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ABSTRACT
Casting a geophysical inverse problem into a Bayesian setting is often discouraged
by the computational workload needed to run many forward modelling evaluations.
Here we present probabilistic inversions of electrical resistivity tomography data in
which the forward operator is replaced by a trained residual neural network that
learns the non-linear mapping between the resistivity model and the apparent resis-
tivity values. The use of this specific architecture can provide some advantages over
standard convolutional networks as it mitigates the vanishing gradient problem that
might affect deep networks. The modelling error introduced by the network approx-
imation is properly taken into account and propagated onto the estimated model un-
certainties. One crucial aspect of any machine learning application is the definition of
an appropriate training set. We draw the models forming the training and validation
sets from previously defined prior distributions, while a finite element code provides
the associated datasets. We apply the approach to two probabilistic inversion frame-
works: A Markov chain Monte Carlo algorithm is applied to synthetic data, while an
ensemble-based algorithm is employed for the field measurements. For both the syn-
thetic and field tests, the outcomes of the proposed method are benchmarked against
the predictions obtained when the finite element code constitutes the forward op-
erator. Our experiments illustrate that the network can effectively approximate the
forward mapping even when a relatively small training set is created. The proposed
strategy provides a forward operator that is three orders of magnitude faster than
the accurate but computationally expensive finite element code. Our approach also
yields the most likely solutions and uncertainty quantifications comparable to those
estimated when the finite element modelling is employed. The presented method al-
lows solving the Bayesian electrical resistivity tomography with a reasonable compu-
tational cost and limited hardware resources.
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INTRODUCTION

Geophysical inversion exploits the measured experimental
data to infer the distribution of physical parameters in the
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subsurface. From the mathematical point of view, this pro-
cess is an inverse problem that is often ill-posed (Tarantola,
2005; Aster et al., 2018), meaning that many models repro-
duce the observed data equally well. For this reason, one key
aspect of geophysical inversions is the quantification of the
uncertainties affecting the recovered solution. The Bayesian
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Figure 1 Comparison between a convolutional block in CNN (left)
and a residual block in ResNet (right).

setting is usually adopted to accurately propagate the uncer-
tainties from the available geophysical data onto the estimated
parameters. In this context, the solution of an inverse problem
is expressed by the posterior probability density (PPD) func-
tion in the model space (Tarantola, 2005). However, the PPD
can be expressed in a closed-form only for linear problems
with Gaussian assumptions about the data and model param-
eter distributions. For a non-linear relation linking the model
to the data, or for non-parametric prior assumptions, a nu-
merical assessment of the PPD is needed.

In this context, Markov chain Monte Carlo (MCMC) al-
gorithms (Sambridge and Mosegaard, 2002) constitute a pos-
sible approach to numerically solve a probabilistic inversion.
The increasing computational power provided bymodern par-
allel architectures has considerably promoted the applications
of these methods to solve geophysical problems (Dosso et al.,
2012; Sen and Stoffa, 2013; Ray et al., 2017; Grana et al.,
2021). However, their use remains a formidable computa-
tional task in problems with expensive forward operators and
with many unknown parameters. Several strategies have been
proposed tomitigate this issue for example by employing com-
pression strategies (Grana et al., 2019) to reduce the dimen-
sionality of the parameter space or by exploiting the infor-
mation about the gradient of the error function to guide the
probabilistic sampling (Biswas and Sen, 2017; Fichtner et al.,
2019; Gebraad et al., 2020; Aleardi and Salusti, 2020; Zhao
and Sen, 2021; Aleardi, 2021).

Ensemble-based data assimilation methods such as en-
semble smoother with multiple data assimilation (ES-MDA)
(Emerick and Reynolds, 2013) constitute an efficient alter-
native to MCMC algorithms because they are computation-
ally faster but might underestimate the model uncertainty in
high-dimensional parameter and data spaces. This undesir-
able phenomenon is usually called ensemble collapse (Sætrom

and Omre, 2013) and can be mitigated either by compressing
model and data spaces (Luo et al., 2018) or by enlarging the
number of models forming the ensemble, although this strat-
egy increases the computational demanding.

Over the last years, machine learning algorithms (Mona-
jemi et al., 2016; Goodfellow et al., 2016) have been increas-
ingly applied to solve geophysical problems (Araya-Polo et al.,
2018; Richardson, 2018; Waldeland et al., 2018; Puzyrev,
2019; Wu and McMechan, 2019; Wang et al., 2019; Aleardi,
2020; Moghadas, 2020;Park and Sacchi, 2020; Sun et al.,
2020; Aleardi and Salusti, 2021). In particular, convolutional
neural networks (CNNs) are very popular architectures that
exploit sparse connectivity and sharing weights among convo-
lutional layers to reduce the computational cost of the train-
ing phase and improve the generalization ability (LeCun et
al, 2015; Krizhevsky et al., 2017). The number of convolu-
tional layers in a CNN plays a crucial role because a deeper
network can potentially better approximate non-linear func-
tions. It is usually believed that the deeper the network, the
higher is the accuracy (match between actual and desired and
network responses). However, it is often experienced that as
the network gets deeper, its performances degrade on both
training and validation sets. This should not be confused with
the well-known overfitting issue that usually manifests as a
higher prediction error on the validation set. Instead, it may
result from the optimization function, activation function, ini-
tialization of the network, or more importantly, from the van-
ishing gradient problem. This represents a crucial limitation
when training deep networks (i.e., constituted by many con-
volutional layers) with derivative-based backpropagation al-
gorithms (LeCun et al., 1998) and occurs when the network is
unable to backpropagate the gradient information from deep
to shallow layers. As a consequence, the degradation problem
arises: The accuracy gets saturated for a given number of lay-
ers and then starts degrading rapidly if additional layers are
added. He et al. (2016) proposed a residual neural network
(ResNet) to solve this problem, in which layers are connected
through skip connections that add the outcomes of a shallow
layer to the output of a deeper one.

