
Self-Labeling Methods for Unsupervised Transfer

Ranking

Pengfei Lia,∗, Mark Sandersona,∗, Mark Carmanb,∗, Falk Scholera,∗

aRMIT University, Melbourne, Australia
bPolitecnico di Milano, Milan, Italy

Abstract

A lack of reliable relevance labels for training ranking functions is a signifi-
cant problem for many search applications. Transfer ranking is a technique
aiming to transfer knowledge from an existing machine learning ranking task
to a new ranking task. Unsupervised transfer ranking is a special case of
transfer ranking where there aren’t any relevance labels available for the new
task, only queries and retrieved documents. One approach to tackling this
problem is to impute relevance labels for (document-query) instances in the
target collection. This is done by using knowledge from the source collection.
We propose three self-labeling methods for unsupervised transfer ranking:
an expectation-maximization based method (RankPairwiseEM) for estimat-
ing pairwise preferences across documents, a hard-assignment expectation-
maximization based algorithm (RankHardLabelEM), which directly assigns
imputed relevance labels to documents, and a self-learning algorithm (Rank-
SelfTrain), which gradually increases the number of imputed labels. We
have compared the three algorithms on three large public test collections
using LambdaMART as the base ranker and found that (i) all the proposed
algorithms show improvements over the original source ranker in different
transferring scenarios; (ii) RankPairwiseEM and RankSelfTrain significantly

?This manuscript version is made available under the CC-BY-NC-ND 4.0 license http:
//creativecommons.org/licenses/by-nc-nd/4.0/

??The formal publication can be accessed via https://doi.org/10.1016/j.ins.2019.

12.067
∗Corresponding author
Email addresses: vli@vinceli.org (Pengfei Li), mark.sanderson@rmit.edu.au

(Mark Sanderson), mark.carman@polimi.it (Mark Carman),
falk.scholer@rmit.edu.au (Falk Scholer)

Preprint submitted to Journal of Information Sciences December 29, 2019

outperform the source rankers across all environments. We have also found
that they are not significantly worse than the model directly trained on the
target collection; and (iii) self-labeling methods are significantly better than
previous instance-weighting based solutions on a variety of collections.

Keywords: Learning to rank, Transfer learning, Ranking adaptation,
Transfer Ranking, Information Retrieval, Domain Adaptation

1. Introduction1

Ranking is one of the most important components of Information Re-2

trieval (IR) systems (e.g. search engines). Given a search query expressing a3

particular information need, an IR system needs to rank the documents of a4

collection in a descending order of relevance to the query. The relevance score5

of the query and document is usually estimated through a scoring/ranking6

function that combines a set of features, which may include text match and7

other document quality features.8

Conventional ranking functions for IR systems are outcomes of research9

that investigate ranking by lexical features that follow certain linguistic10

heuristics. However, refining such functions requires extensive human effort.11

Moreover, those ranking functions are usually not optimal for a particular12

document corpus. For example, several studies [44, 26] have shown that the13

effectiveness of ranking function vary under different document collections.14

Learning to rank (L2R) is an effective approach to train IR ranking func-15

tions via machine learning techniques. L2R trains a ranking function that16

can predict the ranking order of a set of retrieved documents for a query.17

The training is done using example search queries, retrieved answer docu-18

ments, and corresponding relevance labels. L2R has been widely used in IR19

applications like Web Search, commerce search systems, and recommender20

systems.21

Most L2R algorithms are supervised, which means they require a sub-22

stantial number of labels, indicating the relevance for query-document pairs.23

Specifically, given a query and its retrieved documents, assessors will be asked24

to give a relevance label for each document to the query. The label could be25

binary or graded. Note that relevance labels are human-generated labels that26

reflect the degree of relevance. The optimal ranking order of documents to a27

query can be inferred from the relevance labels. A ranking algorithm predicts28

a real-value score (a relevance score). Relevance scores of query-document29

2

pairs will be used to rank the documents to approximate the optimal ranking.30

However, obtaining relevance labels for training L2R models requires expen-31

sive and time-consuming human assessment. For example, to build a new32

web search engine, one needs to obtain the relevance labels of a large volume33

of queries and retrieved documents. In some other cases, due to the highly34

personalized task, relevance assessments are not possible. For example, the35

relevance labels for email search is unlikely to be assessed by another person.36

A lack of labels has restricted the applicability of L2R in certain scenarios.37

Generating cheap relevance judgments via crowd-sourcing [31] or actively38

selecting partial queries and documents for annotation [19, 33] have been con-39

sidered as potential solutions for the lack of sufficient labels. However, quality40

control for relevance judgments can be challenging, and the cost nonetheless41

expensive.42

An alternative approach is to reuse labels drawn from related collections.43

However, an L2R model trained in one collection may not generalize well to44

a different collection [41] as the distribution of data in the two collections is45

different. Transfer learning [40] is a technique that aims to train models for46

a target collection by transferring knowledge from related source collections.47

Transfer learning techniques can potentially be used to solve the lack of rele-48

vance label problem for L2R. A rank-focused application of transfer learning49

is called Transfer Ranking (TR) [32].50

However, due to various reasons, conventional transfer learning techniques51

cannot be used for transfer ranking directly. One particular reason is that52

the training data for L2R is generated from a different process as it is from53

a conventional machine learning dataset. The training data for an L2R al-54

gorithm is initialized by retrieving documents from a collection for a set of55

queries. For the consideration of efficiency, documents are pooled at a cer-56

tain depth, which, however, makes it harder to formalize the data generating57

process. As a result, the data distribution of an L2R dataset is governed by a58

number of factors: the query set, document collection, and pooling depth, as59

well as the retrieval model used to gather the pool of documents. All these60

factors have contributed to the challenge of implementing transfer ranking61

algorithms.62

The transfer settings for TR can be different. If some labels are present63

in a target collection, then TR can be classified as supervised. Otherwise64

it is said to be unsupervised, which is the focus of this paper. Past re-65

search [22, 32] utilized instance-weighting to tackle unsupervised TR. Weights66

are assigned to training instances in the source collection to change the data67

3

distribution to be more like the distribution in the target. For a given search68

query from the collection, an L2R approach optimizes a ranking function69

over the documents. For each query, the ranking function predicts relevance70

scores for the documents retrieved. Ideally, the resulting rank order of the71

documents for each query should match the ground-truth ranking that re-72

sults from ordering documents by their ground-truth relevance judgments.73

There are multiple ways to assign the weights for each query: to the docu-74

ments (document-level); to document pairs (pair-level); or to queries, where75

all documents belonging to the same query will be assigned as the query76

weight (query weight). The objective of L2R algorithms is to maximize the77

ranking effectiveness of a ranking function for search queries in a collec-78

tion. As a result, instance-weighting at query-level (assign instance weights79

to queries instead of documents) is a natural and more effective approach.80

However, queries are composed by a set of query-document pairs (represented81

by feature vectors), which makes it difficult to measure the density ratios1
82

for instance-weighting. Li et al. [32] demonstrated that the effectiveness of83

such algorithms varies substantially across different transfer scenarios.84

An alternative TR approach is to directly impute relevance labels for85

the query-document pairs in a target collection and then use these imputed86

labels to train a rank learner on the target dataset. This self-labeled [49]87

solution is related to self-training [36], co-training [15], and multi-view learn-88

ing [47] methods, which have also been applied in transfer learning [15].89

Co-training is a machine learning technique that trains a model using two90

different views/feature sets of the data, which usually involves a label im-91

putation step.2 Multi-view learning is a general case for co-training, where92

multiple views of the data were used to train the data. By gradually imput-93

ing new labels for unlabeled instances in the target collection, the self-labeled94

algorithm can bypass the difficult problem of density ratio estimation for the95

L2R collections. All of the mentioned methods are techniques to generate96

imputed labels for unlabeled data in the collection. A self-training algorithm97

imputes the labels by the output of the model trained on labeled data.98

1The relative ratio of the density/frequency of an instance in one distribution compared
with its density in another distribution.

2The terminology “imputation” usually refers to the technique to compensate for miss-
ing data in the machine learning community. In this paper, we introduce the terminology
of “label imputation” to refer to the process of imputing missing relevance labels for L2R
collections.

4

In this paper, we propose three different self-labeling techniques: an ex-99

pectation maximization (EM) based transfer ranking algorithm (RankPair-100

wiseEM), a “hard EM”-inspired transfer ranking algorithm (RankHardLa-101

belEM), and a self-training for transfer ranking algorithm (RankSelfTrain).102

The RankPairwiseEM algorithm looks to improve the ranking function by103

iteratively estimating pairwise preference probabilities between documents104

in the unlabeled target data and using these probability estimates as weights105

in the learning algorithm. The other two algorithms aim to directly impute106

relevance labels for the unlabeled query-document pairs in the target col-107

lection. RankHardLabelEM is inspired by a variant of the EM algorithm,108

which makes “hard” (non-probabilities) assignments of relevance labels to109

unlabeled training instances, while RankSelfTrain is an application of the110

self-training algorithm for TR.111

While EM and self-training algorithms have been studied in other con-112

texts, such as classification and regression problems, they could not be di-113

rectly applied to TR algorithms for several reasons. Firstly, the data gen-114

erating process of L2R datasets is different and more complicated than for115

conventional machine learning datasets. Secondly, most L2R-trained ranking116

functions only predict the rank order of documents, rather than the relevance117

labels of individual documents for a given query. This makes it difficult to118

determine the most likely relevance label for a specific document, as well as119

the confidence of the prediction. Finally, unlike conventional classification120

or regression algorithms that look to minimize the expected loss for each121

data point, the effectiveness of a ranking function will be measured on a122

query-level basis, i.e., the ranking effectiveness of the model on each query.123

The work in this paper was the first attempt to use this technique to solve124

unsupervised TR problems.125

Notice that, although co-training/multi-view learning algorithms have126

been shown to be effective in semi-supervised learning tasks, they are not127

directly applicable to unsupervised TR tasks. By using distinctive feature128

sets to train different models for the same task, multi-view learning can use129

different models to fix the mistakes made by individual models. This will130

increase the quality and confidence of the prediction. However, one needs131

to make some assumptions regarding the feature sets. On the other hand,132

self-training algorithms use the model prediction as an approximation to the133

labels and iteratively improve the model using the approximated labels.134

The following research questions are addressed to gain a better under-135

standing of the self-labeling process for unsupervised TR:136

5

• How can one apply self-labeling methods to transfer knowledge from137

the source to the target collection within the L2R setting?138

• Which self-labeling method is most effective in the L2R transfer ranking139

setting?140

• Are self-labeling methods more effective and/or robust than instance-141

weighting methods for unsupervised TR?142

We demonstrate that self-labeling methods are more reliable than instance-143

weighting for unsupervised TR, and that the effectiveness of instance-weighting144

varies with source collections of different sizes. We test three unsupervised145

TR algorithms on three large public test collections and show that both146

RankPairwiseEM and RankSelfTrain have significantly better performance147

than a non-transferred source model. We also show that they are not signif-148

icantly worse than the target model.149

The rest of this article is organized as follows: Section 2 describes prelim-150

inaries about solutions for unsupervised TR problems and section 3 presents151

background and related work. In Section 4, we introduce our solution to152

use EM algorithms to tackle the problem and section 5 explains how self-153

training algorithms can be used to solve unsupervised TR problems. Section154

6 describes our evaluation experiments. The results and further discussions155

on the answers to our research questions are presented in Sections 7 and 8.156

Finally, Section 9 summarizes our conclusions and future works.157

2. Preliminaries158

This section gives the formal definition of the unsupervised TR problem159

and some preliminary studies on existing solutions for the problem.160

Following the notations in Cao et al. [13], let Q = {q1, q2, · · · , qm} be161

a set of queries; di=(di1, di2, · · · , din) be the list of documents associated162

with query qi, where dij is the jth document of query qi. Furthermore, let163

~xij = Ψ(qi, dij) be the feature vector generated from the query-document164

pair. For simplicity, we will refer to query-document pairs as documents165

throughout the remaining sections. To avoid ambiguity, we use qi to denote166

the list of document feature vectors corresponding to the query qi = {~xij}nj=1167

and let {rij}nj=1 be the list of relevance scores, where rij denotes the score of168

the jth document for qi.169

6

A training example tij = (~xij, rij) consists of a feature vector and a rel-170

evance judgment. For ease of expression, we simplify the notation, denot-171

ing the set of training examples for each query, i.e., the ranked list, as:172

li = {(~xij, rij)}nj=1. A training dataset consisting of multiple queries with173

associated relevance judgments is then denoted by L = {li}mi=1 = (X,R).174

Listwise algorithms have been shown to be more effective than the point-175

wise and pairwise approaches [48] because they directly optimize the query-176

level effectiveness on a collection:177

θ? = arg min
θ

E(q,~r)∼L[`({f(~xj, θ)}nj=1, ~r)] (1)

