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Abstract: Despite offering often significant advantages with respect to other flying machines, espe-
cially in terms of flight endurance, airships are typically harder to control. Technological solutions
borrowed from the realm of shipbuilding, such as bow thrusters, have been largely experimented
with to the extent of increasing maneuverability. More recently, also thrust vectoring has appeared as
an effective solution to ameliorate maneuverability. However, with an increasing interest for high-
altitude airships (HAAs) and autonomous flight and the ensuing need to reduce weight and lifting
performance, design simplicity is a desirable goal. Besides saving weight, it would reduce complexity
and increase time between overhauls, in turn enabling longer missions. In this perspective, an airship
layout based on a set of non-tilting thrusters, optimally placed to be employed for both propulsion
and attitude control, appears particularly interesting. If sufficiently effective, such configurations
would reduce the need for control surfaces on aerodynamic empennages and the corresponding
actuators. Clearly, from an airship design perspective, the adoption of many smaller thrusters instead
of a few larger ones allows a potentially significant departure from more classical airship layouts.
Where on one side attractive, this solution unlocks a number of design variables—for instance, the
number of thrusters, as well as their positioning in the general layout, mutual tilt angles, etc.—to be
set according simultaneously to propulsion and attitude control goals. In this paper, we explore the
effect of a set of configuration parameters defining three-thrusters and four-thrusters layout, trying to
capture their impact on an aggregated measure of control performance. To this aim, at first a stability
augmentation system (SAS) is designed so as to stabilize the airship making use of thrusters instead
of aerodynamic surfaces. Then a non-linear model of the airship is employed to test the airship in a
set of virtual simulation scenarios. The analysis is carried out in a parameterized fashion, changing
the values of configuration parameters pertaining to the thrusters layout so as to understand their
respective effects. In a later stage, the choice of the optimal design values (i.e., the optimal layout)
related to the thrusters is demanded to an optimizer. The paper is concluded by showing the results
on a complete numerical test case, drawing conclusions on the relevance of certain design parameters
on the considered performance, and commenting the features of an optimal configuration.

Keywords: flight dynamics; airship; optimal layout; thruster layout; high-altitude airship; HAA;
unmanned; lighter-than-Air; LTA; stability augmentation system; SAS; thrust-based stabilization;
airship design; control design

1. Introduction

In recent times, airships have regained the interest of researchers and engineers,
as potentially advantageous solutions for carrying out different types of missions. These
include primarily high-altitude pseudo-satellites (HAPS). The design of high-altitude
airships (HAAs) has been in the focus of several research endeavors [1–8], which due to the
relative immaturity of design techniques specifically targeting this mission, mostly consider
preliminary design. They consequently focus on understanding the general features of
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an airship for such mission, such as weight, installed power, volume, shape, area of solar
cells, etc. Despite reaching in some instances the prototype stage (as is the case for the
HiSentinel series and Hale-D in the United States or YuanMeng in China), existing HAAs
are typically proofs of concept, featuring a relatively standard overall layout, compared to
older airships.

The latter is also generally the case for the most recent design studies and applica-
tions in the field of low altitude flights, where airships are gaining industrial interest as
alternatives to unmanned multi-copters [9–13].

Over the last decade, the application of novel propulsion concepts in aeronautics
has been focusing particularly on the inclusion of an electric component in the power-
train [14–17], and related enabling technologies [18]. On airships, the adoption of electric
motors, to drive the propellers instead of piston-powered units, allows benefiting from
more compact and simpler thrusters. Conjugated with solar cells, such thrusters may be
fed for long periods of time especially when considering HAPS missions, at altitudes where
the solar incident radiation is higher. As highlighted in some studies [3,4], corresponding
HAAs may take on missions spanning several weeks at once. Therefore, the limit to even
higher flight times would be attributed to other issues, including overhauling of the payload
and of the airship plants (as practically observed in the case of the HiSentinel campaign).
The latter would be decreased in the most effective way by pushing on design simplicity,
i.e., removing movable parts and the corresponding actuators as much as possible.

One such design simplification may be obtained by suppressing movable control
surfaces, exploiting the adoption of more electric thrusters for control. Of course, due to
the generally marginal stability characteristics of airships, the artificial stability augmenta-
tion typically on-board would be demanded to the thrusters, which would be employed
simultaneously to push the aircraft in forward flight (or station-keeping against a constant
wind for HAAs in HAPS missions), maneuvers, and to stabilize the system in presence
of disturbances.

A very effective, solution in this sense comes from thrust vectoring, which has been
employed also on some of the few airships currently flying regularly (e.g., Zeppelin
LZ N07-101).

However, to the aim of increasing simplicity, a smart placement (i.e., layout) of the
thrusters onboard would be possibly a more promising solution. On the other hand,
the placement of thrusters would be also a more delicate task, since it should answer
the need for several propulsion and control goals at once, as pointed out. Furthermore,
the assignment of a configuration requires the definition of a relatively large set of geometric
parameters, including the three-dimensional positioning of the thrusters with respect to
the hull (as well as with respect to the buoyancy center and center of gravity), the tilt angle
of the thrusters, and clearly their number. This makes the analysis and the selection of an
optimal configuration a potentially challenging problem [8,19].

In the present paper, we try to explore this design problem. Taking inspiration from
existing airship layouts, a baseline airship featuring a cruciform, tailback configuration
with movable surfaces, and a single pushing thruster, is selected. The baseline layout is
altered, making computations assuming to remove the existing thruster and replacing
it with three or four thrusters in multiple layouts. In particular, free design parameters
include the three-dimensional positioning of all thrusters with respect to the buoyancy
center of the hull, as well as the fixed vertical tilt angle of the thrusters with respect to the
longitudinal axis. In order to stabilize the system, a stability augmentation system (SAS) is
designed and implemented, taking as inputs rates usually measurable on flying vehicles,
and producing as outputs stabilizing values of the thrust settings.

In order to synthetically capture the performance of a certain layout and allow mutual
comparisons, a cost function sensible to both the departure from a trimmed condition
and the energy required by the actuators to control the airship is defined. A non-linear
model of the airship is introduced, which is originally implemented and subject to the
mentioned purpose-designed control laws, integrating forward-in-time its behavior starting
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from perturbations of trimmed, horizontal flight conditions. The action of the SAS is such
to restore trimmed flight, with a performance which is the direct result of a choice of
the layout.

A parameter analysis is carried out first to preliminarily map the cost function just
introduced and to assess its sensitivity to the assumed design parameters (i.e., geometric
quantities defining the layout of the thrusters configurations).

Finally, an optimization algorithm is deployed to automatically find the optimal
configuration, minimizing the selected cost function. A comparison of results in significant
scenarios is proposed, trying to understand the dependence of the optimal solution on trim
airspeed as well as geometric features of the layout. Finally, exploiting the nature of the
proposed cost function, an assessment of the relative advantage of a thruster layout with
respect to another is attempted.

2. Dynamic Model of the Airship

In order to ease the comparison between different layouts of the thrusters, the formu-
lation for the dynamics of the airship has been written in an agnostic form, according to a
vectorial formalism. Considering the dynamic equilibrium for displacement and rotational
motion, the generalized vector form is assumed, yielding the following:

MPẇP + wP↙� MPwP = sP (1)

where generalized mass matrix MP is a function of the mass m, static moment SP, and
moment of inertia JP, which are arranged as follows.

MP =

[
mI ST

P
SP JP

]
. (2)

In Equation (1) the generalized velocity vector is wP = {vP, ωB}T , i.e., listing, re-
spectively, the velocity of the generic point P with respect to an inertial observer, and the
rotational speed of the airship body B with respect to the same observer. The southwest
product operator ↙� applied to wP yields the following.

wP↙� =

[
ωB× 0
vP× ωB×

]
. (3)

The generalized forcing term in Equation (1) is defined as sP = { f , mP}T , where the
two components represent, respectively, the resultants of the force and moment (the latter
with respect to the measuring point P) due to aerodynamics (sa

P), buoyancy (sb
P), gravity

(sg
P), and propulsion (st

P).
In order to make Equation (1) explicit, a body reference system is chosen (indicated

with (·)B), centered in the center of buoyancy CB, with the first axis pointing to the nose
of the airship, the third to the bottom, and consequently the second to the right. The two
systems are shown in a sketch in Figure 1. With respect to an inertial reference on the
ground (indicated with (·)I ), it is possible to obtain the body reference from the ground one
via a rotation tensor RI→B = RI→B(ϕ, ϑ, ψ), where ϕ, ϑ, and ψ are angular parameters,
physically interpreted as attitude angles of roll, pitch, and yaw, respectively [20].

The generalized mass in Equation (2) will be localized in the center of buoyancy,
according to the choice P ≡ CB. It is noteworthy that the static moment SCB is not
identically null (unlike in typical winged aircraft dynamics applications), since the reference
point is not in the center of gravity CG. In body reference, the components of the speed
vector take the scalar definitions vBCB = {U, V, W}T , whereas the components of the
rotational speed ωBB = {p, q, r}T . Consequently, the inertial part (i.e., the left hand side)
of dynamic equilibrium in Equation (1) will produce six scalar expressions, functions of
inertia components in the body frame, and the six scalar kinematic variables just introduced
(and their first-order time derivatives).
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By components in the body frame B, the forcing term sCB on the right hand side of
Equation (1) can be written as described next.

