
1 

 

Experiments and Computations of Microfluidic Liquid-Liquid Flow 1 

Patterns 2 

 3 

Pierre Desirδ,a, Tai-Ying Chenδ,a, Mauro Bracconic, Basudeb Sahab, Matteo Maestric, and 4 

Dionisios G. Vlachosa,b,* 5 

aDepartment of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy 6 

Street, Newark, Delaware 19716, United States 7 

bCatalysis Center for Energy Innovation, 221 Academy Street, Newark, Delaware 19716, United 8 

States 9 

cLaboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, 10 

via La Masa 34, 20156 Milano, Italy 11 

δThese authors contributed equally. 12 

*Corresponding author; vlachos@udel.edu (D.G. Vlachos) 13 

 14 

Abstract 15 

We study two-phase liquid-liquid flow patterns in a 500 µm capillary microfluidic for four 16 

biphasic systems: ethyl acetate/water, 2-pentanol/water, methyl isobutyl ketone/water, and 17 

heptane/water. Flow visualization experiments using laser induced fluorescence (LIF) reveal a 18 

total of 7 different flow patterns for all solvent pairs, namely slug flow, droplet flow, slug-droplet 19 

flow, parallel, annular, dispersed, and irregular flow. A map of different flow patterns was built to 20 

delineate the origin of their formation. We find conventional dimensionless groups are insufficient 21 

to uniquely identify the flow patterns. Computational fluid dynamics (CFD) modeling in 22 

OpenFOAM shows agreement with the experimental flow patterns for most of the two-phase 23 

flows. Principal component analysis reduces the dimensionality of potential descriptors of flow 24 

patterns and, unlike prior work using two dimensionless numbers, determines six important 25 

features that describe >95% of the variance of the experimental flow patterns. These include the 26 

total flow rate, the flow rate ratio between the two phases, the capillary and Ohnesorge numbers 27 

of the aqueous phase, and the Weber number and velocity of the organic phase. We build a 28 

decision-tree model to further regress the data and identify the critical features and demonstrate an 29 

accuracy in predicting the flow patterns of up to 93%. 30 
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Introduction 1 

The advances in microfluidic technology have enabled the effective miniaturization of 2 

chemical processes. Continuous flow microreactors with characteristic length scales in the 3 

micrometer range (hydraulic diameters <1 mm) possess large surface-to-volume ratios, which 4 

result in heat and mass transport rates orders of magnitude greater than bench-scale and 5 

conventional reactors. The laminar flow regime and short diffusion time-scale of microreactors 6 

allow operation with more precise process windows including heating profiles, residence times, 7 

mixing, and reaction times in the order of milliseconds for both single-phase gas and liquid 8 

systems1-3. These characteristics are further enhanced in multiphase microsystems, in particular in 9 

liquid-liquid biphasic microreactors, where two immiscible liquids come in contact and generate 10 

various two-phase flow patterns by tuning the flow conditions4-9. The biphasic flow patterns in a 11 

microchannel depend on multiple parameters such as the physical properties of the solvents 12 

(density, viscosity, and surface tension), the micromixer where the solvent streams intersect, the 13 

microchannel wall, diameter, length, and geometry, the flow rate, the fluid velocity, and the 14 

fraction of each phase2, 5, 8. These flow patterns are usually generated at the inlet of the 15 

microchannel using flow focusing geometries and mixing junctions (T-junctions and Y-junctions) 16 

as the contacting point of the two liquids.  17 

Given the flow rate-range in experimental studies using syringes or reciprocating-piston 18 

pumps, the stable flow patterns commonly observed are segmented flow (slug flow and droplet 19 

flow) and parallel flow5. In segmented flow, the two liquids form alternating segments in which 20 

the wall-wetting (continuous) phase usually forms a thin film around the non-wetting (dispersed) 21 

phase, whereas parallel flow is characterized by the two liquids flowing side by side through the 22 

microchannel. The type of flow pattern formed by a solvent pair drives its ultimate application. 23 

Slug and droplet flows have extensively been used for synthesis of nanoparticles and for 24 

crystallization. In these flow patterns, the dispersed phase is not in contact with the wall and the 25 

slug/droplets exhibit strong inner recirculation with no axial dispersion, producing particles with 26 

a narrow particle size distribution2, 3, 8, 10. Segmented flow has also been heavily applied in biology 27 

for flow injection analysis, blood analysis, DNA analysis11, protein isolation, and cell 28 

encapsulation12. Parallel flow has mainly been used in liquid-liquid extraction and characterization 29 

of different products, such as metals, metal complexes, ions, and DNA13-16. Furthermore, slug and 30 

droplet flows have been found to be suitable for short contact time liquid-liquid extraction with 31 

high extraction efficiencies and millisecond time-span kinetic studies with in situ characterization 32 

of the reaction network4, 5, 7, 17-24. For example, liquid-liquid biphasic microreactors have been 33 

applied to the production of 5-hydroxylmethyl furfural (HMF), which is a key platform chemical 34 