In Equation 1, E is the mathematical expectation, θ is the parameters178

for the ranking function f , ~r is a list of relevance labels, (q, ~r) is a ranked179

list l drawn3 from L, and ` is the query-level loss. An equivalent objective180

function is to maximize the expected ranking metric scores, e.g., Normalized181

Discounted Cumulative Gain (NDCG) [27]. NDCG is a rank effectiveness182

metric that was designed to reflect a user’s preferences of seeing more rel-183

evant documents at the top of the retrieved list. Cumulative gain (CG)184

aggregates gains in the number of relevant documents observed when iterat-185

ing through the ranked list. A rank-based discount function is introduced to186

the cumulative gain so that the metric places more emphasis on top-ranked187

documents:188

DCG =
k∑
i=1

2reli − 1

log2(i+ 1)
(2)

Here reli denotes the relevance judgment for the ith document in the list189

and 2reli − 1 is an exponent gain formula used in Burges et al. [9]. The190

denominator 1
log2(i+1)

is the discount function. There are other gain and191

discount functions for DCG, with a comparison of different methods discussed192

in Kanoulas and Aslam [29]. In effect, a highly relevant document ranked193

higher in the list obtains more gain than a highly relevant document that194

ranked lower in the list. Since the length of the list as well as the total195

members of relevant and irrelevant documents can vary across queries, a196

normalized DCG, NDCG, was proposed to normalize the metric with respect197

to the ideal ranking of the documents retrieved for each query:198

3∼ denotes that a data is generated from a probability distribution.

7

NDCG =
DCG

IDCG
(3)

where IDCG is the ideal DCG score for the returned documents, when the199

documents are ranked in descending order according to the relevance labels.200

A previous study has shown that users tend to be only interested in the top201

few pages of search results. As a result, a cut-off of the ranking list is com-202

monly used to reflect such behavior. For example, in this paper, NDCG@10203

is used to evaluate the NDCG score at cut-off at 10.204

In this paper, we focus on transfer ranking algorithms that can work with205

the listwise L2R algorithms, because listwise algorithms can achieve better206

ranking effectiveness.207

To distinguish between source and target collections in a particular trans-208

fer ranking problem, we use the superscripts ‘so’ and ‘ta’, respectively. Thus,209

for an unsupervised transfer ranking problem, we assume a training set Lso,210

which is composed of a query set Qso, the query-document pairs Xso, and211

corresponding relevance labels Rso, and we also assume a target dataset Lta,212

consisting of queries Qta and query-document pairs Lta but for which the213

relevance labels Rta are unknown. With such data, unsupervised TR aims214

to train a ranking function f ta for Lta.215

2.1. Problems with instance-weighting for TR216

The core challenge of transfer learning is that the source and target in-217

stances are drawn from different distributions. Instance-weighting looks to218

solve a special case of the problem, covariate shift [41], where the conditional219

probability distribution of the class label remains unchanged across the source220

and target collections (pso(y|x) = pta(y|x)), while the input (feature) distri-221

bution has changed (pso(x) 6= pta(x)). A covariate shift can be addressed222

by re-weighting source samples in such a way that the source distribution223

approximates the target one. However, for listwise L2R algorithms, train-224

ing is performed at the query-level (Equation 1). Consequently, instance-225

weighting is more meaningful and natural at the query-level rather than at226

the document-level.227

Query-level instance-weighting attempts to re-weight source queries to228

approximate the query distribution in the target collection: w(q)pso(q) ≈229

pta(q) ∀ q ∈ Qso, where pta(q) and pso(q) denote the densities over queries in230

the target and source collection respectively. The rank learner is trained on231

weighted training data, where the weight for each source query qsoi is set to232

8

approximate the density ratio w(qsoi) = pta(qsoi)/pso(qsoi). By doing this, the233

loss function4 used during training tends to follow the desired loss function234

on the target collection.235

In Li et al. [32], it was demonstrated how the effectiveness of different236

instance-weighting methods varies across transferring settings. In this sec-237

tion, we take a different approach to investigate the reliability of instance-238

weighting algorithms by controlling the sample sizes of the source collection239

while keeping other settings unchanged. The details of the datasets can be re-240

ferred to the Section 6.1. Figure 1 shows the effectiveness of a query-weighted241

LambdaMART (wλMART)5 based on the Kullback-Leibler Importance Es-242

timation Procedure (KLIEP) [32], measured with NDCG@10, when it was243

trained with different sizes of source queries pooled from MSLR6 and tested244

on LETOR4.0. The settings of the transfer are similar to Li et al. [32], except245

that the test set is used for density ratio estimation.246

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

24 26 28 210 212

Size of source samples

N
D

C
G

@
10

Models
source ranker

wλMART

Figure 1: Effectiveness of wλMART versus source sample size

The results in Figure 1 show that the effectiveness of the source ranker247

on the target dataset varies across training samples and degrades with the248

4A loss function is a function to quantify the difference between the ground-truth labels
and the predictions of a model.

5The specific algorithm used here was document-level-weight-aggregation: kliep.doc.
6https://www.microsoft.com/en-us/research/project/mslr/

9

size of the training sample. More concerning is the fact that the performance249

of the instance-weighting algorithm is not consistent, but jumps above and250

below the blue line (representing the source ranker).251

Thus far, we have seen that the performance of instance-weighting can252

be unreliable. Two factors can be the cause of the issue: the inaccuracy253

of the density estimation for the queries, or the unrealistic assumption that254

the mapping from documents to relevance judgments, pso(r|x) = pta(r|x),255

remains the same across the collections. Moreover, in the standard learning-256

to-rank setup, the learned ranking function actually only re-ranks the top-k257

documents pooled by an initial base ranker. As a result, even if only a258

covariate shift is present, the resulting conditional distribution will likely be259

different across the source and target collections.260

3. Related Work261

In this section, we review the fundamentals of learning to rank, unsuper-262

vised TR algorithms, as well as related work on self-labeling.263

3.1. Learning to Rank264

For the sake of efficiency, modern IR systems usually first retrieve a pool265

of candidate documents that contain certain keywords in the search query266

from the document corpus, using an inverted index. A conventional retrieval267

model will be used as a base ranker to initialize the ranking order of the268

retrieved documents, and the models are usually light in computation. For269

example, BM25 [43] is a widely used IR retrieval model. One of the most270

famous variants of BM25 is the ATIRE BM25 [50], which can be computed271

as:272

BM25(d, q, C) =
∑
t∈q

log
N

df(t)

(k1 + 1) · tf(t, d)

k1 · (1− b+ b · c(d)
avg c(d)

) + td(t, f)
(4)

where N is the number of documents, df(t) is the number of documents con-273

taining the term t, tf(t, d) is the frequency of term t in document d, c(d) is274

the document length (number of words in d), avg c(d) is the average docu-275

ment length in the collection, and k1 and b are two user-specified parameters.276

However, the ranking order of documents by the base ranker is usually not277

optimal for a particular document collection. Past research [24] has shown278

10

that users tend to only look at the top-ranked search results. As a result,279

ranking optimization is required for IR systems.280

An L2R system is a set of algorithms that use machine learning techniques281

to solve ranking problems. Given a set of queries and their corresponding282

documents retrieved by a conventional retrieval model, the objective of L2R283

is to optimize a ranking function that can predict the optimal permutations284

of the document lists according to their relevance to queries. The relevance285

of a document to a query is given by a human-generated relevance label286

assigned to the pair, typically on a binary or graded relevance scale [30].287

L2R algorithms can be classified into one of three categories according to288

their optimisation level: pointwise algorithms [16] aim to minimize the loss289

at individual document level (i.e. the loss between the observed relevance290

label and the predicted label on each document), pairwise algorithms [25]291

aim to minimize the pairwise-preference loss at the document-pair level (i.e.292

the loss between the observed ordering and the predicted ordering on each293

pair of documents), and listwise algorithms [8, 13] aim to minimize the query-294

level loss over the predicted ranking as a whole (i.e. the loss, measured by295

IR ranking metrics, between the ground-truth ranking, and the predicted296

ranking of a set of retrieved documents for the query).297

3.2. Unsupervised TR298

Training a reliable and robust learning to rank algorithm that can gen-299

eralize to a ranking task, requires a massive number of relevance labels.300

However, obtaining the relevance labels for training L2R is expensive, tech-301

niques such as crowd-sourcing [4] have been used in the past. Active learning302

algorithms [33] is a machine learning technique that can selectively choose303

training instances for label annotation as well as for training. It has been304

shown that, by using a small set of training instances that are representative305

and informative for training, one can obtain an accurate prediction model306

with minimum cost. Active learning methods were also applied in attempts307

to solve the lack of labels problem for L2R. For example, Mehrotra and Yil-308

maz [38] proposed to select a subset of search queries following two criteria:309

informativeness and representativeness. Informativeness of the query selec-310

tion process is instantiated by choosing the query with the lowest certainty311

scores, measured by a ranking probability computed using a committee of312

ranking functions trained with a random sample of already labeled queries.313

By doing so, the queries with the largest uncertainty will be selected for la-314

belling. Representativeness of the query selection is instantiated by selecting315

11

queries that are topically similar to the large volumes of unlabeled data in316

the collection. The algorithm showed some performance uplift on a small317

L2R test collection compared with previous approaches. One challenge for318

active learning to rank is that one has to manage the selection of both the319

queries and the documents.320

Additionally, semi-supervised L2R [20] looks to leverage unlabeled data in321

the collection using only a small number of already labeled target instances.322

Transfer learning, including domain adaptation and multi-task learning,323

has successfully been applied to many classification and regression problems.324

Domain adaptation is a transfer learning technique that applies when the325

source and target datasets are from different domains. An example would326

be adapting a spam classifier for the IT domain to the medical domain.327

Multi-task learning is a series of techniques that simultaneously train multiple328

models for different tasks by sharing commonalities among those tasks. Most329

of these algorithms have investigated methods for modifying the source data330

(via some form of weighting) to make its distribution as similar to that of the331

target data as possible. Solutions for minimizing the difference between the332

source and target data distribution include sample-based methods, feature-333

based methods, and miscellaneous methods. Sample-based transfer learning334

algorithms train on weighted (or selected) training instances from the source335

collection, such that the weighted data approaches the data distribution in336

the target collection [46, 28], while feature-based methods conduct a similar337

task by training on subsets or weighted versions of the features (using latent338

feature spaces), such that the divergence in distribution between the modified339

source data and the target data is minimized. There are also numerous340

miscellaneous methods, such as self-labeling [15], which impute labels for341

unlabeled data from the target collection, and co-regularization [34], which342

optimizes the model by regularizing the similarity between the source and343

target tasks, which can be used to perform knowledge transfer in certain344

scenarios.345

Most of the algorithms discussed above apply to TR problems. However,346

due to the difficulty of formalizing the concept of the “query space distri-347

bution” for L2R datasets, most of these algorithms have only been applied348

to pairwise algorithms, since the objective of L2R algorithms is to maximize349

the query-level ranking effectiveness. A more natural and effective mecha-350

12

nism is to attempt to minimize the query distribution7 divergence, i.e., the351

differences in the probability distribution of the queries.352

Increasingly, researchers study Transfer Ranking (TR) in both transfer353

learning unsupervised forms [11, 22, 32]. In unsupervised TR, instance-354

weighting has been used as the transferring process [11, 22, 32]. Most un-355

supervised TR solutions assume that the difference between the source and356

target collection only exist in the input feature space, and it is usually re-357

ferred to as the Covariate shift problem. Instance weighting is one of the358

most widely used solutions for the covariate shift problem in transfer learn-359

ing, and it has also been used to address covariate shift in ranking problems.360

