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Abstract— This contribution presents a comprehensive
methodology for the real-time estimation of the rain intensity
from downlink satellite signals. The enhanced system leverages
on extremely randomized tree classifiers to automatically
perform rainfall detection along earth–satellite links and
successively employs an improved procedure to determine the
corresponding slant-path rain attenuation. The latter quantity
is then exploited to yield real-time rainfall rate estimates
with a 1-min time resolution. The accuracy of the proposed
methodology is tested using the Ka- and Q-band propagation
data, collected in two different sites (Milan and Madrid) and
in the framework of the propagation experiments. The results
demonstrate the reliability of the automated rain event detector,
as well as a satisfactory accuracy in estimating the slant-path
rain attenuation and the point rainfall rate. The accuracy
is assessed both on a statistical and on an instantaneous
basis through the evaluation of different error figures and by
inspection of individual time series.

Index Terms— Rainfall prediction, remote sensing, satel-
lite communications, supervised machine learning, tropospheric
effects.

I. INTRODUCTION

IN RECENT years, satellite communication systems oper-
ating at Ka-band and above have experienced an increased

interest by operators and researchers [1]. Some of the latest
technological developments, such as the deployment of the
fifth-generation standard for cellular networks on a commer-
cial scale, point toward a future evolution of mobile satellite
systems, which will be likely integrated with fixed terrestrial
networks [2]. However, the quality of earth-space communi-
cations operating at frequencies higher than 10 GHz, such as
Ka-band, can be severely impaired by the effects induced by
atmospheric constituents, such as hydrometeors, gases, and
clouds: among these, the most relevant contribution to the
attenuation at Ka- and Q-bands is given by rain [3]–[5].

In such a context, the knowledge of long-term rainfall
statistics and (more importantly) of the instantaneous rain rate
in a given location, assumes particular importance, since it
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represents a fundamental requirement to apply fade mitigation
techniques: for instance, high-throughput satellite systems
make use of adaptive power control to ensure dynamic alloca-
tion of resources and guarantee the desired quality of service
[6]. Among the different methodologies to estimate the rainfall
intensity, the exploitation of earth-satellite links represents a
real-time cheap and valuable solution, especially considering
the high density of the receivers deployed worldwide [7].
As explained in [7] and [8], alternative methods or measure-
ment instrumentation [9], [10] (e.g., networks of rain gauges,
weather radars, microwave links, satellite infrared imagery,
etc.) are each affected by technical drawbacks [11] which
limit their context of application: for instance, rain gauges
offer inadequate coverage over wide areas, whereas remote-
sensing-based approaches are limited in spatial and temporal
resolutions.

The approach presented here extends the methodology
aimed at estimating rainfall rate using satellite signals [8]
by proposing a real-time, fully operational implementation
of such an approach, able to provide rain rate predictions
with 1-min time resolution. The enhancements offered by
the updated system include a data-driven rain event detector,
able to automatically identify the presence of rain events
along the earth-satellite link, and an improved procedure to
estimate rain attenuation from the received satellite signal,
which makes the rain rate prediction fully automated and thus
applicable in real-time using any equipment receiving signals
transmitted from a satellite operating at Ku-band or above.
The methods currently available in [12]–[16] offer elaborate
solutions either for the identification of rain events or for the
estimation of the rainfall intensity from the received power,
while the proposed model covers effectively both aspects: the
identification of rain events is achieved by an accurate machine
learning technique, and the rain rate prediction relies on a
model underpinned by sound physical concepts (e.g., path
reduction factors—accounting for the spatial inhomogeneity
of precipitation along the link, the dependence of the rain
height on the season, and the different impact of stratiform
and convective events [8]). Finally, while the other methods
are devised and tested using quite limited datasets (mostly
collected in a single site), the proposed model is tested against
a full year of measurements and its performance appears to
be independent of frequency and site, as shown by the tests
performed on two distinct geographical locations (Milan, Italy,
and Madrid, Spain) and at different operational frequencies
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(Ka- and Q-bands). All these features offer a reliable, accurate,
and robust real-time method for the prediction of rain rates
from satellite signals.