obtained from the acid-catalyzed dehydration of biomass-derived C6 sugars (glucose and fructose) 35 

in water, to prevent the side reactions and increase the HMF yield.  36 

To leverage the advantages of different flow patterns for various applications, predicting the 37 

liquid-liquid flow patterns for different solvent pairs is vital. Conventionally, dimensionless 38 

analysis is applied, and the dimensionless groups are used to predict the flow patterns for different 39 

systems. Darekar et al.25 and Yagodnitsyna et al.26 have investigated various maps of patterns 40 

using different dimensionless groups and proposed combinations of them that are suitable for 41 

mapping the flow patterns. However, these maps still fail to predict flow patterns at certain 42 

operating conditions. Since the conventional method of mapping the flow patterns using 43 

dimensionless groups is insufficient to predict flow patterns, CFD is a good alternative for flow 44 
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pattern predictions providing also insights into the mechanism of their formation27. Kashid and 1 

Agar28 have utilized CFD to investigate the influence of flow rate, channel diameter and Capillary 2 

number to the flow regimes and slug size in a liquid-liquid capillary microreactor. On the other 3 

hand, Ghaini et al.29 combined experiments and CFD to provide insights into the effects of the 4 

contact angle and the interfacial tension on the slug length and the slug formation time using 5 

multiple organic solvents. Moreover, Nekouei and Vanapalli30 have investigated the influence of 6 

the viscosity ratio and the flow rate ratio between the two solvents on the droplet size using CFD 7 

in a microchannel. In this context, CFD simulations can be employed as numerical experiments 8 

which can reveal both the resulting flow conditions and the controlling parameters for the pattern 9 

generation. However, CFD is computationally intensive. Rapid prediction of the flow patterns 10 

corresponding to certain solvents and operating conditions might be achieved by employing 11 

machine learning methodology. As a powerful data-driven computational tool, machine learning 12 

could also be applied to learn the flow patterns from a dataset and serve as a robust tool for 13 

prediction and classification problems. Das and Samanta31 have applied artificial neural networks 14 

to predict flow patterns for gas-liquid system with 95% accuracy. Furthermore, Nandagopal and 15 

Selvaraju32, 33 published several papers on using multiple neural network techniques to predict flow 16 

patterns for liquid-liquid systems with an accuracy of ~95%. Nonetheless, these works mostly 17 

focused on utilizing different descriptors, such as superficial velocity and confluence angle, to 18 

build a neural network model for only one liquid-liquid system but not for various solvent pairs. 19 

The aim of this paper is to investigate the possibility of using CFD and machine learning 20 

techniques to improve the predictive ability of liquid-liquid flow patterns for multiple solvents in 21 

capillaries. First, we experimentally study the two phase liquid-liquid flow patterns for four 22 

organic solvents with water relevant to HMF extraction34, ethyl acetate (EtAc), 2-pentanol, MIBK, 23 

and heptane. Second, we simulate the various flow patterns using CFD and compare them to our 24 

experimental data. Finally, we combine experiments and machine learning techniques to predict 25 

the two-phase flow patterns with 93% accuracy. We find that the system is inherently of higher 26 

dimensionality of six key descriptors, of which the total flow rate and the capillary number of the 27 

aqueous phase are the most important ones. 28 

Methods 29 

Experimental Methods 30 
Two syringe pumps (Harvard Apparatus PHD2000 and New Era PumpSystemsInc. NE-300) 31 

were used to pump the aqueous and organic solvent feeds into a 500 μm square cross-section T-32 

junction (Valco Instruments) made of polyether ether ketone (PEEK). The details of internal 33 

structure of T-junction are provided in the Supplementary material. The feeds intersect in a cross-34 

flow configuration at the T-junction to generate the biphasic flow patterns. The biphasic mixture 35 

then enters a capillary microchannel made of perfluoroalkoxy alkane (PFA) tubing (Idex Health) 36 

with alternating coiled and straight segments of ID = 500 μm and OD = 1600 μm. Deionized water 37 

(Milli-Q) was used as the aqueous solvent. EtAc 99% (Sigma Aldrich), 2-pentanol 99% (Sigma 38 

Aldrich), MIBK 99% (Sigma Aldrich), and n-heptane 99% (Sigma Aldrich) were used as the 39 

organic solvents. Sodium fluorescein 99% (Sigma Aldrich) and 9,10-diphenyl anthracene 99% 40 

(Sigma Aldrich) were used as the aqueous fluorescent dye and the organic fluorescent dye, 41 

respectively, in order to contrast the two liquid phases during flow visualization.  42 
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The biphasic flow patterns were characterized using laser induced fluorescence (LIF) of a 250 1 

µM solution of sodium fluorescein in water and a 10 mM of 9,10-diphenyl anthracene solution in 2 

one of the selected organic solvents, using a high-speed confocal microscope (Highspeed LSM 5 3 