Intuitively, instance weighting algorithms assign weights to the training sam-361

ples in the source collection to make the data distribution more like the data362

distribution of the target collection. Through optimizing the cost function363

over the weighted samples, the algorithm can help improve the generalization364

on the target collection.365

As discussed before, the training data for L2R are used in different ways.366

As a result, and therefore the instance weighting for L2R can be conducted at367

three different levels, i.e., document level, pair level, and query level. In Gao368

et al. [22], the authors generated instance weights at different levels for L2R369

datasets. Since documents are independent of each other, the document-pair370

weights are the multiplication of the documents’ weights. The query weights371

were generated by the average weights of document pairs in the query. They372

tested their instance weights with RankSVM and RankNet (two pairwise L2R373

algorithms8) on the six topic sets in LETOR3.0 and showed some significant374

improvements. Cai et al. [10] further improved the algorithm by classifying375

the queries directly. The algorithms were tested on a set of small datasets376

and showed only limited improvements in ranking effectiveness.377

An importance-weighted AdaRank approach was proposed by Ren et al.378

[42]. The authors used the Kullback-Leibler Importance Estimation Proce-379

dure (KLIEP) [46] to estimate document weights, which were then incorpo-380

rated into the AdaRank algorithm. However, the algorithm was not tested381

under an unsupervised TR scenario. Instead, the authors tested the algo-382

rithm in a supervised learning environment. The density ratio was estimated383

according to the test set and was tested on the test set as well. Li et al.384

7Query distribution refers to the probability distribution of search queries.
8AdaRank and LambdaMART are more effective [48].

13

[32] showed that the effectiveness of instance-weighting cannot be general-385

ized to different transferring scenarios due to the inaccuracy of density-ratio386

estimates for queries. More details on why instance-weighting is problematic387

for unsupervised TR have been discussed in section 2.1.388

3.3. Self-Labeling Algorithms389

An alternative approach to unsupervised transfer learning is self-labeling390

[35]. Self-labeling propagates labels from the source to the target data by391

directly imputing relevance labels for unlabeled instances in a target collec-392

tion. A study by Triguero et al. [49] found that self-labeling methods are393

effective for various semi-supervised learning tasks.394

Several solutions have been investigated to implement self-labeling, in-395

cluding EM algorithms [17], self-training algorithms [37], and multi-view396

learning [47], which includes co-training [7]. All three solutions were origi-397

nally utilized for semi-supervised learning, but have been extended to unsu-398

pervised transfer learning by Chen et al. [15]. In Chen et al. [15], the authors399

developed an algorithm called CODA (Co-training for Domain Adaptation)400

that uses a co-training method to adapt review sentiment classifiers across401

different domains. The objective of a sentiment classifier is to determine402

whether a review for a product is positive or negative. The CODA algo-403

rithm iteratively imputes sentiment labels for unlabeled reviews according to404

the current model’s confidence score on the data. More specifically, at each405

iteration, CODA trains a classifier using labeled data, which includes data406

with imputed labels. As the algorithm was designed for domain adaptation,407

the model was initially trained with the source data only. Provided with408

predicted labels and the confidence of the model on the prediction, CODA409

then decides on which imputed labels to add to the training set. Moreover, a410

feature weighting process is applied during the iterations to ensure that the411

algorithm focuses on features that have commonalities among different do-412

mains. The performance of CODA was evaluated on the “Amazon reviews”413

benchmark data sets, which have four different domains for sentiment clas-414

sification adaption. Results show that CODA can significantly outperform415

other domain adaption algorithms, even when there are no relevance labels416

from the target collection.417

Preliminary works investigating self-training ideas in unsupervised trans-418

fer ranking scenarios was performed by Goswami et al. [23] who propagated419

initial pseudo-relevance preferences for pairs of documents drawn from related420

14

collections. A pairwise ranking function was trained iteratively with a dis-421

criminant classification EM algorithm, beginning with the pseudo-preference422

labels. The results from that study suggested significant improvements in423

some TREC ad-hoc collections with eight term-based features. However, the424

algorithm was designed for a scenario where multiple source collections were425

available for selection, and the content of documents was known.426

Drawing inspiration from Goswami et al. [23], our algorithms fit into427

the unsupervised TR scenario where only one source collection is available428

for transferring (and the source text for each document is not the primary429

information used to perform the transfer). It is worth mentioning that most430

publicly available L2R collections do not have information on the original431

queries and documents. The only available resources are the extracted and432

normalized features for query-document pairs in the collection. We note that,433

while inspired by their work, the algorithms we develop in this paper are quite434

different (and in a sense more general) than the of work of Goswami et al.435

[23]. In our solution, we only make use of the extracted features from the436

query-document pairs instead of the raw text features. One of the reason for437

this is that, in most publicly available test collections, the extracted features438

are the only provided information of a document. In some datasets, the439

details of the features are also unknown. Indeed they are not even directly440

comparable given that they are tackling different problems with different441

(and in their case more specific) assumptions.442

The idea of applying self-labeling methods to unsupervised TR was in-443

spired by two branches of prior work: a TR algorithm that infers labels from444

other collections [23] and pseudo-relevance feedback (PRF) [6]. The assump-445

tion in PRF is that the top-k retrieved documents for a query are relevant446

documents to the query, and they can be used to exploit more relevant doc-447

uments from the corpus. Self-labeling by imputed relevance labels shares448

commonalities with PRF in that both algorithms make assumptions about449

relevance and the initial set. However, PRF is typically utilized for reformu-450

lating queries, while label imputation is used to train better ranking models.451

Moreover, PRF algorithms are usually conducted on a per-query basis, while452

label imputation is performed on a per-collection basis.453

Existing solutions to solve the unsupervised TR, which are mostly based454

on instance weight, have shown their weakness in their reliability under dif-455

ferent transfer scenarios. The most important reason why these algorithms456

don’t work well in practice is because of the difficulties of measuring the sim-457

ilarities between different L2R collections in order to quantify the changes in458

15

distribution. Self-labeling, on the other hand, does not require any process459

for estimating the changes in L2R data distribution, and has shown to be ef-460

fective for solving other related problems. As a result, self-labeling methods461

for unsupervised TR constitute a promising approach that deserves further462

investigation.463

4. EM for Unsupervised TR464

A widely used self-labeling approach in the machine learning community465

is the Expectation-Maximization (EM) algorithm. The EM algorithm is a466

process used to estimate the parameters of a statistical model that is con-467

trolled by some hidden (i.e. unobserved) variables. It has therefore been468

widely studied and applied for training semi-supervised models when there469

is an absence of adequate labels [39]. The EM algorithm can potentially470

be used for solving TR problems because of its ability to leverage unlabeled471

training data.472

The EM algorithm generates maximum likelihood estimates for the pa-473

rameters of a statistical model via iterations. Given a joint distribution of474

p(X,Z|θ) governed by parameters θ, where X are the observed variables, and475

Z are some hidden or missing values, the EM algorithm attempts to estimate476

parameters by maximizing the likelihood p(X|θ) as follows:477

1. Initialize parameters θ(0).478

2. E-step: Evaluate p(Z|X, θ(t−1)) ∝ p(X,Z|θ(t−1)).479

3. M-step: Evaluate θ(t) by:480

θ(t) = arg max
θ

∑
Y

p(Z|X, θ(t−1)) log p(X,Z|θ) (5)

4. Repeat steps 2 and 3 until parameters or log likelihood (summation in481

3) converges.482

4.1. EM algorithm for TR with Pairwise Preferences483

In this section, we apply a modified EM algorithm to tackle the TR prob-484

lem. The implementation of the EM algorithm for TR (RankPairwiseEM) is485

present in Algorithm 1. Assuming the unlabeled target data is drawn from486

a joint distribution of p(X,R|θ), governed by some parameters θ. X is a set487

of observed feature vectors for a document set, and R is their unobserved488

16

relevance labels. An EM algorithm estimates the parameters θ by maximiz-489

ing the likelihood, p(X,R). In the E-step, the EM algorithm computes the490

probability of each discrete value for an individual document, p(r = 1|x, θ)491

and p(r = 0|x, θ). We assume the parameters θ to be the parameters of a492

function mapping a query-document pair to a relevance label (γ(x, θ) 7→ r).493

The mapping function can be decomposed into two functions: 1) a scoring494

function that estimates a similarity score9 for a query-document pair; and495

2) a (possibly random) assignment function that maps each query-similarity496

score to a relevance label.497

Estimating p(R|X, θ) requires making strong assumptions about how498

scores map to relevance labels. We can avoid this issue by using the pairwise499

ranking preferences as the hidden values instead. The pairwise probability500

of a document pair {dij, dik} can be estimated using a logistic function as in501

Burges et al. [9]:502

p(rij > rik) =
1

1 + e−σ ∆sijk
(6)

Here σ is a parameter controlling the shape of the logistic function10, ∆sijk =503

sij − sik is the difference between the query-similarity scores for the two504

documents as predicted by a ranking function.505

We propose a pairwise-preference based EM algorithm, called RankPair-506

wiseEM, to tackle the unsupervised TR problem. Here we consider the joint507

distribution of p(X2,∆R|θ) over pairs of documents with different relevance508

labels X2 = {(xij, xik)}i,j<k s.t. rij 6= rik, where ∆R denotes the ranking509

preferences (∆rijk = 1, if rij > rik; ∆rijk = −1, if rij < rik).510

In the E-step of EM, the algorithm evaluates the pairwise preference prob-511

ability based on parameters estimated in the last iteration, p(Y |Φ, θ(t−1)), and512

this can be approximated using the probability model:513

ω
(t−1)
ijk = p(rij > rik|θ(t−1)) =

1

1 + e−σ ∆s
(t−1)
ijk

(7)

where ∆s
(t−1)
ijk = s

(t−1)
ij − s(t−1)

ik is the difference in the document scores sij =514

f(xij; θ
(t−1)).515

9The output of a ranking function is a similarity score between a query and a document.
10Later in the experiments, σ was set to 1, which is the same value used for Lamb-

daMART.