The remainder of this article is organized as follows.
Section II describes the experimental setup and datasets used
in this work, followed by the data processing and prepa-
ration phases. Section III presents the characteristics of the
proposed real-time rainfall estimation method. Section IV
is devoted to assessing system performance and reliability.
Finally, Section V draws some conclusions.

II. EXPERIMENTAL SETUP, DATASETS,
AND DATA PREPROCESSING

A. Experimental Setup and Datasets

The data used in this work have been collected for an
entire year in the framework of the Alphasat Aldo Paraboni
propagation experiment [17], from January 1 to December
31 2017. The Alphasat propagation payload is composed of
two continuous-wave coherent beacon transmitters at 19 701
GHz (Ka-band) and 39 402 GHz (Q-band), with frequency
stability of 3 parts per million (ppm). The payload includes
standard Ka-band beacon transmitters, Q-band solid-state
power amplifiers, a Ka-band low-pass filter, and two separate
horn antennas for Ka- and Q-bands. The effective isotropic
radiated power is about 19.9 and 26.8 dBW at Ka- and
Q-bands, respectively [18].

The experimental measurements have been obtained from
the instrumentation installed at Politecnico di Milano, Milan
[19] (latitude 45.48◦N, longitude 9.23◦E, and an altitude above
the mean sea level of 137 m) and at Universidad Politécnica
de Madrid, Madrid (40.45◦N, 3.73◦W, and an altitude above
mean sea level of 680 m).

The equipment located in Milan consists in: two beacon
receivers (Ka-band at 19.701 GHz and Q-band at 39.402
GHz), each recording at 8 Hz the power levels of Ka- and
Q-band signals transmitted by the Alphasat satellite (geo-
stationary orbit at 25◦E); a Thies Clima Laser Precipitation
Monitor, which is an optical disdrometer providing point
rain rate measurements with a sampling interval of 1 min.
The instrumentation installed in Madrid, instead, comprises
a Ka-band beacon receiver, which captures the signal from
the geostationary satellite KA-SAT (located at 9◦E, frequency
of 19.68 GHz, EIRP equal to 15 dBW) and a Thies Clima
optical disdrometer and rain gauge for rainfall rate measuring
with 1-min integration time. The Ka-band receiver is reused
from a previous experiment and is described in [20]. The
experimental datasets employed in this work are summarized
in Table I. They include all the physical quantities previously
mentioned and are completed, both for Milan and Madrid,
by: 0◦ isotherm height time series, extracted every hour from
vertical temperature profiles provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF); Ka-band
rain attenuation time series, manually derived from the power
levels recorded by the Ka-band beacon receivers (using the
well-established procedure described in [21]).

TABLE I

EXPERIMENTAL DATASETS

B. Data Preprocessing

This section illustrates how to process the raw data listed in
Table I, which are required as input to the automated rain event
detector and to the rainfall estimation procedure presented
in [8]. As previously discussed in Section II-A, such signals
originate from different domains, so they need to be standard-
ized before being effectively employable in the aforementioned
algorithms: this results in a set of common operations to be
performed for each of these physical quantities. In addition,
certain elements of the dataset require dedicated processing
for different reasons, each of which will be clarified later on
in this section.

First, it is necessary to unify all the data to the same
sampling rate. Since the goal is to provide rain rate estimates
with a 1-min time resolution, it was decided to resample all the
signals with a measurement frequency fs of 1 sample/min: as a
result, the received power and measured attenuation time series
collected in Milan have been averaged over non-overlapping
windows of 480 samples; similarly, the size of the averaging
window employed to decimate Madrid’s propagation data
is equal to 1127 samples. Reducing the sampling rate also
allows to filter out atmospheric scintillations, which produce
undesired, rapid amplitude variations on the received power
and rain attenuation time series [21], [8]: as a matter of fact,
this operation can be seen as a low-pass filter applied to
each of the aforementioned signals with a cutoff frequency
of approximately 0.008 Hz (the bandwidth B of a signal
sampled at frequency fs is equal to fs/2, thus B = 1/(2 ×
60) ≈ 0.008 Hz), a value within the range (0.001–1 Hz) rec-
ommended by the International Telecommunication Union –
Radiocommunication Sector (ITU-R) [22].