Live Duo) mounted with an inverter. Two laser sources with wavelength of 488 nm and 405 nm 4 

were used for the fluorescence excitation of the aqueous and organic solvents, respectively. Images 5 

were captured using a Zeiss 1.25X and a 2.5X Plan-Neofluar objective lens at frame rates ranging 6 

from 30 to 108.1 fps. Further image analysis and processing of the flow patterns were conducted 7 

in ImageJ. 8 

 9 

 10 

Computational Methods 11 

CFD simulations of two-phase flow are conducted using the single-field incompressible 12 

Navier-Stokes equations modeled with the volume-of-fluid (VOF) method35. The VOF model is a 13 

surface-tracking technique using a fixed mesh system to resolve sharp interfaces. A set of single-14 

field equations is employed to describe the fluid dynamics of two-phase flows, which are obtained 15 

by means of conditional volume-averaging of the local instantaneous conservation equations of 16 

mass and momentum. The location of the interface is obtained from an indicator function (𝛼), 17 

which is equal to the volume fraction of a phase in each cell. The solution of the continuity equation 18 

Eq. (2) for the volume fraction (𝛼) of one of the phases enables to track the evolution of the 19 

interphase surface35 20 

∂α

∂t
+ ∇ ∙ (α𝐔) = 0 (1) 21 

Scheme 1: Schematic diagram of the experimental setup used for flow visualization of the two-

phase flow patterns (a), photograph of the high-speed confocal microscope setup (b), and zoom-in 

view of the coiled microchannel (c). 
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where 𝛼 is the volume fraction and 𝐔 is the velocity field. Since α is discontinuous at the phase 1 

boundaries, and it is important to have this discontinuity sharp enough to precisely capture the 2 

interface between two phases, an additional term has been introduced, which is a function of the 3 

relative velocity between two phases Ur, as in Eq. (2)  4 

∂α

∂t
+ ∇ ∙ (α𝐔) + ∇ ∙ (α(1 − α)𝐔𝐫) = 0. (2) 5 

It is worth noticing that the equation is exact because no assumptions are employed in its 6 

derivation. The relative velocity is usually modelled as a compressive velocity normal to the 7 

interface with a magnitude proportional to the maximum velocity of the field36. The compressive 8 

velocity acts to compensate the numerical diffusion across the interface and is calculated according 9 

to Eq. (3) 10 

𝐔𝐫 = 𝐧𝐟min [
Cγ|φ|

|Sf|
, max (

|φ|

|Sf|
)] (3) 11 

where nf denotes a vector normal to the cell surface, Sf represents the surface area of each face, φ 12 

is the volumetric flux, and 𝐶𝛾 is the compression factor equal to 1 in this study. The conservation 13 

of mass and the momentum equation, which is dependent on the volume fractions of the phases 14 

through the mixture properties, are expressed by Eqs. (4) and (5) 15 

∇(𝐔) = 0 (4) 16 

∂(ρ𝐔)

∂t
+ ∇ ∙ (ρ𝐔 × 𝐔) = μ∇2𝐔 − ∇P + ρ𝐠 + 𝐅𝐬𝐭 (5) 17 

where P is the pressure, ρ is the density, μ is the viscosity, and Fst is the surface tension force. The 18 

surface tension force acts at the mathematical surface which represents the interface between the 19 

phases. In the Finite Volume method, it has to be transformed into a three-dimensional body force 20 

to be accounted for. The continuum surface force (CSF) approach37 is generally employed in VOF 21 

simulations 22 

𝐅𝐬𝐭 = σκ∇α (6) 23 

where σ is the surface tension and κ represents the curvature. Brackbill et al.37 pointed out that the 24 

curvature of an interface modelled by a volume fraction can be computed by taking the divergence 25 

of a normal field, κ = ∇ ∙ 𝐧. In this work, we employ as normal field the normal to the volume 26 

fraction. Hence, the normal field is computed as in Eq. (7) 27 

𝐧 =
∇𝛼

|∇α|
(7) 28 

A special treatment is required for the cells near the walls where the adhesion force is 29 

considered using a fixed contact angle at the liquid/liquid/solid triple point37. According to the 30 

CSF model, the unit normal vector is computed at the walls as a function of the contact angle as 31 

in Eq. (8) 32 

𝐧 = 𝐧𝐰cosθ0 + 𝐭𝐰sinθ0 (8) 33 



6 

 

where θ0 is the contact angle, and nw and tw are the unit normal and tangential vectors to the wall 1 

surface. The value of contact angle defines the wettability. When θ0 is smaller than 90°, the fluid 2 

spreads over most of the area of the wall, and the solid wall is hydrophilic. On the other hand, 3 

when θ0 is larger than 90°, the wetting of the surface is unfavorable and the fluid minimizes the 4 

contact with the wall, indicating the wall is hydrophobic. 5 

In the VOF method, we solve only the single continuity and momentum equations for the entire 6 

domain, an approach known as the "one-fluid" approach38. Therefore, the variables and material 7 

properties are defined as volume-averaged of the two phases in each cell, as shown in Eqs. (9) and 8 

(10) 9 

ρ = αρ1 + (1 − α)ρ2 (9) 10 

μ = αμ1 + (1 − α)μ2. (10) 11 

The governing equations are solved with the finite-volume based, open-source CFD toolbox, 12 