17

In the M-step, the estimation of the new parameters is performed by max-516

imizing the expected likelihood based on the probabilities estimated in the517

E-step. Instead of maximizing the expected likelihood, however, we minimize518

the expected cost, which depends on the particular rank learning algorithm519

being used. In this work, we apply the state-of-the-art L2R algorithm, Lamb-520

daMART [8], which learns a boosted regression tree model for ranking and521

has been shown to be highly effective [48].522

The LambdaMART algorithm iteratively builds an additive ensemble of523

regression trees for calculating document scores.524

f(~x) =
L∑
l=1

αl hl(~x; θl) (8)

where f(.) is the trained ranking function, hl is the lth regression tree, θl are525

the parameters for the regression tree, α is the weight for the regression tree.526

On each iteration, the algorithm computes the cost between the ground-527

truth pairwise probabilities and the probabilities inferred by the current en-528

semble (f (l−1)) using Equation 6. The ground truth pairwise probability is529

modeled as: Pijk = 1
2
(1 + ∆rijk). For each pair of documents for the same530

query, the cost function can be rewritten as:531

Cijk = |∆Zijk|(I[rij>rik] log(1 + e−σ ∆s
(l−1)
ijk) + I[rij<rik] log(1 + eσ ∆s

(l−1)
ijk)) (9)

where ∆Zijk is the change of the ranking evaluation score (e.g, NDCG) that532

results from swapping the position of documents dij and dik, while I[.] de-533

notes an indicator function. The cost of an individual document ~xij is then534

aggregated over the pairs: Cij =
∑

k:k 6=j Cijk.535

A regression tree is then trained to minimize the cost by fitting the deriva-536

tives of the cost, denoted λij, with respect to the query-similarity score pre-537

dicted using the current ensemble:538

λij =
∂Cij

∂s
(l−1)
ij

=
∑
k:k 6=j

|∆Zijk|(I[rij>rik]
−σ

1 + eσ ∆s
(l−1)
ijk

− I[rij<rik]
−σ

1 + e−σ ∆s
(l−1)
ijk

))

(10)
According to Burges [8], the value of the kth leaf in the lth tree is then updated539

using a second-order approximation:540

18

γkm =

∑
dij∈Rkm

∂Cij

∂sl−1
ij∑

dij∈Rkm
∂2Cij

∂(sl−1
ij)2

=

∑
dij∈Rkm λij∑
dij∈Rkm

∂λij

∂sl−1
ij

(11)

Under the unsupervised TR scenario, the ground truth relevance labels
are unknown, but since we have computed the pairwise probability for all
the target document pairs in the E-step, we can calculate expected costs for
target documents:

E[Cij] =
∑
k:k 6=j

|∆Zijk|(ω(t−1)
ijk log(1 + e−σ ∆s

(t,l−1)
ijk) + ω

(t−1)
ikj log(1 + eσ ∆s

(t,l−1)
ijk))

(12)

where ωijk and ωikj are probabilities computed using Equation 7, and ∆s
(t,l−1)
ijk =541

s
(t,l−1)
ij −s(t,l−1)

ik denotes the difference in the scores computed using the model542

with (l − 1) trees trained for t iterations. The corresponding derivative is:543

E[λij] =
∑
k:k 6=j

E[|∆Zijk|](
−ωijkσ

1 + eσ ∆s
(t,l−1)
ijk

− −ωikjσ

1 + e−σ ∆s
(t,l−1)
ijk

) (13)

In this paper, we use NDCG@10 as the training metric for LambdaMART544

(i.e. Z = NDCG@10). Later in the paper, NDCG at cut-off 10 is also used545

as the evaluation metric for the experiments. For other optimization objec-546

tives, Z can be replaced by the expected metric for optimization. Because547

the relevance labels and the ranking orders of documents are unknown, we548

need to compute the expected |∆NDCG@10|11 based on parameters trained549

in the last iteration, θ(t−1). The query-similarity score predicted with the550

parameters trained in the last iteration for each document are used as the551

expected relevance labels: E[rij] ≈ s
(t−1)
ij = f(~xij; θ

(t−1)).552

E[|∆NDCG@10ijk|] =
2E[rik] − 2E[rij]

IDCG
×(

1

log2(π
(t,l−1)
ij + 1)

− 1

log2(π
(t,l−1)
ik + 1)

)

(14)

where π
(t,l−1)
ij denotes the rank of the jth document for query i, according553

to the scoring function f(xij; θ
(t,l−1)). The ground truth labels for the docu-554

11Replacing ∆Z by the fixed value 1 was also investigated but resulted in poor perfor-
mance.

19

ments for the queries are unknown, and therefore we use the similarity score555

predicted in the last iteration as the label for estimating IDCG. As a result,556

IDCG is calculated as:557

IDCG =
10∑
g=1

2
s
(t−1)

iπ−1(g) − 1

log2(g + 1)
(15)

where s
(t−1)

iπ−1(g) is the score of the document ranked at gth position of query i,558

with the ranking function f (t−1).559

The expected lambdas E[λ] are then used to fit the regression trees. The560

expected value for each leaf is updated as:561

E[γkm] =

∑
dij∈Rkm E[λij]∑
dij∈Rkm

∂E[λij]

∂s
(t,l−1)
ij

(16)

The parameters will be updated after the ensemble has been trained, and562

the process will be repeated until convergence.563

In line 2 of Algorithm 1, the parameters are initialized by training a564

LambdaMART with source data:565

θ̂(0) = arg min
θ

∑
qi∈Qso

∑
dij∈qi

Cij (17)

In the E-step (line 4 to 9), each document is assigned a similarity score566

predicted by the ranking function with parameters trained in the last itera-567

tion. The pairwise preference probability of document pairs is then computed568

using Equation 7.569

In the M-step (line 10 to 14), the parameters are re-estimated with the570

expected LambdaMART together with the labeled source data:571

θ̂(t+1) = arg min
θ

∑
qi∈Qso

∑
dij∈qi

Cij +
∑
qi∈Qta

∑
dij∈qi

E[Cij] (18)

The algorithm repeats the E-step and M-step until the parameters con-572

verge, or until the maximum iteration Γ is met. In practice, we have found573

that the performance of the algorithm reaches its peak after a few iterations574

and then it fluctuates within a small region. The parameter Γ is used to575

terminate the process early for efficiency consideration.576

20

Input: Source queries Qso and judgements Rso, target queries Qta,
max iterations Γ, τ threshold ε

Output: Ranking function f
1 RankPairwiseEM(Qso,Rso,Qta,Γ)

2 Train ranker f (0) using (Qso,Rso) with Eq. 17;
3 for t ∈ {1, ...,Γ} do

/* E-step */

4 foreach xij ∈ Qta do
5 sij = f(xij; θ

(t−1))
6 end
7 foreach {xij,xik} ∈ Qta do
8 Estimate p(rij > rik) using Eq. 7;
9 end

/* M-step */

10 Train f(x; θ(t)) using pairwise probs, Eq. 18;

11 if θ(t) == θ(t−1) then
12 return f (t−1);
13 end

14 end

15 return f (t);
Algorithm 1: Label-imputation via RankPairwiseEM

4.2. EM for TR with “Hard” Assignment577

It has been shown that, in certain cases, an EM algorithm with a hard578

deterministic label assignment can be more efficient and effective than the579

original EM algorithm for particular tasks [45]. This so-called hard EM580

algorithm is a variant of the original EM algorithm, which assigns the best581

possible label to each training instance at the E step, rather than computing582

the probability of each label. In the M step, the hard EM algorithm updates583

the parameters using the updated labels. The RankHardLabelEM algorithm584

is given in Algorithm 2.585

To employ the hard EM algorithm for unsupervised TR, one needs to586

determine the most likely label for each unlabeled document in the target587

collection according to the current model. Here we only consider the binary588

relevance case and simply label documents with the highest similarity scores589

as relevant. Intuitively, allocating the relevant labels to a smaller fraction590

of top-ranked documents will preserve more accuracy since, on those top591

21

Input: Source queries Qso and judgements Rso, target queries Qta,
stopping threshold ε, max iteration Γ

Output: Ranking function f
1 RankHardLabelEM(Qso,Rso,Qta,ε,Γ)

2 Train ranker f (0) using (Qso,Rso) with Eq. 17;
3 for t ∈ {1, ...,Γ} do

/* E-step */

4 Calculate scores for all query-doc pairs;
5 Sort query-doc pairs by decreasing score;
6 Label top k% as relevant, remainder irrelevant;

/* M-step */

7 Train f(x; θ(t)) using Eq. 19;

8 if θ(t) == θ(t−1) then
9 return f (t−1);

10 end

11 end

12 return f (t);
Algorithm 2: Self-labeling via RankHardLabelEM

documents, the ranker is most confidential and it tends to be better for592

model transferring. In this work, only the top k percent documents with the593

highest ranker score will be labeled as relevant documents.594

In the M step, the ranking function will be updated by training with both595

the labeled source data and unlabeled target data, together with the imputed596

relevance labels:597

θ̂(t+1) = arg min
θ

∑
qi∈Qso

∑
dij∈qi

Cij +
∑
qi∈Qta

∑
dij∈qi

Ĉij(R̂
(t)) (19)

where Ĉij(R̂
(t)) is computed with the imputed relevance labels, R̂(t)={[s(t)

ij ≥598

sort({s(t)
ij }j)k]}i, generated at (t + 1)(th) iteration according to the query-599

similarity scores predicted using ranker function trained at t(th) iteration.600

With the updated ranker, the system can update the imputed labels601

iteratively.602

For RankHardLabelEM (Algorithm 2), the algorithm first trains a source603

ranker with the labeled query document pairs from the source collection604

together (line 2). In the E step (line 4 to 6), the algorithm will compute the605

22

similarity scores for all query-document pairs and label the top k% pairs as606

relevant documents, and the remaining documents as irrelevant. The ranking607

function will be updated in the M step (line 7 to 9) by training a new ranking608

function with the labeled source data and the target data together with their609

imputed labels. The process runs iteratively until the imputed labels stop610

changing or until the maximum iteration count is reached.611

5. Self-training for unsupervised TR612

Apart from EM algorithms, self-training [1] is another approach to gener-613

ate imputed labels for unlabeled data in the collection to improve the training614

process. Self-training is a form of semi-supervised learning [1, 36], with appli-615

cations in natural language processing [36, 37] and transfer learning [15]. Self-616

training algorithms are similar to RankHardLabelEM except that instead of617

recalculating all of the predicted labels on each iteration, the predicted pos-618

itive (i.e. relevant) documents are retained from the previous iteration. In619

each subsequent iteration, the algorithms simply add the next documents to620

the relevant set on which it is most confident. The implementation of the621

self-training algorithm (RankSelfTrain) is shown in Algorithm 3.622

Training	Labels Target	
Labels

Source	
Labels

Source	
Instances

Target	
Instances

Ranker

Training	
Instances

L2R	Models Self-Labeler

Predicted	Doc	
Relevance

Figure 2: RankHardLabelEM & Self-labeling Paradigm

So the self-training algorithm (RankSelfTrain) gradually increases the623

number of imputed relevant documents via an iterative process. Both RankHard-624

23

LabelEM and RankSelfTrain follow the self-labeling paradigm demonstrated625

in Figure 2. The system will initialize a ranking function by the source in-626

stances with their source labels using a particular L2R model. With the627

trained ranker, the system predicts relevance scores for all the unlabeled628

training instances in the target collection, and then uses a Self-Labeler to629

assign labels for all the unlabeled target instances. With the newly updated630

labels, the algorithm updates the ranker and conducts the self-labelling again.631

The process runs iteratively until convergence is reached.632

The difference between the RankHardLabelEM and the RankSelfTrain633

algorithms lies in the fact that, once a document has been added to the634

imputed relevant set, the label will not change in the next iteration.635

Unlike the RankHardLabelEM algorithm, which updates imputed labels636

iteratively, the RankSelfTrain gradually adds confident labels to the train-637

ing set. By gradually adding a small number of accurate predictions, it638

is expected that the self-trained ranker will update itself toward a ranking639

function that can generalize to the target collection.640

A confidence score is needed to allow label prediction. It is possible for641

some classification algorithms to produce such scores; for example, logistic642

regressions can output a probability for a class label. However, it is not643

straightforward for ranking algorithms to produce such probabilities. 12 We644

therefore developed a methodology to predict the probability of a document645

being relevant or irrelevant, provided with their similarity scores predicted646

by a ranking function. The probability of relevance and irrelevance can later647

be used as the confidence of the labels.648

Bayes rule for the probability of a document being relevant, given a sim-
ilarity score, gives:

p(r = 1|s = α) =
p(r = 1)p(s = α|r = 1)∑

v∈{0,1} p(s = α|r = v)p(r = v)
(20)

where s denotes the score predicted by a ranking function. The densities649

p(s = α|r = 1) and p(s = α|r = 0) can be estimated via the kernel density650

estimation (KDE)[5] on a collection, while the prior probability p(r = 1) is651

estimated by the percentage of relevant documents in the collection:652

12RankSVM [25] and other pairwise L2R algorithms might be able to output a proba-
bility for ranking preferences; however, the probabilities for preferences will not directly
infer the labels of a document.

