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RESOLUTIONS OF LETTERPLACE IDEALS OF

POSETS

ALESSIO D’ALÌ, GUNNAR FLØYSTAD, AND AMIN NEMATBAKHSH

Abstract. We investigate resolutions of letterplace ideals of posets.
We develop topological results to compute their multigraded Betti
numbers, and to give structural results on these Betti numbers. If
the poset is a union of no more than c chains, we show that the
Betti numbers may be computed from simplicial complexes of no
more than c vertices. We also give a recursive procedure to com-
pute the Betti diagrams when the Hasse diagram of P has tree
structure.

Introduction

Letterplace and co-letterplace ideals of a partially ordered set P were
introduced and studied in [4] and [5]. In the latter paper it was shown
that many monomial ideals studied in the literature derive from letter-
place or co-letterplace ideals as quotients of these ideals by a regular
sequence of variable differences. These ideals therefore allow a powerful
unifying treatment of many classes of ideals. In this article we:

• Develop combinatorial topological results on the homology of
simplicial complexes, in particular those associated with bipar-
tite edge ideals, Section 2,
• Use this to compute and give structural results on the multi-
graded Betti numbers of resolutions of letterplace ideals, Sec-
tions 3 and 4.

Given a poset P , the n’th letterplace ideal L(n, P ) is the monomial
ideal generated by monomials

x1,p1x2,p2 · · ·xn,pn

where p1 ≤ p2 ≤ · · · ≤ pn. The n’th co-letterplace ideal L(P, n) is the
monomial ideal generated by monomials

Πp∈Pxp,ip,

where 1 ≤ ip ≤ n and p < q implies ip ≤ iq.
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The variables are here xi,p where (i, p) ∈ [n]×P . Given a multidegree
R ⊆ [n] × P we let {i} × Ri be the intersection R ∩ ({i} × P ), giving
subsets R1, . . . , Rn of P . Each pair Ri and Ri+1 naturally defines a
bipartite graph whose edges are (pi, pi+1) ∈ Ri×Ri+1 where pi ≤ pi+1.

The generators of L(2, P ), which give us the graded Betti numbers in
homological degree zero, correspond to pairs of elements p1 ≤ p2 in the
poset P . The higher Betti numbers of L(2, P ) turn out to be topological
invariants associated with pairs of subsets R1, R2 of the poset P where
R1 ≤ R2 for a certain ordering ≤. More generally the Betti numbers of
L(n, P ) are topological invariants associated with sequences of subsets
R1 ≤ R2 ≤ · · · ≤ Rn of the poset P . We show that the Betti numbers
of L(n, P ) may be computed very nicely from those of L(2, P ). We
describe in detail the extremal aspects of the Betti table of L(n, P ),
like the multigraded Betti numbers in the first and last linear strands,
and in the highest homological degree. We also show that, if P is a
union of no more than c chains, then all the multigraded Betti numbers
of L(n, P ) may be computed as the homologies of simplicial complexes
with ≤ c vertices, which can greatly reduce the task of computing Betti
numbers. When the Hasse diagram of P has a rooted tree structure we
describe completely all multigraded Betti numbers, and give a simple
inductive procedure for computing the Betti diagram.

To obtain the above we first develop general topological results sim-
plifying the computations of the homology of various simplicial com-
plexes defined by i) edge ideals of bipartite graphs, and ii) more general
ideals whose monomials are given by paths between successive hubs of
vertices, in our case the Ri’s.

We mention that in the paper [2] we compute resolutions of co-
letterplace ideals. This can be given by a completely explicit and
simple form. On the other hand resolutions of letterplace ideals, as
we investigate here, are much more subtle and rely on the intricate
topological behaviour of P .

The organization of the paper is as follows. Section 1 defines and
gives basic properties of letterplace ideals of posets. Section 2 develops
topological results on the homology of simplicial complexes. In Section
3 we give the computational and structural results on the multigraded
Betti numbers of letterplace ideals, and in Section 4 we give the recur-
sive procedure for computing Betti diagrams when the Hasse diagram
of P has a tree structure.
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1. Letterplace ideals of posets

We recall the definitions of the above monomial ideals associated
with a poset P and a natural number n, and give basic properties of
these ideals which we will use. These ideals were introduced in [4] and
[5].

Let k be a field. If R is a set denote by k[xR] the polynomial ring
k[xi]i∈R, and if S ⊆ R denote by mS the squarefree monomial Πi∈Sxi.
If P and Q are finite posets, we denote by Hom(P,Q) the set of

isotone maps φ : P → Q, i.e. maps such that p ≤ p′ implies φ(p) ≤
φ(p′). For such a φ its graph is

Γφ = {(p, φ(p)) | p ∈ P} ⊆ P ×Q.

Let L(P,Q) be the ideal in k[xP×Q] generated by the monomials mΓφ

where φ ∈ Hom(P,Q).
Let [n] = {1 < 2 < · · · < n} be the totally ordered set on n elements.

The ideal L([n], P ) in k[x[n]×P ] is the n’th letterplace ideal of P and the
ideal L(P, [n]) in k[xP×[n]] is the n’th co-letterplace ideal of P . For
short, we write these ideals as L(n, P ) and L(P, n) respectively.

Fact 1. Let I be a homogeneous Cohen-Macaulay ideal of codimen-
sion c generated in degree n in a polynomial ring. Let e(I) be the
multiplicity of I (i.e. the degree of the projective scheme defined by
I). Then

(1)

(

n+ c− 1

c

)

≤ e(I) ≤ nc.

This follows easily by taking an artinian reduction of the ideal I.

The following properties hold for letterplace ideals:

1. L(n, P ) is a Cohen-Macaulay ideal of codimension equal to the
cardinality |P | by [4, Corollary 2.5], see also [5, Corollary 2.4]. By [4,
Cor.3.3] its regularity is c(n−1)+1 where c is the maximal cardinality
of an antichain in P .