The isotherm height values, instead, have been oversampled
by an integer factor equal to 60. As a result, each of the
quantities listed in Table I can therefore be seen as an
m × 1 column vector, where m = 525 600.

Another element of disturbance that degrades the quality
of received power signals is represented by low-frequency
amplitude fluctuations due to day/night temperature variations
affecting the gain of the beacon receiver chain. The magnitude
of such oscillations can reach up to 20% of the average
signal level and needs to be removed for the proper automatic
identification of rain events. For this reason, we have decided
to generate high-pass versions of the previously filtered power
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Fig. 1. Raw (top), low-pass (middle), and bandpass (bottom) filtered versions
of the received power in Milan (Ka-band), between May 30, 2017, and
June 2, 2017.

time series and those will be employed in the data-driven rain
event detector. We have therefore applied a causal high-pass
finite impulse response (FIR) filter, designed using a Kaiser
window. The filter is characterized by 8315 coefficients, a stop-
band attenuation of 60 dB and a passband ripple of 0.1 dB.
The cutoff frequency has been set to approximately 46.3 μHz,
thus attenuating signal components having a period longer than
6 h. As an example, Fig. 1 shows the trend of received power
in Milan between May 30 and June 2, 2017 (Ka-band). The
topmost plot represents the raw received power signal, the
middle one corresponds to its low-pass version (PR,LP, which
will be used to estimate rain attenuation), whereas the bottom
one (PR,BP, given as input to the rain detector) is equivalent to
a bandpass filtered version of the original power signal, having
passband frequency range between 46.3 μHz and 0.008 Hz.

Last, one needs to rule out, for each of the two locations,
all the instances in which at least a piece of equipment was
not operational or provided faulty measurements (e.g., due to
power supply failures). This resulted in a size reduction of
each processed signal from m = 525 600 to m = 409 943
(Milan) and m = 513 369 (Madrid) samples, respectively.

As further explained in Section III-B, the real-time rain-
fall estimation method proposed in this work includes an
intermediate step devoted to deriving the rain attenuation
AR from the received signal. On the other hand, AR can
also be obtained by using the customary approach explained
in [21]: when there is no need for real-time estimates, the
received beacon power PR is first low-pass-filtered to remove
scintillations (e.g., obtaining a signal similar to PR,LP) and
afterward rain events are identified, usually both by taking
advantage of the local rain sensors and by inspecting the trend
of PR,LP: indeed, the impact of rain on the link might be
longer than what is recorded by the disdrometer, especially
at the beginning and/or the end of the event. Finally, AR

is calculated by subtracting from PR,LP the power level or
baseline level that is estimated as the linear interpolation of
PR,LP from just before the beginning to just after the end of
each event. The AR data obtained by means of this approach,
hereinafter to be referred to as “measured rain attenuation,”
will be used as the reference to assess the accuracy of the AR

values obtained using the real-time approach proposed in this
work.

III. REAL-TIME RAINFALL ESTIMATION METHOD

As stated in Section I, the primary goal of this research
consists in developing an automated procedure to detect in
real-time the presence of rain events in a given location
and, in the affirmative case, determine the intensity of the
precipitation. The entire estimation procedure consists of three
main steps, which are thoroughly described in this section:
rain event detection, rain attenuation assessment, and rain rate
estimation.

A. Data-Driven Rain Event Detector

To perform the detection task, we have trained an extremely
randomized trees classifier (ERTC) [23], which is a supervised,
data-driven meta-estimator able to automatically assess the
presence of rain by analyzing in real-time certain charac-
teristics (features) of a given input signal, such as the one
reported in Fig. 1 (bottom). ERTCs share the same working
principle of standard decision tree classifiers (DTCs), in which
a machine is trained to predict two or more discrete categories
(e.g., rain/no rain) based on a set of simple and intuitive
decision rules [24], which are directly derived from the input
features.