OpenFOAM39. The simulation mesh is established as a 3D T-shape micromixer as shown in 13 

Scheme 2, which shares the same geometric parameters and flow conditions with our experimental 14 

study. Herein, the channel size is set to 0.5 mm. A total of 1,856,000 cells within the simulation 15 

domain were used, and results regarding flow pattern and slug length are found to be independent 16 

of discretization; additional information can be found in the Supplementary material. The 17 

dispersed phase, water, flows into the T-mixer from one inlet, while the continuous organic phase, 18 

e.g., EtAc, flows into the T-mixer from the other inlet and mixes with the water. The maximum 19 

Courant number is set to 0.25 to control the time step without reducing the accuracy and quality 20 

of the simulation. Zero gradient for pressure and no-slip boundary condition for velocity are 21 

implemented at the wall of the microchannel, and the contact angle is set to be 180°. At the inlet, 22 

a zero pressure gradient and constant velocity are used as boundary conditions. At the outlet, the 23 

velocity and volume fraction are set to be zero-gradient, and the pressure to be atmospheric. 24 

 25 

 26 

Results and Discussion 27 

Liquid-Liquid Flow Patterns 28 
Figure 1 shows the two-phase flow patterns observed experimentally among a total of 260 data 29 

flow visualization points collected. Overall, 7 different biphasic flow patterns are obtained: slug 30 

Scheme 2: Flow configuration of the organic and aqueous feeds into the T-junction used for both 

the flow visualization experiments and the CFD simulations. 
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flow, droplet, slug-droplet, dispersed, parallel, annular, and irregular flow. The flow patterns were 1 

visualized in both coiled and straight segments of the microchannel and there were no observable 2 

effects of centrifugal forces arising from the channel curvature on the flow patterns. The organic 3 

solvent is the continuous phase in most flow patterns (slug, droplet, slug-drop, parallel, annular, 4 

and irregular flows) as it wets the hydrophobic microchannel wall while the aqueous solvent (red 5 

phase in Figure 1) is the dispersed phase. However, in the case of the dispersed flow, water is the 6 

continuous phase into which the organic solvent is dispersed40. The slug and droplet flow regimes 7 

are marked by elongated slugs and droplets of uniform and constant size and shape. When the 8 

length of the dispersed phase segments is longer than the inner diameter, we define the flow pattern 9 

as slug flow; when it is equal or shorter than the inner diameter, as droplet flow. The slug-drop 10 

and dispersed flows consist of alternating slugs and droplets with non-uniform size. The parallel 11 

flow is characterized by a layer of water flowing next to a layer of organic solvent whereas in the 12 

annular flow regime, the aqueous layer flows in between two parallel layers of organic solvent. In 13 

the irregular flow regime, the dispersed aqueous phase flows as varying deformed slugs and 14 

droplets in the organic solvent.  15 

Figure 2 maps the flow conditions that generate the biphasic flow patterns. Interestingly, for 16 

the same total volumetric flow rate and org/aq (v/v) ratio, different organic solvents generate 17 

different flow patterns. At low flow rates (<1 mL/min), the slug flow is the prevalent for all solvent 18 

pairs. At high flow rates (>1 mL/min), the irregular flow is more frequently observed with EtAc 19 

and MIBK, the annular flow is dominant with 2-pentanol, and the droplet flow is preferred with 20 

heptane. Moreover, parallel flow is only observed when MIBK is used as an organic solvent. 21 

Furthermore, the dispersed flow regime is usually encountered at high flow rates and low org/aq 22 

(v/v) ratios where the inertial forces in the aqueous phase overcome the surfaces forces in the 23 

organic phase, resulting in the aqueous solvent wetting the hydrophobic wall40. 24 
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 1 

Figure 1: LIF images of the experimental biphasic flow patterns observed for EtAc (green) (a), 2-

pentanol (blue) (b), MIBK (yellow) (c), and heptane (cyan) (d). In all the images, water is shown 

as the red phase. Conditions: total volumetric flow rate from 0.1 to 10 mL/min, org/aq (v/v) from 

0.25 to 4. The detailed conditions are indicated in Figure 2. 
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 1 

Figure 2: Maps of flow patterns vs. the org/aq (v/v) ratio and the total volumetric flow rate using 2 

various organic solvents: EtAc (a), 2-pentanol (b), MIBK (c), heptane (d). 3 

 4 

CFD Modeling of Flow Patterns 5 

We adopt the same configuration employed in the experimental study (Scheme 2) to assess 6 

the capabilities of CFD in predicting the flow patterns. By alternating the flow rate and flow rate 7 

ratio between organic and aqueous phase, we analyzed the experimental behavior via numerical 8 

simulations. The properties of the solvents employed in CFD are reported in Table 1. Our results 9 

revealed the prediction of five different flow patterns, namely slug, droplet, slug-drop, annular, 10 

and irregular, as shown in Figure 3a. The flow patterns are generally in agreement with 11 