2. The multiplicity of L(n, P ) is the cardinality |Hom(P, [n])|. This
is a consequence of 4. below, since the facets of a simplicial complex
defined by a squarefree monomial ideal correspond one to one to the
generators of the Alexander dual ideal.

3. The upper bound in (1) is attained for the letterplace ideal L(n, c)
where c is the antichain on c elements, an ideal which is a complete
intersection. The lower bound is attained for the letterplace ideal
L(n, [c]). (This letterplace ideal is an initial ideal of the ideal generated
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by the maximal minors of an n × (n + c − 1) matrix of generic linear
forms, see [5, Section 3].) Thus as P varies over posets of cardinality c,
the letterplace ideals L(n, P ) may be seen as giving Cohen-Macaulay
ideals of codimension c generated in degree n interpolating between
these extreme cases.

4. The ideals L(n, P ) and L(P, n) are Alexander dual ideals by [4,
Theorem 1.1], see also [5, Prop. 1.2].

We mention that in [10] homological properties of the ideals L(P,Q)
in general are studied, like regularity, projective dimension, and length
of first linear strand.

2. Topological results

We develop topological results for simplicial complexes which we will
need in the next section when describing the graded Betti numbers of
letterplace ideals.
The typical situation is derived from the simplicial complex associ-

ated with the edge ideal of a bipartite graph. We may then compute the
homology of the simplicial complex from the homology of an associated
simplicial complex on either of the two vertex sets.

2.1. Homotopy equivalent simplicial complexes. The following
basic situation will be useful for us. Let X be a simplicial complex
with vertex set V . Let a1 and a2 be vertices in V and suppose that
when {a1} ∪ G and {a2} ∪G are in X , then {a1, a2} ∪ G is in X . Let
V0 = V \{a1, a2}, and let Y be the simplicial complex on W = V0∪{a}
such that

• The restrictions X|V0
= Y|V0

.
• For G ⊆ V0, then G ∪ {a} is a face of Y iff either G ∪ {a1} or
G ∪ {a2} is a face of X .

bb b

bb

b b

b

b b

a1 a2

b

c d c d

b

a

X : Y :

Proposition 2.1. X and Y are homotopy equivalent.

Proof. A short argument using the category of CW-complexes is the fol-
lowing: let A2 be the subcomplex of X generated by the faces contain-
ing {a1, a2}, and let A1 be the subcomplex of Y generated by faces G
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such that (G\{a})∪{a1, a2} is a face ofX . The quotient CW-complexes
X/A2 and Y/A1 can then be seen to be the same. By Propositions 0.16
and 0.17 in [7], X is homotopic to X/A2, and Y is homotopic to Y/A1,
and therefore X and Y are homotopic.

A detailed argument using simplicial complexes is as follows: the
map f : V → V0 ∪ {a} sending a1 and a2 to a induces a simplicial map

f̃ : X → Y , sending a face F of X to a face f(F ) of Y . By Lemma
2.6 of [11] we need to check that for every face G of Y the subcomplex
of X induced on f−1(G) is contractible. This will imply that X and Y
are homotopy equivalent.
If G does not contain a, then f−1(G) = G is also a face of X (hence

a simplex, hence contractible). If G = G′ ∪ {a}, then at least one
of G′ ∪ {a1} and G′ ∪ {a2} is in X . The inverse image of G by f
is G′ ∪ {a1, a2}. If both G′ ∪ {a1} and G′ ∪ {a2} lie in X , then also
G′ ∪ {a1, a2} is in X and we are done.
If G′ ∪ {a1} is in X and G′ ∪ {a2} is not, then we claim that the

subcomplex C of X induced on G′ ∪ {a1, a2} is a cone on a1 and hence
is contractible, yielding the result. Let F ′ ⊆ G′. It is a face of C not
containing a1. Since G

′∪{a1} is in C, F ′∪{a1} is in C. If also F ′∪{a2}
is in C, then F ′ ∪ {a1, a2} is in X and so in C. The upshot is that any
facet of C will contain a1, and so C is a cone. �

2.2. Simplicial complexes from bipartite graphs. We consider a
bipartite graph with vertex set A∪B and edges between A and B. Let
IX be the edge ideal of this graph and X the simplicial complex with
Stanley-Reisner ideal IX .

Lemma 2.2. If some vertex in A or B is not incident to an edge, then
X is contractible.

Proof. This is clear since in this case X is a cone over this vertex. �

Lemma 2.3. Let a and a′ in A be such that the set of neighbours of
a′ contains the set of neighbours of a. Let Y be the induced simplicial
complex on (A\{a′}) ∪B. Then X and Y are homotopy equivalent.

Proof. Note that if a face F of X contains a′ then F ∪{a} is also a face
of X . Then Y is obtained from X as in Proposition 2.1. Thus Y and
X are homotopy equivalent. �

In the following, subsets of a set denoted by a capital letter will often
be denoted by bold lower case letters. Let Y be the simplicial complex
on B consisting of the subsets b of B such that b∪ {a} is a face of X ,
for some a ∈ A. That is, there is no edge between a and any element
of b.
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The following is very close to [3, Thm. 4.7]. We also thank Morten
Brun for valuable ideas concerning its proof.

Proposition 2.4. X is homotopy equivalent to the suspension of Y .