Inertial reference 𝐼

𝒃1

𝒊1𝒊2

𝒊3

𝒃2

𝒃3

Body reference 𝐵

𝑪𝑩

𝑪𝑮

𝒓𝑪𝑮

Figure 1. Inertial reference on ground, and body reference.

2.1. Aerodynamics

An aerodynamic model allowing a balance of accuracy and simplicity deemed suitable
for the present study, centered on flight dynamics, has been described in [21–23]. The con-
tribution sa

CB can be split into two components, an active term similar to most winged
flying vehicles sa,b

CB, and a reaction term due to the displacement of surrounding air by
action of the hull, called sa,m

CB . By components in the body frame B, the active term can
be written according to the aircraft dynamics nomenclature [20], where the dependence
of each component is modeled according to a first-order expansion with respect to the
kinematic variables. Taking into account the mutual balance between coefficients for an
airship with a standard hull and tail configuration and proportion, it is possible to reduce

the number of parameters in the expansion, thus yielding for sa,bB
CB [22]:

sa,bB
CB =



X
Y
Z

LCB
MCB
NCB


=


XU 0 XW 0 Xq 0
0 YV 0 Yp 0 Yr

ZU 0 ZW 0 Zq 0
0 LCBV 0 LCBp 0 LCBr

MCBU 0 MCBW 0 MCBq 0
0 NCBV 0 NCBp 0 NCBr





U
V
W
p
q
r


+ Vu. (4)

The scalar sensitivities appearing in the first matrix on the right hand side of Equation (4)
can be modeled via the Munk–DeLaurier theory [21,24], making use of the potential flow
theory for the hull part, as well as of standard incompressible lifting surface aerodynamics
for the empennages [20]. The corresponding modeling is a function of the specific geometry
of the hull and fins. For the former, a detailed analytic description is required, usually
attainable at least for axis-symmetric, regular shapes of the envelope. For tail lifting
surfaces, methods for obtaining lumped force and moment coefficients for an assigned
platform, span, and aerodynamic profile, originally developed for aircraft, still hold for the
airship case. Corrections for the interaction between the envelope and tail surfaces allow
an accurate mix of teh contributions of the two most aerodynamically relevant components
of the airship [22].

In Equation (4), u is the array of controls, and matrix V modulates the effect of controls
on the aerodynamic force. For standard airship steering and stability augmentation, based
on the deflection of aerodynamic surfaces on the tail, this component will be a sparse
non-zero matrix, with coefficients modeled according to standard methods for deflectable
surfaces, inherited from the winged aircraft case [20]. In this work, where thrust-based
control is adopted and there are no deflectable (i.e., control) parts on the tail surfaces,

the definition of the control term as u =
{

δT1 , . . . , δTNt

}T
applies, where each scalar δTi

represents the thrust setting of the corresponding thruster, and Nt is the number of thrusters.
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Since the effect of this control is on propulsion force, in Equation (4) we have V = 0.
The control vector, and the corresponding control action, will be modeled as part of the
propulsion force (see later Section 2.3).

The reaction component sa,m
CB of the aerodynamic forcing terms can be modeled accord-

ing to a model making use of Munk’s shape-specific coefficients k1, k2, k3, and k′, and is
proportional to the time rate of the generalized velocity ẇCB [22]. In body components,
for an axis-symmetric body of volume V , this forcing term yields the following:

sa,mB
CB = −ρ


k1V

k2V
k3V

0
k′ JCByy

k′ JCBzz





U̇
V̇
Ẇ
ṗ
q̇
ṙ


, (5)

where ρ is the density of air, JCByy and JCBzz are diagonal components of JBCB, expressed in
the body reference centered in CB. Since the term in Equation (5) is a function of the rate
ẇCB, it is typically moved to the left hand side of Equation (1) and treated as an additional
mass term in dynamic equilibrium.

2.2. Buoyancy and Gravity

The term sbB
CB is composed of a non-null force term, and an identically null moment,

since buoyancy acts by definition in the center of buoyancy CB. An expression of buoyancy
force is particularly straightforward in the ground inertial reference, where it bears a single
non-null component pointing up from the ground.

Similarly, gravity force bears an expression which is structurally close to that of
buoyancy (i.e., a single component normal to the ground). However, since CB and CG are
not in the same location, gravity exerts a non-null moment with respect to CB.

By components in the body reference, buoyancy, and gravity yield, we have the following:

sbB
CB =


RI|B

T

I→B


0
0

−ρgV


0
0
0




, sgB

CB =


RI|B

T

I→B


0
0

mg


rBCG× RI|B

T

I→B


0
0

mg




(6)

where RI|B
T

I→B is the transpose of the matrix representation in either I or B of the rotation
tensor RI→B , rBCG is the position vector of CG from CB in body components, and g is the
modulus of gravitational acceleration.

It can be pointed out that gravity and buoyancy bring the additional variables wrapped
in array eB321 = {ϕ, ϑ, ψ}T as unknowns into the expression of dynamic equilibrium. This
increase in the number of scalar unknowns in the formulation of dynamic equilibrium is
balanced by invoking the kinematic equations relating ėB321 to the body components of the
rotational rate ωBB = {p, q, r}T , yielding the following:

ėB321 = SB
−1

321 ωBB , (7)

where matrix SB321 = SB321(ϕ, ϑ, ψ). This allows obtaining a balanced 9-by-9 system of
first-order, non-linear differential equations, representing the dynamic equilibrium of
the system.
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2.3. Thrust

Total thrust force and moment around CB are obtained from the sum of the contri-
butions of each of the thrusters. The thrust vector Ti pertaining to the i-th thruster can be
oriented with respect to the body reference through a swing angle σi and a tilt angle λi,
according to Figure 2.

𝝀𝒊

𝝈𝒊

𝒃1

𝒃2

𝒃3

𝑪𝑩

𝑷𝑻𝒊

𝒓𝑷𝑻𝒊

Body reference 𝐵

Thruster

𝑻𝒊

Figure 2. Definition of thruster position and orientation angles with respect to body reference. Swing
angle σi and tilt angle λi are positive as shown with respect to reference B.

Therefore, the total force and moment in body reference components are as follows:

stB
CB =

Nt

∑
i=1

Ti




cos σi cos λi

sin σi
cos σi sin λi


rBPTi
×


cos σi cos λi

sin σi
cos σi sin λi




, (8)

wherein rBPTi
is the representation in body components of the position vector pointing from

CB to the point of application of Ti, named PTi . Intensity Ti is expressed as a function of
the control variable δTi as follows:

Ti = T̃iK̃i(δTi )δTi , (9)

where T̃i is the nominal value of thrust from the i-th thruster. The control δTi modulates the
nominal value through the shape function K̃i(δTi ). The latter allows the reproduction of
possible regime-dependent efficiency effects, or non-linear features related to the specific
thruster technology. Furthermore, according to the technology implemented in the thruster,
a different range of δTi values can be considered. For instance, for a piston engine, this
control would be limited to a positive value, whereas for electric motors or ion thrusters
it may be also negative, thus producing an inversion of the thrust force, exploiting a
well-known advantage of these types of thrusters with respect to more standard piston-
powered ones.

It should be noted that the formulation just introduced through Equation (8) bends
itself to the inclusion of thrust vectoring, which would require properly subordinating
σi and λi to a control logic, instead of assigning them as geometrical parameters, as is of
interest in this work.

3. Thrusters Layout and Thrust-Based Control

As stated in Section 1, in this paper the effect on the dynamic response of the airship
sorted by the value assumed by a set of geometrical parameters is of interest. A shortlist
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of configurations of potential interest, for which quantitative design analyses will be
performed, is formed mainly based on two drivers:

1. Number of thrusters (Nt). Where on the one hand it may be interesting to increase
this number to achieve better controllability and investigate arbitrary configurations,
in practice a higher number of thrusters would proportionately increase the chance of
failure, and consequently system downtime. Together with a greater complexity of
the control system which should be faced when dealing with an increasing number
of control variables (i.e., thrust settings), a greater number of thrusters would likely
increase also the cost of manufacture. Therefore, layouts with a low number of
thrusters are preferred in this work.

2. Positioning of thrusters. Even considering the equilibrium flight conditions most often
encountered, i.e. straight horizontal flight at different airspeeds (which also includes
station-keeping in constant stratospheric wind for a HAA), airships of standard back-
tailed configuration are usually marginally dynamically stable or slightly unstable.
In particular, recurring to a modal analysis in a linearized framework, carried out
around a trimmed condition in straight, horizontal, steady flight, lateral-directional
motion of airships is typically dynamically unstable (due to sideslip subsidence),
and longitudinal motion may feature a low-damped pendulum oscillatory mode [22].
For conditioning the dynamics of the system and easing piloting, artificial stability
can be obtained in forward flight (not in hover) by implementing a SAS acting on the
tail control surfaces. When deleting the (movable) control surfaces, while leaving the
tail as a purely passive (stabilizing) assembly, such artificial stability augmentation
is delegated to the thrusters. Clearly, this puts constraints on the placement and
orientation of the thrusters. For instance, two-thruster configurations would not
be able to stabilize the system in terms of both longitudinal and lateral-directional
dynamics. Furthermore, when all thrusters are aligned with the longitudinal body
axis, no direct roll control could be achieved, despite retaining control abilities through
the intrinsic yaw-roll aerodynamic coupling of the airship. Therefore, basic layouts for
quantitative investigations need to be preliminarily checked in terms of their ability in
principle to perform a control action around all airship body axes.