Implementing an ERTC can be more advantageous, com-
pared to a DTC, for a number of reasons. First of all, ERTCs
do not exhibit the high-variance issues affecting DTCs [25],
which are usually associated to overfitting a model to the data:
in ERTCs, the variance is in fact reduced by averaging the
estimates provided by several DTCs; second, they do not favor
features having high cardinality (namely, with several unique
values) [26], which may become problematic when computing
statistical indicators from continuous random variables; last,
they also provide information, by means of relative rank
assessment, on which features contribute the most to the final
prediction [26].

We summarize here the main parameters of the ERTC, along
with the corresponding values chosen in this work.

1) Number of estimators, ntrees = 100 : It determines the
number of trees in the random forest. Larger values of this
quantity (e.g., >25) increase the accuracy of the algorithm
(e.g., greater averaging power), at the expense of increased
computational times. It should be noted that the performance
gain tends to saturate after a certain threshold (e.g., >100) and
therefore the results do not improve significantly.

2) Criterion split: It defines the rule employed to measure
the quality of a tree node split. We have chosen Gini impu-
rity [27], which measures the likelihood of misclassifying an
observation of a random process.

3) Maximum number of features, Nmax = 68: It corresponds
to the number of random features to consider when splitting
each tree node. Lower values lead to a model with high bias
and more robustness to variance; increasing Nmax allows the
ERTC to choose among a larger pool of the best features to
evaluate at each node split.

As mentioned at the beginning of Section III-A, the pro-
posed rain event detector belongs to the category of supervised
binary classifiers, so it requires as input a vector of reference
truth labels, y: the latter corresponds to a set of manually
tagged instances indicating the true class to be predicted



2508010 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

(e.g., rain/no rain). Categorical labels, such as the ones con-
sidered here, can be numerically represented by means of
one-hot encoding: being y[k] the kth value of y, one can
set y[k] = 1 in the case of rain and y[k] = 0 otherwise.
To perform such a task, we have made use of the available rain
attenuation measurements AR: rain is said to occur whenever
any given value AR[k] of vector AR is higher than zero. This
condition can be formally expressed as

y[k] =
{

1, AR[k] > 0

0, AR[k] = 0.
(1)

The above-mentioned process was executed to derive two
vectors of reference truth labels, one for the site of Milan and
another for that of Madrid.

Besides a target vector y, the rain event detector requires an
m × N feature matrix X as input, where N corresponds to the
number of evaluated features. Such a matrix encompasses a set
of statistical indicators, computed from the bandpass versions
of the received power signals described in Section II-B: to
this purpose, we have evaluated four moving statistics (mean,
standard deviation, minimum, and maximum), each over 17
different and causal time windows ranging from 5 min up to
6 h. Such timeframes have been carefully designed to include
various intervals encompassing different types of rain events
(e.g., sudden storms, long and light rainfall, etc.). The upper
bound has been set to 6 h because, as seen in the preprocessing
part of Section II-B, signal components having a period longer
than 6 h have been removed by means of a high-pass filter. The
lower bound, instead, was determined as a tradeoff between
the temporal resolution of the available measurements and a
reasonably large enough time window to evaluate the selected
statistics.

As a result, each input power sample x[k] is transformed
into a row feature vector xk having dimensions equal to 1×N ,
where N = 68. Moreover, the feature matrix is standardized
using Z-score normalization, where each column of X is
transformed to remove its mean value and have unit variance.
Considering an m × N feature matrix X , the normalized
m × 1 vector x′

n corresponding to the nth feature is computed
as

x′
n = 1

σn
(xn − μn) (2)

where the m × 1 vector xn refers to the nth column of X ,
characterized by mean μn, and has variance equal to σn .

Last, the process of feature evaluation and normalization is
repeated both for the Ka- and Q-band power signals collected
in Milan and for the Ka-band data measured in Madrid,
ultimately attaining three distinct feature matrices.

The ERTC was trained using 80% of the available
Q-band data. It has instead been tested with the remaining
20%, together with the entire Ka-band datasets (Milan and
Madrid). An example of the real-time output provided every
minute by the binary classifier is displayed in Fig. 2: the
labels predicted for a rain event that occurred on June 28,
2017, using Milan, the Ka-band data (lowermost plot) can
be visually compared to the true values (middle plot), which
have been directly obtained from the available rain attenuation

Fig. 2. From top to bottom: measured Ka-band rain attenuation, true labels,
and predicted labels on June 28, 2017, in Milan, using the Ka-band data.

measurements (blue curve on the topmost graph) by manual
inspection.