Proof. By Lemma 10.4 in [1] one has that, if X can be written as the
union of two contractible subcomplexes X0 andX1, thenX is homotopy
equivalent to the suspension of X0 ∩X1. In our case, let

X0 = {a ∪ b ∈ X | b ∈ Y }

and
X1 = {a ∪ b ∈ X | a = ∅}

Note that X1 identifies as the simplex on B. We see that X0∪X1 = X
andX0∩X1 = Y . Moreover X1, being a simplex, is clearly contractible.
It is left to show that X0 is contractible as well. This comes from
Lemma 4.2 in [3] by taking Γ = Y and Γj = {b ∈ B | b ∪ {aj} ∈
X}. �

2.3. The join. Recall that if X is a simplicial complex on a vertex set
V , and Y is a simplicial complex on a vertex set W , then the join X ∗Y
is the simplicial complex on V ∪W whose faces are all F ∪ G where
F is a face of X and G is a face of Y . If X is homotopy equivalent to
a simplicial complex X ′ on V ′, then X ∗ Y and X ′ ∗ Y are homotopy
equivalent.
We define the polynomial of reduced cohomology as

H̃(X, t) =
∑

i≥−1

ti dimk H̃
i(X, k).

Proposition 2.5. Let X and Y be simplicial complexes on disjoint
vertex sets. Then the polynomial

tH̃(X ∗ Y, t) = tH̃(X, t) · tH̃(Y, t).

Consequently if X1, . . . , Xn are simplicial complexes on disjoint vertex
sets, then

tH̃(X1 ∗ · · · ∗Xn) =
n
∏

i=1

tH̃(Xi, t).

Proof. Let C̃(X ; k) be the augmented chain complex of the simplicial
complex X , see [12, Sec.1.3]. (Its homology Hq(C̃(X ; k)) is the reduced

homology H̃q(X ; k).) Then the augmented chain complex of the join
X ∗ Y is the tensor product of the augmented chain complexes of X
and Y , but with a shift in homological degree:

C̃(X ∗ Y ; k)[−1] ∼= C̃(X ; k)⊗k C̃(Y ; k).



RESOLUTIONS OF LETTERPLACE IDEALS OF POSETS 7

By [7, Thm. 3B.5] the reduced homology of the join

H̃q+1(X ∗ Y ; k) ∼=
⊕

i

H̃i(X, k)⊗ H̃q−i(Y, k).

This proves the statement.
�

2.4. Simplicial complexes homotopic to joins. We consider XAB

a simplicial complex on vertex set A ∪ B with Stanley-Reisner ideal
IAB, and XBC a simplicial complex on vertex set B ∪ C with Stanley-
Reisner ideal IBC . We suppose no generator of IAB is divisible by a
quadratic monomial generator xb1xb2 where b1, b2 is in B and similarly
for IBC .
Let X be the simplicial complex on A∪B∪C whose Stanley-Reisner

ideal I is generated by all xa ∈ IAB, xc ∈ IBC (where a ⊆ A and c ⊆ C),
and xaxbixc where xaxbi ∈ IAB and xbixc ∈ IBC . Then X consists of
all a∪b∪ c such that for each bi ∈ b then either a∪ {bi} is in XAB or
{bi} ∪ c is in XBC .
Let B′ and B′′ be copies of B. We thus get a simplicial complex

XAB′ on A ∪B′, a copy of XAB, and so on.

Theorem 2.6. The join XAB′ ∗XB′′C is homotopy equivalent to X.

Proof. Let B′ = {b′1, . . . , b
′
p} and B′′ = {b′′1, . . . , b

′′
p}. We will apply

Proposition 2.1 by making b′i and b′′i successively equal for i = 1, . . . , p,
and after identification we rename it as bi.
Let Xi be the simplicial complex on the vertex set

A ∪ B≤i ∪ B′
>i ∪B′′

>i ∪ C

consisting of all subsets

(2) a ∪ b≤i ∪ b′
>i ∪ b′′

>i ∪ c

such that:

i. a ∪ b′
>i is in XAB′ .

ii. b′′
>i ∪ c is in XB′′C .

iii. a ∪ b≤i ∪ c is in X .

Note that X0 is the join XAB′ ∗ XB′′C and Xp = X . We will show
thatXi and Xi+1 are homotopy equivalent by applying Proposition 2.1.
Let

V0 = (A ∪B≤i ∪B′
>i ∪B′′

>i ∪ C)\{b′i+1, b
′′
i+1}.

Clearly Xi and Xi+1 have the same restriction to V0. Then let R of the
form (2) be a subset of V0. We must show that:
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(1) If R ∪ {b′i+1} and R ∪ {b′′i+1} are in Xi, then R ∪ {b′i+1, b
′′
i+1} is

in Xi.
(2) If R ∪ {b′i+1} or R ∪ {b

′′
i+1} is in Xi, then R ∪ {bi+1} is in Xi+1.

(3) If R ∪ {bi+1} is in Xi+1, then R ∪ {b′i+1} or R ∪ {b
′′
i+1} is in Xi.

Part (1) is clear from the criteria above, i., ii. and iii. For part (2),
if R ∪ {bi+1} is not in Xi+1, then either i. a ∪ b′

>i+1 is not in XAB′

and so none of R ∪ {b′i+1} or R ∪ {b′′i+1} is in Xi, or ii. b′′
>i+1 ∪ c is

not in XB′′C and so none of R ∪ {b′i+1} or R ∪ {b′′i+1} is in Xi, or iii.
a ∪ b≤i ∪ {bi+1} ∪ c is not in X . Then, say, a ∪ {bi+1} is not in XAB,
and so R ∪ {b′i+1} is not in Xi. Similarly we get R ∪ {b′′i+1} is not in
Xi. But this contradicts our assumption.
Part (3): If R ∪ {bi+1} is in Xi+1, then a∪ b≤i+1 ∪ c is in X . Either

a ∪ {bi+1} is in XAB or {bi+1} ∪ c is in XBC . In the first case we see
that

(1) a∪b′
>i+1 ∪{b

′
i+1} is in XAB′ . This is because a∪b′

>i+1 ∈ XAB′

and a ∪ {bi+1} is in XAB.
(2) b′′

>i+1 ∪ c = b′′
>i ∪ c is in XB′′C .

(3) a ∪ b≤i ∪ c is in X .