The electrical resistivity tomography (ERT)method is one
of the most widely used geophysical techniques that provides
the subsurface resistivity distribution for a variety of hy-
drogeological, environmental and engineering problems (e.g.
Rucker et al., 2011; Uhlemann et al., 2015; Moradipour et al.,
2016; Whiteley et al., 2017; Bièvre et al., 2018; Hojat et al.,
2019a; Dahlin, 2020; Hermans and Paepen, 2020; Aleardi
et al., 2020; Loke et al., 2020; Norooz et al., 2021). Due to
incomplete data coverage and noise contamination, the ERT
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Figure 2 Representation of the employed ResNet architecture annotated with key parameters. For example, in the second convolutional layer
‘CONV 2’ the term within bracket (5, 3 × 3, Pad) indicates that we employ 5 convolutional filters with size 3 × 3 and that zero-padding is
applied. The only difference in the synthetic and field data applications concerns the dimension of input and output response. See the text for
details.

is an ill-posed problem affected by non-uniqueness and insta-
bility of the solution (i.e., small variations of the data produce
large perturbations in the predictions), and hence, an accurate
estimation of the model uncertainty is of primary importance.
However, the ERT is routinely solved through deterministic
approaches in which optimization algorithms minimize a pre-
defined objective function. Such methods are generally com-
putationally efficient but provide an estimation of the model

(i.e., the most likely solution) without accurately quantifying
the associated uncertainty. On the other hand, the computing
time needed for multiple forward evaluations (e.g., through a
finite element code) hampers the application of probabilistic
approaches to solving the ERT problem and in this context, ei-
ther advancedMCMC recipes or model and data compression
strategies are usually needed (Aleardi et al., 2020; Vinciguerra
et al., 2021) to keep the computational cost affordable.
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Figure 3 The true model for the synthetic inversion.

In this work, we reduce the computational burden of the
probabilistic ERT inversion by replacing the code for the for-
ward evaluation with a trained ResNet. The idea is to use a
trained network as a computationally efficient approximation
to the forward problem, while also accounting for the ap-
proximation error introduced by the network and propagat-
ing it onto the final PPD (using the same strategy presented
in Hansen and Cordua, 2017). Multiple models and associ-
ated apparent resistivity data are used to make the ResNet
learn the non-linear mapping between the model and the data
space. The models forming the training and validation sets
are generated according to prior model assumptions, while a
2.5D finite-elements (FE) Matlab modelling code constitutes
the forward operator (Karaoulis et al., 2013) that computes
the associated apparent resistivity data. We first demonstrate
the method by inverting synthetic data, then the method is

tested on field measurements. In the synthetic case, we em-
ploy the differential evolution Markov chain (DEMC; Vrugt,
2016) to numerically assess the PPD, while the field inversion
is solved through the ES-MDA algorithm.The outcomes of the
proposed approach are also benchmarked with those yielded
by DEMC and ES-MDA inversions in which the FE code con-
stitutes the forward modelling engine. Other studies have al-
ready employed machine learning techniques to solve the ERT
problem and especially to approximate the non-linear inverse
mapping (Liu et al., 2020; Aleardi et al., 2021a; Vu and Jar-
dani, 2021), but as far as the authors are aware, this is the first
paper in which machine learning is used to speed up proba-
bilistic ERT inversions. In this study, all the inversion codes
have been written in Matlab, and the Matlab deep learning
toolbox has been used to implement CNN and ResNet.

METHODOLOGY

The Bayesian framework and the probabilistic inversion

The Bayesian solution of an inverse problem is expressed
by the posterior probability density (PPD) function in model
space:

p (m|d) = p(d|m)p (m)
p (d)

, (1)

where p(m|d) denotes the PPD, p(d|m) is the so-called data
likelihood function, whereas p(m) and p(d) are the prior dis-
tributions of model parametersm and observed data d, respec-
tively. In most cases, the data likelihood is derived from the L2

Figure 8 Some comparisons between (a) the network responses and (b) the desired (i.e. FE) output from the validation set. In (c) we represent
the sample by sample difference between (a) and (b). Note the different colour scale in (c) with respect to (a) and (b).
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Figure 4 (a) Log-Gaussian prior distribution for the synthetic example. (b) and c) Spatial correlation functions associated with the assumed 2-D
variogram model for the horizontal and vertical directions, respectively.