24

p(r = 1) =
|relevant documents|
|documents|

(21)

Initially, the target collection contains no imputed relevant documents so653

the probabilities can only be estimated using data from the source collection.654

As the relevance labels in some source collections are multi-graded, we regard655

all the documents as relevant if their relevance labels are larger than zero.656

In the following iterations, as some imputed labels have been generated, the657

conditional probability can be estimated on the target data together with658

the imputed labels:659

pta(s = α|r = 1) ≈ pta(s = α|r̂ = 1) (22)

pta(s = α|r = 0) ≈ pta(s = α|r̂ = 0) (23)

where r̂ denotes imputed labels.660

As the imputed labels are gradually added, directly estimating the prior661

probability p(r = 1) with the imputed labels is unreliable. On the other662

hand, the prior probability of the target collection can be different from the663

source collection. Instead, we propose a Dirichlet smoothed estimation that664

can balance the impact of the source and the imputed labels from the target665

adaptively:666

pta(r = 1) ≈

∑
i

I(r̂ = 1) + µpso(r = 1)

|r̂|+ µ

pta(r = 0) ≈

∑
i

I(r̂ = 0) + µ(1− pso(r = 1))

|r̂|+ µ

(24)

where µ is set to be half of the number of training instances in the target
collection. As a result, probability can be estimated:

pta(r = 1|s = α) =
pta(r = 1)pta(s = α|r̂ = 1)∑

v∈{0,1} p
ta(s = α|r̂ = v)pta(r = v)

(25)

In line 2 of the Algorithm 3, a source ranker f 0 is initially trained with667

labeled examples (Qso, Rso) from the source collection. The source ranker is668

then applied to calculate similarity scores for all the query-document pairs669

25

in the target collection (line 4). In the first iteration (line 7 to 8), the al-670

gorithm calculates the relevance probability for each query-document pair,671

the probability that a document is relevant to a query, via Equation 20 with672

probabilities in the source data. If the probability of a relevance label for a673

given pair is larger than the threshold, the query-document pair will be added674

to the labeled document set (line 12 to 15). The system will then re-train675

a ranking function with both the data from the source collection and previ-676

ously labeled documents from the target collection using Equation 19 (line677

20). In the following iterations, the algorithm will continue to compute the678

probabilities via the imputed labels from the target collection using Equa-679

tion 25, conduct the labeling and update the ranker iteratively until no more680

confident labels can be added, or until the maximum iteration is met, where681

maximum iteration is a pre-set parameter. At the end of the iterations, if682

only a small number of relevance labels remain, the algorithm will continue683

updating and train very similar models while only introducing a very small684

number of target data to the training set. At the same time, training Lamb-685

daMART algorithm is very expensive. As a result, the maximum iteration686

threshold is applied to reduce the computational cost.687

6. Data and Methods688

6.1. Datasets689

Three public L2R test collections are used in our experiments: MSLR,690

LETOR4.0, and the Yahoo! Learning to Rank (Yahoo! L2R) dataset. Details691

of these collections are presented in Table 1.692

LETOR4.013 was built using the million query tracks [2, 3] from TREC693

2007 and TREC 2008, which corresponds to query sets in LETOR4.0: MQ2007694

and MQ2008. The GOV2 collection was used as the corpus for LETOR4.0.695

The average number of documents pooled for each query in MQ2007 is 41.1,696

while it is 19.4 in MQ2008.697

The Microsoft learning-to-rank dataset (MSLR)14 is a large L2R test col-698

lection developed based on Bing’s retired collections. MSLR contains two699

collections, namely MSLR-30K and MSLR-10K. MSLR-10K is composed of700

13https://www.microsoft.com/en-us/research/project/

letor-learning-rank-information-retrieval/
14https://www.microsoft.com/en-us/research/project/mslr/

26

Input: Source queries Qso and judgements Rso, target queries Qta,
confidence threshold η

Output: Ranking function f
1 SelfTrain(Qso,Rso,Qta,η)

2 Initialize set of labeled docs to be empty: Ω(0) = ∅;
3 Train ranker f (0) using (Qso, Rso) with Eq. 17;
4 for t ∈ {1, ...} do
5 Calculate similarities for all query-doc pairs;

6 foreach unlabeled pair xij 6∈ Ω(t−1) do
7 if t==1 then
8 Compute p(rij|sij) following Eq. 20;
9 else

10 Compute p(rij|sij) following Eq. 25;
11 end
12 if p(rij = 1|sij) > η then
13 Add (xij, 1) to Ω(t);
14 else if p(rij = 0|sij) > η then
15 Add (xij, 0) to Ω(t);

16 end

17 if (|Ω(t)| − |Ω(t−1)|) == 0 then
18 return f (t−1);
19 end

20 Train ranker f (t) using Eq. 19;

21 end
Algorithm 3: Self-training for Ranking

30k queries, whereas MSLR-10K is a small sample of MSLR-30K, which con-701

tains 10k queries. The average pooling depth is 120 documents for queries702

in MSLR. The documents pooled for queries are judged at 5-levels, from703

irrelevant (0) to perfectly relevant (4).704

The Yahoo! learning-to-rank (Yahoo!L2R)15 [14] is an L2R collection705

published by Yahoo!. Yahoo!L2R consists of two collections: Set 1 and Set706

2. Set 1 and Set 2 are built to facilitate research on TR. Set 1 was built based707

on the US web search market while Set 2 was built on an Asian web search708

15https://webscope.sandbox.yahoo.com/catalog.php?datatype=c

27

Table 1: Statistics of public L2R datasets

Collection Corpus Query Set #Queries #Features

LETOR 4.0 Gov2
MQ2007
MQ2008

1,692
784

46
46

MSLR
Web
Web

10k
30k

10k
30k

136
136

Yahoo Web
Set 1
Set 2

20k
6k

700
700

market. Set 1 has more queries than Set 2. The relevance of the documents709

was also judged at five levels. Yahoo!L2R has a rather shallow pooling depth,710

with only 23.9 documents judged per query. The number of features is dif-711

ferent for the two collections. There are 519 and 596 anonymous16 features712

respectively in the two collections, with some overlap. All the features are713

rank-normalized as:714

x̃i :=
1

n− 1
|{j, xj < xi}| (26)

The total number of distinct features is 700, and the values for missing715

features are set as 0.716

Three groups of transfer settings are studied:717

1. Transferring between MQ2007 and MQ2008, which share the same doc-718

ument collection but have different query sets. Since the two datasets719

differ only on the queries, this can be viewed as an in-domain transfer.720

2. Transferring between MSLR and LETOR 4.0: We merged the two721

datasets in LETOR 4.0 to make a larger dataset, and then we conducted722

the transfer between the merged LETOR 4.0 dataset and MSLR-WEB10K.723

The two datasets have few commonalities, with different document sets,724

query sets, and methods for gathering relevance. Thus transferring here725

can be viewed as a cross-domain transfer. In the experiments the 45726

features common to both collections were used to train the L2R mod-727

els.17
728

16By ’anonymous’ here we mean that the functions used to compute the feature values
are unknown.

17The features in LETOR 4.0 were normalized via a query-level feature normal-
ization method [12]. For all the documents belonging to the same query, a min-max
normalization is applied to every feature. In this work, we conducted normalization for
all the test collections. It turned out that conducting feature normalization, in the same

28

3. Transferring between Set 1 and Set 2 of Yahoo! L2R: each set represents729

web documents written in different regional languages, thus transferring730

between the two is also cross-domain transfer. The original Yahoo!731

L2R collection has 700 features. However, we found that only 415 were732

common to both sets, and utilized them in the experiments.733

One dataset from each pairing was taken to be the source collection,734

and the other to be the target. Each target collection was split randomly735

into five folds for cross-validation based evaluation. In each experimental736

run, four folds were utilized as examples for the target collection. To create737

an unsupervised TR environment, all relevance labels were removed from738

these folds. The remaining fold of the target collection was used to test the739

effectiveness of the transfer algorithms. We note that this setup, in which the740

target queries used during the transfer were not used for the evaluation, was741

particularly challenging. The details of the transfer settings are provided in742

Table 2. All reported results are averages over the five-fold cross-validation.743

Table 2: Transfer Settings for testing different algorithms

LETOR 4.0 MSLR-LETOR4.0 Yahoo! L2R
Collection Queries Features Collection Queries Features Collection Queries Features

Source MQ2007 1,692 46 LETOR 4.0 2,476 45 Set 1 19,944 415
Target training MQ2008 627 46 MSLR 8k 45 Set 2 5,064 415
Target testing MQ2008 157 46 MSLR 2k 45 Set 2 1,266 415
Source MQ2008 784 46 MSLR 10k 45 Set 2 6,330 415
Target training MQ2007 1,353 46 LETOR 4.0 1,980 45 Set 1 15,955 415
Target testing MQ2007 339 46 LETOR 4.0 496 45 Set 1 3,989 415

6.2. Setup and Measurements744

The RankLib 2.1. implementation of LambdaMART was used as the base745

ranker.18 The tree size was set to 1000, and the maximum number of leaves746

was set to 10. For the instance-weighting-based KLIEP method, we applied747

Sugiyama-Sato’s Matlab implementation.19
748

For all the algorithms, we set the maximum iteration, Γ as 20. The749

percentage of imputed relevance labels k% was set to 5% for the RankHard-750

LabelEM algorithm. For the RankSelfTrain algorithm, the threshold on con-751

way, can lead to a better generalization for another collection.
18http://sourceforge.net/p/lemur/wiki/RankLib/
19http://www.ms.k.u- tokyo.ac.jp/software.html

29

fidence was set at 95%. The σ for pairwise probability was set as 1 in the752

RankPairwiseEM algorithm.753

The following baselines were considered:754

• BM25: Retrieved documents sorted by decreasing BM25 similarity755

score.756

• λMART.source: LambdaMART trained with all the data from the757

source collection.758

• wλMART: Weighted LambdaMART with the query-level instance-759

weighting method proposed by Li et al. [32]. We used the “kliep.doc”760

method proposed in the paper, which aggregated the document-level761

weights for generating query-level weights. The document-level weights762

are estimated via the KLIEP algorithm [46].763

• λMART.target: LambdaMART trained with data from the target764

collection via cross-validation.765

The following label imputation algorithms were tested:766

• RankPairwiseEM: EM-inspired self-labeling algorithm, using Lamb-767

daMART as the base ranker.768

• RankHardLabelEM: “Hard EM”-inspired self-labeling algorithm, us-769

ing LambdaMART as the base ranker.770

• RankSelfTrain: Self-training-based algorithm, using LambdaMART771

as the base ranker.772

All models were evaluated using normalized discounted cumulative gain (NDCG) [27],773

with a rank cut-off of 10. Statistical significance was tested using a two-tailed774

paired t-test, with a threshold of 0.05.775

7. Results and Discussion776

The experimental results are presented and discussed below.777

7.1. Effectiveness of Self-Labeling Methods778

We compared the three proposed self-labeling-based TR algorithms on779

various transfer settings. The most important aspect for distinguishing be-780

tween the different transfer settings is the level of similarity between the781

30

source and target collections, which we consider two cases impacts the effec-782

tiveness of various TR algorithms. In-domain transfer where the source and783

target were drawn from the same or similar distributions, and cross-domain784

transfer where the source and target data were drawn from quite different785

distributions.786

The results of various algorithms on both in-domain and cross-domain787

transfer scenarios are illustrated in Table 3 and 4. In both cases, we observe788

that when a ranking function trained on the source data is applied to the789

target collection, it retains the advantage over the base ranker, BM25 (second790

row of both tables).791

In-domain transfers. As mentioned before, the MQ2007 and MQ2008 are792

two query sets using the same document collection. Results demonstrate that793

λMART.source trained with the larger query set of MQ2007, generalizes well794

to the smaller set of MQ2008. λMART.source of MQ2007 is significantly795

better than λMART.target trained on the MQ2008 datasets. Conversely,796

λMART.source trained on MQ2008 is not as effective as λMART.target797

trained on MQ2008.