According to these two drivers, three thruster layouts have been considered in the
present work—namely (A), (B), and (C)—which appear as compromises between simplicity
and control authority. They are described in the sketches in Figure 3.

𝒃1

𝒃3

𝒃2

𝒃3

𝑎3

𝑎1,2

𝜁1,2 𝜁1,2

𝑐3

𝑐1,2

𝑷𝑻𝟏𝑷𝑻𝟐

𝑷𝑻𝟑

𝑷𝑻𝟑

𝑷𝑻𝟏,𝟐

𝑻𝟑

𝑻𝟏,𝟐𝜆1,2

𝜆3

𝒃1

𝒃3

𝒃2

𝒃3

𝑎3

𝑎1,2

𝜁1,2 𝜁1,2

𝑐3

𝑐1,2

𝑷𝑻𝟏𝑷𝑻𝟐

𝑷𝑻𝟑

𝑷𝑻𝟑

𝑷𝑻𝟏,𝟐

𝑻𝟑

𝑻𝟏,𝟐𝜆1,2

𝜆3

𝑷𝑻𝟒

𝑎4

𝑷𝑻𝟒

𝑻𝟒𝜆4

𝒃1

𝒃3

𝒃2

𝒃3

𝑎3,4

𝑎1,2

𝜁1,2 𝜁1,2

𝑐3,4

𝑐1,2

𝑷𝑻𝟏𝑷𝑻𝟐

𝑷𝑻𝟑

𝑷𝑻𝟑,𝟒

𝑷𝑻𝟏,𝟐

𝑻𝟑,𝟒

𝑻𝟏,𝟐𝜆1,2

𝜆3,4

𝑷𝑻𝟒

𝜁3,4𝜁3,4

𝑐4

Layout A Layout B Layout C

Figure 3. Three-thruster layout configurations and geometrical parameters.
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From a geometrical standpoint, all configurations share the same arrangement of the
baseline airship less the thrusters—hull, tail empennages, and payload—and differ only for
the number and positioning of the thrusters. From the viewpoint of inertia, the number
and positioning of the thrusters in the layout imply a different positioning of the CG,
and changing values of the overall mass, static, and inertia moment, i.e., virtually all
components in Equation (2) shall be affected.

A description of the configurations presented in Figure 3 will be proposed next.

3.1. Description of Thruster Layouts
3.1.1. Features of Layout (A)

Layout (A) features a set of three thrusters, where #1 and #2 share the vertical body
coordinate and are symmetrically placed with respect to the vertical plane of symmetry of
the airship. Thruster #3 is located on the plane of symmetry.

Thrusters #1 and #2 feature a line of thrust passing below CB, whereas that of #3
passes above that point. This allows thrusters in this configuration to control the motion
around the pitch axis. The laterally symmetric positioning of #1 and #2 allows yaw control.
In order to achieve direct roll control, however, a non-null tilt λ1 = λ2 = λ1,2 6= 0 of the
couple #1 and #2 needs to be implemented. In this manner, a differential use of #1 and #2
thrusters would produce a torque around the roll axis. For instance, starting from a trimmed
condition, and a small positive λ1,2 > 0, i.e., thrusters pointing slightly downwards with
respect to the longitudinal body axis, a small increase on #1 thrust and a corresponding
decrease on #2 would introduce a negative rolling moment, which would not be achieved if
the two tilt angles of the thrusters were null. Clearly, it can be observed that such differential
action would produce also a yawing moment.

A down-tilt of #1 and #2 thrusters may be compensated by an up-tilt of #3, i.e., λ3 < 0,
to allow avoiding an increase in body vertical speed V as an effect of a homogeneous
(i.e., not differential) action on #1 and #2—as in trimmed forward flight.

In principle, from a control standpoint, an opposite mutual setting of the thruster tilt
may be hypothesized as well (namely λ1,2 < 0 and λ3 > 0), but considering the positioning
of the thrusters towards the tailcone of the hull, that choice would point the thrusters
towards the hull, which due to the aerodynamic flow around the latter would bear a
counter-intuitive and uncommon configuration.

In this layout, of particular interest are the longitudinal positions of the thrusters,
c1,2 and c3, as well as the dihedral angle ζ1,2 of #1 and #2 with respect to the horizontal.
Moreover, the lengths a1,2 and a3 of the radii of the respective thrusters from the longitudinal
body axis are also of interest.

Broadly speaking, configuration (A) can be expected to be the cheapest and simpler
to design, as well as the least prone to propulsion fault thanks to the lowest possible
number of thrusters, but also the one providing the least control effectiveness, making use
of the shortest possible number of control degrees of freedom for stabilization around all
body axes.

3.1.2. Features of Layout (B)

The second layout is intended to explore the baseline ‘+’-shaped cruciform configura-
tion. Besides an increased number of thrusters with respect to (A), in layout (B) control in
the longitudinal plane (i.e., around pitch axis) is delegated to the combined use of thrusters
#3 and #4, whereas lateral-directional control is obtained through the differential use of
thrusters #1 and #2. As observed for configuration (A), a down-tilt of #1 and #2 is needed
to obtain direct roll control, to be compensated by an up-tilt of #3 (on account of a down-tilt
of #4, according to the shape of the tailcone).

Quantities of interest in this configuration are the longitudinal positions c1,2, which is
the same for #1 and #2 for lateral symmetry, as well as c3 and c4. The position of thrusters
#3 and #4 is on the vertical plane of symmetry, with a radius of a3 and a4 respectively from
the longitudinal axis, whereas the lateral thrusters #1 and #2 can be at a dihedral angle
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ζ1,2 from the horizontal body plane, which is a relaxation from a strictly ‘+’-shaped layout,
and at a radius of a1,2 from the longitudinal axis.

Configuration (B) may be likely more expensive than (A), due to the additional thruster,
but artificial stabilization should be in principle easier to design, thanks to a possible
decoupling between the longitudinal and lateral-directional action. It would be also
possibly more effective, i.e., such to achieve a faster convergence following perturbation
through a more limited action of the controls.

3.1.3. Features of Layout (C)

The third layout has been envisaged to explore the features of a ‘×’-shaped configura-
tion of four thrusters. The couple of #1 and #2 thrusters is attached to the lower part of the
airship, to the right and left respectively. Similarly, #3 and #4 are located on the top part of
the airship, symmetrically with respect to the vertical plane of symmetry.

The geometry is defined by the longitudinal distances c1,2 and c3,4 of the corresponding
thrusters from CB, by the radii a1,2 and a3,4 from the longitudinal axis, and by the dihedral
angles ζ1,2 and ζ3,4, which measure the angular distance respectively of the lower (#1 and
#2) and upper (#3 and #4) thrusters from the horizontal body plane.

Similarly to the other cases, direct roll control can be implemented by setting proper
values of λ1,2 and λ3,4.

From a control standpoint, artificial stabilization around all body axes can be effectively
achieved in this configuration. An increase in the thrust of (#1, #2) together with a decrease
on (#3, #4) shall provide positive pitching moment and vice-versa. A decrease in (#1, #4)
setting and a simultaneous increase in (#2, #3) shall provide a positive yawing moment,
and vice-versa. Finally, for a down-tilted (#1, #2) and an up-tilted (#3, #4) couple, a positive
rolling moment could be obtained in principle by only increasing (#1, #3) setting, and a
negative rolling moment by increasing (#2, #4). However, a more effective roll control can
be achieved by additionally decreasing (#2, #4) for a positive rolling moment, and (#1, #3)
for a negative one.

3.2. Thrust-Based Artificial Stability Augmentation for the Considered Layouts

A stability augmentation system (SAS) should counteract rotations around the three
body axes, which in turn requires feeding back the rates ωBB = {p, q, r}T , typically available
from electronic inertial measurements unit (IMU) sensors. Considering as a reference a
trimmed straight, unaccelerated flight condition, the reference values of such rates would
be null (i.e., pr, qr, rr = 0, with (·)r standing for reference), and the corresponding feedback
rates should be driven to zero by the controller. Furthermore, to more effectively counter
the attitude drift in steady state following a perturbation, the integral of the three signals
should be targeted, thus configuring a proportional-integral control law structure.

