Ry (m) denotes the expected regret-to-go of a T-step
trajectory hr starting from s ~ L.

The intuition behind the regret-to-go is quite simple. Sup-
pose to have drawn a trajectory h; upon step t. If we take
the subsequent action with the (possibly sub-optimal) policy
7, by how much would we decrease (in expectation) the
entropy of the state visits H (d},.(+)) w.r.t. an optimal policy
7*? In particular, we would like to know how limiting the
policy 7 to a specific policy class would affect the expected
regret-to-go and the value of £(7) we could achieve. The
following theorem and subsequent corollary, which consti-
tute the main contribution of this paper, state that an optimal
non-Markovian policy suffers zero expected regret-to-go
in any case, whereas an optimal Markovian policy suffers
non-zero expected regret-to-go in general.

Theorem 4.2 (Non-Markovian Optimality). For every CMP
M and trajectory hy € Hr), there exists a deterministic
non-Markovian policy Tny € HBM that suffers zero regret-
t0-go Rr_(mnm, he) = 0, whereas for any my € Ty we
have Ry_¢(m\, he) > 0.

Corollary 4.3 (Sufficient Condition). For every CMP M
and trajectory hy € H ) for which any optimal Markovian
policy my € Ty is randomized (i.e., stochastic) in s;, we
have strictly positive regret-to-go Rop—_(mm, he) > 0.

The result of Theorem 4.2 highlights the importance of
non-Markovianity for optimizing the finite-sample MSE ob-
jective (2), as the class of Markovian policies is dominated
by the class of non-Markovian policies. Most importantly,
Corollary 4.3 shows that non-Markovian policies are strictly

"Note that the entropy function does not enjoy additivity, thus
we cannot adopt the usual expected cumulative regret formulation
in this setting.
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better than Markovian policies in any CMP of practical inter-
est, i.e., those in which any optimal Markovian policy has to
be randomized (Hazan et al., 2019) in order to maximize (2).
The intuition behind this result is that a Markovian policy
would randomize to make up for the uncertainty over the
history, whereas a non-Markovian policy does not suffer
from this partial observability, and it can deterministically
select an optimal action. Clearly, this partial observability
is harmless when dealing with the standard RL objective,
in which the reward is fully Markovian and does not de-
pend on the history, but it is instead relevant in the peculiar
MSE setting, in which the objective is a concave function
of the state visitation frequency. In the following section,
we report a sketch of the derivation underlying Theorem 4.2
and Corollary 4.3, while we refer to the Appendix B.2 for
complete proofs.

4.1. Regret Analysis

To the purpose of the regret analysis, we will consider the
following assumption to ease the notation.?

Assumption 1 (Unique Optimal Action). For every CMP
M and trajectory hy € Hr), there exists a unique optimal
action a* € A w.r.t. the objective (2).

First, we show that the class of deterministic non-Markovian
policies is sufficient for the minimization of the regret-to-go,
and thus for the maximization of (2).

Lemma 4.4. For every CMP M and trajectory hy € Hr),
there exists a deterministic non-Markovian policy Ty €
IRy such that Txu € arg max, ey, €(7), which suffers
zero regret-to-go Ry —i(mnm, he) = 0.

Proof. The result Ry _¢(mnm, he) = 0 is straightforward
by noting that the set of non-Markovian policies IIxy with
arbitrary history-length is as powerful as the general set
of policies II. To show that there exists a deterministic
7nM, We consider the extended MDP //\/lvg obtained from
the CMP M as gl Section 2, in which the extendgd re-
ward function is R(S,a) = H(d3(-)) for every a € A, and
every 5 € S such that |[3| = T, and R(3,@) = 0 other-
wise. Since a Markovian policy 7y € I3 on /\7§ can
be mapped to a non-Markovian policy mxy € 1Ry on
M, and it is well-known (Puterman, 2014) that for any
MDP there exists an optimal deterministic Markovian pol-
icy, we have that Ty € argmax, .y, JXZ? () implies
E(m). O

TNM € arg MaX ey,

“Note that this assumption could be easily removed by par-
titioning the action space in h: as A(h:) = Aopt(he) U
Asub—opt(ht), such that Agpi(h:) are optimal actions and
Asub—opt (he) are sub-optimal, and substituting any term 7(a* |h¢)
with Zaerpt(ht) m(alh:) in the results.

Then, in order to prove that the class of non-Markovian
policies is also necessary for regret minimization, it is worth
showing that Markovian policies can instead rely on ran-
domization to optimize objective (2).

Lemma 4.5. Let iy € HBM a non-Markovian pol-
icy such that v € argmax, cp E(m) on a CMP M.
For a fixed history hy € H: ending in state s, the vari-
ance of the event of an optimal Markovian policy T\ €
argmax, cyy,, £(7) taking a* = mnm(hy) in s is given by

Var [B(mm(a*]s, t)] = Var [E [B(mxm(a*|hs))]],

where hs € Hy is any history of length t such that the final
state is s, i.e., hs := (hy—1 € Hi—1) @ s, and B(x) is a
Bernoulli with parameter x.

