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Abstract
Exploration missions to other planets have to satisfy planetary protection require-
ments to limit the probability of impacts between mission-related objects and celes-
tial bodies, with the goal of reducing the risk of contaminating them with biological 
material coming from Earth. The verification of these requirements can become a 
lengthy and computationally expensive task when addressed with common methods 
such as Monte Carlo simulations, as they involve analysing the interplanetary tra-
jectories and the uncertainties associated with them for time spans up to 100 years, 
and estimating small probabilities with strict confidence levels. This paper presents 
novel improvements of the line sampling method, already introduced for the verifi-
cation of planetary protection requirements as a way to estimate the impact probabil-
ities more efficiently and with greater accuracy than achieved with standard Monte 
Carlo. These newly developed techniques are presented, with the aim of making the 
analysis with Line Sampling more effective, and providing more information about 
the distribution of impacts in the initial uncertainty distribution: an algorithm to 
identify the time intervals where most close approaches are clustered, and an algo-
rithm to improve the determination of the main sampling direction and increase the 
accuracy of the probability estimation.
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1 Introduction

During interplanetary missions, launcher stages and inactive spacecraft are often 
left along orbits that may come back to the Earth or reach other celestial bodies, 
with the risk of impacting and contaminating them. For this reason, planetary 
protection policies require to verify that the probability of contaminating a celes-
tial body due to non-scheduled impacts from mission-related objects is below a 
given threshold for any interplanetary mission. The maximum acceptable impact 
probability and the confidence level associated with it depend on the class of mis-
sion under examination [1], spanning from  10−3 up to 50–100 years after launch 
for a generic Mars mission, to  10−6 for sample return missions or missions to the 
Jovian moons, with a minimum confidence level of 99%. The precise propaga-
tion of the orbital state of these objects is therefore of great importance to pre-
serve planets and moons that are promising for the development of extraterrestrial 
microbial life, such as Mars or Europa among many.

Given the chaotic behaviour of the orbital propagation problem, fully non-lin-
ear techniques, such as Monte Carlo (MC) simulations, are preferred to tackle this 
kind of problem thanks to their general and flexible way of approaching collision 
and impact probability estimation. This is the most common approach for plan-
etary protection analysis, which requires high accuracy to verify that the design 
of an interplanetary mission is compliant to the international guidelines [2–5]. 
In particular, Colombo et al. [2] and Jehn et al. [3] exploit the expression of the 
confidence interval by Wilson [6] to estimate in advance the number of MC runs 
necessary to grant a desired confidence level (as requested by planetary protec-
tion policy).

However, more efficient sampling methods may increase the precision of the 
probability estimate, or reduce the amount of simulations, and thus the computa-
tional cost. Since the probability levels to be verified are generally low, the anal-
ysis can require a large number of standard MC simulations, resulting in high 
computational cost and time: the number of simulations required to estimate the 
probability, indeed, increases as the expected probability decreases and the con-
fidence level to be guaranteed increases. This becomes relevant especially in the 
case of planetary protection requirements, as low levels of impact probability for 
each class of mission must be guaranteed with strict confidence levels.

For this reason, the line sampling (LS) method was selected to increase the pre-
cision of the probability estimate, or reduce the amount of simulations, and thus 
the computational cost with respect to standard MC. LS is a MC-based approach 
for the estimation of small probabilities whose main feature is the reduction of the 
multi-dimensional integration problem across the uncertainty domain to many one-
dimensional integrals which are evaluated analytically. These integrals are defined 
along lines, all parallel to a reference direction, that are used to sample the initial 
distribution. The reference direction is determined so that it points toward a region 
of interest of the domain (that is, a subset of initial conditions that will lead to an 
event under study, such as a failure or an impact with a celestial body): if this is 



1539

1 3

The Journal of the Astronautical Sciences (2022) 69:1537–1572 

properly chosen, the method can considerably increase the accuracy of the solution 
or reduce the number of required system simulations with respect to a standard MC.

LS was originally developed for the reliability analysis of failure in complex 
structural systems [7, 8], and later applied to risk estimation for orbital conjunc-
tion analysis in combination with differential algebra (DA) [9]. In previous works, 
the authors adapted and applied LS to the estimation of impact probability of small 
objects with major celestial bodies, mainly for the verification of planetary protec-
tion requirements for exploration missions, but including also Near Earth Asteroids 
[10, 11]. In this work, this application of the LS method was further developed to 
improve its effectiveness in the cases under study.