Considering a control system for a reference steady, straight flight conditions, two
SAS sub-systems, for longitudinal and lateral-directional dynamics, can be synthesized
in a decoupled fashion. This is the result of a decoupling of dynamics achieved in this
type of flight [22,23], similar to the case of winged aircraft. The fed-back signals for
longitudinal dynamics will be yL =

{
q,
∫

q
}T , whereas for lateral-directional dynamics

yD =
{

p, r,
∫

p,
∫

r
}T . Concerning the control array, as outlined in Section 3.1, the choice

of the layout produces different requirements on the contributions of scalar variables listed
in it, which in turn are reflected by the identity of non-zero gains, as well as in mutual
relationships among non-zero ones. This will be shown in detail in this section. However,
it should be observed that in principle all δTi controls may contribute to both longitudinal
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and lateral-directional control. The corresponding control arrays uL =
{

δT1L
, . . . , δTNt L

}T

and uD =
{

δT1D
, . . . , δTNt D

}T
will be obtained through a control law as follows.{

uL = KLyL

uD = KDyD
. (10)

The complete control input signals to the airship dynamic system will be the compo-
sition of a trimming reference value ur, the stabilizing SAS contribution of Equation (10),
and the pilot’s control up, yielding the following.

u = ur + (uL + uD) + up. (11)

For layout (A), the number of thrusters is Nt = 3, yielding for the control ar-

rays, either for longitudinal and lateral-directional SAS, uL =
{

δT1L
, δT2L

, δT3L

}T
and

uD =
{

δT1D
, δT2D

, δT3D

}T
. Considering the geometry of the configuration, and the hypothe-

sis of a positive (i.e., down-) tilt λ1,2 > 0 and a negative (i.e., up-) tilt λ3 < 0, the following
structure of the SAS gain matrices has been hypothesized:

KL =

 −kP
1,2q

−kI
1,2q

−kP
1,2q

−kI
1,2q

kP
3q

kI
3q

, KD =

 −kP
1,2p

kP
1,2r

−kI
1,2p

kI
1,2r

kP
1,2p

−kP
1,2r

kI
1,2p

−kI
1,2r

0 0 0 0

, (12)

where kP
(·) and kI

(·) are proportional and integral gains, respectively, and all k(·)
(·) are

positive values so that their sign is explicit in the expressions of Equation (12) (as well as in
Equations (13) and (14) to follow). In particular, the sign takes into account the positive
verse of body rotation rates. It can be remarked that there is no contribution of #3 thruster
on lateral-directional stabilization. The number of scalar gains to assign is eight, according
to this architecture. A sketch of the corresponding logical scheme is shown in Figure 4.

Figure 4. Stability augmentation logic for layout (A).

Moving on to layout (B), the two control arrays are here augmented by a fourth

control (Nt = 4), yielding uL =
{

δT1L
, δT2L

, δT3L
, δT4L

}T
and uD =

{
δT1D

, δT2D
, δT3D

δT4D

}T
.

According to the hypothesis on the down-tilt of the lateral thrusters, λ1,2 > 0, the following
structure can be hypothesized for the SAS gain matrices.

KL =


0 0
0 0

kP
3q

kI
3q

−kP
4q
−kI

4q

, KD =


−kP

1,2p
kP

1,2r
−kI

1,2p
kI

1,2r

kP
1,2p

−kP
1,2r

kI
1,2p

−kP
1,2r

0 0 0 0
0 0 0 0

. (13)
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As can be noticed from Equation (13), here, the longitudinal and lateral-directional
control components are fully decoupled, delegating lateral-directional control to thrusters
#1 and #2, and longitudinal control to #3 and #4 (as reported in Figure 5). This is not
the only possible choice, since especially thrusters #1 and #2 might contribute to longi-
tudinal stabilization (i.e., producing a pitching moment), with an effectiveness which is
proportional to the dihedral angle ζ1,2, all things being equal. However, it was chosen to
analyze the chance offered by layout (B) to decouple the two stabilization systems, a control
architecture that allows retaining the number of gains at eight (hence the same control
design complexity as configuration (A)), despite an increase in the number of thrusters
(and corresponding control variables).

Figure 5. Stability augmentation logic for layout (B).

The last considered layout (C) shares the size of the control arrays with the previous
one (Nt = 4). Similar to layout (A), also in this case, it is not possible to decouple the control
action on longitudinal dynamics from that on lateral-directional dynamics. Therefore, due
to the increased number of thrusters with respect to (A), the number of gain coefficients to
assign will be greater. Under the hypothesis of a down-tilt of the lower thrusters (λ1,2 > 0)
and an up-tilt of the upper ones (λ3,4 < 0), the following structure of the gain matrices can
be envisaged.

KL =


−kP

1,2q
−kI

1,2q

−kP
1,2q

−kI
1,2q

kP
3,4q

kI
3,4q

kP
3,4q

kI
3,4q

, KD =


−kP

1,3p
kP

1,4r
−kI

1,3p
kI

1,4r

kP
2,4p

−kP
2,3r

kI
2,4p

−kI
2,3r

−kP
1,3p

−kP
2,3r

−kI
1,3p

−kI
2,3r

kP
2,4p

kP
1,4r

kI
2,4p

kI
1,4r

. (14)

The number of gains to be assigned is raised to twelve in this configuration, which is
shown in the sketch of Figure 6.

Figure 6. Stability augmentation logic for layout (C).

The ability of the SAS systems proposed for each configuration to stabilize the airship,
when perturbing a horizontal, steady, forward flight condition at different airspeeds span-
ning the operational envelope of a testbed, has been assessed by using linear and non-linear
methods, namely by eigenanalyses on a closed-loop linearized representation of the system



Aerospace 2022, 9, 393 12 of 29

obtained in a trimmed, steady forward flight condition, as well as through time-marching
simulations on the non-linear model described in Section 2, controlled by the proposed
SAS and subject to perturbations of the initial condition. Example results will be shown in
the results section. At this level, it can be anticipated that all systems can be easily designed
to be capable of effectively stabilizing the system in the considered testing scenario. More
comments on this will be added when describing the results of the analyses carried out in
the design analysis and optimization phase introduced in the next section.

4. Measure of Performance for a Layout and Corresponding Optimization

As stated in the introductory Section 1, the goals of the present paper are not limited
to the introduction of a thrust-based control scheme, but also include an investigation
of the potential of each considered layout in ameliorating dynamic performance, trying
to understand what is the optimal way to loft an airship based on a certain thruster
configuration, and where possible, to compare outcoming layouts, also featuring different
numbers of thrusters, to each other.

With this ambition, a comprehensive measure of performance was sought, to the
aim of setting up an optimal problem where an optimal design solution—in terms of a
geometry such to optimize performance—would be automatically found by an optimization
algorithm. Since the comparison is centered on dynamic performance, and in particular
on stabilization, a natural measure of performance comes in the form of an integral norm
of the quadratic deviation of both the states and controls from the equilibrium condition.
Considering for instance a steady, horizontal trimmed flight condition, when a perturbation
is induced, the reaction of a (closed-loop) stable system would be that of incurring in a
deviation of the state and control signals from the respective reference values, which would
then be damped, taking the system back to the starting equilibrium condition. In this
scenario, usually, the slacker the control dynamics, the farther the initial departure of the
state from the reference, and the more limited the control action. Conversely, the more
reactive the controller, the shorter the departure of the system state from the reference,
but the more intense the movement of the control signals. In both cases, for opposite
reasons, the quadratic norm would increase. A minimal (i.e., optimal) value of this cost
function would be the result of the best compromise between control cost (i.e., the energy
required for control action) and dynamic performance (i.e., in a broad sense the dynamic
stability of the system, reflected in damping, settling time, etc. of the system state).

The minimization of this cost function is the base of consolidated control law synthesis
methods (e.g., linear-quadratic regulators, LQR [25]), which are typically employed to
produce fully coupled MIMO (multiple-input, multiple-output) gain matrices in a linear (or
linearized) full-state feedback framework. However, in this study, the quadratic cost func-
tion just introduced is not used for control synthesis, but for a parametric analysis on the
effect of geometrical layout variables, thus making a different use of it. Actually, in order to
make comparisons among layouts easier, the construction of the cost function is somewhat
more articulated. Considering the system in Equation (1) with the kinematic equations
Equation (7), the states of the system can be collected in x = {U, V, W, p, q, r, ϕ, ϑ, ψ}T ,
whereas the array of controls would be u =

{
δT1 , . . . , δTNt

}
. Considering a single time-

marching simulation of time extension [0, Tf ], it is possible to assemble the following quantity.

Fk = Fkx + Fku

=

[
1

Tf

∫ Tf

0
(x(t)− xr)

TW T
x QWx(x(t)− xr)dt

]
1

∑9
j=1 Qj

+

[
1

Tf

∫ Tf

0
(u(t)− ur)

TW T
u RWu(u(t)− ur)dt

]
1

∑Nt
j=1 Rj

.

(15)
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In Equation (15), diagonal matrices Q and R can be used to select which states and
controls will contribute to the cost function, and their mutual relevance. Diagonal matrices
Wx and Wu instead are used to normalize the dimensional value of the array of states and
controls, so as to make them more comparable in case of numerically very different values
(such as, for instance, for control variables, varying here in the range [−1, 1], and attitude
angles or rotational rates, which may be in the order of 10−2 rad or rad/s, respectively, and
hence very different).