Thus R ∪ {b′i+1} is in Xi.
In the other case, when {bi+1}∪ c is in XBC , we find that R∪{b′′i+1}

is in Xi. �

Now consider a graph whose set of vertices is a disjoint union A0 ∪
· · · ∪ An, and such that each edge in this graph is between Ai−1 and
Ai for some i. Let Xi be the simplicial complex on Ai−1 ∪ Ai with
Stanley-Reisner ideal the edge ideal given by the edges between Ai−1

and Ai. Let X be the simplicial complex whose Stanley-Reisner ideal
is generated by products xa0xa1 · · ·xan where ai ∈ Ai and {ai−1, ai} are
edges in the graph.

Corollary 2.7. The simplicial complex X is homotopy equivalent to
the join X1 ∗X2 ∗ · · · ∗Xn.

Proof. Let X≤i be the simplicial complex whose monomials correspond
to the edge paths from A0 to Ai. Then X≤1 = X1 and X≤n = X . We
argue by induction. By the previous theorem X≤i ∗Xi+1 is homotopy
equivalent to X≤i+1. By induction X≤i is homotopy equivalent to X1 ∗
X2∗· · ·∗Xi and so X≤i+1 is homotopy equivalent to X1∗· · ·∗Xi+1. �

3. Resolutions of letterplace ideals

In Section 1 we introduced the n’th letterplace ideal L(n, P ) of a
poset P . In this section we investigate the resolution of L(n, P ). By all
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likelihood it is not possible to give this in explicit form since a resolution
of L(n, P ) in general seems to be as complicated as a resolution of
a Stanley-Reisner ring. For instance the resolution of L(n, P ) may
depend on the characteristic, see Remark 3.6 below.
Nevertheless we shall show how to calculate the multigraded Betti

numbers of L(n, P ) in a way that substantially reduces the compu-
tation compared to Hochster’s formula. If P is a union of no more
than c chains, then every multigraded Betti number can be computed
from a simplicial complex on no more than c vertices. For the class of
posets whose Hasse diagram is a rooted tree, we show there is a simple
inductive procedure for computing the graded Betti numbers.

3.1. Betti numbers of simplicial complexes. We first recall Hochster’s
formula for the multigraded Betti numbers of a simplicial complex. So
let X be a simplicial complex on the vertex set V . Let IX be the
Stanley-Reisner ideal of X in k[xv; v ∈ V ]. If R ⊆ V we let X|R be the
restricted simplicial complex consisting of all F ∈ X with F ⊆ R.
Let

IX ← F0 ← F1 ← · · ·

be the minimal free resolution of IX . Since IX is a squarefree ideal, we
can write each

Fi =
⊕

R⊆V

S(−R)βi,R.

The number βi,R = βi,R(IX) is the multigraded Betti number of IX of
degree R and homological degree i.

Theorem 3.1 (Hochster). The Betti number βi,R(IX) is the dimension
as a k-vector space of the reduced cohomology group

H̃ |R|−i−2(X|R, k).

We denote by ∆(n, P ) the simplicial complex corresponding to the
Stanley-Reisner ideal L(n, P ). Its set of vertices is [n] × P . It fol-
lows from the theorem above that for R ⊆ [n] × P the Betti number
βi,R(L(n, P )) is the dimension of

H̃ |R|−i−2(∆(n, P )|R, k).

The following is noteworthy although we do not use it here.

Fact 2. The simplicial complex ∆(n, P ) is a ball of codimension |P | in
the simplex on the vertex set P×[n], [2, Thm. 5.1] (with one exception:
when P is an antichain). The boundary of ∆(n, P ) is thus a simplicial
sphere, see [2, Sec. 5] for more on this.
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3.2. Multigraded Betti numbers of L(2, P ). For R ⊆ [2]×P write
R = {1} × R1 ∪ {2} × R2. Since both R1 and R2 are subsets of P ,
they each get an induced poset structure. Let min(R2) be the minimal
elements of R2 and max(R1) the maximal elements of R1. We then
get a bipartite graph on max(R1)∪min(R2) with edges {p1, p2} (where
p1 ∈ max(R1) and p2 ∈ min(R2)) if p1 ≤ p2 in the poset P .
Let X(R) be the simplicial complex on max(R1) ∪ min(R2) whose

Stanley-Reisner ideal is the edge ideal of this bipartite graph. Let Y2(R)
be the simplicial complex on min(R2) consisting of all B ⊆ min(R2)
such that {a} ∪ B is in X(R) for some a in max(R1), or alternatively
there is some a in max(R1) with no b in B dominating a. This is
the simplicial complex constructed as in Subsection 2.2. Further let
Y1(R) be the simplicial complex on max(R1) consisting of all subsets
A ⊆ max(R1) such that A ∪ {b} is in X(R) for some b ∈ min(R2), i.e.
no a ≤ b for a ∈ A.

Theorem 3.2. The multigraded Betti number βi,R(L(2, P )) is the di-
mension of

H̃ |R|−i−2(X(R), k) ∼= H̃ |R|−i−3(Y1(R), k) ∼= H̃ |R|−i−3(Y2(R), k).

Proof. By Hochster’s formula βi,R(L(2, P )) is

dimk H̃
|R|−i−2(∆(2, P )|R, k).

The Stanley-Reisner ring of ∆(2, P )|R is the edge ideal of the bipartite
graph on R1 ∪ R2 whose edges are {r1, r2} where r1 ≤ r2. By Lemma
2.3, ∆(2, P )|R is homotopy equivalent to X(R), and by Proposition 2.4
X(R) is homotopy equivalent to the suspension of Y1(R), and also of
Y2(R) from which the above follows. �

The following shows that although P may be large, there is a uniform
bound on the size of the simplicial complexes one uses to compute the
multigraded Betti numbers.

Corollary 3.3. If the poset P is a union of no more than c chains, the
multigraded Betti numbers of L(2, P ) can be computed as the homology
of simplicial complexes with no more than c vertices.