This manuscript presents, in the first part, the LS algorithm and the theory behind 
it, studying the formulation that is given in the literature. This theoretical formula-
tion was expanded further in order to better characterise the behaviour of the method 
according to the cases under analysis. Later, a series of algorithms based on LS are 
introduced with the aim of creating a numerical procedure capable of analysing 
complex cases:

• an algorithm used to improve a first guess for the reference sampling direction to 
get it closer to an ideal case, thus increasing the accuracy of the analysis;

• an algorithm to identify time windows where impact regions could be found by 
analysing the close approaches that are recorded during a preliminary sampling;

• an iterative procedure to explore all possible impact regions and sample them 
if possible, with the goal of obtaining a wider overview of the distribution of 
impact regions within the initial uncertainty distribution, and estimating impact 
probability with higher accuracy and efficiency.

Two test cases regarding planetary protection analysis of interplanetary missions are 
provided with their results, as examples to demonstrate the performance of the pre-
sented techniques singularly or in the context of the overall procedure: the launcher 
upper stage of the Solar Orbiter mission, and orbiter of the Mars Sample Return 
mission.

The manuscript is organised as follows: Sects. 2 and 3 will describe the LS algo-
rithm and the theory behind it, introducing new developments along with it; Sect. 4 
will present the additional techniques that were devised to improve the original LS 
method and apply it to a multi-event analysis; Sect. 5 will show the results of the 
application of the presented methods to different test cases, comparing them with the 
performance of standard MC simulations; finally, Sect. 6 will summarise the main 
results and present some of the objectives for continuing this work in the future.

2  Line Sampling

The LS method is a MC-based approach with the objective of estimating small prob-
abilities (probabilities of failure that are generally in the range of 10−7 to 10−6 [7, 8]). 
It consists of four steps: (1) the mapping of random samples from the physical coor-
dinate space into a normalised standard space; (2) the determination of the reference 
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direction � ; (3) the probing of the region of interest along the lines following the 
reference direction; (4) the estimation of the event probability.

In this work, the event of interest is an impact between the object being propa-
gated (more specifically, a spacecraft or a launcher stage) and a celestial body. The 
impact event is defined as the condition when the distance between the spacecraft 
and any celestial body is below the critical radius of said body at any time during the 
propagation. Thus, the impact region in the initial uncertainty domain is defined as 
the subset of initial conditions that will lead to an impact within the selected propa-
gation window.

A summary of each step of LS is provided hereafter, along with an introduction 
to the choices made for the numerical implementation of the LS technique.

2.1  Mapping onto the Standard Normal Space

The first step of the LS procedure is the definition of this transformation: all the ran-
dom vectors x ∈ ℝ

d of physical coordinates (position and velocity) that are drawn 
from the nominal uncertainty distribution in the following phases need to be mapped 
onto a normalised coordinate space.

Each � vector is mapped to a new parameter vector � ∈ ℝ
d whose components 

�j, j = 1,… , d are all associated with a unit Gaussian distribution, each with a prob-
ability density function (pdf) �j defined as:

The components of the vector � have the property of being independent and identi-
cally distributed (iid) random variables, meaning that each has the same probability 
distribution as the others and all are mutually independent [8]. As a consequence, 
the joint pdf � of these random parameters is equal to the product of all the single 
pdfs:

Thanks to this property, this transformation grants efficiency to the method, espe-
cially for problems with high dimensionality: it reduces the problem to a series of 
one-dimensional analytical evaluations, thus enabling a simplification of the compu-
tation of the probability later in the procedure.

The direct and the inverse transformations, from the physical domain to the nor-
malised one and vice versa, preserve the joint Cumulative Distribution Function 
(CDF) between the two coordinate spaces, and are defined as:

(1)�j(�j) =
1

√

2�
exp

�

−
�2
j

2

�

, j = 1,… , d

(2)�(�) =

d
∏

j=1

�j(�j)

(3)Φ(�) = F(�)

(4)� = Φ−1[F(�)]
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with Φ and F being the CDF of the unit Gaussian distribution and the input uncer-
tainty distribution of the problem, respectively.

Following the definition of the pdf � , the joint CDF Φ is

where erf(x) = 2
√

�
∫ x

0
exp (−u2)du is the error function.