B. Rain Attenuation Estimation

Once rain events are identified using the algorithm discussed
in Section III-A, slant-path rain attenuation can be estimated
by evaluating the difference between a fixed quantity P̂R,LP

and the low-pass version of the received power signal, PR,LP.
P̂R,LP corresponds to the baseline level of PR,LP in clear sky
conditions, namely in the absence of rain; it is defined as the
mean value of PR,LP, computed over a time window of K
minutes before the beginning of a rain event occurring at a
particular time k̄

P̂R,LP = 1

K

K∑
i=1

PR,LP[k̄ − i ] [dBm]. (3)

After deriving P̂R,LP for a specific event, the instantaneous
rain attenuation ÂR[k] for that event can be estimated as

ÂR[k] = P̂R,LP − PR,LP[k] [dB]. (4)

To determine the best value of K , we have investigated the
trend of the root mean square (RMS) value of the estimation
error ε AR , defined as the difference between ÂR and the
available rain attenuation measurements AR, as a function
of K . Such an operation, performed for the site of Milan,
is displayed in Fig. 3, where RMS{ε AR } is plotted as a function
of the window length K . We have opted for K = 8 as the
first value guaranteeing the following: first, it is desirable to
minimize the RMS value of the estimation error; second, the
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Fig. 3. RMS values of the error ε AR on the estimated rain attenuation, as a
function of the window length K , for the site of Milan (dotted line).

Fig. 4. From top to bottom: received power (black line), estimated
baseline (magenta line), measured (blue line), and estimated (green line) rain
attenuation on June 28, 2017, in Milan (Ka-band).

time window cannot be too small (e.g., <5 min), otherwise
P̂R,LP would be susceptible to short-term signal variations;
last, larger values of K should be avoided (e.g., >10 min),
since certain types of rain events (e.g., convective) can occur in
rapid succession and require a quick estimation of the baseline
power level. Although the values of K = 9 and 10 provide a
marginally lower RMS value (compared to K = 8), they do
not offer a significant gain (less than 0.01 dB) and they are
progressively closer to the upper bound of 10 min, which is
not desirable.

As an example, Fig. 4 displays the trend of the received
power (Ka-band) in Milan on June 28, 2017 (topmost plot,
black line), along with the estimated baseline level P̂R,LP

(magenta line). The bottom graph depicts the temporal evolu-
tion of the measured (blue line) and of the estimated (green
line) rain attenuation. The entire estimation process proves to
be satisfactory both from a statistical (low RMS{ε AR }) and an
instantaneous point of view (good agreement of the curves for
individual events).

Last, once rain attenuation is estimated, the rain rate can be
computed using the procedure described in [8].

C. Full Procedure for Real-Time Prediction of the Rain Rate

This section summarizes the full procedure for the real-
time prediction of the rain rate, which is applied only to the
Ka-band data. Indeed, the dynamic range of the Q-band

receiver in Milan is around 35 dB, which limits the
rain rate retrieval roughly to 50 mm/h; on the contrary,
at Ka-band, using the same dynamic range, rain rates higher
than 100 mm/h can be estimated [8]. Based on these results,
it is recommended to exploit satellite signals at Ka-band: not
only they are much more available nowadays (if compared to
higher frequency bands), but, in addition, the same receiver
dynamic range will obviously allow increasing the maximum
rain rate value that can be measured; finally, at Q- and
V -bands, cloud attenuation increases as well, which might
affect to some extent the rain rate retrieval.

The full procedure to estimate the rain rate consists in the
following steps:

1) measure the instantaneous received beacon power,
PR,LP[k];

2) using the bandpass-filtered power PR,BP[k], compute the
corresponding feature vector x and standardize it using
Z-score normalization;

3) evaluate the output ŷ[k] provided by feeding the ERTC
with x as input;

4) if ŷ[k] = 0,

a) P̂R,LP = PR,LP[k];
else if ŷ[k] = 1 and ŷ[k − 1] = 0,

b) Compute the baseline level P̂R,LP using (3);
Otherwise,

c) A rain event is occurring and P̂R,LP has already
been computed at a previous time step;

5) Estimate ÂR[k] using P̂R,LP and the low-pass filtered
power PR,LP[k] in (4);

6) If ÂR[k] > 0,

d) Obtain the value of the 0◦ isotherm height at time
k, h[k];

e) Estimate R̂[k] providing ÂR[k] and h[k] as input
to the algorithm described in [8];

Otherwise,

f) R̂[k] = 0.