experimental results under the same conditions for all the solvents considered. At low flow rates, 12 

the interfacial tension forces dominate, enabling the sharp formation of slugs at the T-junction 13 

section41, 42. We quantitatively assessed the model predictions for this flow pattern by comparing 14 

the slug length at different flow rates at unitary flow rate ratio. The slug length in the simulations 15 

is evaluated by drawing the isocontour at 0.5 of volume fraction (aqueous phase) to isolate the 16 

slug, and then, the actual length is measured using Paraview. Figure 3b shows that the experimental 17 

and numerical results are in good agreement with relative deviations at most of 25%. The slug 18 
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length decreases as the flow rate increases due to the gradual reduction of the relative importance 1 

of the surface tension which turns to be less effective in building long slugs as the inertial and 2 

viscous contributions become more relevant. 3 

 4 

Table 1. Physical properties of the organic solvents used in CFD simulations. 5 

Organic solvent Dynamic viscosity (Pa-s) Density (kg/m3) Interfacial tension (N/m) 

EtAc43 4.41 × 10
-4 900 0.0074 

2-pentanol 3.47 × 10
-3 812 0.0034 

MIBK 5.85 × 10
-4 802 0.0157 

Heptane44 3.86 × 10
-4 684 0.0507 

 6 

As the flow rate increases, the viscous force increases and starts playing a vital role in the 7 

pattern formation. At this condition, the interfacial tension force is not sufficient for breakup, and 8 

shear-off takes place after some distance from the T-junction to form a droplet41, 42 as shown in 9 

Figure 3a. When the flow rate is high and the inertial force is large enough, the breakup no longer 10 

happens and annular flow forms2, which is accurately predicted by the numerical simulation, as 11 

well as the slug-droplet flow regime is observed, which appears only at a high organic-to-aqueous 12 

flow rate ratio, as shown in Figure 3a. In this case, the organic flow rate is sufficiently large giving 13 

rise to segments of different size because the slugs are no longer stable. At the very high flow rate, 14 

rather irregular flow appears, as shown in Figure 3a.  15 

Comparison between the numerical simulations and the experimental data reveals an accuracy 16 

of 68% of the CFD in predicting the correct pattern. Figure 4 shows a confusion matrix for each 17 

of the solvent. Each element of the confusion matrix represents the fraction of experimental flow 18 

patterns (x-axis labels) predicted by CFD (y-axis labels). Diagonal (off diagonal) elements 19 

represent correct (incorrect) predictions. For example, the 1st row/3rd column element 0.19 in 20 

Figure 4a means that 19% of the slug flows (1st row) seen experimentally are predicted to be 21 

annular by CFD (3rd column). Most of the wrong predictions are related to the dispersed flow 22 

which is never forecasted by the simulations. The remaining errors are related to the misprediction 23 

of the slug flow at both low flow rate ratio (0.25) and low total flow rate. The prediction errors are 24 

related to distinct reasons in the two cases stemming from the limitations of the current model. 25 

The dispersed flow is experimentally observed at low flow rate ratios and high total flow rate. 26 

In the experiment, it has been noticed that the water is actually wetting the hydrophobic wall due 27 

to the large flow rate compared to the organic phase (low flow rate ratio). In this scenario, the 28 

continuous and dispersed phase are reversed with respect to the other experiments because of the 29 

particular operating conditions, even if the channel walls are hydrophobic. This finally results in a 30 
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boundary condition mismatch between simulations and experiments. Indeed, the simulation setup 1 

imposes a hydrophobic wall due to the nature of the material used in the experiments, using a fixed 2 

and pre-defined contact angle whose value is constant in time according to the current surface 3 

tension model, i.e., the wettability of the wall does not change during a simulation. This boundary 4 

keeps the organic phase touching the wall and avoids the water becoming the continuous phase, 5 

thereby preventing the proper prediction of this flow pattern from the simulation. To confirm this 6 

hypothesis, we carried out a dedicated simulation using a hydrophilic wall. In doing this, we 7 

observed the formation of the dispersed flow as expected from the experiments. CFD simulations 8 

are able to reproduce the flow pattern even for this condition. However, they could not be used as 9 

a predictive tool since they require knowledge on which phase wets the wall.  10 

The misprediction of the slug flow is confined in the region of low flow rate ratio and low total 11 

flow rate. In these cases, the annular flow is predicted from the simulation. These conditions are 12 

dominated and governed by the surface tension force since the low fluid velocity keeps the 13 

contribution of the viscous and inertial force low. The misprediction could be attributed to an 14 

under-prediction of the surface tension force between the two phases. As a result, annular flow is 15 

obtained since the surface tension is not sufficient for breaking up the water phase. This indicates 16 

that an improvement of the current surface tension model might to be needed to precisely predict 17 

these specific flow patterns.  18 

In summary, CFD simulation is a good tool to provide useful information in designing the 19 

actual microreactor and understanding the mechanism for flow pattern generation30, 45, 46. It is 20 

widely used for Taylor flow regime27, 30, 45-48, but exposes some limitations in predicting the 21 

conditions of different flow patterns observed in experiments. Moreover, CFD simulations are 22 

computationally expensive preventing fast screening of different conditions. It takes around 12 to 23 