Table 3: Effectiveness (NDCG@10 score) on in-domain transfer settings with label impu-
tation methods. Bold text indicates the best scores of each column, ↑ denotes the figure
is significantly better than λMART.source, ↓ denotes the figure is significantly worse than
λMART.source, † denotes the figure is significantly better than wλMART. p < 0.05

MQ2007-
MQ2008

MQ2008-
MQ2007

BM25 0.335 (-32.7%) ↓ 0.249 (-39.6%) ↓
λMART.source 0.498 0.412

wλMART 0.498 0.384 (-6.8%) ↓

RankPairwiseEM 0.507 (+1.8%) ↑† 0.434 (+5.3%) ↑†
RankHardLabelEM 0.501 0.426 (+3.4%) ↑†
RankSelfTrain 0.505 † 0.438 (+6.3%) ↑†

λMART.target 0.487 (-2.2%) ↓ 0.445 (+8%) ↑†

798

In this in-domain transfer scenario, all the unsupervised TR algorithms799

performed better, although not always significantly, than the source ranker.800

When transferring from the larger sample, MQ2007, to the smaller sample,801

31

MQ2008, most of the unsupervised TR methods, including wλMART, did802

not show significant improvements, except the RankPairwiseEM algorithm.803

In this particular transferring setting, the source data has a wider coverage804

of queries from the same distribution, which turned out to generate a more805

general ranking function that performs better than the target model (i.e.,806

the model trained directly on the target data). The new transfer methods807

can further improve the effectiveness over the source ranker.808

When the source collection has a smaller size (MQ2008 to MQ2007), the809

generalization of the source ranker becomes so poor that it is not compa-810

rable with the target model. All the new proposed methods have shown to811

be significantly more effective than the source ranker on the target collec-812

tion. Meanwhile, the previous instance-based transfer model, wλMART, has813

shown to be significantly worse than the source ranker. Transferring from814

MQ2008 to MQ2007 can be seen of as a special case of semi-supervised learn-815

ing. The results in LETOR4.0 showed that self-labeling based methods can816

help improve ranking effectiveness under the semi-supervised L2R/in-domain817

transfer setting.818

Table 4: Effectiveness (NDCG@10 score) on cross-domain transfer settings with label
imputation methods. Bold text indicates the best scores of each column, ↑ denotes the
figure is significantly better than λMART.source, ↓ denotes the figure is significantly worse
than λMART.source, † denotes the figure is significantly better than wλMART. p < 0.05

MSLR-
LETOR4.0

LETOR4.0-
MSLR

Yahoo.Set1-
Yahoo.Set2

Yahoo.Set2-
Yahoo.Set1

BM25 0.276 (-29.8%) ↓ 0.180 (-7.2%) ↓ 0.540 (-5.3%) ↓ 0.507 (-27.6%) ↓
λMART.source 0.393 0.194 0.723 0.700

wλMART 0.367 (-6.6%) ↓ 0.147 (-24.2%) ↓ 0.712 (-1.5%) ↓ 0.703 (+0.4%) ↑

RankPairwiseEM 0.402 (2.3%) ↑† 0.193 † 0.734 (+1.5%) ↑† 0.709 (+1.3%) ↑†
RankHardLabelEM 389 † 0.202 (+4.1%) ↑† 0.731 (+1.1%) ↑† 0.707 (+1%) ↑
RankSelfTrain 0.410 (+1.8%) ↑† 0.194 † 0.725 (+0.3%) ↑† 0.708 (+1.1%) ↑†

λMART.target 0.461 (+17.3%) ↑† 0.423 (+11.8%) ↑† 0.761 (+5.3%) ↑† 0.743 (+6.1%) ↑†

Cross-domain transfers Transferring between MSLR and LETOR4.0 is819

the first cross-domain transfer scenario. As explained earlier, conducting820

query-level feature normalization for both the source and target collection821

helps increase the generalization performance of LambdaMART over the tar-822

get collection. In contrast to the results obtained by Li et al. [32], when823

transferring between MSLR and LETOR4.0, via query-level feature normal-824

ization, λMART.source shows better generalization on the target collection.825

32

When transferring from MSLR to LETOR4.0, both RankPairwiseEM and826

RankSelfTrain significantly outperform λMART.source. All the proposed827

self-labeling algorithms have shown significant improvements over wλMART.828

Transferring from LETOR4.0 to MSLR is harder than transferring in the829

opposite direction because MSLR has a wider coverage of queries. wλMART830

failed to improve the performance of λMART.source. Moreover, both RankPair-831

wiseEM and RankSelfTrain showed no significant improvement on this trans-832

fer setting. The RankHardLabelEM algorithm can significantly improve the833

effectiveness over λMART.source, and it is also significantly more effective834

than wλMART. Transfer learning from LETOR4.0 is a scenario that is un-835

likely to occur in reality as the source collection is too small for effective836

transfer to be possible. The assumption TR makes, is that the source col-837

lection has abundant training data with relevance labels, which can train a838

well-generalized ranking function for the source collection.839

Transferring between Yahoo! L2R Set 1 and Set 2 is more difficult, be-840

cause of the cross-language setting. Moreover, because Set 1 has a larger841

query set than Set 2, the generalization of the source model is relatively842

good compared with others. As a result, TR can be challenging to even com-843

pete with the source model. On the other hand, Set 2 is too small compared844

with Set 1, and therefore transfer from a smaller set to a large set can be dif-845

ficult too. When transferring from Set 1 to Set 2, the effectiveness of all the846

proposed algorithms show significant improvements when compared with the847

λMART.source and the instance-weighting method wλMART. When trans-848

ferring from the small set to the larger set (Set 2 to Set1), all the algorithms849

can significantly outperform λMART.source. For this particular task, the850

generalization gap between the source and large collection is smaller com-851

pared with other scenarios, even though the document corpus of Set 1 and852

Set 2 are from different countries with different languages. For instance:853

1) the features for Yahoo! L2R datasets have been normalized using rank-854

normalization, and therefore the differences in the data distribution of the855

input feature spaces are smaller; 2) the sample size of both the source and856

target collection are larger than other cases, which in effect, reduces the vari-857

ations in the query distribution; 3) although the tasks are cross-lingual, the858

features used for ranking are independent of languages. For example, term859

frequency is only the counts of a query term appearing in a document, which860

will, in most cases, not be affected by language.861

Under the cross-domain transferring scenario, most of the new algorithms862

have shown some improvements over the source ranker. However, these im-863

33

provements can be varied under different test environments.864

7.2. Consistency of Unsupervised TR Approaches865

In this section, we compare the consistency of different algorithms across866

different settings. Although all the proposed algorithms showed better trans-867

fer effectiveness compared with the source ranker, it is not clear how consis-868

tent the performance was.869

We compare the effectiveness of unsupervised TR algorithms using average-870

rank-based visualization [32]. The average rank of all the systems over all871

the folds in the different collections is computed, and shown in Figure 3.872

The average rank of a system across the test collections is calculated as873

rankj = 1
N

∑
i rankij, where N is the number of collections, and rankij is874

the rank of the jth model in the ith collection. We applied the Nemenyi test875

of significance [18], which is used to determine whether there is a significant876

difference between the average rank of any two systems. The Nemenyi test877

is used to determine whether there is a significant difference between the av-878

erage rank of any two systems. It can be performed after first checking with879

the Friedman test [21] (a non-parametric alternative to repeated measures880

ANOVA) that the systems are not independent of rank (across the datasets).881

The differences between models are compared against the critical dis-882

tance (CD), i.e., two models are not considered significantly different if their883

average ranks lie within the CD. The CD is computed as:884

CD = qα

√
k(k + 1)

6N
(27)

where k is the number of the algorithms, N is the number of datasets, and qα885

is the confidence level of the test, which can be computed with a Studentised886

range statistics, divided by
√

2.887

The results of the tests are displayed in Figure 3. The black dots show888

the average rank of each model and the lines show the CD. If the average889

rank (dot) of a model lies outside the CD of another model, then they are890

significantly different.891

According to Figure 3, under current settings, the average rank of all892

the proposed methods are lower (better) than the λMART.source. Among893

them, both RankPairwiseEM and RankSelfTrain are significantly better than894

the λMART.source across different collections, and there was no significant895

difference from λMART.target. RankSelfTrain is also the most effective al-896

gorithm compared to all the other self-labeling methods.897

34

Average Rank across Datasets

A
v
e

ra
g

e
 r

a
n

k

λM
ART.target

RankSelfT
rain

RankPairw
iseEM

RankHardLabelEM

λM
ART.source

wλ
MART

1
2

3
4

5
6

Figure 3: Plots of average rank across the 6 test environments for the 6 different Transfer
Learning techniques and the λMART.source and baseline λMART.target system (where
no TR was applied). The lower the rank the better performance of the approach. The
critical distance (CD) for the Nemenyi test (at the 5% confidence level)

Interestingly, wλMART appears less effective than the λMART.source,898

which differs from what was found in previous research. The reason for this899

is possibly that the difference between the feature distributions has been re-900

duced by performing query-level feature normalization on the MSLR dataset.901

As a result, MSLR showed better generalization on the LETOR4.0 dataset,902

and the instance-weighting methods failed to show their advantage in mini-903

mizing the gap between feature distributions.904

7.3. Analysis of Self-Labeling Methods905

To gain a better understanding of different self-labeling based approaches,906

the performance over iterations of the algorithms over the iterations of three907

proposed methods are illustrated in Figure 4. The learning curves presented908

are averaged over the five runs.909

The x-axis in the figure represents the number of the iterations, starting910

from the 0th iteration (where the source ranker was applied). The y-axis is the911

average performance of the rankers tested on the target training set, which is912

the unlabeled target set used for training, together with their ground-truth913

35

0.
45

0
0.

47
5

0.
50

0
0.

52
5

0.
55

0

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Algorithms
RankHardLabelEM
RankPairwiseEM
RankSelfTrain

(a) LETOR4.0 MQ2007 to MQ2008

0.
40

0
0.

42
5

0.
45

0
0.

47
5

0.
50

0

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Algorithms
RankHardLabelEM
RankPairwiseEM
RankSelfTrain

(b) LETOR4.0 MQ2008 to MQ2007

0.
35

0
0.

37
5

0.
40

0
0.

42
5

0.
45

0

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Algorithms
RankHardLabelEM
RankPairwiseEM
RankSelfTrain

(c) MSLR to LETOR4.0

0.
15

0
0.

17
5

0.
20

0
0.

22
5

0.
25

0

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Algorithms
RankHardLabelEM
RankPairwiseEM
RankSelfTrain

(d) LETOR4.0 to MSLR

0.
70

0
0.