Proof Sketch. We can prove the result through the Law of
Total Variance (LoTV) (see Bertsekas & Tsitsiklis, 2002),
which gives

Var [B(mm(a*]s,t)] = E y [ Var [B(mxm(a*|hs))]]

hswp:N

+ Var [E [B(mnu(a®|hs))]], Vs e S.
hs~prNM

Then, exploiting the determinism of 7Ny (through
Lemma 4.4), it is straightforward to see that
Ejpgprn [ Var [B(man(a®|hs))]] = 0, which con-
cludes the proof.’ O

Unsurprisingly, Lemma 4.5 shows that, whenever the opti-
mal strategy for (2) (i.e., the non-Markovian 7mn) requires
to adapt its decision in a state s according to the history that
led to it (hs), an optimal Markovian policy for the same
objective (i.e., ;) must necessarily be randomized. This is
crucial to prove the following result, which establishes lower
and upper bounds R, Rr_; to the expected regret-to-go
of any Markovian policy that optimizes (2).

Lemma 4.6. Let m\; be an optimal Markovian policy my €
argmax, cyy,, £(m) on a CMP M. For any hy € Hp), it
holds Ry_,(m\m) < Rr—i(mu) < Rr—i(mu) such that

Rp_(ma) = % A, [E [B(mxm(a®[hse))]],
R y(m) = 1L~ 1 [E [B(m(a*|hs))] ],

T (*[8t) hsimpi N
where Tny € argmax e E(m), and H., H3 are given

3Note that the determinism of mxum does not also imply
VarhSszrNM [E [B(mxm(a®|hs))]] = 0, as the optimal action
@ = w~um(hs) may vary for different histories, which results in
the inner expectations E [B(mnwm (a*|hs))] being either 1 or 0.
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by
H, = min H(dyen()),
Hy = max  H(dpan("))

heHr _\HE_,

s.t. Hiy_, = argmax H (dp,on(+))-
heHr_¢

Proof Sketch. The crucial idea to derive lower and up-
per bounds to the regret-to-go is to consider the im-
pact of a sub-optimal action in the best-case and the
worst-case CMP respectively (see Lemma B.2, B.1).
This gives Ry—¢(mm) > H* — mu(a®|s) H* — (1 —
1\/I(a*\st))H§k and Rr_¢(mm) < H* — my(a*|sy) H* —
(1 — mu(a*|s;))H.. Then, with Lemma 4.5 we get
Var [B(mm(a*]se))] = ma(a®]se) (1 — mala®|sy)) =
Vary, . ,mu [ E [B(mwwm(a*|hs;))]], which concludes the
proof. O

Finally, the result in Theorem 4.2 is a direct consequence of
Lemma 4.6. Note that the upper and lower bounds on the
regret-to-go are strictly positive whenever my(a*|s;) < 1,
as it is stated in Corollary 4.3.

5. Complexity Analysis

Having established the importance of non-Markovianity in
dealing with MSE exploration in a finite-sample regime, it is
worth considering how hard it is to optimize the objective 2
within the class of non-Markovian policies. Especially, we
aim at characterizing the complexity of the problem:

Uy = imize £

0= M £

defined over a CMP M. Before going into the details of
the analysis, we provide a couple of useful definitions for
the remainder of the section, whereas we leave to (Arora &
Barak, 2009) an extended review of complexity theory.

Definition 5.1 (Many-to-one Reductions). We denote as
A <,, B a many-to-one reduction from A to B.

Definition 5.2 (Polynomial Reductions). We denote as
A <, B a polynomial-time (Turing) reduction from A to B.

Then, we recall that ¥, can be rewritten as the prob-

lem of finding a reward-maximizing Markovian policy,

ie, My € argmax, cp, Jyr(7), over a convenient ex-
T

tended MDP ﬂ? obtained from CMP M (see the proof
of Lemma 4.4 for further details). We call this problem
W, and we note that ¥y € P, as the problem of finding
a reward-maximizing Markovian policy is well-known to
be in P for any MDP (Papadimitriou & Tsitsiklis, 1987).
However, the following lemma showgv that it does not exist
a many-to-one reduction from ¥ to ¥,,.

Lemma 5.3. A reduction ¥y <,, \TIO does not exist.

Proof. In general, coding any instance of Wy in the repre-
sentation required by \IIO, which is an extended MDP MR,
holds exponential complexity w.r.t. the input of the initial
instance of ¥y, i.e., a CMP M. Indeed, to build the ex-
tended MDP Mqﬁl' from M, we need to define the transition
probabilities P(3'|3,a) for every § € S,a € A,5 € S.
Whereas the action space remains unchanged A= A, the
extended state space S has cardinality |S | = ST in general,
which grows exponentially in 7' O

The latter result informally suggests that U ¢ P. Indeed,
we can now prove the main theorem of this section, which
shows that ¥ is NP-hard under the common assumption
that P £ NP.

Theorem 5.4. U is NP-hard.

Proof Sketch. To prove the theorem, it is sufficient to show
that there exists a problem ¥, € NP-hard so that ¥, <,, ¥,
We show this by reducing 3SAT, which is a well-known
NP-complete problem, to V. To derive the reduction we
consider two intermediate problems, namely ¥; and ¥s.
Especially, we aim to show that the following chain of
reductions holds

Wy >, Uy >, Uy >, 3SAT.