Figure 5 RMSE values computed on the validation set for different
sizes of the training ensemble (200, 500, 1000, 2000, 3500, 5000 and
10,000 examples)

norm difference between predicted and observed data, under
the assumption of Gaussian-distributed noise:

p (d|m) ∝ −0.5 × (d −G (m))TC−1
d (d −G (m)) , (2)

in which Cd is the data covariance, and G is the forward op-
erator. For non-linear problems, a numerical evaluation of the
posterior can be derived using, for example, Markov chain
Monte Carlo (MCMC) sampling algorithms or ensemble-
based methods. The main computational demand when solv-
ing a Bayesian non-linear inverse problem lies in the compu-
tation of the likelihood because it requires running a forward
evaluation for each sampled model. For this reason, our work
aims to replace the computationally expensive forward op-
erator G with the predictions of a trained network. The use
of such approximation introduces a modelling error that if
ignored can generate overfitting with the observed data and
introduce artefacts in the final solution. Therefore, we also
properly propagate the error introduced by the network ap-
proximation onto the final PPD. To this end, the data covari-
ance matrix Cd is computed as the sum of the noise contam-
inating the data Cn and the modelling error that takes into
account the imperfect physics relating the model to the data

Figure 6 Final RMSE values computed on the validation set for the
CNN and ResNet as the number of convolutional layers varies.

Figure 7 Evolution of the RMSE on the training (blue line) and vali-
dation sets (magenta circles).

Cp (Menke, 2018): Cd = Cn + Cp. Both noise and modelling
errors are considered to be Gaussian distributed with a zero
mean value. The modelling error matrix is derived by eval-
uating the covariance of the difference between desired and
actual network outputs and is computed on the validation
set (see Hansen and Cordua, 2017, for details). With desired

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Figure 9 Box plots derived from 100 runs of the ResNet and FE for-
ward operators (a and b, respectively). The red crosses represent out-
liers. Note the different scales on the vertical axes.

Figure 10 Comparison between the diagonal entries of the Cn and
Cp matrices.

output,wemean the data generated by the finite-elements (FE)
routine that are assumed to be perfect, error-free predictions
of the apparent resistivity values.

The differential evolution Markov chain

Markov chainMonte Carlomethods sample the target PPD by
adopting the Metropolis–Hasting rule that defines the prob-
ability to move from the current state of the chain (i.e. the
current model m) to the proposed (perturbed) state m′ as fol-
lows:

α = p
(
m′|m) = min

[
1,

p (m′)
p (m)

× p
(
d|m′)

p (d|m)
× q (m|m′)
q (m′|m)

]
. (3)

q() denotes the proposal distribution that defines the new state
m′ as a random deviate from a probability distribution q(x′|x)
conditioned only on the current state m. If m′ is accepted
m = m′. Otherwise, m is repeated in the chain, and an-
other state is generated. The ensemble of sampled models

after the burn-in period is used to numerically compute the
statistical properties of the PPD (e.g. mean, mode, standard
deviations, marginal densities). Many sampling recipes have
been proposed to reduce the computational cost of MCMC
inversions (Vrugt, 2016), and here, we employ the differ-
ential evolution Markov chain (DEMC) that exploits dif-
ferential evolution principles to guide the sampling proce-
dure. In DEMC, N Markov chains and multivariate propos-
als are generated from the collection of chains at each itera-
tion. Let the d-vector m be the state of a single chain, then
at each t − 1 iteration, the N chains define a population
M = {m1

t−1,m
2
t−1, . . . ,m

N
t−1}. A proposal model mp is then

generated for each chain according to

mi
p = mi

t−1 + γ
(
ma

t−1 − mb
t−1

)
+ ε, a �= b �= i, (4)

where γ is the jump rate, i denotes the considered chain,
whereas a and b are integer values drawn from {1,…, i − 1,
i + 1,…, N} without replacement; ε is a normally distributed
random deviate ε = N (0, σ ), where σ is properly set for the
problem at hand. Each proposal is accepted according to the
Metropolis–Hasting rule. The probability of γ = 1 is usu-
ally set to 10%, and this allows mode-jumping, which is a sig-
nificant strength of DEMC over more conventional MCMC
algorithms (i.e. random walk Metropolis). In this work, we
solve the probabilistic electrical resistivity tomography (ERT)
inversion using the DEMC algorithm presented in Vinciguerra
et al. (2021), in which the discrete cosine transform (DCT)
reparameterization is used to compress the model space and
to make the MCMC sampling computationally feasible. We
refer the reader to that publication for further details.

The ensemble smoother with multiple data assimilation

The ensemble smoother with multiple data assimilation (ES-
MDA) is an iterative procedure in which the updated models
are used as the prior in the next iteration. The method starts
with an ensemble of models generated according to the prior
assumptions. Then, these models are updated by applying a
Bayesian updating step to a stochastic observation of the data
d̃k under model and data Gaussian assumptions with empiri-
cal parameters estimated from the ensemble members.A single
ES-MDA iteration can be written as

mu
k = mp

k + C̃p
md

(
C̃p

dd + Cd

)−1 (
d̃k − dpk

)
, (5)

where

C̃p
md = 1

Q− 1

Q∑
k = 1

(
mp

k − m̄p
) (

dpk − d̄p
)T

, (6)
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Figure 11 (a) Histogram of the prediction error computed on the validation set. (b) Normal probability plot derived from the prediction error
shown in (a). The red line depicts the theoretical trend for a Gaussian distribution.

Figure 12 (a and b) The most likely models predicted by the DEMC inversions when the ResNet and FE forward operator are employed,
respectively. (c and d) Posterior standard deviations associated with the solution shown in (a) and (b), respectively.

C̃p
dd = 1

Q− 1

Q∑
k = 1

(
dpk − d̄p

) (
dpk − d̄p

)T
, (7)

with k = 1,…, Q, where Q represents the number of models
in the ensemble and d̃k is a random perturbation of the ob-
served data according to the Gaussian distribution N (d,Cd).
The superscripts u and p denote the updated (current itera-
tion) and prior (previous iteration) variables, respectively; C̃p

md

and C̃p
dd represent the empirical covariance matrices estimated

from the ensemble members, whereas m̄p and d̄p are the em-
pirical ensemble mean of the model parameters and predicted
data, respectively.