In the present study, Q and R have been used as triggers to select the states and
controls to appear in the cost function, and their coefficients take a value which is either 1 or
0. In particular, concerning states, speed and rotational rate components contribute equally
to the cost function. Concerning control, all thrusters have been selected as contributors
and then R = I(Nt), i.e., an identity matrix of size equal to the number of thrusters.
However, considering two different layouts, in particular (A) vs. (B) or (C), which feature
a different number of thrusters, an increase in the cost function would arise by moving
from a three-thruster configuration to a four-thruster one, due to the plain addition of the
contribution pertaining to a further thruster. This would make quantitative comparisons
among the outcome of three- and four-thrusters configurations more difficult. To mitigate
this effect, in Equation (15), the two components Fkx and Fku are normalized by the sum of
the components of Q and R, respectively.

Now, taking inspiration from certification procedures, several test cases are taken
into account to assemble an aggregated performance value, richer in information than the
outcome of a single simulation. In particular, different trim airspeeds in steady, horizontal
forward flight are considered, and for each of them, a number of perturbations to the initial
conditions. This produces a testing scenario where Ns simulations are carried out, yielding
for the actual cost function the following expression.

J =
1

Ns

Ns

∑
k=1

(Fkx + Fku). (16)

The actual numerical settings for the analysis of the configurations, including the
pool of simulations actually carried out, will be described in more detail in the following
section devoted to numerical results. It can be anticipated that the proposed cost function in
Equation (16) with the components in Equation (15) has been extensively tested, showing a
good balance between sensitivity to the parameters appearing in the problem (i.e., geomet-
rical parameters to assign the layout) and regularity with respect to their change. This will
be shown in the results as well.

Based on the cost function just introduced, it is possible to formulate a corresponding
optimal problem, where the function in Equation (16) is minimized by acting on a set
of parameters.

It should be pointed out here that, since the focus of the analysis in this paper is on
geometrical parameters defining the layout, these have been considered as optimization
parameters. Geometrical parameters have a significant effect on dynamic performance,
and understanding this very effect is part of the aim of the present work. This raises a
methodological issue, however, since the best way to make use of an assigned (i.e., also
geometrically sized) layout is in principle not decoupled from the tuning of the control
gains. The latter, indeed, bears an effect on dynamic performance. However, in order
to try to isolate the contribution to dynamic performance due to the geometrical sizing
from that due to control gains, a two-step analysis procedure has been envisaged. In the
first stage, for each layout, a set of control gains has been found, capable of stabilizing
the system for three reference airspeeds, covering the performance span of the airship
testbed. This rules out an airspeed-based gain scheduling, which is desirable also in terms
of control simplicity and ease of design. Furthermore, in the same step, in order to make
comparisons among different layouts fairer, such control gain matrices are all based on the
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same reference gain values. Considering gain matrices in Equations (12)–(14), this working
hypothesis implies the following:

kP
(·)q

= kP
q , kI

(·)q
= kI

q,

kP
(·)p

= kP
p , kI

(·)p
= kI

p,

kP
(·)r

= kP
r , kI

(·)r
= kI

r ,

(17)

where the six values appearing on the right hand side of Equation (17) are assigned
and define all gain components in Equations (12)–(14). While it is not the only possible
choice for easing comparisons, this has been deemed suitable a posteriori when comparing
results produced in this research.

Once a set of reference gains (kP
q , kP

p , kP
r , kI

q, kI
p, kI

r) has been selected such to stabilize all
considered layouts (considering a baseline numerical sizing, i.e., an assigned set of thruster
positioning, tilt, etc.) in all considered testing scenarios (trim speeds and perturbations),
optimal analyses have been launched in a second step. Thanks to the generality of the
designed cost function (Equations (15) and (16)), the optimal problem can be written
as follows:

min
z

J(z) s.t. h(z) (18)

and employed for different comparisons without any formal change to its definition.
In Equation (18), the set of optimization parameters z depends on the layout, as detailed in
the following Table 1. The problem in Equation (18) is constrained by a set h(z) of direct
bounds and geometrical inequality constraints on the parameters, in consideration of their
physical meaning, according to definitions in Figures 2 and 3.

In particular, bounds are defined in Table 1. Geometric inequality constraints instead
express the need to keep the thrusters physically out of the surface of the envelope. The lat-
ter is mathematically assigned as an axial-symmetric surface, with a known radius rh,
function of the position along the longitudinal axis of the hull. The ensuing generic scalar
form of the non-linear constraint just mentioned writes the following:

ai − (rh(ci) + dh) > 0, (19)

which is replicated for each i-th thruster in the airship layout. In Equation (19), dh is an
assigned constant positive buffer distance.

Table 1. Sets of optimization parameters z and corresponding bounds according to geometrical
definitions, for the three considered thruster layouts.

Layout (A) (B) (C)
ID z Bounds z Bounds z Bounds



a1,2
a3
ζ

c1,2
c3

λ1,2
λ3



a1,2lb
, a1,2ub

a3lb , a3ub

0, π
2

c1,2lb
, c1,2ub

c3lb , c3ub

0, π
2

−π
2 , 0



a1,2
a3
a4
ζ

c1,2
c3
c4

λ1,2
λ3
λ4



a1,2lb
, a1,2ub

a3lb , a3ub

a4lb , a4ub

0, π
2

c1,2lb
, c1,2ub

c3lb , c3ub

c4lb , c4ub

0, π
2

−π
2 , 0

0, π
2



a1,2
a3,4
ζ1,2
ζ3,4
c1,2
c3,4
λ1,2
λ3,4



a1,2lb
, a1,2ub

a3,4lb
, a3,4ub

0, π
2

0, π
2

c1,2lb
, c1,2ub

c3,4lb
, c3,4ub

0, π
2

−π
2 , 0

As observed, the choice of the bounds for λ in some cases reflect basic configuration
choices, where the thruster alignment is not pointing towards the hull, to reduce the
interference with the aerodynamic flow around it. Furthermore, the selection of the sign
of the gains as in Equations (12)–(14) constrains the tilt orientation so that the resulting
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control action is coherent with the sign taken by the fed-back state variables. On the other
hand, broad changes of the tilt angles are generally allowed, as shown.

More details concerning the implementation of the optimal problem will be provided
in the results Section 5, but it can be anticipated here that the cost function introduced in
Equation (16) has been tested in terms of regularity with respect to the elements of the array
of optimization parameters z shown in Table 1, for each of the three considered layouts.
The good regularity shown by the cost function has allowed to select a gradient-based
method for the solution of the optimal problem in Equation (18), comprising bounds and
non-linear constraining equation(s) as in Equation (19) (as many scalar equations as the
number of thrusters in the considered configuration to be optimized, as explained).

5. Results

As a testbed for the methodologies introduced in the previous sections, the Lotte
airship [22,23] has been selected as a baseline. This prototype airship has been extensively
studied and characterized in previous research, and its main features are provided in Table 2
for reference. This unmanned airship is intended for low-altitude operations, and not as
a HAA. However, the abundance of reliable and accurate data, seldom found in the
literature for airships, makes it adequate for feeding realistic computations. Furthermore,
the configuration is rather standard and not dissimilar from the expected one of airships to
operate by design either in the higher atmosphere or closer to the ground—both interesting
operative conditions, as stated in Section 1.

Table 2. Basic specifications of Lotte airship [22].

Parameter Value

Volume V (m3) 107.42
Length (m) 16.0

Max. diameter (m) 4.0
Tail span (m) 4.6
Mass m (kg) 136.8

Max. airspeed (m/s) 12

A virtual non-linear model of the airship has been assembled populating the formula-
tion described in Section 2.

A major difference included with respect to the baseline is obviously in the thrusters.
The real prototype features a single motor-propeller assembly in the tailcone. This has
been taken out of the design, and substituted with three or four thrusters, for layout (A)
and (B), (C) respectively. Each thruster has been hypothesized to be an electric motor-
propeller assembly, and provide a nominal thrust of T̃i = 400 N each, and a mass of
2 kg. Considering Equation (9), the values of the control variables δTi have been limited
between [−1, 1], where negative values are achievable for electric motors. Furthermore,
on account of the starkly lower expected efficiency of the propeller in reverse rotation
conditions (i.e., for δTi < 0), the shape function has been coarsely set to K̃i = 0.5 for δTi < 0,
and K̃i = 1.0 otherwise. The inertial data (mass and position) of the original single motor
have been used to modify that of the original airship, in terms of m, rCG, SCB, JCB. The new
thrusters have been included modifying the airship inertia correspondingly, modeling them
as point masses, accurately placed according to their actual positions rPTi

in the considered
layout. The overall mass change—taking out the original thruster and replacing it with
others—is sufficiently small to provide a negligible change in the buoyancy ratio when
leaving the volume of the envelope at its original value.

Another difference with respect to the baseline is in the tail. The tail assembly has
been retained, but the surfaces have been considered to have only a stabilizing function,
and no moving parts.
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As anticipated in the formulation Section 2, the aerodynamic forcing terms have been
characterized computing the stability derivatives in Equation (4) using analytic and semi-
empirical methods [22,26], according to an accurate description of the specific geometry of
the hull and fins.

5.1. Quality Assessment of the Stability Augmentation System

In order to select the values of the gains and generally check the suitability of the
proposed control action, a testing scenario has been set up as follows.