First, we define ¥; and we prove that ¥y >,, ¥;. Infor-
mally, ¥, is the problem of finding a reward-maximizing
Markovian policy my; € Il w.r.t. the entropy objective (2)
encoded through a reward function in a convenient POMDP
./\//vlg. We can build /\75 from the CMP M similarly as

the extended MDP M¥ (see Section 2 and the proof of
Lemma 4.4 for details), except that the agent only access the
observation space (2 instead of the extended state space S.
In particular, we define 2 = S (note that S is the state space
of the original CMP M), and O(5|s) = 5_;. Then, the re-
duction ¥y >,, ¥, works as follows. We denote as Zy, the
set of possible instances of problem W,. We show that ¥ is
harder than ¥, by defining the polynomial-time functions ¢
and ¢ such that any instance of ¥, can be rewritten through
1 as an instance of ¥y, and a solution 7, € IInwm for ¥y
can be converted through ¢ into a solution 7y; € IIy for
the original instance of ;. The function ¢ sets S = Q
and derives the transition model of M from the one of
ME, while ¢ converts the optimal solution of ¥ by com-
puting 73 (alo,t) = >, cr0, PIM (ho)miy (alho), where
‘H, stands for the set of histories h € H; ending in the
observation o € (). Thus, we have that ¥y >,, ¥, holds.
We now define W5 as the policy existence problem w.r.t.
the problem statement of ;. Hence, U5 is the problem
of determining whether the value of a reward-maximizing
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Figure 2. In (a, d), we illustrates the 3State and River Swim CMPs. Then, we report the average entropy induced by an optimal (stationary)
Markovian policy 7mm and an optimal non-Markovian policy mnw in the 3State (1" = 9) (b) and the River Swim (1" = 10) (e). In (c) we
report the entropy frequency in the 3State, in (f) the state visitation frequency in the River Swim. We provide 95% c.i. over 100 runs.

Markovian policy 7y; € argmax oy, J. i (m) is greater
than 0. Since computing an optimal policy in POMDPs is
in general harder than the relative policy existence problem
(Lusena et al., 2001, Section 3), we have that ¥; >, U,.
For the last reduction, i.e., ¥5 >, 3SAT, we extend the
proof of Theorem 4.13 in (Mundhenk et al., 2000), which
states that the policy existence problem for POMDPs is
NP-complete. In particular, we show that this holds within
the restricted class of POMDPs defined in ¥;. Since the
chain ¥ >, ¥; >, U, >, 3SAT holds, we have that
Wy >, 3SAT. Since 3SAT € NP-complete, we can con-
clude that ¥ is NP-hard. O]

Having established the hardness of the optimization of W,
one could now question whether the problem U is instead
easy to verify (¢ € NP), from which we would conclude
that ¥y, € NP-complete. Whereas we doubt that this prob-
lem is significantly easier to verify than to optimize, the
focus of this work is on its optimization version, and we thus
leave as future work a finer analysis to show that ¥y ¢ NP.

6. Numerical Validation

Despite the hardness result of Theorem 5.4, we provide
a brief numerical validation around the potential of non-
Markovianity in MSE exploration. Crucially, the reported
analysis is limited to simple domains and short time hori-
zons, and it has to be intended as an illustration of the
theoretical claims reported in previous sections. For the
sake of simplicity, in this analysis we consider stationary
policies for the Markovian set, though similar results can
be obtained for time-variant strategies as well (in stochas-
tic environments). Whereas a comprehensive evaluation of
the practical benefits of non-Markovianity in MSE explo-
ration is left as future work, we discuss in Section 7 why

we believe that the development of scalable methods is not
hopeless even in this challenging setting.

In this section, we consider a 3State (S =3,A =2,T =9),
which is a simple abstraction of the two-rooms in Fig-
ure 1, and a River Swim (Strehl & Littman, 2008) (S =
3, A =2,T = 10) that are depicted in Figure 2a, 2d respec-
tively. Especially, we compare the expected entropy (2)
achieved by an optimal non-Markovian policy mnm €
arg max, 1y, € (), which is obtained by solving the ex-
tended MDP as described in the proof of Lemma 4.4, against
an optimal Markovian policy my; € arg max, ¢y, £(7). In
confirmation of the result in Theorem 4.2, 7y cannot match
the performance of w1 (see Figure 2b, 2e). In 3State, an
optimal strategy requires going left when arriving in state
0 from state 2 and vice versa. The policy mny is able to
do that, and it always realizes the optimal trajectory (Fig-
ure 2¢). Instead, 7y is uniform in 0 and it often runs into
sub-optimal trajectories. In the River Swim, the main hur-
dle is to reach state 2 from the initial one. Whereas my
and 7N are equivalently good in doing so, as reported in
Figure 2f, only the non-Markovian strategy is able to bal-
ance the visitations in the previous states when it eventually
reaches 2. The difference is already noticeable with a short
horizon and it would further increase with a longer 7.