Step 6) above relies on the inversion model proposed in [8],
to which the reader is addressed for more details. Here, it will
suffice to briefly recall that such a methodology aims at esti-
mating the point rain rate from the rain attenuation affecting an
earth-space path by using a closed-form analytical expression
derived from the inversion of the rain attenuation model
adopted by the ITU-R in recommendation P.618-13 [28].
The prediction model also accounts for the diverse effects
of stratiform and convective events on the link: the former,
typically of limited intensity and long duration, is associated
with the presence of the bright band, which is accounted for
through an additional equivalent rain height; the latter, much
more intense and localized in space and time, shows a much
higher rain height (due to convective updrafts and downdrafts
pushing hydrometeors well above the 0 ◦C isotherm height),
modeled by means of a rain height enhancement factor, in turn
dependent on the local convectivity ratio β [8].
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TABLE II

PERFORMANCE OF THE RAIN EVENT DETECTOR
(EXPRESSED IN PERCENTAGE)

IV. PERFORMANCE EVALUATION

A. Prediction Accuracy of the ERTC

To assess the prediction accuracy of the rain event detector,
we consider the typical metrics used in statistical analysis of
binary classification, which correspond to precision P , recall
R, and F1 score [29], [30]. Such indicators all range between
0 and 1; an ideal estimator achieves a score equal to 1 for
each one of those quantities, which are, respectively, defined
as

P = Tp

Tp + Fp
(5)

R = Tp

Tp + Fn
(6)

F1 = 2
PR

P + R (7)

where Tp, Fp , and Fn are the number of true positives,
false positives, and false negatives, respectively, computed
by comparing the output ŷ provided by the ERTC with the
ground-truth labels y. Table II reports the results obtained
using three different test sets, which correspond to the
Q- and Ka-band data collected in Milan, along with the
Ka-band measurements obtained in Madrid. This threefold
subdivision has multiple purposes: first, evaluate the model
capabilities on data belonging to the same distribution of
the training set (Q-band, Milan); successively, test measure-
ments collected at a different frequency (Ka-band, Milan);
finally, introduce also a change in the geographical location
(Ka-band, Madrid). For a more comprehensive comparison,
it was decided to assess separately the classification perfor-
mance achieved on the two cases “rain” and “no rain,” since
the latter class contains a much larger number of samples (with
respect to the former) and is an easier instance to be correctly
detected, so it might hinder the true results.

As it can be observed from Table II, the performance of
the ERTC proves to be satisfactory, as the overall prediction
accuracy is above 91% for all the instances and metrics
considered.

B. Comparison of the ERTC With Other Models

After verifying the reliability of the ERTC in detecting
rain events, it is useful to compare its performance against
other supervised classifiers. The literature is very prolific in
this sense, as there are many machine learning algorithms

TABLE III

COMPARISON OF DIFFERENT MODELS ON THE Q-BAND
MILAN DATASET, NO RAIN CLASS

available, offering very basic solutions, as well as much more
complex ones, such deep neural networks; including them
all would go beyond the scope of this work, and therefore
we have restricted our choice to a subset. We recall that
our main research goal is to propose a complete rainfall
estimation procedure that can be easily deployed on low-
cost processing architectures, and therefore the candidate rain
detection algorithms must concurrently satisfy the following
requirements:

1) Ease of implementation.
2) Low computational complexity.
Following this choice, we have compared the ERTC with its

two closest counterparts, namely the DTC [24] and the random
forest classifier (RFC) [26], along with other solutions, such
as: the AdaBoost (ADA) algorithm [31]; k-nearest neighbors
(KNNs) [32]; quadratic discriminant analysis (QDA) [33]; and
support vector machines (SVMs) [34]. For each instance and
test set reported in Table II, we have evaluated the values of
P , R, and F1, resulting thus in a set of six different tables
(see Tables III–VIII). Moreover, we have highlighted in every
table the maximum value achieved in the three aforementioned
metrics, along with the best model in a given combination
of instance and test set: recalling that F1 is a function of
both P and R, a model is declared as a winner whenever its
F1 score is greater than all the other candidates. As it can
be inferred from Tables III–V, the performance in correctly
predicting the no rain class is fairly similar across all models
and test sets. Significant discrepancies instead occur during the
rain detection instance (e.g., Tables VI–VIII), and it becomes
clear that in such circumstances all the models but the ERTC
fail to generalize well enough and show unequivocal signs of
overfitting to Q-band, the Milan training set.

C. Estimation Accuracy of the Rain Attenuation

As a third step, it is necessary to assess the reliability
of the rain attenuation estimation obtained by adopting the
procedure described in Section III-B. To this aim, we have
evaluated the mean E , standard deviation σ , and RMS values
of ε AR for both locations, using a window length K equal
to 8 min. The results are reported in Table IX and reveal,
in both cases, an approximately unbiased estimation error with
an RMS value of 0.265 and 0.273 dB, respectively, for Milan
and Madrid.
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TABLE IV

COMPARISON OF DIFFERENT MODELS ON THE Ka-BAND
MILAN DATASET, NO RAIN CLASS

TABLE V

COMPARISON OF DIFFERENT MODELS ON THE Ka-BAND

MADRID DATASET, NO RAIN CLASS

TABLE VI

COMPARISON OF DIFFERENT MODELS ON THE Q-BAND

MILAN DATASET, RAIN CLASS

TABLE VII

COMPARISON OF DIFFERENT MODELS ON THE
Ka-BAND MILAN DATASET, RAIN CLASS

D. Estimation Accuracy of the Rain Rate

Last, it is worth verifying the accuracy of rain rate pre-
dictions obtained using ÂR (Ka-band) as input to the method

TABLE VIII

COMPARISON OF DIFFERENT MODELS ON THE
Ka-BAND MADRID DATASET, RAIN CLASS

TABLE IX

ESTIMATION ERROR ON RAIN ATTENUATION

Fig. 5. Annual rain rate CCDF for Milan (predictions using the Ka-band
data).

Fig. 6. Annual rain rate CCDF for Madrid (predictions using the Ka-band
data).

discussed in [8] and recalled in Section III-C, both from a
statistical and an instantaneous point of view (time series).
The estimated rain rate will be compared with that measured
by the disdrometer.

We have evaluated, for both sites, the annual comple-
mentary cumulative distribution functions (CCDFs) of rain
rate F̄(R), which are displayed in Figs. 5 (Milan) and