State and manoeuvre uncertainty is usually represented in Gaussian form in plan-
etary protection analysis. For this reason, the Rosenblatt transformation [12], which 
is defined specifically for multivariate Normal distributions, is applied in this work: 
for Gaussian-distributed uncertainty parameters (as in the cases under study), both 
the direct and the inverse transformations (respectively Eqs. (4) and (5)) become lin-
ear [8, 12]. The transformation is reported in Appendix A.

2.2  Determination of the Reference Direction

The reference direction � can be determined in different ways [8]. In this work, it is 
determined as the direction of a normalised “centre of mass” of the impact region. 
This region is approximated by applying the Metropolis–Hastings algorithm [13, 14] 
to generate a Monte Carlo Markov Chain (MCMC) lying entirely in the impact sub-
domain starting from an initial condition within it. MCMC simulation is a method 
for generating samples conditional on a region satisfying a given condition, accord-
ing to any given probability distribution described by the pdf p(�) . The algorithm to 
generate a sequence of NS samples from a given sample �u drawn from the distribu-
tion p(�) is briefly explained in [15]: 

1. generate the sample � by randomly sampling a user-defined “proposal” pdf p∗(�u);
2. compute the ratio r = p(�)∕p(�u);
3. set �̃ = � with probability min(1, r) and �̃ = �u with the probability 1 −min(1, r) , 

where �̃ is the candidate for the next element of the chain;
4. check whether the candidate �̃ lies in the region of interest I or not: if �̃ ∈ I , accept 

it as the next sample �u+1 = �̃ ; else, reject it and take the current sample as the 
next sample �u+1 = �u.

The starting condition of the MCMC can also be found in different ways (e.g. 
numerical minimisation of the distance to the planet, or prior knowledge). In 
this work, the initial point is determined via a preliminary sampling, as will 
be described in Sect.  4. It is important to notice that the specific method used 

(5)� = F−1[Φ(�)]

(6)

Φ(�) =

�

∫
−∞

�(u)du =

d
�

j=1

Φj(�j)

with Φj(�j) =
1

2

�

1 + erf

�

�j
√

2

��

, j = 1,… , d
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to determine the sampling direction is not a core phase of the LS method, thus 
representing one of the degrees of freedom in the implementation of the whole 
procedure.

After the impact region has been populated with NS samples, the reference 
direction � is computed in the standard normal space as

where �u, u = 1,… ,NS are the points of the Markov chain made of NS samples con-
verted from the physical space into the standard normal space. The simulations per-
formed for the Markov chain require additional computational effort with respect 
to standard MC methods. Nevertheless, this option provides a good coverage of the 
impact region and a resulting better accuracy of the final probability estimate.

2.3  Line Sampling

After determining the reference sampling direction, NT initial conditions 
x
k, k = 1,… ,NT are randomly drawn from the nominal uncertainty distribution 

and then mapped to standard normal coordinates as �k using the transformation 
in Eq. (4). For each sample in the standard normal space, a line starting from 
�k, k = 1,… ,NT and parallel to � is defined according to the parameter ck , such 
that

where ⟨�,�k
⟩ is the scalar product between � and �k . In this way, the problem is 

reduced to a series of one-dimensional evaluations associated with each sample, 
with ck also normally distributed in the standard space.

The standard domain is then explored along each line with the aim of identifying 
the impact region of an uncertainty set. For the problem under study, the occurrence 
of the events is expressed by the value of the non-dimensional performance function

where Y is a function that maps the value of the parameter c (corresponding to an 
initial condition �0 ) to a performance index, and Rimp is the selected critical distance. 
In this work, Y is the minimum distance from the celestial body of interest (e.g. 
the Earth) in the given time window, while Rimp represents the radius around the 
planet that is selected to define an impact (not necessarily equal to the planet radius). 
According to this definition, it follows that

(7)� =

∑NS

u=0
�u∕NS

�

�

�

∑NS

u=0
�u∕NS

�

�

�

(8)�k = ck� + �k
⟂

(9)�k
⟂
= �k − ⟨�,�k

⟩�

(10)g�(�(c)) = Y(c)∕Rimp − 1
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The limit condition g�(�(c)) = 0 is given by a trajectory reaching a minimum dis-
tance from the planet equal to the impact radius Rimp.