Starting from the airspeed range of the original airship, the conditions of horizontal
forward flight have been considered as reference at 4, 8, 12 m/s, at an altitude of 200 m.

For each of the three considered layouts, a set of geometrical values completely
assigning the configuration has been tested. According to Table 1, eight parameters have
been chosen for layouts (A) and (C), and ten parameters for (B). Geometrical settings have
been experimented with broadly so as to test a specific set of gains on different geometries,
in view of the next optimization phase, where geometrical parameters are free to change
between wide bounds. Table 3 displays the values adopted for Figures 7 and 8 to follow.
They do not correspond to the satisfaction of any optimality criterion and are presented as
an example of a possible sub-optimal choice.

Table 3. Geometry settings for all considered configurations for SAS performance study.

Layout (A) (B) (C)
ID Param. Value Param. Value Param. Value



a1,2
a3
ζ

c1,2
c3

λ1,2
λ3



2.2 m
2.0 m

45 deg
5.0 m
6.0 m
5 deg
−20 deg



a1,2
a3
a4
ζ

c1,2
c3
c4

λ1,2
λ3
λ4



2 m
2.1 m
2.2 m

45 deg
5.0 m
3.0 m
6.0 m
5 deg
−20 deg
10 deg



a1,2
a3,4
ζ1,2
ζ3,4
c1,2
c3,4
λ1,2
λ3,4



2.0 m
2.2 m

45 deg
45 deg
5.0 m
6.0 m

20 deg
−20 deg

For each reference speed, the free (i.e., uncontrolled) models corresponding to the three
layouts have been trimmed by solving Equation (1) in steady state (ẇCB = 0) in symmetric,
horizontal, forward flight. The trim solution comes in terms of the body components of
airspeed Ur and Wr, as well as a pitch angle ϑr, all other components of the state array
having been forcibly set to zero. In terms of controls, equilibrium values δTir

are computed
in the solution of the trim problem.

Figure 7. Cont.
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Figure 7. Maps of eigenvalues for free (blue circles) and artificially stabilized (red crosses) systems,
trim speed 8 m/s. Left: longitudinal dynamics. Right: lateral-directional dynamics. Top row:
layout (A). Mid row: layout (B). Bottom row: layout (C).

Figure 8. Cont.
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Figure 8. Time-marching simulation of the non-linear airship system subject to artificial stabilization.
Left: layout (A). Right: layout (C). Forward flight at 8 m/s, with a perturbation in the initial condition
of the states. Top row: longitudinal states. Mid row: lateral-directional states. Bottom row: controls.
Dotted line: trim solution.

As previously stated, checking the control law has been performed both through a
linear and a non-linear analysis. For the former, decoupled linearized models have been
obtained for each of the three layouts and for each of the trim speeds (where the latter imply
a change in the stability derivatives as well as trim values of the states), for longitudinal
and lateral-directional dynamics. Similarly to winged aircraft, decoupling is achievable
under the hypothesis of steady, horizontal, symmetric forward flight. The corresponding
analytic models, taken from the literature and amended to account for integral states in
the SAS feedback, are reported in Appendix A for completeness. The eigendynamics of
the free system are compared to those for the artificially stabilized system, assessing the
change in the positions of the eigenvalues.

As an example, in Figure 7, the free-response and stabilized response of the longitudi-
nal and lateral-directional systems are shown for the three layouts and the corresponding
SASs, for a speed of 8 m/s. Qualitatively, similar results are obtained for other considered
trim speeds (not shown for brevity).

It can be observed how the eigenvalues of the controlled response are significantly
damped both in terms of longitudinal and lateral-directional dynamics. Considering
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longitudinal dynamics, in the presented examples, the marginally unstable pendulum mode
is stabilized and damped while retaining an oscillatory nature (layout (B)) or even damped
to produce real stable eigenvalues (layouts (A)–(C)). A neutrally stable eigenvalue appears,
associated to the integral state

∫
q in the state matrix of the stabilized system (see matrices

in Appendix A). Concerning lateral-directional motion, the unstable sideslip subsidence
eigenvalue and neutrally stable pure-yaw eigenvalue (null mode) are substituted by a
stable, well-damped oscillatory motion. Roll oscillation, already stable in all considered
cases, is slightly further damped. The appearance of neutrally stable eigenvalues in the
controlled case is again due to the integral states

∫
p and

∫
r in the augmented state of the

SAS-controlled system (see Appendix A).
Further stability and performance analyses have been carried out on the non-linear

system, by checking the response of the system to perturbations in the initial conditions
or in the controls with respect to the trim condition, when performing time-marching
simulations. A Runge-Kutta integration scheme was selected to run the integration on a
time window of Tf = 100 s from the initial condition.

As an example, in Figure 8, the time histories of the longitudinal and lateral-directional
states, and of the controls, are shown for layouts (A) and (C) (with the geometry proposed
in Table 3), considering a simultaneous perturbation of the initial condition on the state
as ∆U0 = +1 m/s, ∆V0 = +1 m/s, ∆W0 = −1 m/s, ∆p0 = +3 deg/s, ∆q0 = +3 deg/s,
∆r0 = −3 deg/s, where subscript (·)0 defines the initial condition of the simulation.

From time-marching simulations it is possible to better assess the actual deviation
from the reference of the states, and correspondingly the control effort—both contributing
to the merit function in Equation (15). The gains selected by means of the eigenvalue
analysis could be thus further checked, deeming the action of the controller realistic (espe-
cially not too intense) and the state oscillation acceptable. To the aim of further avoiding
unrealistically intense action of the controller, the SAS contribution has been subjected to a
saturation to a threshold value which is 25% lower than the actual top value of the thrust
control variables (i.e., 0.75 instead of 1.0). This should simulate leaving some spare control
authority for pilot action or for more intense control activity, in case of perturbations more
intense than those actually simulated.

Comparing the two layouts (A) and (B) in Figure 8, the performance of the correspond-
ing stabilization systems is clearly somewhat different, as expected. Actually, the meaning
of controls (bottom row), and consequently their use, is different by design in the two
cases. Looking at the states however, it can be noted that a good degree of stability is con-
firmed in both conditions, as forecast by the eigenvalue analysis (carried out on decoupled,
linearized systems).

It can be further observed from Figure 8 that the states are driven to the trimmed
steady-state value following perturbation, with a relatively limited action of the controllers.

As already pointed out, the presented structure of the SAS system has produced
acceptable results without much effort in the tuning of the gains. This in turn has allowed
to introduce the hypothesis in Equation (17) so that, irrespective of the layout, the gain
coefficients are numerically based on a set of three values of proportional gains and three
values of integral gains, collected in (kP

q , kP
p , kP

r , kI
q, kI

p, kI
r). As explained, the latter hypothe-

sis eases mutual comparisons among layouts, by allowing to exclude the intensity of the
control action from the changing parameters in the parameter analysis and optimization,
linking any differences in performance to changes in the airship sizing.

By performing analyses similar to those shown in Figures 7 and 8 on a set of six
sets of initial conditions, for changing values of all geometrical parameters defining the
layout (i.e., the position and attitudes of the thrusters), and across all three considered
layouts (A), (B) and (C), it was checked that the response of the system did not diverge,
keeping the gains (kP

q , kP
p , kP

r , kI
q, kI

p, kI
r) fixed. The actual gain selection has been carried

out deploying a trial and error procedure, where gains providing acceptable results on
layout (A) have been tried on the other two considered layouts. Following this check,
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the set of gains has been consolidated, and kept frozen for the optimal analyses described
next, which have been invariably run on the artificially stabilized system.

5.2. Optimal Analyses

A major ambition of the presented optimal methodology is that of finding the optimal
positioning of the thrusters for a certain layout of the thrusters, and possibly ranking the
performance of a layout compared to another in easing the stabilization task.

In order to first assess the suitability of the proposed cost function in Equation (16)
before attempting the numerical solution of an optimal problem on it, such cost function
has been computed for a set of Ns = 18 simulations, corresponding to as many sets of
perturbed initial conditions, separately for the trim speeds of 4, 8, and 12 m/s, on all
three layouts. For each layout, parameterized analyses have been carried out, running the
simulations changing one of the geometrical parameters in Table 1 at a time, and computing
the cost function to check its regularity. All controls, speed and rate components contribute
equally to the cost function. As an example, in Figure 9 are shown some of the analyzed
dependencies of the cost function, computed from Ns = 18 simulations corresponding to as
many initial conditions, at 12 m/s for layout (B). In particular, starting from the geometry in
Table 3 for layout (B), the plots in Figure 9 have been obtained changing a1,2, c4, ζ1,2, and λ3.

Figure 9. Example studies on the sensitivity of the cost function with respect to parameters a1,2, c4,
ζ1,2, and λ3 for layout (B). Trim speed 12 m/s. Computation of the cost function based on Ns = 18 sim-
ulations corresponding to as many perturbed initial conditions.