72
5

0.
75

0
0.

77
5

0.
80

0

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Algorithms
RankHardLabelEM
RankPairwiseEM
RankSelfTrain

(e) Yahoo Set 1 to Set 2

0.
65

0
0.

67
5

0.
70

0
0.

72
5

0.
75

0

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Algorithms
RankHardLabelEM
RankPairwiseEM
RankSelfTrain

(f) Yahoo Set 2 to Set 1

Figure 4: Performance vs iteration curve of different self-labeling methods under various
settings.

36

labels. The black dashed line in the figures shows the performance of the914

source ranker.915

An ideal self-labeling algorithm would gradually increase its effective-916

ness on the target collection until the imputed labels converge. In most of917

the transferring settings, we have observed that both RankPairwiseEM and918

RankSelfTrain gradually update themselves to gain better effectiveness in the919

target collection. RankHardLabelEM, on the other hand, does not appear920

to be stable across all different transfer scenarios (collections).921

When transferring from LETOR4.0 to MSLR, none of the algorithms922

have performed as expected. We argue that this is a challenging transferring923

scenario where there is a much smaller query coverage in the source collection,924

and the TR algorithm cannot transfer knowledge from the source to the925

target.926

The similarity between the source and target collections, as well as the927

quality of the source collection have an impact on the effectiveness of an928

unsupervised TR algorithm. When the source collection is similar to the929

target collection, TR is not required. Under those circumstances, a good930

unsupervised TR algorithm should at least not harm the performance of the931

original source model. As a result, RankPairwiseEM and RankSelfTrain tend932

to be more reliable than the RankHardLabelEM algorithm.933

However, the performance of different algorithms is limited by the pa-934

rameter selection. In the following section, the impact of the parameters on935

the performance of the algorithms will be analyzed.936

8. Sensitivity of Parameter Settings937

The sensitivity of the parameter settings for different transfer algorithms938

will be discussed in this section. The RankPairwiseEM algorithms do not939

require any other parameter setting except for the σ parameter of the sigmoid940

function, which is usually set as 1 for the LambdaMART algorithm. The941

RankHardLabelEM algorithm has a parameter k, which is the percentage942

of imputed relevant labels in each iteration. For RankSelfTrain algorithm,943

the percentage is controlled by a confidence score, which could be set as a944

constant as 95%. Alternatively, the percentage can be set manually as it is945

for the RankHardLabelEM, both the manually setting and confidence score946

based methods will be compared in the following section.947

37

8.1. Threshold setting for RankHardLabelEM948

In the RankHardLabelEM algorithm, the percentage of documents be-949

ing labeled as a relevant document is manually defined. In this section, we950

compare the performance of the RankHardLabelEM algorithm with differ-951

ent parameter settings. As the source collection we randomly sample 1,000952

queries from the MSLR dataset, and as the target collection we sample 1,000953

queries from the LETOR4.0 dataset. The RankSelfTrain algorithm with954

different settings for k% is evaluated for four times. The performance vs955

iteration curve for each of the four scenarios is shown in Figure 5.956

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Percent (k%)
1%
5%
10%
20%
50%

(a) Sampled scenario 1

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Percent (k%)
1%
5%
10%
20%
50%

(b) Sampled scenario 2

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Percent (k%)
1%
5%
10%
20%
50%

(c) Sampled scenario 3

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Percent (k%)
1%
5%
10%
20%
50%

(d) Sampled scenario 4

Figure 5: Comparing the parameter settings for RankHardLabelEM.

The x-axis in Figure 5 is the number of the iterations, the y-axis is the957

NDCG@10 scores measured on the unlabeled target set, and the black dashed958

lines are the source rankers. In most cases, the effectiveness of the trained959

38

rankers is observed to increase over the iterations, but the increase is not960

monotonic. In some cases, RankHardLabelEM achieves more than 30% im-961

provement over the source ranker. However, the algorithm performs different962

at different runs with a different setting of k%. For example, when k% was963

set as 1%, its performance increased gradually over the iterations at the964

first run (Figure 5a), while in the other cases, the performance kept drop-965

ping (Figure 5c), indicating a significant amount of variance in performance.966

Moreover, in some cases, we have seen that the performance of the algorithm967

will start to decrease after a certain point (50% in Figure 5c), so it is also968

important to determine when to stop the iterations. Notice that, although969

20% seems to be optimal for this particular transfer setting, it may not be970

the best threshold for other transfer settings.971

In RankSelfTrain, there are two parameters, which are the σ for the972

pairwise preference probability in Equation 7 and the confidence threshold973

η. The setting of σ is usually determined by the implementation of the974

LambdaMART algorithm, and is usually set as 1. The confidence threshold975

η is set as 95%, following the probability convention.976

Under the unsupervised TR scenario, it is hard to determine the parame-977

ters without any supervised label information from the target collection. As978

a result, a smaller percentage was chosen based on previous experience in IR979

collections.980

8.2. Confidence Versus Fixed-Increments for RankSelfTrain981

In the RankSelfTrain algorithm, we have determined to set a threshold for982

confidence for the label prediction so that only the more confident labels are983

used (as impute labels) in the next iteration. Alternatively, at each iteration984

of the RankSelfTrain algorithm, one could label a fixed percentage (∆k%)985

of unlabeled pairs as relevant, and leave the remaining pairs unlabeled as986

irrelevant. The top ∆k% version RankSelfTrain is shown in Algorithm 4.987

The main difference between the fixed-increments-based RankSelfTrain and988

confidence-based RankSelfTrain is that the number of relevant labels is fixed,989

and all the unlabeled documents will also be labeled as irrelevant.990

The main challenge with this algorithm is how to set a proper parameter991

of ∆k% for a particular transfer setting. To compare the algorithms, we992

used the same sampling and testing strategy utilized in the last section. The993

learning curves of different runs are plotted in Figure 6.994

A glance at the figure above illustrates the effectiveness of RankSelfTrain995

with different parameter settings. Most of the algorithms tested so far have996

39

Input: Source queries Qso and judgements Rso, target queries Qta,
maximum number of iterations

Output: Ranking function f
1 SelfTrain(Qso,Rso,Qta, Γ)

2 Initialize set of relevant docs to be empty: Ω(0) = ∅;
3 Initialize set of irrelevant docs to be empty: f(0) = ∅;
4 Train ranker f (0) using (Qso, Rso) with Eq. 17;
5 for t ∈ {1, ...,Γ} do

/* E-step */

6 Calculate scores for all query-doc pairs;

7 Sort unlabeled pairs (i, j) 6∈ Ω(t−1) by score;
8 Label top ∆k% pairs as newly relevant:

Ω(t) = Ω(t−1) ∪ {topk};
9 Set remaining query-doc pairs as irrelevant: f(t) = X ta −Ω(t);

/* M-step */

10 Train ranker f (t) using Eq. 19;

11 end

12 Return f (t);
Algorithm 4: RankSelfTrain with top ∆ percentage

shown a gradual increase in the effectiveness of the ranker with each iteration,997

starting from the source ranker (0th iteration).998

The performance of the algorithm is different with different parameter999

settings across different runs. For example, when ∆k% is set to 2%, the1000

algorithm gained the best effectiveness at the 2nd run at the 20th iteration,1001

while it performs the worst at the 3rd run.1002

Another challenge with this approach is knowing when to terminate the1003

process. The algorithm can gradually label a certain amount of query-1004

document pairs as relevant until all the pairs are labeled as relevant. It1005

is not clear when the algorithm should add more relevant labels. Although1006

we only plot the first 20 iterations of the process in Figure 6, the five lines1007

cross over at many iterations during the training. This suggests that, if the1008

algorithm was halted at different iterations, the relative performance of dif-1009

ferent parameter settings would vary. Under the unsupervised TR scenario,1010

it is difficult to determine which parameter to use and when to terminate.1011

Alternatively, the confidence-based approach provided a parameter-free1012

40

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Percent (∆k%)
0.1%
0.5%
1%
2%
Confidence

(a) Sampled scenario 1

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Percent (∆k%)
0.1%
0.5%
1%
2%
Confidence

(b) Sampled scenario 2

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Percent (∆k%)
0.1%
0.5%
1%
2%
Confidence

(c) Sampled scenario 3

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0 5 10 15 20
Iteration

A
ve

ra
ge

 N
D

C
G

@
10

Percent (∆k%)
0.1%
0.5%
1%
2%
Confidence

(d) Sampled scenario 4

Figure 6: Comparing the parameter settings for RankSelfTrain.

setting except for the confidence threshold. It is arguable that the threshold1013

can always be set as a high value constant so that it is “parameter-free”. The1014

performance of the confidence-based approach is relatively stable compared1015

with other settings, and it converges quickly. Although the performance may1016

not be comparable to the best performance of other settings, it provides a1017

more robust performance across different transferring settings.1018

8.3. Discussion1019

The results discussed above have illustrated that all the three proposed1020

algorithms, RankPairwiseEM, RankHardLabelEM and RankSelfTrain can1021

increase transferring effectiveness in most of the in-domain and cross-domain1022

transferring scenarios. However, improvements of the algorithms may not be1023

41

consistent under different transferring settings (i.e. the dataset). By “con-1024

sistent”, we mean the improvements of ranking effectiveness on the target1025

collection with an unsupervised TR across all circumstances, namely, the1026

transferred model performs no worse than the source model in various trans-1027

fer settings. The RankPairwiseEM and RankSelfTrain algorithms tend to be1028

more robust as they consistently outperform the source ranker across various1029

test collections. RankSelfTrain showed slightly better consistency compared1030

with the RankPairwiseEM and is easier to implement.1031

Parameter settings are critical for both RankHardLabelEM and Rank-1032

SelfTrain algorithms. Setting the parameters for both algorithms based on1033

some assumptions, can gain acceptable results. However, reliability and ef-1034

fectiveness could likely be improved if some supervision is provided.1035

9. Conclusion1036

Aiming to improve learning to rank for scenarios where a ranker has to1037

be transferred to a new collection with no available training data, we demon-1038

strate three novel self-labeling unsupervised transfer ranking (TR) algo-1039

rithms, RankPairwiseEM, RankHardLabelEM and RankSelfTrain. RankPair-1040

wiseEM is an application of an EM algorithm on unsupervised TR problems,1041

which looks to achieve transfer effectiveness via maximizing the pairwise pref-1042

erence probabilities in the target collection. RankHardLabelEM is inspired1043

by a hard EM approach, which applies an iterative process that predicts im-1044

puted relevance labels and updates models iteratively, while RankSelfTrain1045

employs self-training (by gradually increasing the relevant label set) for semi-1046

supervised learning.1047

The three algorithms were tested on six transferring scenarios, with Lamb-1048

daMART used as the base ranker. The results of the six scenarios show1049

that, with some simple parameter settings, all the algorithms can achieve1050

improvements over the source ranking function. In some cases, however, the1051

improvements are minimal. Self-labeling methods are showed to be more1052

effective than instance-weighting algorithms.1053

To confirm whether the effectiveness of self-labeling methods can perform1054

consistently over different transferring collections, we demonstrated improve-1055

ments via an average rank-based visualization method. The Nemenyi test on1056

the results showed that both RankPairwiseEM and RankSelfTrain can sig-1057

nificantly outperform λMART.source across different test collections.1058

42

For RankHardLabelEM and RankSelfTrain, we have illustrated that both1059

algorithms can achieve better results with optimal parameter setting. How-1060

ever, it is difficult to estimate the parameters under the unsupervised TR1061

setting. Instead, our confidence-based approach for RankSelfTrain has shown1062

to be effective and stable.1063

Further research is needed to understand how to use common or latent1064

features to better exploit the labeling process. Apart from the proposed1065

self-labelling approaches, there are other related algorithms, such as multi-1066