20 hours computing time using 36 CPUs (Intel E5-2695V4) on a high-performance computing 24 

cluster to obtain one flow pattern. Thus, it is important to develop an alternative tool to accurately 25 

and quickly predict flow patterns for different conditions and water/organic solvent pairs. 26 

 27 

Figure 3: CFD generated two-phase flow patterns for the EtAc/water solvent pair (a). Conditions 

for the CFD simulations: total volumetric flow rate varies from 0.2, 2, 3, 5 to 8 mL/min from top 

to bottom; and org/aq (v/v) ratio is 1, 1, 4, 1 and 2 for each flow pattern; (b) Comparison between 

the experimental and the CFD predicted slug length of the EtAc/water solvent pair. 
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 1 

Map of Flow Patterns 2 

The micro-flow system is mainly influenced by surface forces, viscous forces, and inertial 3 

forces. To better understand the dynamics of the forces, four key dimensionless groups are 4 

introduced, namely the Reynolds number (Re), the Capillary number (Ca), the Weber number 5 

(We), and the Ohnesorge number (Oh). The solvent properties in Table 1 are used in the following 6 

equations (their physical interpretation is also shown) to estimate their values: 7 

Re =
ρUdH

μ
=

Inertial forces

Viscous forces
(11) 8 

Ca =
μU

σ
=

Viscous forces

Surface forces
(12) 9 

We =
ρU2dH

σ
=

Inertial forces

Surface forces
(13) 10 

Figure 4: Confusion matrix showing the accuracy of CFD in predicting the flow patterns in the 

microchannel for EtAc (a), MIBK (b), 2-pentanol (c), and heptane (d).  
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Oh =
μ

√ρσdH

=
Viscous forces

√Inertial forces × Surface forces
(14) 1 

where ρ is the density of the solvent, dH is the hydraulic diameter of the microchannel, μ is the 2 

dynamic viscosity of the solvent, and σ is the surface tension between the two liquids.  3 

Flow maps, plotting the various patterns vs. one or two dimensionless numbers for both the 4 

continuous and dispersed phase, are typically employed for understanding the dynamics of the 5 

surface, viscous, and inertial forces and predicting flow patterns. Figure 5 shows the 6 

experimentally observed flow patterns for the various biphasic systems under similar flow 7 

conditions vs. the Capillary number of the organic phase (the continuous phase for most of the 8 

flow patterns), CaOrg, and the Weber number of the aqueous phase (the dispersed phase in most 9 

cases), WeAq. For all organic solvents used, slug flow is obtained at CaOrg< 0.01 and WeAq< 1. 10 

These data underscore the fact that slug flow is characterized by strong surface forces. Nonetheless, 11 

the maximum Ca number below which slug flow occurs depends on the organic solvent: slug flow 12 

is obtained up to CaOrg ~0.1 for 2-pentanol and WeAq ~2 for heptane, reflective of relatively 13 

stronger viscous forces in the 2-pentanol/water system and stronger inertial forces in the 14 

heptane/water system. Furthermore, at the same values of CaOrg  and WeAq , different organic 15 

solvents generate different flow patterns. For example, in Figure 3, at WeAq = 1 and CaOrg = 0.02, 16 

EtAc produces droplet flow, 2-pentanol generates slug flow, MIBK forms parallel flow, and 17 

heptane droplet flow. These observations suggest that the common dimensionless numbers are 18 

inadequate to encompass the force dynamics in both solvents of a biphasic system. Flow maps, 19 

like Figure 5, are limited in accurately predicting the flow patterns since CaOrg does not account 20 

for the contribution of the inertial forces in the organic phase and WeAq does not consider the 21 

relative strength of the viscous forces in the aqueous phase.  22 

The above observations clearly show that biphasic flow patterns are multi-dimensional systems 23 

that depend on the physical properties of the solvents, the flow rate, the flow rate ratio, the common 24 

dimensionless numbers, the microchannel diameter, the channel wall, and the contacting geometry. 25 

To mitigate the limitations in predicting biphasic flow patterns in microchannels, a universal map 26 

of patterns vs. the WeOh product of each phase was developed by Yagodnitsyna and coworkers26. 27 

Figure 6 shows the flow map of experimental patterns for the four biphasic systems used in this 28 

study. Slug flow is well described for all organic solvents for (WeOh)Org< 0.003 for the organic 29 

phase and (WeOh)Aq< 0.01 for the aqueous phase, which is in the range of WeOh values reported 30 

by Yagodnitsyna et al.26. However, this universal map fails at accurately predicting the flow 31 

patterns observed at higher WeOh values, as shown in Figure 6. The red circle highlights the 32 

considerable overlap of different flow patterns at similar WeOh values. This again indicates the 33 

need for an alternative tool to accurately and quickly predict flow patterns at different conditions 34 

and water/organic solvent pairs. 35 
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 1 