The performance function is evaluated iteratively along each line 
�k = ck� + �k

⟂
 to identify the values of ck corresponding to its intersections 

with the impact region, as displayed in Fig. 1. Due to the nature of the problem 
under analysis (that is, a single close approach event within a given time inter-
val), the hypothesis is made that a maximum of two intersections between each 
line and the impact region are found, meaning that two values of ck exist for 
each standard normal random sample �k, k = 1,… ,NT  where the performance 
function is equal to zero: g�(c

k

1
) = 0 and g�(c

k

2
) = 0 . These two values represent 

states leading to the limit condition, while the values of ck in between repre-
sent states leading to impacts: g𝜃(c

k
) < 0,∀ c

k

1
< ck < c

k

2
 . The main hypothesis is 

valid when the impact region extends across the uncertainty domain and can be 
approximated as a flat or slightly curved surface. On the contrary, if the impact 
region is limited in size, the line being sampled may not intersect the impact 
region and no root ck is found. Finally, if the impact region has a twisted shape 
or disconnected shape due to many close approaches, more than two intersec-
tions (or none) with each line may be found.

(11)g𝜃(�(c))

⎧

⎪

⎨

⎪

⎩

< 0 → Impact

= 0 → Limit condition

> 0 → No impact

Fig. 1  Scheme of the iterative sampling procedure used to sample each line in the standard normal coor-
dinate space. The impact region is labelled with F, with a single border highlighted as a red line (Color 
figure online)
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2.4  Estimation of the Impact Probability

Once the values (ck
1
, c

k

2
), k = 1,… ,NT are known for all the sampling lines, the 

unit Gaussian CDF provides each random initial condition �k, k = 1,… ,NT with 
the conditional impact probability P̂k(I) . Thanks to the properties of the normalised 
coordinate space, each P̂k(I) can be computed as a one-dimensional integrals along 
the corresponding line:

If no intersections between a sampling line and the impact region were found, the 
value of the probability integral is equal to 0, and the associated conditional impact 
probability has a null contribution to the total probability.

The total probability of the event P̂(I) (which is identified with a planetary colli-
sion in the approach presented in this work) and the associated variance �̂�2

(

P̂(I)
)

 are 
then approximated as follows:

The total probability is estimated as the average of the conditional probabilities 
computed along each line (including those not intersecting the impact region as hav-
ing a null partial probability). The variance is computed as the variance of all the 
conditional probabilities.

The number NT of sampling lines should be chosen to guarantee a desired level 
of accuracy, according to the equations given above. Possible criteria to guide this 
choice are discussed in Sect. 4.2.

3  Theoretical Basis

The LS method was introduced in previous works [11, 16], where a general explana-
tion of the theory behind it was presented, together with the results of its application 
to different test cases, to show how the choice of this sampling method can improve 
the efficiency of the MC simulations for planetary protection analysis.

In this work, the method is further analysed to understand how the shape of the 
impact region and the choice of the sampling direction influence the effectiveness of 

(12)

P̂k(I) = P̂
[

c
k

1
< N(0, 1) < c

k

2

]

=

c
k

2

∫
c
k

1

𝜙(u)du = Φ
(

c
k

2

)

− Φ
(

c
k

1

)

, k = 1,… ,NT

(13)P̂(I) =
1

NT

NT
∑

j=1

P̂k(I)

(14)�̂�2
(

P̂(I)
)

=
1

NT (NT − 1)

NT
∑

j=1

(

P̂k(I) − P̂(I)
)2
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LS with respect to standard MC. In the case of the LS, the literature already gives a 
qualitative estimation of its efficiency compared with the standard MC in terms of 
convergence rate [17]. A summary of it is reported in Sect. 3.1 to introduce the nota-
tion that will be used in Sect. 3.2.

3.1  Theoretical Formulation of the LS Method

The aim of this section is to give an introduction of the theoretical formulation of the 
LS method. In particular, it provides the analytical demonstration that LS has higher 
accuracy than standard MC. This treatise follows the explanation and the notation 
presented by Zio in [17], but is necessary in order to introduce the work presented in 
the next section.

In Sect. 3.2, the theory presented here will be expanded, in order to characterise 
further the performance of LS with respect to standard MC. In particular, an approx-
imated formula will be developed, showing how the accuracy of LS is related to 
the choice of the reference sampling direction and to the shape of the impact region 
being sampled.

Let � ∈ ℝ
d be a random variable whose distribution is described by the multi-

dimensional probability density function (pdf) qX(�) , and let F be the subdomain 
of the variables � leading to an event of interest (which can be seen as the failure 
of a system or, in this case, an impact with a celestial body). A performance func-
tion gX(�) is defined such that gX(�) ≤ 0 if � ∈ F and gX(�) > 0 otherwise. Simi-
larly, an indicator function IF(�) is defined such that IF(�) = 1 if � ∈ F and IF(�) = 0 
otherwise.