7. Discussion and Conclusion

In the previous sections, we detailed the importance of non-
Markovianity when optimizing a finite-sample MSE objec-
tive, but we also proved that the corresponding optimization
problem is NP-hard in its general formulation. Despite the
hardness result, we believe that it is not hopeless to learn
exploration policies with some form of non-Markovianity,
while still preserving an edge over Markovian strategies.
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In the following paragraphs, we discuss potential avenues
to derive practical methods for relevant relaxations to the
general class of non-Markovian policies.

Finite-Length Histories Throughout the paper, we con-
sidered non-Markovian policies that condition their deci-
sions on histories of arbitrary length, i.e., 7 : H — A(A).
However, the complexity of optimizing such policies grows
exponentially with the length of the history. To avoid this ex-
ponential blowup, one can define a class of non-Markovian
policies 7 : Hg — A(A) in which the decisions are condi-
tioned on histories of a finite length H > 1 that are obtained
from a sliding window on the full history. The optimal
policy within this class would still retain better regret guar-
antees than an optimal Markovian policy, but it would not
achieve zero regret in general. With the length parameter
one can trade-off the learning complexity with the regret ac-
cording to the structure of the domain. For instance, H = 2
would be sufficient to achieve zero regret in the 3State do-
main, whereas in the River Swim domain any H < T would
cause some positive regret.

Compact Representations of the History Instead of set-
ting a finite length H, one can choose to perform function
approximation on the full history to obtain a class of poli-
ciesm: f(H) — A(A), where f is a function that maps an
history h to some compact representation. An interesting
option is to use the notion of eligibility traces (Sutton &
Barto, 2018) to encode the information of A in a vector of
length S, which is updated as z;11 < Az + 15,, where
A € (0,1) is a discount factor, 1, is a vector with a unit
entry at the index s;, and zy = 0. The discount factor A
acts as a smoothed version of the length parameter 7, and
it can be dynamically adapted while learning. Indeed, this
eligibility traces representation is particularly convenient
for policy optimization (Deisenroth et al., 2013), in which
we could optimize in turn a parametric policy over actions
7o(:|z, A) and a parametric policy over the discount 7, ().
To avoid a direct dependence on S, one can define the vector
z over a discretization of the state space.

Deep Recurrent Policies Another noteworthy way to do
function approximation on the history is to employ recurrent
neural networks (Williams & Zipser, 1989; Hochreiter &
Schmidhuber, 1997) to represent the non-Markovian policy.
This kind of recurrent architecture is already popular in
RL. In this paper we are providing the theoretical ground
to motivate the use of deep recurrent policies to address
maximum state entropy exploration.

Non-Markovian Control with Tree Search In princi-
ple, one can get a realization of actions from the optimal
non-Markovian policy without ever computing it, e.g., by
employing a Monte-Carlo Tree Search (MCTS) (Kocsis &
Szepesvari, 2006) approach to select the next action to take.
Given the current state s; as a root, we can build the tree

of trajectories from the root through repeated simulations
of potential action sequences. With a sufficient number of
simulations and a sufficiently deep tree, we are guaranteed
to select the optimal action at the root. If the horizon is too
long, we can still cut the tree at any depth and approximately
evaluate a leaf node with the entropy induced by the path
from the root to the leaf. The drawback of this procedure is
that we require to access a simulator with reset (or a reliable
estimate of the transition model) to actually build the tree.

Having reported interesting directions to learn non-
Markovian exploration policies in practice, we would like to
mention some relevant online RL settings that might benefit
from such exploration policies. We leave as future work a
formal definition of the settings and an empirical study.

Single-Trial RL In many relevant real-world scenarios,
where data collection might be costly or non-episodic in na-
ture, we cannot afford multiple trials to achieve the desired
exploration of the environment. Non-Markovian exploration
policies guarantee a good coverage of the environment in
a single trial and they are particularly suitable for online
learning processes.

Learning in Latent MDPs In a latent MDP scenario (Hal-
lak et al., 2015; Kwon et al., 2021) an agent interacts with
an (unknown) environment drawn from a class of MDPs to
solve an online RL task. A non-Markovian exploration pol-
icy pre-trained on the whole class could exploit the memory
to perform a fast identification of the specific context that has
been drawn, quickly adapting to the optimal environment-
specific policy.

In this paper we focus on the gap between non-Markovian
and Markovian policies, which can be either stationary or
time-variant. Future works might consider the role of sta-
tionarity (see also Akshay et al., 2013; Laroche et al., 2022),
such as establishing under which conditions stationary strate-
gies are sufficient in this setting. Finally, here we focus on
state distributions, which is most common in the MSE liter-
ature, but similar results could be extended to state-action
distributions with minor modifications.

To conclude, we believe that this work sheds some light on
the, previously neglected, importance of non-Markovianity
to address maximum state entropy exploration. Although it
brings a negative result about the computational complexity
of the problem, we believe it can provide inspiration for
future empirical and theoretical contributions on the matter.
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Table 1. Overview of the methods addressing MSE exploration in a controlled Markov process. For each method, we report the nature of
the corresponding MSE objective, i.e., the entropy function (Entropy), whether it considers stationary, discounted, or marginal distributions
(Distribution), and if it accounts for the state space S or the state-action space S.A (Space). We also specify if the method learns a single
policy rather than a mixture of policies (Mixture), and if it supports non-parametric entropy estimation (Non-Parametric).