Proof. If P is the union of no more than c chains, then every antichain
in P has cardinality less than or equal to c. The simplicial complexes
Y1(R) and Y2(R) are then each complexes on no more than c vertices,
since max(R1) and min(R2) are antichains. �

Given a simplicial complex Z, denote by ΣkZ its k’th iterated sus-
pension. We now introduce another reduction that helps us compute
X(R) by considering a smaller simplicial complex.
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Proposition 3.4. The complex X(R) equals Σ|max(R1)∩min(R2)|C, where
C is the subcomplex ofX(R) induced by (max(R1)∪min(R2))\(max(R1)∩
min(R2)). As a consequence,

H̃ i(X(R), k) ∼= H̃ i−|max(R1)∩min(R2)|(C, k)

for all i.

Proof. Given any b ∈ max(R1)∩min(R2), one has that b is comparable
only to itself inside max(R1) ∪ min(R2). For this reason, considering
the Stanley-Reisner ideals of X(R) and C, one has that

IX(R) = IC + (x1,bx2,b | b ∈ max(R1) ∩min(R2)).

The rest of the claim is a general fact about suspensions: for any
simplicial complex Z one has that H̃ i+k(ΣkZ, k) ∼= H̃ i(Z, k) for all
i. �

We record the following corollary for use in the proof of Proposition
3.17.

Corollary 3.5. If max(R1) 6= min(R2) then H̃p(Yi(R), k) = 0 for
p ≤ |max(R1) ∩min(R2)| − 2. If max(R1) = min(R2) then

H̃p(Yi(R), k) =

{

k p = |max(R1)| − 2

0 p 6= |max(R1)| − 2

Remark 3.6. Betti numbers of L(2, P ) are characteristic-dependent in
general. In fact, one can “simulate the behaviour of any simplicial
complex” in this context. The construction, essentially found in [3],
goes as follows: assume ∆ is a simplicial complex on [n] with facets
F1, . . . , Fm and take the bipartite graph G with bipartition given by
A∪B = {a1, . . . , an}∪{b1, . . . , bm} and such that {ai, bj} is an edge of
G precisely when i does not belong to Fj in ∆. Consider then the poset
P whose nontrivial covering relations are precisely those of the form
ai < bj where {ai, bj} is an edge of G. Now, if R = {1}×A∪{2}×B, one
checks that ∆(2, P )|R is the simplicial complex whose Stanley-Reisner
ideal is the edge ideal ofG. By Proposition 2.4 and by construction, this
complex turns out to be homotopy equivalent to the suspension of the
original complex ∆. Since Hochster’s formula holds, to get an example
where Betti numbers of L(2, P ) are indeed characteristic-dependent it
now suffices to consider as our ∆ the usual triangulation of the real
projective plane.

We now define a transitive order on nonempty subsets of the poset.

Definition 3.7. Let A and B be nonempty subsets of P . We write
A ≤ B if:
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• For every maximal element a in A there is a minimal element
b ∈ B such that a ≤ b.
• For every minimal element b in B there is a maximal element
a ∈ A such that a ≤ b.

Note that this is not a partial order since normally not A ≤ A (so it is
not reflexive). In fact, A ≤ A iff A is an antichain.

The generators of the ideal L(2, P ) correspond to pairs p1 ≤ p2 in
the poset P . These generators give the multigraded Betti numbers of
L(2, P ) in homological degree zero. The following provides an analogue
for the higher multigraded Betti numbers, whose values will depend on
the topology of the poset relative to the multidegrees.

Corollary 3.8. If not R1 ≤ R2 then ∆(2, P )|R is contractible, and
so all the reduced homology of ∆(2, P )|R vanishes. Hence βi,R can be
nonzero only if R1 ≤ R2.

Proof. If some p1 ∈ max(R1) is not dominated by any p2 ∈ min(R2),
the simplicial complex Y2(R) is the full simplex on min(R2), since no
q ∈ min(R2) is such that p1 ≤ q. Analogously if some p2 ∈ min(R2)
does not dominate any p1 ∈ max(R1), then Y1(R) is the full simplex
on max(R1). �

3.3. Multigraded Betti numbers of L(n, P ). For R ⊆ [n]×P write
R = ∪ni=1{i}×Ri. Each Ri gets an induced poset structure from P . We
get a graph on R whose edges are between {i}×Ri and {i+1}×Ri+1

for i = 1, . . . , n − 1. The edges are pairs {(i, pi), (i + 1, pi+1)} with
pi ≤ pi+1. The Stanley-Reisner ideal of ∆(n, P )|R is generated by
products x1,p1x2,p2 . . . xn,pn where pairs of successive indices are edges
of the graph. Let ∆i(n, P )|R be the simplicial complex whose Stanley-
Reisner ideal is the edge ideal of the bipartite graph on {i}×Ri ∪ {i+
1} × Ri+1.
LetXi(R) be the simplicial complex which is the restriction of ∆i(n, P )|R

to max(Ri) ∪min(Ri+1).

Proposition 3.9. Let R ⊆ [n] × P . The restriction ∆(n, P )|R is ho-
motopy equivalent to the join

X1(R) ∗X2(R) ∗ · · · ∗Xn−1(R).

Proof. This follows by Corollary 2.7. �

Recall the polynomial H̃(Xi(R), t) defined in Subsection 2.3. Let r
be the cardinality |R| and β(R, t) the Betti polynomial

trβ0,R + tr−1β1,R + · · ·+ tβr−1,R
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where βi,R = βi,R(L(n, P )). We say that a Betti number βi,R is in the
(|R| − i)-linear strand of L(n, P ). We thus see that the coefficient of
tp in β(R, t) above is the Betti number of multigrade R in the p-linear
strand of L(n, P ).

Theorem 3.10. The Betti polynomial β(R) of L(n, P ) is

β(R, t) = tn
n−1
∏

i=1

H̃(Xi(R), t).