The following steps are implemented for the ES-MDA:
1. Define the number of models in the ensemble Q, the max-
imum number of iterations k, and the inflation coefficient α

for each iteration with
Q∑

i = 1

1
αi

= 1;

2. Generate realizations according to the prior p(m);
3. For each iteration:
4. Apply the forward operator and compute the Q data vec-
tors generated by the ensemble members: {dp} 1,..., Q;
5. Perturb the observations of each ensemble member accord-
ing to d̃k = d + √

αiC
−1/2
d n, with n = N (0, I), where I is the

identity matrix and d denotes the observed data;

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Figure 13 Inversion results in the DCT space when the ResNet forward modelling is employed. Each plot refers to one of the 15 considered
DCT coefficients. The red lines represent the marginal priors, the black bars are the marginal posteriors, whereas the green lines indicate the
true DCT parameter values.

6. Update the ensemble using equations (5)–(7) with Cd re-
placed by αiCd.

All the ensemble members at the last iteration represent
possible subsurface scenarios in agreement with the acquired
geophysical data and with the prior assumptions. From this
ensemble of models, the PPD can be numerically evaluated.
Theoretically, the method converges when the ensemble size
N tends to infinity. In practical applications, a sensitivity anal-
ysis is generally required to determine the optimal number
of ensemble members that guarantees accurate posterior un-
certainty assessments. In particular, the number of ensemble
members should be large enough to get an accurate estimate

of the
∼
C
p

dd and
∼
C
p

md matrices but small enough not to make the
forward evaluations computationally impractical. Usually, the
number of ensemble members needed to get accurate uncer-
tainty assessments increases with the dimension of the model
space (Aleardi et al., 2021b).

The selected ResNet architecture

In the present work, a neural network is viewed as functions
F that get input I and through the internal parameters P com-
putes the output response O:

O = F (P, I) . (8)

Both convolutional and residual networks use convolu-
tional filters (also known kernels) and fully connected lay-
ers to extract features (forming the so-called features maps)
from mono- or multi-dimensional inputs. The feature map-
ping from one arbitrary layer to the next can be written as
(Sun et al., 2020):

Oh
j = f

(
Bj +

L∑
i = 1

Oh−1
i ∗Wj

)
, j = 1, 2, . . . , J , (9)

where L denotes the number of feature maps in the (h-1)th
layer; J is the number of feature maps in the hth layer; Bj is a
matrix with the same size as Oh

j expressing the biases for the
hth layer; Oh

j represents the jth feature map in the hth layer,
Oh−1

i is the ith feature map in the (h-1)th layer, and Wj rep-
resents the jth filter of the hth layer that is the weight matrix
connecting Oh

j with Oh−1
i ; f () is the activation function that

includes non-linearity in the mapping process. Finally, ∗ repre-
sents the convolution process. Therefore, in a traditional con-
volutional neural network, each layer feeds into the next one
(Fig. 1, left panel), and in each training iteration the weights
are updated proportionally to the partial derivative of the loss
function with respect to the current weights. With an increas-
ing number of hidden layers, it might happen that the gradient
will become vanishingly small, thus preventing the update of

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Figure 14 As in Figure 13, but when the FE forward code is used.

Figure 15 Evolution of the negative log-likelihood during the DEMC inversion for the 30 chains and the first 3000 iterations. (a) With the
ResNet forward operator. (b) With the FE forward operator.

the weights. Therefore, the learning capabilities of the network
degrade rapidly, leading to higher prediction error. An effec-
tive solution to this issue is provided by ResNet that makes
use of shortcuts and skip connections to add the result of a
shallow layer directly to the corresponding output of a deeper
layer so that the information is passed through the network
as an identity function (Fig. 1, right panel). The idea behind
this approach is to assume that the residual mapping (R(x) in
Fig. 1, right panel) is easier to optimize than the mapping f(x)
of traditional CNNs (Fig. 1, left panel). This strategy helps to

prevent the loss of information that occurs when backpropa-
gating the gradient, thus ensuring that deeper networks do not
perform any worse than shallower counterparts. Many differ-
ent types of residual blocks exist, but here we use the original
configuration as depicted in Figure 1.

The resistivity model is the input of the network, whereas
the flattened apparent resistivity section constitutes the out-
put response. We employ the same ResNet architecture rep-
resented in Figure 2 in both synthetic and field applica-
tions. Note that we use skip connections to adjust features

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers.,Geophysical Prospecting, 70, 938–957
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Figure 16 (a) Observed data. (b) Apparent resistivity pseudosection computed on the models shown in Figure 12(a) when the ResNet forward
operator is used. (c) Apparent resistivity pseudosection computed on the models shown in Figure 12(a) when the FE forward operator is used.
(d) Predicted data computed on the most likely model of Figure 12(b) with the FE code.