Figure 5: Dimensionless flow map plotting the Capillary number of the organic phase against the 

Weber number of the aqueous phase for the two-phase flow patterns observed experimentally with 

various organic solvents: EtAc (a), 2-pentanol (b), MIBK (c), and heptane (d). Flow conditions: 

total volumetric flow rate from 0.1 to 10 mL/min, org/aq (v/v) ratio from 0.25 to 4. 
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 1 

Figure 6: Map of flow patterns against the product of the Weber number times the Ohnesorge 2 

number for both the organic and aqueous phase for all the organic solvents: EtAc (green), 2-3 

pentanol (purple), MIBK (orange), and heptane (cyan). Flow conditions: total volumetric flow rate 4 

from 0.1 to 10 mL/min, org/aq (v/v) ratio from 0.25 to 4. 5 

 6 

Principal Component Analysis (PCA) 7 

PCA is a useful statistical tool for dimensionality reduction and analysis49. It can identify the 8 

dimensionality of the problem and show potential correlations, and is fairly simple to use. 9 

Considering material properties and dimensionless groups of both aqueous and organic phases, 10 

there are 19 features in total, shown in Table 2, selected for our analysis. The explained variance 11 

of each principal component is shown in Figure 7a, and the cumulative explained variance in 12 

Figure 7b. The top 2 principal components only explain 38% and 23% of the variance, respectively, 13 

and the variance explained by the top 6 principal components is significantly higher than the 14 

remaining. Hence, at least 6 features are needed to describe >95% of the variance of the data. 15 

Unlike prior work using two dimensionless groups to describe flow patterns, it is clear that PCA 16 

suggests that the problem is of higher dimensionality. Since principal components are linear 17 

combinations of the original features, it is hard to directly identify the key descriptors and 18 

characterize the flow pattern. Another method is therefore needed to efficiently predict the patterns 19 

as well as to identify the relevant descriptors. 20 
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Table 2. Features determined by principal component analysis (PCA) to predict the two-phase flow 1 

patterns. 2 

 Features 

Aqueous phase 

(Aq) 

Kinematic viscosity (Nu), density (Rho), velocity (V), Capillary 

number (Ca), Reynolds number (Re), Weber number (We), 

Ohnesorge number (Oh) and We*Oh 

Organic phase 

(Org) 

Kinematic viscosity, density, velocity, Capillary number, 

Reynolds number, Weber number, Ohnesorge number and We*Oh 

System-wide 
Interfacial tension (Sigma), total flow rate (Q), flow rate ratio 

(Org/Aq) 

 3 

 4 

Decision Tree Model 5 

Decision tree learning is a tree-based predictive modeling for regression and classification that 6 

provides interpretive predictions50-52. As a commonly used supervised machine learning method 7 

in data mining, decision tree could assist in predicting either the value (regression) or the class 8 

(classification) of target variable(s) from input observations53. Since our variables are discrete, we 9 

employ classification trees. To construct a decision tree, the dataset is split into different subsets 10 

by choosing certain variables that could best split the set of observations at each node of the tree. 11 

The building process of a simple decision tree is illustrated in the Supplementary information. 12 

The Gini impurity is employed to each candidate subset to evaluate the quality of the split and 13 

decide the variable for splitting data. The Gini impurity is the measure that a randomly chosen data 14 

point would be incorrectly classified by randomly using one of the distributions of classes in the 15 

subset51-53. Here k represents the number of classes and pi represents the fraction of elements that 16 

are classified as class i. The split that minimizes the Gini impurity for a system is chosen to divide 17 

the dataset and construct the tree. This process is repeated on each subset recursively to build a 18 

decision tree until reaching stopping criteria, i.e., every subset contains only one unique class. 19 

Figure 7: Explained variance by principal components (a) and cumulative explained 

variance (b). 
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Then, the averaged Gini impurity decreases for each variable in a node over the entire tree and can 1 

be used to estimate the variable importance51. The decision tree algorithm is carried out using 2 

scikit-learn, which is a well-known open-source machine learning package in Python54. 3 

The response space in our problem contains different flow patterns, and the predictors are 4 

features selected from Table 2. There is a total of 260 data points collected, and the data is 5 

randomly split into a training set and a testing set; 80% of data is used for training and the 6 

remaining 20% is kept for testing. A 3-fold cross validation is applied during model training to 7 

avoid overfitting. The testing data is used to evaluate the performance of the model. The decision 8 

tree model is built using the same features, listed in Table 2. Figure 8a shows the confusion matrix 9 

of the flow pattern predictions and Figure 8b shows the feature importance. Figure 8a shows the 10 

decision tree model reaches 87% overall accuracy among all flow patterns. The model correctly 11 

predicts the slug-drop flow, dispersed flow, and parallel flow. On the other hand, the drop flow is 12 

the most wrongly predicted. This may be attributed to the very narrow operating condition window 13 

of the drop flow. This pattern has been observed in a very limited number of operating conditions, 14 

which in some cases overlaps with the other flow regimes. The machine learning algorithm thereby 15 