Proof. By the previous proposition and Proposition 2.5

tH̃(∆(n, P )|R, t) =
n−1
∏

i=1

tH̃(Xi(R), t).

By Hochster’s formula

β(R, t) = t2H̃(∆(n, P )|R, t)

and so the statement follows. �

Note that Xi(R) is homotopic to the suspension of the complex
Yi,max(R) on max(Ri) constructed as in Subsection 2.2. It is similarly
homotopic to the suspension Yi+1,min(R) on min(Ri+1) also constructed
there.

Corollary 3.11. The Betti number βi,R(L(n, P )) can be nonzero only
if R1 ≤ R2 ≤ · · · ≤ Rn.

Proof. This follows from Corollary 3.8 because each H̃(Xi(R), t) must
be nonvanishing. �

3.4. Extremal properties of the Betti table of L(n, P ). For the
letterplace ideal L(n, P ) we now characterize i) the Betti numbers in
the first and last linear strands, ii) the Betti numbers in the highest
homological degree |P |−1, and iii) starting homological degrees of the
linear strands. As a consequence we answer a problem posed in [10,
Sec.7] on when the ideal L(n, P ) is a Cohen-Macaulay level ideal.
The ideal L(n, P ) is generated by the monomials x1,p1x2,p2 · · ·xn,pn

with p1 ≤ p2 ≤ · · · ≤ pn and so the first linear strand is the n-linear
strand. The following characterizes the Betti numbers in this strand.

Proposition 3.12. The multidegree R occurs in the first n-linear strand
in the resolution of L(n, P ) iff for every i = 1, . . . , n−1 and every pair
of elements p ∈ Ri and q ∈ Ri+1 we have p ≤ q. Then the Betti number
βi,R(L(n, P )) = 1.
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Proof. The degree R occurs in the first linear strand iff |R| = i+n and
βi,R is nonzero. Thus tn occurs in β(R, t) with nonzero coefficient βi,R.

But then by Theorem 3.10 each H̃(Xi(R), t) has nonzero constant term,
i.e. H̃0(Xi(R), k) is nonzero. Since this equals H̃−1(Yi,max(R), k) this
last simplicial complex is the complex {∅} and so the induced bipartite
graph on max(R1) ∪min(R2) is the complete bipartite graph. �

Example 3.13. Let P = [m] be the totally ordered poset onm elements.
For two sets A,B ⊆ [m] we now have A ≤ B if a ≤ b for every a ∈ A
and b ∈ B. Subsets R1 ≤ R2 ≤ · · · ≤ Rn of [m] give a multidegree
R = ∪i{i} × Ri such that β|R|−n,R(L([n], [m])) = 1. Moreover every
nonzero Betti number of L([n], [m]) arises in this manner.

By [4, Cor. 3.3] the regularity of L(n, P ) is c(n − 1) + 1 where c is
the size of the largest antichain in P . We characterize the multidegrees
in this last linear strand.

Proposition 3.14. The multidegree R occurs in the last (c(n−1)+1)-
linear strand if for each i one has that Ri ≤ Ri+1, the sets max(Ri)
and min(Ri+1) have the same cardinality c and there is a one to one
correspondence between these sets such that the corresponding pairs of
elements are the only comparability relations between these sets. The
Betti number in this case is βi,R(L(n, P )) = 1. (Example case: let
R1 = R2 = · · · = Rn be an antichain of cardinality c.)

Proof. The degree R occurs in the (c(n−1)+1)-linear strand iff tc(n−1)+1

occurs in β(R, t) with nonzero coefficient. Dividing this polynomial by
tn, the power c(n−1)+1−n = (c−1)(n−1) must occur with nonzero co-

efficient in
∏n−1

i=1 H̃(Xi(R), t). But H̃j(Xi(R); k) ∼= H̃j−1(Yi,max(R); k)
vanishes for j − 1 ≥ c− 1. Thus these cohomology groups must all be
nonvanishing for j = c−1. Then each Yi,max(R) must be the boundary
of the (c− 1)-simplex and the result follows. �

Proposition 3.15. Let i = 1, . . . , c− 1. For j > in − (i− 1) the j’th
linear strand is zero in homological degrees ≤ i − 1. Furthermore the
(i+ 1)n− i linear strand starts in homological degree i.

Proof. Let A be an antichain with i+1 elements. Let R1 = R2 = · · · =
Rn = A. Then each Yi,max(R) is the boundary of the simplex on A, and

so H̃(Xi(R), t) = ti. Hence β(R, t) is t(n−1)i+n. The coefficient of this
power of t is β|R|−(n−1)i−n,R. Here |R| = (i+1)n. So this is homological
degree |R| − (n − 1)i − n = i and the (n − 1)i + n = (i + 1)n − i’th
linear strand.
Now let j > in − (i − 1). We want to show that the coefficient

β|R|−j,R of tj in β(R, t) is zero when |R| − j ≤ i− 1. The Yk,max(R) are
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simplicial complexes on a subset of Rk and similiarly the Yk+1,min(R)

are simplicial complexes on subsets of Rk+1. Therefore H̃
p(Xk(R), k) is

nonzero only if p ≤ min{|Rk|, |Rk+1|} − 1. Let u be such that |Ru| has
maximal cardinality among the Rk. Then

∏n−1
i=1 H̃(Xi(R), t) is nonzero

only for

p ≤
∑

k 6=u

|Rk| − n+ 1 = |R| − |Ru| − n+ 1.

Hence if the coefficient of tj is nonzero in β(R, t), then

j ≤ |R| − |Ru|+ 1 ≤
n− 1

n
|R|+ 1.

Thus
nj ≤ (n− 1)|R|+ n ≤ (n− 1)(j + i− 1) + n.