dimensions before addition layers,while the zero-padding pre-
serves the dimensions after convolution. We use the leaky
ReLU activation function (Hahnloser et al., 2000) with a leak-
age value of 0.1. After the last convolutional layer, the feature
maps are flattened and passed to the first fully connected layer.
Dropout is used to prevent overfitting, in which a given per-
centage of randomly selected neurons is ignored during the
training phase (i.e. in our case the 10%). Batch normalization
is used as an additional regularization operator (Santurkar
et al., 2018), while we set the batch size to 32. The He method
(He et al., 2015) is used to initialize the internal network pa-
rameters P. The root-mean-square error (RMSE) between the
desired and the computed output is considered as the loss
function, while the updating of the learnable weights is driven
by the Adam optimizer (Kingma and Ba, 2014) running for 20
epochs. The initial learning rate is set to 0.001, and this value
is scaled by 0.95 every epoch. Some tests have been performed
to define the optimal hyperparameter configurations (i.e., type
of activation function, number of convolutional layers, size
of the filters, strategy to initialize the weights and learning
rate value). The final choice has been determined through a
trial-and-error procedure and according to the accuracy eval-
uated on the validation set. In our several experiments (not all
shown here for brevity), we found that many different ResNet
architectures (i.e., with different numbers of layers and fil-
ter dimensions) worked similarly. The final one has been se-
lected as a reasonable compromise between the computational
cost of the training phase and the accuracy of the predictions.
This means that the applicability of the approach does not

critically depend on the specific network configuration em-
ployed. Some tests with different hyperparameter configura-
tions are presented in Appendix.

SYNTHETIC INVERS IONS

We consider a schematic subsurface resistivity model repre-
sented by a rectangular block with a resistivity of 50 �m
hosted in a homogeneous half-space with resistivity equal to
150 �m (Fig. 3). The study area is discretized with 11 × 35 =
385 rectangular cells with vertical and lateral dimensions of
0.5 m and 1 m, respectively. The resistivity values within the
cells correspond to the model parameters to be estimated. We
simulate aWenner acquisition layout with 36 electrodes with a
= 1 m. The maximum a value is 11. This configuration results
in 198 data points. In this example, we employ the Wenner
layout because it has also been used for the field data acqui-
sition, but the presented inversion framework can be applied
to other electrode configurations as well. The finite-elements
(FE) code was used to compute the noise-free observed dataset
that we contaminated with uncorrelated Gaussian noise with
a standard deviation equal to 20% of the total standard devi-
ation of the noise-free data.

Figure 4 represents the prior model assumptions used to
generate the training and validation sets and also used in the
following probabilistic inversion.We employ a stationary log-
Gaussian prior with mean and variance values directly derived
from the true model of Figure 3, while a Gaussian variogram
is used as the spatial continuity pattern with horizontal and

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Table 1 Table listing for the two DEMC inversions, the RMSE values between predicted and true models, observed and predicted data (see Fig.
16), the 90% coverage ratios and the computing time for the inversion

RMSE model RMSE data 90% Coverage ratio Computing time

DEMC with the ResNet forward
operator

117.81 6.23 86.71% ≈ 10 minutes

DEMC with the FE forward operator 116.34 6.12 86.98% ≈ 20 hours

Figure 17 (a) Log-Gaussian prior distribution for the field data inversion. (b and c) The spatial correlation functions associated with the assumed
2D variogram model for the horizontal and vertical directions, respectively.

Figure 18 Some comparisons between (a) the network responses and (b) the desired output extracted from the validation set. In (c) we represent
the sample-by-sample difference between (a) and (b). Note the different colour scale in (c) with respect to (a) and (b).

vertical variogram ranges equal to 4 and 1.5 m, respectively.
Note that this prior constitutes a simplification of the actual
distribution of the resistivity values in the synthetic model. In-
deed, the true resistivity values are not Gaussian distributed
as clearly shown by the true model of Figure 3.

To keep the number of FE forward modelling evalua-
tions needed for the probabilistic inversion to a minimum,
we are particularly interested in assessing the network accura-
cies and generalization capabilities as the size of the training
set decreases. Figure 5 represents the root-mean-square error
(RMSE) computed for the synthetic experiment on the valida-

tion set with the selected network architecture (Fig. 2) when
the size of the training is reduced.We observe that the accuracy
rapidly increases passing from 200 to 2000 training examples,
then it stabilizes if additional examples are provided. For this
reason, in all the following examples the ResNet learns the
forward mapping using 2000 examples for training, whereas
500 is the size of the validation set. Lower RMSE values can be
obtained with a larger training set (e.g. with 3500 examples),
but we deem that this improvement is not worth the extra
computational cost required. According to our experience, we
might say that a final RMSE lower than 30–35 is acceptable

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
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Figure 19 (a) Histogram of the modelling error computed on the validation set. (b) Diagonal entries of the Cn and Cp matrices in the field data
application.

Figure 20 (a and b) The most likely solutions provided by the ES-MDA inversions when the ResNet and FE forward operator are employed,
respectively. (c and d) Posterior standard deviations associated with the models shown in (a) and (b), respectively.

for the synthetic inversion. Indeed for an RMSE value higher
than this threshold, the modelling error becomes comparable
to the error related to noise contamination in the data (see
for example Appendix). This substantially deteriorates the ac-
curacy and precision of the results. Obviously, the acceptable
RMSE value is case dependent as it is related to the statistical
properties of data and noise.