The probability of the event F can be expressed as a multidimensional integral in 
the form

where � = (x1,… , xd)
T ∈ ℝ

d is the vector of the uncertain variables of the system, 
and E[⋅] is defined as the expected value operator. Equation (15) shows that IF(�) is 
also a random variable [17] and that P(F) can be interpreted as the expected value 
of IF(�).

The variance �2 of IF(�) is then defined as

Since I2
F
(�) = IF(�) ∀� ∈ ℝ

d due to IF(�) being defined as a binary function, it fol-
lows that

(15)P(F) = P(� ∈ F) = ∫
F

IF(�) qX(�) d� = E
[

IF(�)
]

(16)

�2
[

IF(�)
]

= ∫
F

[

IF(�) − P(F)
]2

qX(�) d�

= E
[

I2
F
(�)

]

− E
[

IF(�)
]2

= E
[

I2
F
(�)

]

− P(F)2
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For the standard MC, an estimator P̂(F) of the probability P(F) as expressed in Eq. 
(15) is obtained by dividing the number of times that IF(�k) = 1, k = 1,… ,N by the 
total number of samples drawn N:

If standard MC is interpreted as a Point Sampling method, in comparison with the 
LS, IF(�) becomes the random variable that is sampled in order to estimate the prob-
ability of event F.

In the application of LS, a coordinate transformation from the physical space to 
the standard normal space TX� ∶ � → � brings as advantages the normalisation of 
the physical variables through the covariance matrix, and the possibility to express 
the multidimensional pdf as a product of d unit Gaussian standard distributions 
�j(�j):

With reference to Fig. 1, in the d-dimensional standard normal space, the subdomain 
F is the subspace for which the samples � = (�1,… , �d)

T ∈ ℝ
d−1 satisfy a given 

property (e.g. an impact with a planet or a system failure). With the assumption that 
�1 points in the direction of the sampling vector � (this can always be assured by a 
suitable rotation of the coordinate axes), the subdomain F can be also expressed as

with F1 ∈ ℝ
d−1 , in this way the region F corresponds to the values of � such that the 

performance function g�(�) satisfies the relation g�(�) = g�,−1(�−1) − �1 ≥ 0 , where 
�−1 = (�2,… , �d)

T ∈ ℝ
d−1.

Considering this change of variables and the definition in Eq. (20), the integral in 
Eq. (15) can be rewritten as

and manipulated as follows:

(17)

�2
[

IF(�)
]

= E
[

I2
F
(�)

]

− E
[

IF(�)
]2

= E
[

IF(�)
]

− E
[

IF(�)
]2

= P(F) − P(F)2 = P(F)(1 − P(F))

(18)P̂(F) =
1

N

N
∑

k=1

IF(�k)

(19)Φ(�) =

d
∏

j=1

�j(�j)

(20)F = {� ∈ ℝ
d ∶ �1 ∈ F1(�1,… , �d)}

(21)P(F) = ∫
d

IF(�)

d
∏

j=1

�j(�j) d� = E
[

IF(�)
]
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where Φ(A) = ∫ IA(�)�(�)d� is the definition of the Gaussian measure of A, where A 
is the subset of the random variables � which lead to a given result (e.g. an impact).

In case of the standard MC, Φ
(

F1(�−1)
)

 is a discrete random variable equal to IF(�) ; 
as a consequence:

On the contrary, for the LS method Φ
(

F1(�−1)
)

 is a continuous random variable 
where F1(�

k
−1
) = −c

k . This is clear from Fig.  1, where the sampling procedure is 
represented highlighting the boundary of the region corresponding to the event F. 
As a consequence:

The consequence of these properties is visible when considering the definition of 
variance of an estimator for the two methods. An estimator P̂(F) of the probability 
P(F) as expressed in Eq. (22) can be computed as

where �k = 1,… ,NT are iid samples in the standard normal coordinate space. Given 
the generic definition of variance for P(F) following Eq. (22) as

the variance of the estimator P̂(F) is defined as

(22)

P(F) = ∫
d

IF(�)

d
∏

j=1

�j(�j) d�

= ∫
d−1

...∫
(

∫ IF(�−1) �1(�1) d�1

) d
∏

j=2

�j(�j) d�−1

= ∫
d−1

...∫ Φ
(

F1(�−1)
)

d
∏

j=2

�j(�j) d�−1

= E�−1

[

Φ
(

F1(�−1)
)]