Algorithm Entropy Distribution ~ Space Mixture Non-Parametric
MaxEnt (Hazan et al., 2019) Shannon discounted  state v X
FW-AME (Tarbouriech & Lazaric, 2019)  Shannon stationary state-action v X
SMM (Lee et al., 2019) Shannon marginal state v X
IDE3AL (Mutti & Restelli, 2020) Shannon stationary state-action X X
MEPOL (Mutti et al., 2021) Shannon marginal state X v
MaxRényi (Zhang et al., 2021) Rényi discounted  state-action X X
GEM (Guo et al., 2021) geometry-aware  marginal state X X
APT (Liu & Abbeel, 2021b) Shannon marginal state X v
RE3 (Seo et al., 2021) Shannon marginal state X v
Proto-RL (Yarats et al., 2021) Shannon marginal state X v
APS (Liu & Abbeel, 2021a) Shannon marginal state v v
A. Related Work

Hazan et al. (2019) were the first to consider an entropic measure over the state distribution as a sensible learning objective
for an agent interacting with a reward-free environment (Jin et al., 2020). Especially, they propose an algorithm, called
MaxEnt, that learns a mixture of policies that collectively maximize the Shannon entropy of the discounted state distribution,
i.e., (1). The final mixture is learned through a conditional gradient method, in which the algorithm iteratively estimates
the state distribution of the current mixture to define an intrinsic reward function, and then identifies the next policy to be
added by solving a specific RL sub-problem with this reward. A similar methodology has been obtained by Lee et al. (2019)
from a game-theoretic perspective on the MSE exploration problem. Their algorithm, called SMM, targets the Shannon
entropy of the marginal state distribution instead of the discounted distribution of MaxEnt. Another approach based on the
conditional gradient method is FW-AME (Tarbouriech & Lazaric, 2019), which learns a mixture of policies to maximize the
entropy of the stationary state-action distribution. As noted in (Tarbouriech & Lazaric, 2019), the mixture of policies might
suffer a slow mixing to the asymptotic distribution for which the entropy is maximized. In (Mutti & Restelli, 2020), the
authors present a method (IDE3AL) to learn a single exploration policy that simultaneously accounts for the entropy of the
stationary state-action distribution and the mixing time.

Even if they are sometimes evaluated on continuous domains (especially (Hazan et al., 2019; Lee et al., 2019)), the methods
we mentioned require an accurate estimate of either the state distribution (Hazan et al., 2019; Lee et al., 2019) or the
transition model (Tarbouriech & Lazaric, 2019; Mutti & Restelli, 2020), which hardly scales to high-dimensional domains.
A subsequent work by Mutti et al. (2021) proposes an approach to estimate the entropy of the state distribution through
a non-parametric method, and then to directly optimize the estimated entropy via policy optimization. Their algorithm,
called MEPOL, is able to learn a single exploration policy that maximizes the entropy of the marginal state distribution in
challenging continuous control domains. Liu & Abbeel (2021b) combine non-parametric entropy estimation with learned
state representations into an algorithm, called APT, that successfully addresses MSE exploration problems in visual-inputs
domains. Seo et al. (2021) shows that even random state representations are sufficient to learn MSE exploration policies
from visual inputs. On a similar line, Yarats et al. (2021) consider simultaneously learning state representations and a basis
for the latent space (or prototypical representations) to help reducing the variance of the entropy estimates. Finally, Liu &
Abbeel (2021a) consider a method, called APS, to learn a set of code-conditioned policies that collectively maximizes the
MSE objective by coupling non-parametric entropy estimation and successor representation.

Whereas all of the previous approaches accounts for the Shannon entropy in their objectives, recent works (Zhang et al.,
2021; Guo et al., 2021) consider alternative formulations. Zhang et al. (2021) argues that the Rényi entropy provides a
superior incentive to cover all of the corresponding space than the Shannon entropy, and they propose a method to optimize
the Rényi of the state-action distribution via gradient ascent (MaxRényi). On an orthogonal direction, the authors of (Guo
et al., 2021) consider a reformulation of the entropy function that accounts for the underlying geometry of the space. They
present a method, called GEM, to learn an optimal policy for the geometry-aware entropy objective.
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A.1. Online Learning of Global Concave Rewards

Another interesting pair of related works (Cheung, 2019a;b) addresses a reinforcement learning problem for the maximization
of concave functions of vectorial rewards, which in a special case (Cheung, 2019a, Section 6.2) is akin to our objective
function (2). Beyond this similarity in the objective definition, those works and our paper differ for some crucial aspects, and
the contributions are essentially non-overlapping. On the one hand, (Cheung, 2019a;b) deal with an online learning problem,
in which they care for the performance of the policies deployed during the learning process, whereas we only consider the
performance of the optimal policy. On the other hand, we aim to compare the classes of non-Markovian and Markovian
policies respectively, whereas they consider non-stationary or adaptive strategies to maximize the online objective. Finally,
their definition of regret is based on an infinite-samples relaxation of the problem, whereas we account for the performance
of the optimal general policy w.r.t. the finite-sample objective (2) to define our regret-to-go (Definition 4.1).