Figure 6 shows a direct comparison between the RMSE
values computed on the validation set for the ResNet and
CNN as the total number of convolutional layers varies. The
first nine ResNet layers maintain the hyperparameter setting
previously shown in Figure 2, while the convolutional layers
10–13 use the same configuration of layer 9 (20 filters with
dimensions 3×3). The architectures of CNN and ResNet are

the same, as they only differ in the fact that skip connections
and addition layers are not used by CNN. It emerges that
for seven convolutional layers the CNN gets saturated and
then the accuracy decreases if other layers are added. Con-
versely, the ResNet accuracy steadily increases and eventually
reaches a stable value for nine convolutional layers. This prob-
lem affected both the validation (Fig. 6) and training sets (not
shown here for brevity), and hence it cannot simply be as-
sociated with an overfitting issue. We also observed that this
accuracy decrease also affected other CNN architectures with
different hyperparameter settings (i.e., type of activation func-
tion and size of convolutional filters). Therefore, we deem that
this result is not even related to the specific network architec-
ture employed. We finally interpret this result as a possible
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Figure 21 (a) Observed data. (b) Apparent resistivity pseudosection computed on the model shown in Figure 20(a) when the ResNet forward
operator is used. (c) Apparent resistivity pseudosection computed on the model shown in Figure 20(a) when the FE forward operator is used.
(d) Predicted data computed on the most likely model of Figure 20(b) with the FE code.

Figure 22 Comparison between the observed data (black line), the data computed on the initial ensemble of models (green lines) and the data
associated with the models at the last ES-MDA inversion (magenta lines). For graphical convenience, the pseudo-sections have been flattened to
1D vectors. (a) and (b) refer to the same models but when the ResNet and FE codes are employed, respectively.

consequence of the vanishing gradient problem as it disap-
pears when the ResNet architecture is employed.However, we
also have to say that the CNN provided a quite accurate for-
ward approximation with a final RMSE lower than the opti-
mal value of 30–35. This also means that the CNN forward
can effectively replace the FE code and that the use of CNNs
does not hamper the applicability of the proposed approach.

Figure 7 displays the evolution of the RMSE on the train-
ing and validation sets for the finally selected network config-
uration (Fig. 2) and using 2000 and 500 training and valida-
tion examples, respectively.We observe that the RMSE attains
a stable value after 10 epochs. Similar errors on the validation
and training sets prove that overfitting has been prevented.
Figure 8 compares some examples of apparent resistivity pseu-

dosections predicted by the trained ResNet and the associated
FE datasets taken from the validation set. The close similarity
between the actual and desired output (computed through the
FE code) confirms that the network can effectively approxi-
mate the non-linear relation linking the model to the data. All
the tests discussed in this work have been run on a common
notebook equipped with an Intel i7-10750H CPU@2.60GHz
with 16 Gb of RAM, and with NVIDIA GeForce RTX 2060.
Considering a parallel code, the generation of the 2000 train-
ing examples takes 15minutes, approximately,while the train-
ing running on the GPU is completed in less than 5 minutes.

Before including the trained network in the inversion
framework, we quantify the reduction in the computing
time for the forward evaluation guaranteed by the ResNet
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Figure 23 Examples of prior realizations forming the starting ensemble of the ES-MDA inversion with the ResNet forward operator.

approximation. To this end, we run 100 forwards using both
the FE code and the trained network (Fig. 9), and it turns out
that the ResNet guarantees a time reduction of three orders of
magnitudes. This will translate into a dramatic difference in
the computational cost of the probabilistic inversions.

Figure 10 compares the diagonal entries of the Cn and Cp

matrices in the synthetic data application.We observe that the
data variations related to noise contamination are of one or-
der of magnitude higher than the variations associated with
the modelling error. This also means that the posterior uncer-
tainties will be mainly related to noise contamination and dif-
ferent parameter illumination rather than the approximation
error introduced by the ResNet.

Figure 11 represents the histogram of the prediction error
computed on the validation set and the corresponding nor-
mal probability plot. The histogram proves that, as desired,
the modelling error distribution has a null mean value, thus
demonstrating that the ResNet forward operator does not add
any systematic bias in the predicted apparent resistivity val-
ues. The normal probability plot illustrates that, despite some
minor deviations, the modelling error distribution can be rea-
sonably assumed to be Gaussian.

We now discuss the MCMC inversion results obtained in
this synthetic test. As previously mentioned, we applied the
same inversion code described in Vinciguerra et al. (2021) in
which the differential evolution Markov chain (DEMC) algo-
rithm is used to sample the PPD in a discrete cosine trans-
form (DCT) compressed parameter space. As in that paper,
only 15 DCT coefficients are considered in the inversion, thus
meaning that the 385D full model domain has been sparsely
represented by 15 unknown parameters. The prior assump-
tions in the DCT space have been analytically derived from
the prior information defined in the original, uncompressed
space. In what follows we also compare the results we obtain
when the ResNet and FE forward modelling codes are used.
In both cases, the DEMC sampling starts from prior realiza-
tions and makes use of 30 interactive chains evolving for 3000
iterations with a burn-in period of 500. Figure 12 represents
the most likely solutions and associated posterior uncertain-
ties when the two forward operators are employed. In both
inversions, we obtain congruent and extremely similar results,
with no significant differences. The low rectangular resistivity
body is successfully located, and, as expected, the posterior un-
certainties are lower in the central and well-illuminated part of
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Figure 24 Models extracted from the ensemble at the last ES-MDA iteration when the ResNet forward is used.

Figure 25 RMSE on the validation and training sets for the four dif-
ferent network architectures considered and the finally selected con-
figuration (represented in Fig. 2).

the model and increase towards the bottom and lateral edges
of the investigated area due to lower parameter illumination.
For amore complete overview of the results, Figures 13 and 14
compare the marginal prior, posterior and true model param-
eter values in the DCT domain. The true coefficients in the
compressed space have been analytically derived by project-
ing the resistivity model of Figure 3 onto the DCT domain. All

the considered 15 coefficients are displayed. Again we observe
that very similar posterior evaluations are estimated with the
two forward modellings. This demonstrates the reliability and
stability of the presented approach.