viewing learning, that could be explored for unsupervised TR problems.1067

Moreover, the similarity of the source and target collection has been shown1068

to be correlated with transfer effectiveness. Thus, investigations are needed1069

to identify the impact of collection similarity on the performance of unsuper-1070

vised TR algorithms. In particular, finding the best method for measuring1071

the similarities between different L2R collections could help to avoid some1072

negative transfer effects.1073

References1074

References1075

[1] S. Abney. Understanding the yarowsky algorithm. Computational Lin-1076

guistics, 30(3):365–395, 2004.1077

[2] J. Allan, B. Carterette, J. A. Aslam, V. Pavlu, B. Dachev, and1078

E. Kanoulas. Million query track 2007 overview. Technical report, Uni-1079

versity of Massachusetts, Amherst, MA, 2007.1080

[3] J. Allan, J. A. Aslam, B. Carterette, V. Pavlu, and E. Kanoulas. Million1081

query track 2008 overview. Technical report, Massachusetts University,1082

Amherst, MA, 2008.1083

[4] O. Alonso, D. E. Rose, and B. Stewart. Crowdsourcing for relevance1084

evaluation. In ACM SigIR Forum, volume 42, pages 9–15. ACM, 2008.1085

[5] Y. Anzai. Kernel densityestimators. In Pattern recognition and machine1086

learning, pages 122–123. Elsevier, 2012.1087

[6] R. Baeza-Yates, B. Ribeiro-Neto, and others. Modern information re-1088

trieval, volume 463. ACM press New York, 1999.1089

43

[7] A. Blum and T. Mitchell. Combining labeled and unlabeled data with1090

co-training. In Proceedings of the eleventh annual conference on Com-1091

putational learning theory, pages 92–100. ACM, 1998.1092

[8] C. J. Burges. From ranknet to lambdarank to lambdamart: An overview.1093

Learning, 11(23):81, 2010.1094

[9] C. J. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth1095

cost functions. In Advances in neural information processing systems,1096

pages 193–200, 2007.1097

[10] P. Cai, W. Gao, K.-F. Wong, and A. Zhou. Weight-based boosting1098

model for cross-domain relevance ranking adaptation. In Proceedings1099

of the 33rd European Conference on Advances in Information Retrieval,1100

pages 562–567, Dublin, Ireland, 2011. Springer.1101

[11] P. Cai, W. Gao, A. Zhou, and K.-F. Wong. Query weighting for ranking1102

model adaptation. In Proceedings of the 49th Annual Meeting of the1103

Association for Computational Linguistics: Human Language Technolo-1104

gies - Volume 1, HLT ’11, pages 112–122. Association for Computational1105

Linguistics, 2011.1106

[12] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting1107

ranking SVM to document retrieval. In Proceedings of the 29th annual1108

international ACM SIGIR conference on Research and development in1109

information retrieval, pages 186–193. ACM, 2006.1110

[13] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank:1111

From pairwise approach to listwise approach. In Proceedings of the 24th1112

International Conference on Machine Learning, ICML ’07, pages 129–1113

136. ACM, 2007.1114

[14] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview.1115

In Proceedings of the 2010 International Conference on Yahoo! Learning1116

to Rank Challenge, volume 14, pages 1–24, Haifa, Israel, 2011.1117

[15] M. Chen, K. Q. Weinberger, and J. Blitzer. Co-training for domain1118

adaptation. In Advances in neural information processing systems, pages1119

2456–2464, 2011.1120

44

[16] D. Cossock and T. Zhang. Subset ranking using regression. In Interna-1121

tional Conference on Computational Learning Theory, pages 605–619.1122

Springer, 2006.1123

[17] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood1124

from incomplete data via the EM algorithm. Journal of the royal sta-1125

tistical society. Series B (methodological), pages 1–38, 1977.1126

[18] J. Demšar. Statistical comparisons of classifiers over multiple data sets.1127

Journal of Machine learning research, 7:1–30, 2006.1128

[19] P. Donmez and J. G. Carbonell. Active sampling for rank learning via1129

optimizing the area under the ROC curve. In European Conference on1130

Information Retrieval, pages 78–89. Springer, 2009.1131

[20] K. Duh and K. Kirchhoff. Learning to rank with partially-labeled data.1132

In Proceedings of the 31st Annual International ACM SIGIR Confer-1133

ence on Research and Development in Information Retrieval, SIGIR ’08,1134

pages 251–258. ACM, 2008.1135

[21] M. Friedman. The use of ranks to avoid the assumption of normality1136

implicit in the analysis of variance. Journal of the american statistical1137

association, 32(200):675–701, 1937.1138

[22] W. Gao, P. Cai, K.-F. Wong, and A. Zhou. Learning to rank only1139

using training data from related domain. In Proceedings of the 33rd1140

International ACM SIGIR Conference on Research and Development in1141

Information Retrieval, SIGIR ’10, pages 162–169. ACM, 2010.1142

[23] P. Goswami, M. R. Amini, and E. Gaussier. Transferring knowledge1143

with source selection to learn IR functions on unlabeled collections. In1144

Proceedings of the 22Nd ACM International Conference on Information1145

& Knowledge Management, CIKM ’13, pages 2315–2320. ACM, 2013.1146

[24] L. A. Granka, T. Joachims, and G. Gay. Eye-tracking Analysis of User1147

Behavior in WWW Search. In Proceedings of the 27th Annual Interna-1148

tional ACM SIGIR Conference on Research and Development in Infor-1149

mation Retrieval, SIGIR ’04, pages 478–479, New York, NY, USA, 2004.1150

ACM.1151

45

[25] T. Joachims. Optimizing search engines using clickthrough data. In1152

Proceedings of the Eighth ACM SIGKDD International Conference on1153

Knowledge Discovery and Data Mining, KDD ’02, pages 133–142. ACM,1154

2002.1155

[26] T. Jones, A. Turpin, S. Mizzaro, F. Scholer, and M. Sanderson. Size and1156

Source Matter: Understanding Inconsistencies in Test Collection-Based1157

Evaluation. In Proceedings of the 23rd ACM International Conference1158

on Conference on Information and Knowledge Management, CIKM ’14,1159

pages 1843–1846, New York, NY, USA, 2014. ACM.1160

[27] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR1161

techniques. ACM Transactions on Information Systems (TOIS), 20(4):1162

422–446, 2002.1163

[28] T. Kanamori, S. Hido, and M. Sugiyama. A least-squares approach to1164

direct importance estimation. Journal of Machine Learning Research,1165

10:1391–1445, 2009.1166

[29] E. Kanoulas and J. A. Aslam. Empirical justification of the gain and1167

discount function for nDCG. In Proceedings of the 18th ACM Confer-1168

ence on Information and Knowledge Management, pages 611–620, Hong1169

Kong, China, 2009. ACM Press.1170

[30] J. Kekäläinen and K. Järvelin. Using graded relevance assessments in1171

IR evaluation. Journal of the American Society for Information Science1172

and Technology, 53(13):1120–1129, 2002-11.1173

[31] A. Kumar and M. Lease. Learning to rank from a noisy crowd. In Pro-1174

ceedings of the 34th International ACM SIGIR Conference on Research1175

and Development in Information Retrieval, SIGIR ’11, pages 1221–1222.1176

ACM, 2011.1177

[32] P. Li, M. Sanderson, M. Carman, and F. Scholer. On the effectiveness1178

of query weighting for adapting rank learners to new unlabelled collec-1179

tions. In Proceedings of the 25th ACM International on Conference on1180

Information and Knowledge Management, CIKM ’16, pages 1413–1422.1181

ACM, 2016.1182

46

[33] B. Long, O. Chapelle, Y. Zhang, Y. Chang, Z. Zheng, and B. Tseng.1183

Active learning for ranking through expected loss optimization. In Pro-1184

ceedings of the 33rd International ACM SIGIR Conference on Research1185

and Development in Information Retrieval, SIGIR ’10, pages 267–274.1186

ACM, 2010.1187

[34] M. Long, J. Wang, G. Ding, S. J. Pan, and S. Y. Philip. Adaptation1188

regularization: A general framework for transfer learning. IEEE Trans-1189

actions on Knowledge and Data Engineering, 26(5):1076–1089, 2014.1190

[35] A. Margolis. A literature review of domain adaptation with unlabeled1191

data. Tec. Report, pages 1–42, 2011.1192

[36] D. McClosky, E. Charniak, and M. Johnson. Effective self-training for1193

parsing. In Proceedings of the Main Conference on Human Language1194

Technology Conference of the North American Chapter of the Associ-1195

ation of Computational Linguistics, HLT-NAACL ’06, pages 152–159.1196

Association for Computational Linguistics, 2006.1197

[37] D. McClosky, E. Charniak, and M. Johnson. Reranking and self-training1198

for parser adaptation. In Proceedings of the 21st International Confer-1199

ence on Computational Linguistics and the 44th Annual Meeting of the1200

Association for Computational Linguistics, ACL-44, pages 337–344. As-1201

sociation for Computational Linguistics, 2006.1202

[38] R. Mehrotra and E. Yilmaz. Representative & Informative Query Se-1203

lection for Learning to Rank Using Submodular Functions. In Proceed-1204

ings of the 38th International ACM SIGIR Conference on Research and1205

Development in Information Retrieval, pages 545–554, New York, NY,1206

USA, 2015. ACM.1207

[39] K. Nigam, A. McCallum, and T. Mitchell. Semi-supervised text classi-1208

fication using EM. Semi-Supervised Learning, pages 33–56, 2006.1209

[40] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions1210

on Knowledge and Data Engineering, 22(10):1345–1359, 2010.1211

[41] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.1212

Lawrence. Dataset shift in machine learning. The MIT Press, 2009.1213

47

[42] S. Ren, Y. Hou, P. Zhang, and X. Liang. Importance Weighted1214

AdaRank. In Proceedings of the 7th International Conference on Ad-1215

vanced Intelligent Computing, pages 448–455, Zhengzhou, China, 2011.1216

Springer.1217

[43] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gat-1218

ford, and others. Okapi at TREC-3. Nist Special Publication Sp, 109:1219

109, 1995.1220

[44] M. Sanderson, A. Turpin, Y. Zhang, and F. Scholer. Differences in1221

effectiveness across sub-collections. In Proceedings of the 21st ACM1222

international conference on Information and knowledge management,1223

pages 1965–1969. ACM, 2012.1224

[45] V. I. Spitkovsky, H. Alshawi, D. Jurafsky, and C. D. Manning. Viterbi1225

training improves unsupervised dependency parsing. In Proceedings of1226

the Fourteenth Conference on Computational Natural Language Learn-1227

ing, pages 9–17. Association for Computational Linguistics, 2010.1228

[46] M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawan-1229

abe. Direct importance estimation with model selection and its appli-1230

cation to covariate shift adaptation. In Advances in neural information1231

processing systems, pages 1433–1440, 2008.1232

[47] S. Sun. A survey of multi-view machine learning. Neural Computing1233

and Applications, 23(7):2031–2038, 2013.1234

[48] N. Tax, S. Bockting, and D. Hiemstra. A cross-benchmark comparison1235

of 87 learning to rank methods. Information Processing & Management,1236

51(6):757–772, 2015-11.1237

[49] I. Triguero, S. Garćıa, and F. Herrera. Self-labeled techniques for semi-1238

supervised learning: taxonomy, software and empirical study. Knowledge1239

and Information Systems, 42(2):245–284, 2015.1240

[50] A. Trotman, A. Puurula, and B. Burgess. Improvements to BM25 and1241

language models examined. In Proceedings of the 2014 Australasian1242

Document Computing Symposium, pages 58–65. ACM, 2014.1243

48