B. Missing Proofs
B.1. Proofs of Section 3

Theorem 3.1. Ler x € {c0,v,T'}, and let D¥yy = {dZ(-) : m € lInm }, Dy = {dZ() : m € I} the corresponding sets
of state distributions over a CMP. We can prove that:

(i) The sets of stationary state distributions are equivalent D5 = D3y;
(ii) The sets of discounted state distributions are equivalent DYy, = D} for any ~;

(iii) The sets of marginal state distributions are equivalent DL\, = DI for any T.

Proof. First, note that a non-Markovian policy m € IIny can always reduce to a Markovian policy 7 € IIy; by conditioning
the decision rules on the history length. Thus, D%, 2 D§; is straightforward for any x € {co, v, T'}. From the derivations
in (Puterman, 2014, Theorem 5.5.1), we have that Dy; O D%, as well. Indeed, for any non-Markovian policy 7 € IInwm,
we can build a (non-stationary) Markovian policy 7’ € Iy as

7' = (7}, 7,...,m,...), suchthatm(als) = Vs € 8,Va € A.

For ¢ = 0, we have that d7 (-) = dZ (-) = p(-), which is the initial state distribution. We proceed by induction to show that
ifdT_,(-) = d7_,(-), then we have

= > dr () (als)) P(s] s, a)
s’€SacA
l

= ZZ 4 () 1 T (s’ a)P(s]s',a)

s GSaG.A

= Z Zd P(s]s',a)
s’eS acA

=dj (s).

Since df (s) = df (s) holds for any t > 0 and Vs € S, we have d7, () = d,(-), d7(-) = d7 (-), d}-(-) = d (-), and thus
Dt 2 DRy Then, Dy = Dy follows. O]

Corollary 3.2. For every CMP, there exists a Markovian policy ©* € Iy such that 7 € arg max, oy Eoo ().

Proof. The result is straightforward from Theorem 3.1 and noting that the set of non-Markovian policies IInys with arbitrary
history-length is as powerful as the general set of policies II. Thus, for every policy m € II there exists a (possibly
randomized) policy «’ € IIy; inducing the same (stationary, discounted or marginal) state distribution of =, i.e., d"(:) =
d™ (-), which implies H (d"(-)) = H (d™ (-)). If it holds for any 7 € II, then it holds for 7* € arg max, .y H(d"(-)). O
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B.2. Proofs of Section 4

Theorem 4.2 (Non-Markovian Optimality). For every CMP M and trajectory hy € H7), there exists a deterministic
non-Markovian policy Ty € HEM that suffers zero regret-to-go R_(mnum, he) = 0, whereas for any my € Iy we have
R —t(ma, ht) > 0.

Proof. The result Ry_;(mNm, he) = 0 for a policy nnm € HISM is a direct implication of Lemma 4.4, whereas
Rr—_t(mm, ht) > 0 for any my € Iy is given by Lemma 4.6, which states that even an optimal Markovian policy
my € argmax, o, £(m) suffers expected regret-to-go Ry _;(my;) > 0. O

Corollary 4.3 (Sufficient Condition). For every CMP M and trajectory hy € Hg) for which any optimal Markovian policy
mMm € Iy is randomized (i.e., stochastic) in si, we have strictly positive regret-to-go Rr—i(mm, hy) > 0.

Proof. This result is a direct consequence of the combination of Lemma 4.5 and Lemma 4.6. Indeed, if the policy
M € arg max, cyy,, £(7) is randomized in s; we have

0 < Var [B(mu(a*|s;))] = Var  [E [B(rm(a*|hs))]],

hsy Np: NM
from Lemma 4.5, which gives a lower bound to the expected regret-to-go R, _,(mm, k) > 0 through Lemma 4.6. O

Lemma 4.5. Let mny € 11Xy @ non-Markovian policy such that mxy € arg max, .y €(m) on a CMP M. For a fixed
history hy € H; ending in state s, the variance of the event of an optimal Markovian policy my € arg max, cp,, ()
taking a* = iy (he) in s is given by

Var [B(mm(a*]s,t))] = Var [E [B(zrnm(a®|hs))]],

hSNpZNM
where hs € Hy is any history of length t such that the final state is s, i.e., hs := (ht—1 € Hi—1) D s, and B(x) is a Bernoulli
with parameter x.

Proof. Let us consider the random variable A ~ P denoting the event “the agent takes action a* € A”. Through the law of
total variance (Bertsekas & Tsitsiklis, 2002), we can write the variance of A given s € S and ¢t > 0 as

- [Var [A|s,t,h]} + Var []E [A\s,t,h]]. 3)
Now let the conditioning event h be distributed as h ~ pi~}', so that the condition s,t, h becomes hs where hs =
(so0,a0,51,-..,8 = s) € Hy, and let the variable A be distributed according to P that maximizes the objective (2)
given the conditioning. Hence, we have that the variable A on the left hand side of (3) is distributed as a Bernoulli
B(mm(a*|s,t)), where my € argmax, q,, £(7), and the variable A on the right hand side of (4) is distributed as a
Bernoulli B(mxm(a*|hs)), where Ty € arg max E(m). Thus, we obtain

Var [B(mu(a*|s,t))] = hsprﬂNM [ Var [B(rxm(a*|hs))]] + hsyp@& [E [B(mxu(a®|hs))]]- )