Figure 15 shows the evolution of the negative log-
likelihood for the 30 chains and for the two DEMC inver-
sions. In both examples, the inversion attains the same stable
misfit values within the same number of iterations (i.e., 500).
Figure 16(a–c) compare the observed data with the apparent
resistivity pseudosection generated on the most likely solution
of Figure 12(a) when the ResNet and FE codes are employed.
On the one hand, the similarity between Figure 16(a and b) il-
lustrates that the predictions provided by the DEMC inversion
successfully reproduce the observed data. Moreover, the good
agreement between Figure 16(b and c) is a further demon-
stration of the capability of the trained ResNet to predict the
forward mapping. Figure 16(d) shows instead the predicted
data associated with the inversion tests in which the FE code
has been used. Also, in this case the predicted model of Fig-
ure 12(b) successfully reproduces the observed data.

As a final and more quantitative assessment of the re-
sults, we list in Table 1 the 90% coverage ratio, the RMSE
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Figure 26 Some comparisons between (a) the network predictions provided byNetwork 1 and (b) the desired output extracted from the validation
set. In (c) we represent the sample by sample difference between (a) and (b). Note the different colour scale in (c) with respect to (a) and (b).
Compare with Figure 8.

between true and predicted models, observed and predicted
data, together with the computing times for the two proba-
bilistic inversions. These computing times refer to the hard-
ware resources previously described and to parallel codes
in which the forward evaluations are distributed across
different cores. We remind that the 90% coverage ratio
quantifies the percentage of resistivity values in the true
model that fall within the 90% confidence interval as es-
timated by the probabilistic inversion. The two inversions
provide very similar models, data predictions and also un-
certainty estimations. However, there is a dramatic differ-
ence in the computational demand: The inversion takes
only 10 minutes when the ResNet forward operator is
used, while approximately 20 hours are needed with the
FE code. These results demonstrate that the proposed ap-
proach not only drastically reduces the computational work-
load of the probabilistic sampling but, more importantly,
also provides model estimations and uncertainty assess-
ments comparable to those achieved with the FE forward
modelling.

F IELD DATA APPLICATION

We now apply the presented approach to invert a field dataset
acquired for levee monitoring along the Parma River in Col-
orno (Italy). We refer the interested reader to Hojat et al.
(2019b) for more information about the study area.Due to the
considerable computing time (several days) needed to tackle
this inversion with the previously considered differential

evolution Markov chain approach (see Vinciguerra et al.,
2021), we resort to applying the ensemble smoother with mul-
tiple data assimilation (ES-MDA) algorithm.We invert a single
dataset acquired with electrodes buried in a 0.5-m-deep trench
and employing the Wenner configuration using 48 electrodes
with a unit electrode spacing of a = 2 m. The dataset is cor-
rected for the effect of the soil covering the electrodes (Hojat
et al., 2021). The investigated site covers an area that is 94 m
wide and 14 m deep, and it is discretized with rectangular cells
with vertical and lateral dimensions of 1 m and 2 m, respec-
tively. This configuration results in 15 × 47 = 705 resistivity
values to be estimated from 360 data points.

We exploit all the available information about the inves-
tigated site to define the prior distribution of model param-
eters (see Hojat et al., 2019b). In particular, we still simplify
the actual distribution of the subsurface resistivity with a log-
Gaussian prior, and we employ a spatial variability pattern
described by a Gaussian variogram with lateral and vertical
ranges equal to 6m and 2m, respectively (Fig. 17). In this area,
we mainly expect a low-resistivity clay body that around 2–3
m depth hosts a more permeable layer with higher resistivity
values associated with the presence of sand and gravel.

Similar to the synthetic case,we draw from the prior 2000
models for training and 500 for validation. We maintain the
same ResNet architecture that was previously described with
the only difference related to the dimension of the input im-
age (in this case a model with 15 rows and 47 columns) and
in the output size (a vector of 360 apparent resistivity values).
As demonstrated in Figure 18, the similarity of the ResNet

© 2022 The Authors.Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers.,Geophysical Prospecting, 70, 938–957



954 M. Aleardi et al.

predictions with the corresponding finite-elements (FE) re-
sponses extracted from the validation set proves the capability
of the trained machine learning model to predict the forward
relation. Figure 19(a) shows the histogram of the prediction
error derived from the validation set, and just from a visual
inspection, we can affirm that the Gaussian assumption is rea-
sonable also for this field data application. Figure 19(b) again
shows that the data variability related to the noise contamina-
tion as expressed by the Cn matrix is larger than that expected
from the modelling error. In this case, the Cn matrix has been
derived from the variance of repeated measures of the appar-
ent resistivity values within a short time frame, under the as-
sumption of Gaussian-distributed noise.

For the inversion,we employ the ES-MDA algorithmwith
an ensemble of 2000 models initially drawn from the prior
assumptions and updated during five consecutive iterations.
Similar to the synthetic example, we compare the results ob-
tained when the ResNet and FE forward operators are used.
No data or model space compressions are applied in this case.
Figure 20 represents the final results in terms of the most likely
solution and associated standard deviation. Similar and con-
gruent outcomes are achieved in both cases: The inversion pre-
dicts a sand-gravel body at shallow depth hosted in shales. As
expected, the uncertainty tends to increase in correspondence
of the high resistivity body and at the lateral and bottom edges
of the model.