2508010 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022

TABLE X

ESTIMATION ERROR STATISTICS FOR ALL RAIN EVENTS
OCCURRED IN MILAN IN 2017

TABLE XI

ESTIMATION ERROR STATISTICS FOR ALL RAIN EVENTS
OCCURRED IN MADRID IN 2017

6 (Madrid). We have also considered, for every event, the mean
E and RMS values of the estimation errors εRT , εRM , and
ε R̄ , respectively, calculated on the total accumulated rainfall
RT , maximum rain rate RM , and mean rain rate R̄: all the
aforementioned error figures are defined as the difference
between the estimates and the measurements obtained from the
disdrometer. Tables X and XI report the mean and RMS values
of such errors, respectively, corresponding to the locations
of Milan and Madrid. The results obtained so far are quite
satisfactory, as the annual CCDFs of the estimates obtained
from ÂR (green lines) show good agreement with the ones
obtained from AR (blue curves) and with the reference mea-
surements (red lines). In addition, the error figures obtained
when using ÂR as input to the rain rate prediction model
presented in [8] are very similar to the results previously
obtained by employing AR. This level of consistency is
verified in both sites and is additionally confirmed when
inspecting the trend of individual time series: as a reference,
Figs. 7 and 8 show the evolution of the rain rate [see
Fig. 7 (top)] and accumulated rainfall [see Fig. 7 (bottom)] in
Milan on September 10, 2017, and in Madrid on July 7, 2017,
respectively. In both cases, the rain rate predictions produced
by the new estimation procedure (green curves) are in line
with the previous results (blue curves) and are typically in
advance of few minutes with respect to the measurements (red
lines). The latter aspect becomes particularly advantageous
when exploiting rain rate predictions to promptly raise early
alerts of incoming rainstorms. Indeed, though the proposed
rain rate estimation model predicts the point rain rate at the
receiver site (as it includes path reduction factors to consider
the spatial distribution of the rain rate along the path [8]), any
rain attenuation value affecting the link (i.e., any precipitation
along the path) will produce a rain estimate. Point rainfall rain
sensors (e.g., disdrometer), instead, provide information only
on the precipitation affecting a specific site. The estimation
accuracy reported in Tables X and XI for Milan and Madrid
is similar, which seems to indicate that the method does not
present performance differences for the climates the two sites
are subject to. Finally, comparison of Fig. 7 (reporting an event
lasting almost a full day) and Fig. 8 (showing shorter events)
suggests that the estimation accuracy of the proposed model

Fig. 7. Rain rate (top) and accumulated rainfall (bottom) in Milan on
September 10, 2017.

Fig. 8. Rain rate (top) and accumulated rainfall (bottom) in Madrid on July 7,
2017.

does not depend on the duration of the precipitation: in both
cases (and in several others not reported here in detail for the
sake of brevity), the predicted accumulated rainfall is in good
agreement with the one measured by the disdrometer.

V. CONCLUSION

This contribution presented several enhancements to the
rainfall rate estimation algorithm presented in [8]: more specif-
ically, we proposed a fully operational implementation of
such procedure, able to provide real-time rain rate predictions
with 1-min time resolution. The upgraded system allows
to automatically detect the presence of rain events along
earth-satellite links and to accurately estimate the level of rain
attenuation from the received beacon signal, hence of the point
rain rate.

The enhanced model was tested using the Ka-band prop-
agation data collected in Milan and Madrid in the frame-
work of propagation experiments: though also Q-band data
are available at both sites, the latter would obviously lead
to a lower maximum retrievable rain rate value, due to
the higher attenuation levels and to the limited dynamic
range of the receiver. Overall, it is recommended to apply
the proposed model taking advantage of satellite signals at
Ka-band, not only because they are widely available nowadays,
but also because they are less affected by cloud attenuation (if
compared to higher frequency bands), which might decrease
to some extent the rain rate retrieval accuracy.
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The outputs provided by the automated rain rate predictor
were compared to reference measurements provided by locally
installed disdrometers. The results obtained so far confirm a
solid reliability in the identification of rain events, achieving
a detection accuracy higher than 91% for all the metrics con-
sidered. The proposed procedure, which automatically extracts
rain attenuation from the received power signal, also proved
to be satisfactory, achieving values of RMS{ε AR } equal to
0.265 and 0.273 dB at Ka-band, respectively, for the locations
of Milan and Madrid. The accuracy of the rain rate predictions
was comparable with the results attained from the model in
[8], as the currently achieved values of RMS{ε R̄} are equal
to 3.19 mm/h (Milan) and 1.32 (Madrid) mm/h, whereas
RMS{ε RT } is 6.17 mm/h (Milan) and 5.57 (Madrid) mm/h.
Similarly, the manual inspection of individual time series
revealed good agreement between predictions and the available
measurements.

Future work will be focused on exploiting the model pre-
sented in this work to implement a system able to perform
accurate large-scale measurements of the rain rate, hence of
to provide real-time precipitation maps on wide areas. In fact,
though the model was developed using data collected by a
custom satellite beacon receiver, the power received by very
small aperture terminals (VSATs) and direct to home (DTH)
terminals would be the key information to retrieve the rain
rate by means of the proposed methodology. The only major
limitation could come from a limited dynamic range of the
equipment, but this aspect is very peculiar to each single
receiver. Another research path to be investigated consists in
assessing whether the prediction capabilities can be improved
by integrating measurements coming from different domains
(e.g., temperature, pressure, humidity, etc.).
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