Under Assumption 1, we know from Lemma 4.4 that the policy 7wy is deterministic, i.e., inm € HEM, so that
Var [B(mnwm(a*|hs))] = 0 for every hs, which concludes the proof. O
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Lemma 4.6. Let m\; be an optimal Markovian policy my € arg max, 1y, E(m) ona CMP M. For any hy € Hp), it holds
RT%(WM) < RTft(WM) < ﬁT,t(’ITM) such that

Rp_4(ma) = % oA [E [B(mxm(a”[hsi))]],
Ry () = - — 1 [E [Blmw(a®[hs)]]

(@ s) e
(@ [$t) hspnp]M
where TN\ € arg max eyp E(m), and H,, H} are given by

H* = min H(dht@h('))v

heHT_+
H; = ma H(d .
I (dn,en(-))

s.t. Hy_, = argmax H (dp,en(+))-
heHr ¢

Proof. From the definition of the expected regret-to-go (Definition 4.1), we have that

Rr—i(mu he) = H* —  E _ [H(dnens,()],

™
hr—t~ppe,

in which we will omit A in the regret-to-go Ry—¢(mm, he) = Rr—t(mm) as b is fixed by the statement. To derive a lower
bound and an upper bound to Rr_+(my) we consider the impact that taking a sub-optimal action @ € A\ {a*} in state s;
would have in a best-case and a worst-case CMP respectively, which is detailed in Lemma B.2 and Lemma B.1. Especially,
we can write

™
hr—t~pp2,

Rr—i(my) =H"— E _ [H(dnenr,())]
> H* —mv(a*|s)H* — (1 — mv(a®|se)) Hy

=(H" - H;)(l — WM(a*\st))
and

RT—t(WM) =H" — E . [H(dhf,@hT—t(.)):I
hp _¢~pM,

< H* —mu(a®|s) H* — (1 — mu(a®|s)) H.
= (H* — H,)(1 — mv(a®|s)).
Then, we note that the event of taking a sub-optimal action a € A \ {a*} with a policy 7\ can be modelled by a Bernoulli

distribution B with parameter (1 —mu(a* \st)). By combining the equation of the variance of a Bernoulli random variable
with Lemma 4.5 we obtain

Var [B(ma(a*[se))] = ma(a®|se) (1 — mu(a*]sy)) = hsyz%m [E [B(mxm(a*|hs))]]

which gives

Re-im) = 22 yar (B [B(ma(a’hso))]] = Ry (ma)
T (a*|8¢) hsmprNM
RT,t(’]TM) S M Var [E [B(WNM(CL*|hSt))]] = ﬁTft(ﬂ'M)

@ [50) harpd
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Lemma B.1 (Worst-Case CMP). For any t-step trajectory hy € Hr), taking a sub-optimal action a € A\ {a*} at step t in
the worst-case CMP M gives a final entropy

H, = min H(d ),
ploin (dn,@n(*))

where the minimum is attained by

T .
hy_, = (si € argmaxdp, (S))i:t+1 € argmin H(dp, gn(")).

s€S heHr ¢

Proof. The worst-case CMP M is designed such that the agent cannot recover from taking a sub-optimal action a; € A\{a*}
as it is absorbed by a worst-case state given the trajectory h;. A worst-case state is one that maximizes the visitation frequency
in hy, ie., s € argmax, s dp, (), so that the visitation frequency becomes increasingly unbalanced. A sub-optimal action
at the first step in M leads to T" — 1 visits to the initial state sy ~ u, and the final entropy is zero. O

Lemma B.2 (Best-Case CMP). For any t-step trajectory hy € Hr), taking a sub-optimal action a € A\ {a*} at step t in
the best-case CMP M gives a final entropy

Hi = max  H(dpen(-) st Hp_,=argmaxH(dn,en(-)
heHr \H}_, heHr ¢

where the maximum is attained by

ETft = 8; (5] ( h;“ftfl € ,H;“ftfl) € arg max H(dht®h(‘))7
heHT_\Hi_,

in which s3 is any state that is the second-closest to a uniform entry in dht EN

Proof. The best-case CMP M is designed such that taking a sub-optimal action a € A\ {a*} at step ¢t minimally decreases
the final entropy. Especially, instead of reaching at step ¢ + 1 an optimal state s*, i.e., a state that maximally balances the
state visits of the final trajectory, the agent is drawn to the second-to-optimal state s3, from which it gets back on track on
the optimal trajectory for the remaining steps. Note that visiting s3 cannot lead to the optimal final entropy, achieved when
s* is visited at step ¢ + 1, due to the sub-optimality of action a at step ¢ and Assumption 1. O

Instantaneous Regret Although the objective (2) is non-additive across time steps, we can still define a notion of pseudo-
instantaneous regret by comparing the regret-to-go of two subsequent time steps. In the following, we provide the definition
of this expected pseudo-instantaneous regret along with lower and upper bounds to the regret suffered by an optimal
Markovian policy.

Definition B.3 (Expected Pseudo-Instantaneous Regret). Consider a policy m € 1l interacting with a CMP over T' — t

steps starting from the trajectory hy. We define the expected pseudo-instantaneous regret of m at step t as ry(mw) =
max (0, Rp—¢(m, hi) — Rr—i—1(m, heg1)).