It should be remarked that the examples in Figure 9 portray the dependence of the cost
function from a single parameter at a time, leaving all others to an assigned (unchanged)
value. Therefore, such results are related to a scenario much more limited with respect to
the one faced by an optimization algorithm, which changes all geometric quantities within
an iteration. However, it can be observed from Figure 9 that the cost function appears
very regular with respect to the changing parameters. With this notion, as anticipated in
Section 4, a gradient-based method capable of dealing with non-linear constraints was
deemed suitable for an optimal search.
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Within an optimization loop, the optimizer sets the parameters in Table 1 (correspond-
ing to the considered layout), adjusts the inertia of the airship correspondingly, finds a trim
solution, then performs Ns time-marching simulations of the non-linear system subject to
artificial stabilization, and finally computes the cost function in Equation (16). The opti-
mization algorithm tunes the geometrical parameters in search for the minimum of the cost
function, and compliant with the bounds in Table 1 and constraint(s) in Equation (19).

The output of an optimization is a set of geometrical parameters (optimal solution)
corresponding to the optimum of the cost function, as well as the corresponding value of
the cost function.

For a more thorough exploration of the dependence of the optimum from the working
condition of the airship, for each considered layout, an optimization was first run for
each of the three considered reference trim speeds. The bounds in Table 1 have been set
specifically to the following:

• a1,2lb = a3lb = a3,4lb = a4lb = 0.5 m, a1,2ub = a3ub = a3,4ub = a4ub = 2.5 m
• c1,2lb = c3lb = c3,4lb = c4lb = 2.0 m, c1,2ub = c3ub = c3,4ub = c4ub = 8.0 m

and distance dh in Equation (19) is set to dh = 0.8 m, meaning a minimum clearance of
the thrusters from the hull’s surface set to that value.

The behavior of the optimal solution as a function of the trim airspeed (4, 8 and
12 m/s) is shown for the three layouts in Figures 10–12. The plots of the optimal geometric
variables are reported side-by-side with those of the trim solutions, for the same airspeeds
and geometrical settings.

In the case of layout (A) (Figure 10), it can be observed that except for a reduction
at higher airspeeds of the arm of the lower thrusters (a1,2), the optimal solution pushes
the radial position of the thrusters to the boundary value. The same happens for the
longitudinal position of the top thruster (c3), which is placed as far back to the tail as
possible. Conversely, the longitudinal position of the two bottom thrusters (c1,2) as well
as the dihedral angle ζ1,2 are significantly changed as functions of the airspeed. This is in
accordance with the behavior of the trim solution (right plot). Interestingly, the optimal
behavior of the tilt angle λ1,2 of the lower thrusters versus the airspeed is such to keep
them basically aligned with the longitudinal body axis. Conversely, the top thruster is
tilted by a significant angle λ3 ≈ −70 deg. This configuration of the tilt angles can be
matched with the control trim values, where it can be noticed that δT1 and δT2 are set to
generally much higher values than δT3 . Qualitatively, it appears that the optimal solution
for layout (A) features two side thrusters mainly responsible for propulsion, and a top
one, put at a significant angle with respect to the airship longitudinal axis, providing pitch
control and little thrust. Another remark concerning the null value of λ1,2 is related to roll
control. As previously stated, a non-null down-tilt of the side thrusters was envisaged for
granting control authority around the roll axis. This does not appear to be required in an
optimal perspective (i.e., when weighting the deviation of p and

∫
p together with that

of other state and control variables), delegating the control around roll axis to roll-yaw
coupling, achieved by means of airship eigendynamics or through the combined action of
the side and top thrusters.

Considering layout (B) (Figure 11), the longitudinal position of the thrusters (c1,2, c3
and c4) is remarkably similar for all of them and far from the bounds, displaying only mild
changes for different airspeeds. A similar behavior is found also in the radii of the lateral
and top thrusters (a1,2, a3), whereas for the bottom thruster the value (a4) is generally lower
and more variable with the airspeed. Again, the side thrusters are set at an almost null
tilt angle λ1,2 ≈ 0 deg, and are associated to a very limited dihedral ζ1,2, i.e., a basically
horizontal mounting for these thrusters. As remarked for layout (A), roll authority is
delegated to the intrinsic roll-yaw coupling and the combined action of top, bottom and
side thrusters. Similarly to layout (A), the top and bottom thrusters are associated with
larger tilt angles λ3 and λ4, albeit more limited here than for layout (A), yet the pushing
action appears more equally distributed among all thrusters at trim.
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Figure 10. Optimal solutions (left) and trim results for optimizations at different airspeeds on
layout (A).

Figure 11. Optimal solutions (left) and trim results for optimizations at different airspeeds on
layout (B).

Finally, concerning layout (C) (Figure 12), the results show an interesting homogeneity
of the bottom (#1, #2) and top thrusters (#3, #4). In particular, the radii (a1,2, a3,4) are very
similar, and slightly increasing towards the upper bound for higher airspeeds. The longi-
tudinal position is moderately changing with respect to the airspeed, and the tilt angles
are such to provide a top-bottom almost-symmetry. Compared to previous layouts, this
one appears more promising in terms of roll control authority, being potentially capable
of making use of direct control. The dihedral angles ζ1,2 and ζ3,4 are remarkably different
for the top and bottom couples, especially for increasing values of the airspeed, and for
the top couple ζ3,4 the corresponding optimal values are changing significantly over the
considered airspeed domain.
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Figure 12. Optimal solutions (left) and trim results for optimizations at different airspeeds on
layout (C).

From a numerical standpoint, checks on the robustness of the solution of the proposed
optimization algorithm (gradient-based) have been performed before consolidating the re-
sults just shown for each configuration (Figures 10–12), in particular perturbing the starting
condition of the optimization process, so as to reduce the chance to converge to possible
local minima. No such issue has emerged however, in accordance with the indications
obtained in the preliminary analysis of the cost function (Figure 9), which, albeit partial,
shows (if any) only one minimum between the boundaries of the cost function domain.

Following the optimal analyses on each trim speed shown above, for each layout an
optimization on the full airspeed domain has been carried out, where for the evaluation
of the cost function in the optimal loop 18 simulations for as many initial conditions are
performed for all 3 reference airspeeds, yielding a total of Ns = 54 simulations per function
evaluation. The result of the corresponding analysis on each configuration is displayed
in terms of the optimal value of the cost function in Figure 13, where these values are
compared to the results of the optimizations carried out on each single trim condition for
each layout (corresponding to the optimal results shown in Figures 10–12).

Two remarks can be proposed on the results in Figure 13. Firstly, considering each
layout singularly, it can be noticed that the value of the cost function is not strongly
dependent on the trim airspeed, and generally similar also for the corresponding global
(i.e., over all airspeeds) optimization as well. This indicates that a single setting of the
geometry may be close to optimal (i.e., slightly sub-optimal) irrespective of the airspeed
regime encountered by the airship, at least considering forward flight (not hover). Secondly,
the optimal values of the cost function achieved with layout (A), (B) and (C) are decreasing
precisely in this order. In view of the structure of the cost function, thoroughly described in
Section 4, this might indicate that an optimal (C)-type layout is more performing than an
optimal (B)-type, and both are better than an optimal (A)-type layout. Of course, from a
design perspective, this potentially relevant result should be weighed with respect to the
adoption of a cost function specifically targeting dynamic performance, and which does
not take into account—for instance—the potentially higher cost of having more thrusters
(as in layouts (B) and (C), compared to (A)).
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Figure 13. Optimal cost function for optimizations at different airspeeds (continuous line), and for
global optimizations on all airspeeds (dash-dotted horizontal line). Red: layout (A). Green: layout (B).
Blue: layout (C).

To better appreciate the features of the optimal configurations, Figure 14 provides
a view of the sizing corresponding to the global optimal solutions for the three layouts,
numerically reported in Table 4.

Table 4. Optimal results from global optimizations, for the three considered layouts.

Layout (A) (B) (C)
ID Param. Value Param. Value Param. Value



a1,2
a3
ζ

c1,2
c3

λ1,2
λ3



2.24 m
2.49 m
13 deg
3.77 m
8.0 m
0 deg
−73 deg



a1,2
a3
a4
ζ

c1,2
c3
c4

λ1,2
λ3
λ4



2.10 m
2.35 m
1.95 m
−1 deg
5.58 m
5.98 m
5.78 m
0 deg
−19 deg
59 deg



a1,2
a3,4
ζ1,2
ζ3,4
c1,2
c3,4
λ1,2
λ3,4



2.48 m
2.48 m
14 deg
20 deg
6.07 m
7.79 m
38 deg
−40 deg
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Figure 14. Geometric configuration resulting from global optimization (i.e., over the airspeed spec-
trum) on each configuration. Top row: layout (A). Mid row: layout (B). Bottom row: layout (C). Left:
three-quarter view. Right: view from the airship left. Length unit: meters.

6. Conclusions

In this paper, we have studied and compared different configurations for thrust-based
control on an airship. The major conceptual driver behind this interest, as an alternative
to other forms of control (including thrust vectoring, currently deployed on some flying
airships) is in the chance to increase design simplicity and reliability, by reducing the
number of moving parts and actuators on-board.