This gives j ≤ i(n−1)+1 = in− (i−1), contradicting the assumption
that j > in− (i− 1). �

Lemma 3.16. Let R1 ≤ R2 ≤ . . . ≤ Rn be subsets of P . Then

|R1|+ |R2|+ · · ·+ |Rn| = |R1 ∪ · · · ∪ Rn|+
n−1
∑

i=1

|Ri ∩Ri+1|.

Proof. For a pair R1 ≤ R2 this obviously holds. Now note that R1 ≤
R2 ∪ · · · ∪ Rn and R1 ∩ (R2 ∪ · · · ∪ Rn) equals R1 ∩ R2. Therefore:

|R1|+ |R2 ∪ · · · ∪ Rn| = |R1 ∪ · · · ∪ Rn|+ |R1 ∩ R2|.

We may now argue by induction on the number of terms in the union.
�

We now characterize the Betti numbers of L(n, P ) in the highest
homological degree. Let p = |P | be the cardinality of P . Recall that
L(n, P ) is a Cohen-Macaulay ideal of codimension p and hence has
projective dimension p− 1.

Proposition 3.17. The Betti number βp−1,R is nonzero iff

• R1 ≤ R2 ≤ · · · ≤ Rn,
• P = R1 ∪R2 ∪ · · · ∪Rn,
• For each i = 1, . . . , n − 1, we have that max(Ri) = min(Ri+1)
is a maximal antichain in P .

In this case the Betti number βp−1,R = 1.

Proof. Suppose that βp−1,R is nonzero. Then by Theorem 3.10 the

product
∏n−1

i=1 H̃(Xi(R), t) has a nonzero term t|R|−p+1−n. Now each
β(Yi,max(R), t) lives in degrees ≥ |max(Ri)∩min(Ri+1)|−2 by Corollary
3.5, and so

β(Xi(R), t) = tβ(Yi,max(R), t)
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lives in degrees ≥ |max(Ri) ∩min(Ri+1)| − 1. Thus
∏n−1

i=1 H̃(Xi(R), t)
lives in degrees

≥
n−1
∑

i=1

|max(Ri) ∩min(Ri+1)| − (n− 1),

and if it actually has a nonzero term in this degree, then by Corollary
3.5, max(Ri) = min(Ri+1) for every i.
By the start of the proof we must then have

|R| − p+ 1− n ≥
n−1
∑

i=1

|max(Ri) ∩min(Ri+1)| − (n− 1).

This gives

|R| ≥ p +
n−1
∑

i=1

|max(Ri) ∩min(Ri+1)|.

By Lemma 3.16 this is only possible if P is R1 ∪ · · · ∪ Rn and we
have equality above. But then by the remark a few lines up, also each
max(Ri) = min(Ri+1) for each i. But then each of these sets must be
a maximal antichain (since the union of the Ri’s is P ). Thus all three
conditions in the statement must be fulfilled.
Conversely if these statements are fulfilled, we easily see that each

Yi,max(R) is the boundary of the simplex on max(Ri). From this we
deduce βp−1,R = 1. �

In [10, Sec. 7] they pose the problem of when L(n, P ) is a level
Cohen-Macaulay ideal. (This means that the graded Betti numbers in
maximal homological degree |P | − 1 exist only in one degree.) Here we
answer this problem.

Corollary 3.18. The ideal L(n, P ) is a level Cohen-Macaulay ideal iff
all maximal antichains in P have the same cardinality. If this cardinal-
ity is c and p = |P |, then the nonzero graded Betti number in maximal
homological degree is βp−1,p+(n−1)c.

Proof. If all maximal antichains have cardinality c, then by the above
proposition any nonzero βp−1,R will have R of cardinality p+ c(n− 1).
On the other hand, if there is an antichain D of cardinality d < c,
then let R1 be the poset ideal generated by D, let R2 = R3 = · · · =
Rn−1 = D, and let Rn be the poset filter generated by D. Then R has
cardinality p+ d(n− 1) and βp−1,R = 1 and so L(n, P ) is not level. �

Remark 3.19. In [10, Cor. 4.7] they show that the first linear strand
has length p− 1, equal to the projective dimension, if P has a unique
maximal or minimal element. In fact Proposition 3.17 shows that this
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linear strand has length p − 1 iff there is some element in P which is
comparable to any other element in P .

4. Letterplace resolutions when P has tree structure

In the case the Hasse diagram of P has the form of a rooted tree, we
shall see that there is a rather simple inductive procedure which enables
us to construct the graded Betti table of L(n, P ). In the last example
we compute the resolution of the n’th letterplace ideal of the V shaped
poset with three nodes. This is the initial ideal of the Pfaffians of a
(2n+ 1)× (2n+ 1) generic skew-symmetric matrix.
In [6] the second and third author study deformations of letterplace

ideals L(2, P ) when the Hasse diagram of P is a rooted tree. For
such posets P and Q it is shown in [8] that L(P,Q) and L(Q,P ) are
Alexander dual, which is one of the few cases this holds.

4.1. The inductive procedure. Let a be an element of P . The let-
terplace ideal L(n, P\{a}) lives in the polynomial ring k[x[n]×(P\{a})]. If
we include this ring in k[x[n]×P ], this letterplace ideal generates an ex-
tended ideal L(n, P\{a})e in k[x[n]×P ]. Similarly we have an extended
ideal L([2, . . . , n], P )e in k[x[n]×P ]. The extended ideal L(n, P\{a})e

is naturally included in L(n, P ) which is again naturally included in
L([2, · · · , n], P )e.
When a is a unique minimal element of P , there is also a natural

multiplication map

L([2, . . . , n], P )e(−1)
·x1,a

−→ L(n, P )

For short we write L(n − 1, P ) for L([2, . . . , n], P ). Let ι denote
inclusion maps.