Corollary B.4. Let my € Iy be a Markovian policy such that my € argmax, ., £(7) on a CMP M. Then, for any
hy € Hypy, it holds 1, (m\) < re(ma) < Ty(mm) such that

ry(ma) = max (0, H* (Vi(mar) = Vega(m) = H3 Vi(ag) + Ho Vi () ).

7 (my) = max (o, H*(Vy(mu) — Ver () — Ha V() + H;vm(m)),

where
1

V = — Var
(M) T (@ [51) hspmprM

[E [B(mxm(a®|hst))]].
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Proof. From the Definition B.3, we have that r;(my) = Rr—¢(mm) — Rr—i—1(mm)- Recall that
Ry () = Vi(m) (H" — H3), Rera(m) = Vilm) (H* — H.),
from Lemma 4.6. Then, we can write

ri(ma) = Ry_y(mm) — Rr—i—1(mm) = H* (Ve(mm) — Vesa () — EsVi(nm) + H Vi1 (mu),

and

Te(mm) < Rr—t(mm) = Ry—o_q(ma) = H* (Vi(mnt) = Viga (mm)) = HVi(mn) + Hz Veyr (mn).

B.3. Proofs of Section 5
Theorem 5.4. U is NP-hard.

Proof. To prove the theorem, it is sufficient to show that there exists a problem ¥, € NP-hard so that ¥, <, ¥. We show
this by reducing 3SAT, a well-known NP-complete problem, to ¥q. To derive the reduction we consider two intermediate
problems, namely ¥; and W,. Especially, we aim to show that the following chain of reductions hold:

\IIO Zm \I’l Zp \112 zp 3SAT

First, we define ¥y and we prove that Uy >,, ¥;. Informally, ¥, is the problem of finding a reward-maximizing Markovian
policy my € IIy w.r.t. the entropy objective (2) encoded through a reward function in a convenient POMDP M B We can
build MV & from the CMP M similarly as the extended MDP M £ (see Section 2 and the proof of Lemma 4.4 for details),
except that the agent only access the observation space Q instead of the extended state space S.In particular, we define
2 = S (note that S is the state space of the original CMP M), O(om = 5_1, and the reward function R assigns value O to
all states § € S such that |s| # T, otherwise (if |s| = T') the reward corresponds to the entropy value of the state visitation
frequences induced by the trajectory codified through 5.

Then, the reduction ¥y >,, ¥; works as follows. We denote as Zy, the set of possible instances of problem ¥,;. We show
that Wy is harder than W, by defining the polynomial-time functions v and ¢ such that any instance of W, can be rewritten
through v as an instance of g, and a solution 7{,; € IIxy for ¥ can be converted through ¢ into a solution 7}, € Iy
for the original instance of V.

P
I\pl —_— I\I]O

|

™ <T TNM

The function ¥ sets S = ) and derives the transition model of M from the one of MR, while ¢ converts the optimal
solution of ¥y by computing

vi(alo,t) Z pt M (ho)mim(alho) 5)

hoeH,
where H, stands for the set of histories h € H; ending in the observation o € ). Thus, we have that ¥, >,, ¥; holds.
We now define U5 as the policy existence problem w.r.t. the problem statement of ;. Hence, ¥, is the problem of
determining whether the value of a reward-maximizing Markovian policy 7y, € arg max, . cpy,, Jr (7) is greater than 0.
Q

Since computing an optimal policy in POMDPs is in general harder than the relative policy existence problem (Lusena
et al., 2001, Section 3), we have that ¥; >, ¥,.

For the last reduction, i.e., W9 >, 3SAT, we extend the proof of Theorem 4.13 in (Mundhenk et al., 2000), which states that
the policy existence problem for POMDPs is NP-complete. In particular, we show that this holds within the restricted class
of POMDPs defined in V.

The restrictions on the POMDPs class are the following:
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1. The reward function R(s) > 0 only in the subset of states reachable in T steps, otherwise R(s) = 0;
2. |18 =5 =19.
Both limitations can be overcome in the following ways:

1. It suffices to add states with deterministic transitions so that 7' = m - n can be defined a priori, where T is the number
of steps needed to reach the state with positive reward through every possible path. Here m is the number of clauses,
and n is the number of variables in the 3SAT instance, as defined in (Mundhenk et al., 2000);

2. The POMDPs class defined by U; is such that S = |S~2|T Noticing that the set of observations corresponds with the set
of variables and that from the previous point 7' = m - n, we have that |S~2|T = n""", while the POMDPs class used by
the proof hereinabove has S = m - n2. Notice that n > 2 and m > 1 implies that n™™™ > m - n2. Moreover, notice
that every instance of 3SAT hgs m > 1landn > 3. Hence, to extend the proof to the POMDPs class defined by U, it
suffices to add a set of states S, s.t. R(s) =0Vs € S,,.

Since the chain ¥y >, ¥ >, ¥y >, 3SAT holds, we have that ¥y >, 3SAT. Moreover, since 3SAT ¢ NP-complete, we
can conclude that ¥ is NP-hard. L]