predicts the drop flow as the common slug or the slug-drop flow in some cases. Besides, the top 6 16 

important features are identified from the feature importance using the decision tree model. These 17 

include the total flow rate, the Capillary number of aqueous phase, the Weber number of the 18 

organic phase, the flow rate ratio, the velocity of the organic phase, and the Ohnesorge 19 

dimensionless group of the aqueous phase. The total flow rate and flow rate ratio are identified as 20 

the most important factors that influence patterns, consistent with these being the key variables we 21 

tune to obtain different flow patterns. Moreover, the Capillary number of the aqueous phase and 22 

the Weber number of the organic phase are identified as vital factors as well, indicating that 23 

whether the system is dominated by surface tension force is important for dictating the flow 24 

patterns. Using the top 6 important features to build the decision tree model again, the confusion 25 

matrix of new model (Figure 9a) and the evaluation metrics are shown in Figure 9b, where the F1 26 

score is the harmonic average of precision and recall. The precision is the number of true positives 27 

divided by the true positives plus false positives55. The recall is the correct identifications of the 28 

class over the total population of the class55. The new decision tree model reaches 93% accuracy 29 

and correctly predicts slug flow, annular flow, slug-droplet flow, dispersed flow, and parallel flow. 30 

The accuracy and F1 score are improved due to reduced overfitting. This indicates that these are 31 

the key features of controlling flow patterns. The decision tree model reaches much higher 32 

accuracy (>90%) by identifying the key features for this classification problem.  33 

The methodology of using a decision tree to predict flow pattern could also be extended to 34 

liquid-liquid microchannels with hydrophilic walls and gas-liquid systems. When the channel wall 35 

is changed from hydrophobic to hydrophilic, the organic phase will become the dispersed phase 36 

and the aqueous phase will then be the continuous phase, and different flow patterns might be 37 

generated under the same flow conditions. On the other hand, for gas-liquid systems, there would 38 

be significant density and surface tension differences, leading to the greater range of dimensionless 39 

numbers. In general, the key features identified in this study would also be important in these 40 

systems, since these same parameters are tuned by varying operating conditions and determine 41 

when the surface tension force dominates. However, the relative importance of key features may 42 

differ because of the much different range of dimensionless numbers and operating conditions. 43 



18 

 

 1 

 2 

 3 

Conclusions 4 

Two-phase flow patterns were studied in a microchannel for systems of relevance to the 5 

reactive extraction of HMF, using 4 different organic/aqueous biphasic systems, with water as the 6 

aqueous phase and organic solvents including EtAc, 2-pentanol, MIBK, and heptane. The various 7 

biphasic flow regimes were generated using a T-junction and were studied experimentally using 8 

LIF flow visualization. In total, 7 different two-phase flow patterns were observed: slug flow, 9 

droplet flow, slug-drop flow, parallel flow, annular flow, dispersed flow, and irregular flow. Maps 10 

Figure 9: Confusion matrix of the decision tree model (a) and performance of the decision tree 

model (b). 

Figure 8: Confusion matrix of decision tree model (a) and feature importance (b). Symbols are 

defined in Table 2. 
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for the different flow patterns were created for different flow conditions and all solvent pairs. 1 

Interestingly, different flow patterns were observed for different organic solvents under similar 2 

flow conditions. Nonetheless, the slug flow regime was found to be common to all solvent pairs at 3 

low flow rates <1 mL/min. The flow patterns were, then, modeled using CFD simulations with 4 

fairly good agreement with the experimental results for most of the flow patterns. However, 5 

dispersed flow and slug flow at low flow rate ratio are usually wrongly predicted by numerical 6 

simulations. In the former, the specific operating conditions, i.e. large amount of water, determines 7 

that water is in contact with the wall, an aspect not captured by simulations where as wall is 8 

assumed to be hydrophobic. In the latter, the flow is governed by the surface tension due to the 9 

very small capillary number. In this case, the closure model for the surface tension plays a vital 10 

role for the accurate description of patterns. The model employed in this work is found to under-11 

predict the surface tension resulting in misprediction of this flow pattern.  12 

Finally, the flow patterns were analyzed using various descriptors to delineate the physics of 13 

flow pattern formation. Using the two common dimensionless groups of Weber number and 14 

Ohnesorge number results fails in uniquely identifying the patterns. Principal component analysis 15 

determines the most important features and shows that at least 6 features are necessary to explain 16 

>95% of the variance of the experimental data. A decision-tree model was then built to further 17 

analyze the data and provide insights into the most important features. The model improved the 18 

accuracy in predicting flow patterns up to 93% and exposed six critical features that include the 19 

total flow rate, the flow rate ratio between the two phases, the Capillary and Ohnesorge numbers 20 

of the aqueous phase, and the Weber number and velocity of the organic phase. This work 21 

introduces machine learning in accurately describing complex flow patterns to increase the ability 22 

to predict liquid-liquid flow patterns and reduce the computational cost compared to using CFD 23 

simulations. Moreover, this work underscores that these systems are inherently of higher 24 

dimensionality than thought before. 25 
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