Figure 21 shows the observed data and the data generated
by the ResNet and FE on the model of Figure 20(a), together
with the apparent resistivity pseudosection derived with the
FE code from the model of Figure 20(b). Both inversions pro-
vide most likely solutions that accurately reproduce the field
measurements with very minor differences in the data gener-
ated by the ResNet and FE codes. This demonstrates that the
trained network can properly approximate the forward rela-
tion even for realistic resistivity models not seen during the
learning procedure. As a further demonstration of the gen-
eralization ability of the trained ResNet network, Figure 22
compares, for the inversion test running with the ResNet for-
ward, the observed data and the data predicted with both the
ResNet and FE forwards on the initial and final (i.e., at the
last iteration) ensemble of models. Again very minor differ-
ences can be seen in the apparent resistivity values provided
by the two forward operators.

Figures 23 and 24 compare (for the inversion running
with the ResNet forward) some models forming the initial en-
semble and the corresponding predictions at the last iteration.
We observe that the inversion satisfactorily converges towards
congruent results. Indeed all the models at the very last iter-

ation show similar characteristics such as the low-resistivity
anomaly in the shallowest and central part of the study area,
and the high resistivity body buried around 3 m depth.

The computing times for the ES-MDA inversion with the
ResNet and FE forward modellings are equal to 1 minute and
1.3 hours, respectively. So also in this case the trained ResNet
model guarantees a significant speed-up of the inversion pro-
cedure, while still guaranteeing reliable predictions.

CONCLUSIONS

This work was aimed at reducing the computational cost of
the probabilistic electrical resistivity tomography (ERT) in-
version. To this end, we trained a ResNet network to learn
the non-linear mapping between the model parameters and
the associated data. This approach replaces the computation-
ally complex finite-elements (FE) forward modelling with the
more computationally efficient network predictions. This re-
duced the average time needed for a forward evaluation of
several orders of magnitude. In both synthetic and field experi-
ments, the modelling error introduced by the network approx-
imation was one order of magnitude lower than the expected
data variability related to noise contamination.This modelling
error has been quantified and properly propagated into the fi-
nal estimates. The synthetic and field examples demonstrated
that a neural network can be used to describe a (relatively)
complex forward operator. Our examples also illustrated the
applicability of the approach and that it provides most likely
solutions and uncertainty assessments comparable to those
achieved with the FE forward modeling.

The main challenge of this methodology might be gener-
ating a large enough training set. Indeed the forward model
needs to be evaluated as many times as the size of the train-
ing set. This procedure may be time-consuming, but need to
be done only once, and it is also easily parallelizable. Once
trained the ResNet model is applicable only for the specific ac-
quisition layout assumed for the training phase. If the record-
ing geometry changes, a new training set needs to be gener-
ated, and a new learning phase must be run. Moreover, note
that in our examples, the training data were generated accord-
ing to a specific prior distribution. Thus, if the prior assump-
tions change, a new training set needs to be created and a new
network needs to be trained.An alternative approachmight be
generating the training set according to a much broader prior
model, namely, a prior model that generates realizations with
larger spatial variability. Such a training set could be used to
learn a forward mapping to be used for a wider range of possi-
ble prior assumptions without the need for multiple retraining.
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Another possibility is to apply transfer learning techniques to
update the internal parameters of a previously trained net-
work when the distribution of the new prior differs from that
assumed during the training procedure. These may be subjects
for future research. In any case, our results demonstrated that
the network can be successfully trained also with a relatively
small training set. Moreover, both the Markov chain Monte
Carlo and ensemble smoother with multiple data assimilation
algorithms will need many more forward evaluations than the
size of the training set we considered. The main benefit of
the presented approach is that it provides an alternative for-
ward that is much faster than the FE code. This allows using
sampling-based approaches to solve the probabilistic ERT in-
version with a reasonable computational cost and using lim-
ited hardware resources. The approach can also be applied
to reduce the computational complexity of other non-linear
inverse problems that have to be solved through a stochastic
sampling over the parameter space.
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APPENDIX

We here represent the final RMSE values computed on the
training and validation sets for four different network con-
figurations. These are variants of the network represented
in Figure 2 in which only one parameter has been Modified

. All these networks consider the same training and val-
idation sets previously used to train the finally selected
network.
• Network 1: The same as Figure 2 but with a filter size of 5

× 5 in all the layers;
• Network 2: The same as Figure 2 but all the convolutional

layers use a total number of filters increased by 5 (e.g. the
CONV 2 and CONV 3 layers use 10 filters; see Fig. 2);

• Network 3: The same as Figure 2 but without the first fully
connected layer;

• Network 4: The same as Figure 2 but with the ReLU acti-
vation function instead of the LeakyRelu.
Figure 25 represents the final RMSE values computed on

the validation and training sets for the four previously consid-
ered networks. All the configurations provide quite satisfac-
tory predictions especially the Networks 2–4 with prediction
errors lower than the optimal value of 30–35. This figure also
shows that the selected network architecture (Fig. 2) yields
slightly better results than the four considered alternatives. Fi-
nally, Figure 26 illustrates a comparison of the apparent re-
sistivity pseudosections predicted by Network 1 and the de-
sired response (FE output). Compare this figure with Figure 8
to appreciate the better predictions provided by the selected
network.
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