The selected geometric arrangement of the airship is standard, and quantitative com-
putations are based on an existing airship (i.e., the Lotte experimental airship [22,23]) as
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a baseline. However, with respect to the real airship, a virtual model lacking the control
degrees of freedom on the horizontal and vertical tail, as well as the propulsion unit,
has been synthesized and implemented. Control and propulsion have been delegated to
thrusters, placed according to three possible layouts—of which one is a three-thrusters
configuration, and the other two feature four thrusters. The latter have been shortlisted
based on simplicity and cost minimization criteria, on the one hand, and control authority
considerations on the other.

In view of prolonged, unmanned and autonomous flight missions, stability augmenta-
tion systems (SASs) have been designed for the proposed configurations, making use of
rotational rate components as measures. Control systems have been designed for longi-
tudinal and lateral-directional dynamics, deploying a proportional-integral control law,
producing stabilizing values of the thrust settings for the thrusters.

In trying to separate the effect of layouts on dynamic performance from the effect of
control on the same performance indices, care has been taken to reduce the set of gains
to be tuned and to express the gain matrices for the SAS of all layouts as a function of a
minimal, cross-layout set.

The very value of the gains has been selected based on an articulated trial and error
procedure, where the eigenanalysis of the free and artificially stabilized systems, computed
on linearized representations of the decoupled longitudinal and lateral-directional dynam-
ics, have been compared, and also time-marching simulations have been carried out on the
complete non-linear model of the airship, to further check the intensity (and therefore the
realism) of the control action and state oscillations. The gain synthesis has been based on
acceptable stabilization results obtained from the same minimal set of gains applied to all
three layouts. The tuning process has turned out to be little time-consuming, bearing good
results (i.e., stabilization and dampening of oscillations, at the price of a moderate control
action), which tends to support the goodness of the proposed SAS structure.

Having assigned the gain matrices, the focus has been put on the definition of the
geometry of the proposed layouts. In order to evaluate the performance on dynamics,
an emended form of the classical state vs. control energy functional has been prepared. This
cost function is intended to be computed from a set of dynamic simulations carried out on
the non-linear system starting from a trimmed forward-flight condition, and corresponding
to a variety of perturbed initial conditions. However, the cost function should not be
touched by the specific settings of the simulation scenario, including obviously the number
of simulations, as well as the number of thrusters in the layout—a crucial feature of the
cost function, if a cross-layout comparison is of interest.

For each layout, a set of geometric variables capable of completely assigning the
geometry has been defined. After showing that the proposed cost function is regular with
respect to the geometric quantities selected as parameters, an optimal analysis has been
carried out.

Firstly, each configuration has been optimized for three different airspeeds, spanning
between the typical operational limits of the original testbed. Results from this trials
show quite invariably for the three-thrusters layout (A) the need to markedly tilt the
thruster in the plane of symmetry, while leaving the other two basically aligned with the
longitudinal axis. The former thruster is, therefore, employed similarly to the elevator on
the tail, whereas the other two mostly take the role of the only thruster on the original
testbed, providing propulsion, plus achieving lateral-directional control. A similar result
is obtained for the four-thrusters layout (B), where the bottom thruster is again markedly
tilted with respect to the longitudinal axis of the airship, whereas the top thruster is more
mildly tilted, and contributes more intensely to propulsion in trim. The last four-thrusters
layout (C) bears a symmetrical tilting of the thrusters, yet they are not positioned at the
same longitudinal station when moving significantly faster than hover—a likely effect of
an optimal compensation of gravity moment by means of aerodynamic and thrust forces.

Finally, a global optimization of each layout, based on simulations carried out at
different trim speeds, has produced corresponding sizing solutions. A comparison of the
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outcome of the performance of the layouts, according to the selected cost function, has
been presented, bearing as a result an apparent performance hierarchy, where layout (A),
(B), and (C) perform better with respect to one another in the cited order. This tends
to suggest that—from a standpoint of dynamic performance, in the sense associated to
the definition of the considered cost function—layout (C) is the most recommendable. It
also features the slightest sensibility with respect to the trim speed, when considering
airspeed-bound optimizations.

Besides producing interesting quantitative results, the proposed approach allows
driving the design of the configuration following dynamic performance considerations,
deploying a highly automatable algorithm, which may be of interest for speeding up the
preliminary design phase. Clearly, the same procedure could be emended to carry out
computations in more scenarios of special interests, e.g., including specific simulations of
disturbances to initial conditions or induced by the pilot, or at different altitudes.

Of course, when finalizing the sizing of in a preliminary design, specific gains may
be chosen to further increase dynamic performance, resulting from a finer tuning process.
However, considering the standpoint adopted in this paper, where a quantitative com-
parison among configurations is in the focus, it was felt that the proposed approach could
produce results of stronger value and easier to understand.
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Appendix A. Matrices of the Linearized System
As pointed out in Section 5.1, linearized systems have been deployed to carry out the

eigenanalysis of the airship dynamics for the decoupled longitudinal and lateral-directional
dynamic equilibria. Based on the proposed formulation for the non-linear dynamic equa-
tions, decoupled linearized systems can be obtained around a symmetric, steady, horizontal
trimmed flight condition. Considering the state arrays xL = {U, W, q, ϑ} for longitudinal
dynamics and xD = {V, p, r, ϕ, ψ}T for lateral-directional dynamics, the corresponding
linearized dynamic equations can be written in the form ML∆ẋL + GL∆xL = UL∆uL and
MD∆ẋD + GD∆xD = UD∆uD. Here, uL and uD are control arrays, which are composed of
either three or four scalars δTi , as described in the body of the text (Section 2.1), depending
on the considered layout. The linearized equations of motion are based on the following
matrices for longitudinal dynamics:

ML =


m + ρVk1 0 mrCG3 0

0 m + ρVk3 −mrCG1 0
mrCG3 −mrCG1 JCBy (1 + ρk′) 0

0 0 0 1

 (A1)

GL = −


XU XW Xq −mW0 (ρV −m)g cos ϑ0
ZU ZW Zq + mU0 (ρV −m)g sin ϑ0

MCBU MCBW MCBq −mU0rCG1 −mW0rCG3 mg(rCG1 sin ϑ0 − rCG3 cos ϑ0)

0 0 1 0

 (A2)

UL =


XδT1

XδT2
XδT3

XδT4

ZδT1
ZδT2

ZδT3
ZδT4

MCBδT1
MCBδT2

MCBδT3
MCBδT4

0 0 0 0

, (A3)
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where in Equation (A3), four scalar inputs have been considered. For a three-thruster
layout, the last column would be simply removed.

For lateral-directional dynamics, the following matrices hold.

MD =


m + ρVk2 −mrCG3 mrCG1 0 0
−mrCG3 JCBx JCBxz 0 0
mrCG1 JCBxz JCBz (1 + ρk′) 0 0

0 0 0 1 0
0 0 0 0 1

 (A4)

GD = −


YV Yp + mW0 Yr −mU0 −(ρV −m)g cos(ϑ0) 0
0 LCBp −mW0rCG3 mU0rCG3 −mgrCG3 cos ϑ0 0

NCBV mW0rCG1 NCBr −mU0rCG1 mgrCG1 cos ϑ0 0
0 1 tan ϑ0 tan ϑ0q0 0
0 0 1/ cos ϑ0 q0/ cos ϑ0 0

 (A5)

UD =


YδT1

YδT2
YδT3

YδT4

LCBδT1
LCBδT2

LCBδT3
LCBδT4

NCBδT1
NCBδT2

NCBδT3
NCBδT4

0 0 0 0
0 0 0 0

. (A6)

Similarly to Equation (A3), Equation (A6) has been written accounting for four scalar inputs.
By defining the state matrices AL = −M−1

L GL, AD = −M−1
D GD, it is possible

to readily perform the eigenanalysis of the free system, for which ∆ẋL = AL∆xL and
∆ẋD = AD∆xD.

In order to carry out an eigenanalysis on the artificially stabilized system, due to
the nature of the proposed SAS controllers, which are based on proportional and integral
signals, it is necessary to augment the state array with the corresponding integral signals,
yielding x̃L =

{
xT

L ,
∫

q
}T and x̃D =

{
xT

D,
∫

p,
∫

r
}T . Correspondingly, the state matrices

can be augmented as follows.

ÃL =

 AL

0
0
0
0

0 0 1 0 0

, ÃD =


AD

0 0
0 0
0 0
0 0
0 0

0 1 0 0 0
0 0 1 0 0

0 0
0 0


. (A7)

Further defining BL = −M−1
L UL and BD = −M−1

D UD for the original systems
(i.e., without accounting for integral states), for the augmented state, it is possible to
introduce the following forms:

B̃L =

[
BL

0 0 0 0

]
, B̃D =

 BD
0 0 0 0
0 0 0 0

, (A8)

where in Equation (A8) the last rows of zeroes would be of three elements for a three-
thrusters layout. By applying the control laws in Equation (10) in this framework, the free
dynamics of the artificially stabilized system are obtained, as ∆ ˙̃xL = (ÃL + B̃LKL)∆x̃L and
∆ ˙̃xD = (ÃD + B̃DKD)∆x̃D. The latter expressions can be employed for the eigenanalysis of
the corresponding systems.
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