Lemma 4.1. Suppose the poset P has a unique minimal element a.
Then there is an exact sequence

0← L(n, P )

[

ι, ·x1,a

]

←−−−−−−
L(n, P\{a})e

⊕
L(n− 1, P )e(−1)





·x1,a,
−ι





←−−−−− L(n, P\{a})e(−1)← 0.

Furthermore TorSi (−, k) applied to the right map is zero for each i.

Proof. The above sequence is clearly a complex. Also every generator
of L(n, P ) is in the image of the left map so this map is surjective. The
right map is clearly also injective. So let u⊕−v be in the kernel of the
left map. Then u = x1,av. We claim that v is in L(n, P\{a})e. Then
clearly the image of v by the right map is u⊕−v.
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Let mΓφ divide u where φ : [n] → P\{a} is an isotone map. Then
mΓφ divides v and so v is in L(n, P\{a})e.

As for the second statement, it is clear that TorSi (−, k) applied to

L(n, P\{a})e
·x1,a

←− L(n, P\{a})e(−1) is zero. Furthermore no R with
nonzero βi,R of the ideal L([2, . . . , n], P )e involves an element (1, p) ∈
R for some p ∈ P since no generator of this ideal does. But every
Betti degree of L(n, P\{a})e must involve such an element, since every
generator does so. Hence TorSi (−, k) is zero when applied to the right
map in the statement. �

Corollary 4.2. The Betti number βi,j(L(n, P )) equals the sum

βi,j(L(n, P\{a})) + βi,j−1(L(n− 1, P )) + βi−1,j−1(L(n, P\{a})).

Proof. The Betti number βi,j(L(n, P )) equals TorSi (L(n, P ), k)j. The
above gives an exact sequence

0→ TorSi (L(n− 1, P ), k)j−1 ⊕ TorSi (L(n, P\{a})
e, k)j → TorSi (L(n, P ), k)j

→ TorSi−1(L(n, P\{a})
e)j−1 → 0,

and the statement follows. �

4.2. Posets with tree structure. We now assume that the Hasse
diagram of P has the structure of a rooted tree. So there is a unique
minimal element a in P , and every interval [p, q] in P is a chain. We can
then describe completely the multigraded Betti numbers of L(n, P ).

Proposition 4.3. Suppose the Hasse diagram of P is a rooted tree.
Let R ⊆ [n] × P be such that R1 ≤ R2 ≤ · · · ≤ Rn and let mi be the
cardinality of max(Ri) for i = 1, . . . , n−1. Then this multidegree occurs

only in the p = (1 +
∑n−1

i=1 mi)-linear strand, and the Betti number
β|R|−p,R(L(n, P )) = 1.

Proof. We apply Proposition 3.10. We will show that each Yi,max(R) is

the boundary of an (mi − 1)-simplex. Then each H̃(Xi(R)) is a power
tmi−1 and the result follows. But from each element of min(Ri+1) there
is at most one edge in the bipartite graph whose edge ideal defines
Xi(R), going to an element of max(Ri), due to the tree structure of P .
Since Ri ≤ Ri+1 also every element of max(Ri) is incident to such an
edge. Then the complex Yi,max(R) on max(Ri) is simply the boundary
of the simplex on max(Ri). �

Example 4.4. We compute the Betti table of L(2, P ) for the poset P
below.
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a

b f

c e g

d h

First we compute the Betti table of the subposet P1,

b

c e

d

If we remove the point b, we end up with subposets P (c, d): c

d

and

P (e): e . The quotient rings by the ideals L(2, P (c, d)) and L(2, P (e))
have resolutions with Betti diagrams

0 1 2
0 1 . .
1 . 3 2

0 1
0 1 .
1 . 1

respectively. These are ideals in rings with distinct variables. Hence
the quotient ring by the ideal generated by the sum of these ideals has
a Betti diagram which is the “tensor product” of the above diagrams.
Therefore for the disjoint union of posets P (c, d) and P (e) the Betti

diagram of its second letterplace ideal will be:

0 1 2
2 4 2 .
3 . 3 2

Now by Corollary 4.2, we have

Betti(L(2, P1)) =
0 1 2

2 4 2 .
3 . 3 2

+
0 1 2 3

2 . 4 2 .
3 . . 3 2

+
0 1 2 3

2 4 6 4 1

=
0 1 2 3

2 8 12 6 1
3 . 3 5 2
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The Betti table of the letterplace ideal of the subposet

b f

c e g

d h

is again obtained by taking the “tensor product” of the Betti tables of
L(2, P1) and L(2, 3):

0 1 2 3 4 5 6
2 14 20 9 1 . . .
3 . 51 141 158 90 26 3
4 . . 18 54 61 31 6

Again by using Corollary 4.2, Betti(L(2, P )) equals

0 1 2 3 4 5 6
2 14 20 9 1 . . .
3 . 51 141 158 90 26 3
4 . . 18 54 61 31 6

+

0 1 2 3 4 5 6 7
2 . 14 20 9 1 . . .
3 . . 51 141 158 90 26 3
4 . . . 18 54 61 31 6

+
0 1 2 3 4 5 6 7

2 8 28 56 70 56 28 8 1

=

0 1 2 3 4 5 6 7
2 22 62 85 80 57 28 8 1
3 . 51 192 299 248 116 29 3
4 . . 18 72 115 92 37 6

Example 4.5. Using this procedure we find that the n’th letterplace

ideal L(n, V ) of the poset V : a

b c

has resolution:

0 1 2
n 2n+ 1 2n+ 1 1

n+ 1 . 1 1
...

...
...

...
2n− 1 . 1 1

In fact these letterplace ideals are initial ideals of the Pfaffians of a
generic (2n + 1)× (2n + 1) skew-symmetric matrix, by [9, Thm. 5.1].
The variables Xi,2n+2−i in loc.cit. correspond to our variables xa,i for
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i = 1, . . . , n, the variables Xi+1,2n+2−i correspond to the xb,i and the
Xi,2n+1−i to the xc,i.
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