Φ2
(

F1(�−1)
)

= Φ
(

F1(�−1)
)

∀�−1 ∈ ℝ
d−1

0 ≤ Φ2
(

F1(�−1)
) ≤ Φ

(

F1(�−1)
) ≤ 1 ∀�−1 ∈ ℝ

d−1

(23)P̂(F) =
1

NT

NT
∑

k=1

Φ
(

F1(�
k
−1
)
)

(24)

�2(P(F))

= ∫
[

Φ
(

F1(�−1)
)

− P(F)
]2

�(�−1) d�−1

= E�−1

[

Φ2
(

F1(�−1)
)]

− E2
�−1

[

Φ
(

F1(�−1)
)]

= E�−1

[

Φ2
(

F1(�−1)
)]

− P(F)2

(25)𝜎2
(

P̂(F)
)

= 𝜎2(P(F))∕NT = 𝜎2
[

Φ
(

F1(�−1)
)]

∕NT
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meaning that the variance of the estimator directly depends on the variance of the 
random variable Φ

(

F1(�−1)
)

:

Consequently, since 0 ≤ Φ
(

F1(�−1)
) ≤ 1 and 0 ≤ Φ2

(

F1(�−1)
) ≤ Φ

(

F1(�−1)
)

 are 
always true ∀�−1 ∈ ℝ

d−1 , the previous relation can be extended as follows:

Since P(F)(1 − P(F)) is the definition of the variance of the standard MC as given 
in Eq. (17), one can conclude from Eq. (27) that the variance obtained by the LS 
method is always smaller than the one given by standard MC, or at least equal to it.

A coefficient of variation (c.o.v.) 𝛿 =

√

𝜎2
(

P̂(F)
)

∕P(F) can be defined as a meas-
ure of the efficiency of the sampling method, with lower values of � meaning a 
higher efficiency of the method in converging to the exact value of the probability. 
Equation (27) demonstrates that the c.o.v. of estimator in Eq. (25) as given by the LS 
method is always smaller than the one given by the standard MC, implying that the 
convergence rate of the LS is always faster than, or as fast as, that of the standard 
MC.

3.2  New Developments

As introduced in the previous section, here the theory behind the LS method is taken 
further, to obtain more insight about it and about which parameters affect the the 
accuracy the method provides. The analytical formulas showing that the accuracy 
of the LS is always equal or higher to the accuracy given by standard MC were 
manipulated as part of the research work on LS. From this work, a formula based 
on approximations was obtained, showing how the accuracy of LS depends from 
important parameters such as the shape of the impact region and the determination 
of the sampling direction. This formula will be demonstrated and discussed.

The analytical development presented here follows the notation used in the previ-
ous section and taken from [17].

While in the case of the standard MC Eq. (27) is easy to treat, since 
E�−1

[

Φ2
(

F1(�−1)
)]

= E�−1

[

Φ
(

F1(�−1)
)]

 , in the LS case E�−1

[

Φ2
(

F1(�−1)
)]

 is a con-
tinuous variable, defined through the integral

(26)�2
[

Φ
(

F1(�−1)
)]

= E�−1

[

Φ2
(

F1(�−1)
)]

− E2
�−1

[

Φ
(

F1(�−1)
)]

(27)

�2
[

Φ
(

F1(�−1)
)]

= E�−1

[

Φ2
(

F1(�−1)
)]

− E2
�−1

[

Φ
(

F1(�−1)
)]

≤ E�−1

[

Φ
(

F1(�−1)
)]

− E2
�−1

[

Φ
(

F1(�−1)
)]

= P(F)(1 − P(F)) = �2
[

IF(�)
]

(28)E�−1

[

Φ2
(

F1(�−1)
)]

= ∫d−1

...∫ Φ2
(

F1(�−1)
)

d
∏

j=2

�j(�j) d�−1
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which cannot be easily manipulated analytically due to the presence of Φ2
(

F1(�−1)
)

 . 
For this reason, it is chosen to express this term with an approximation.

The definition of Φ
(

F1(�−1)
)

 given in Eq. (22) can be further expanded as

with c(�−1) defined as the border of the region F displayed in Figs. 1 and 2 as a red 
line. c(�−1) is then expanded as c(�−1) = ĉ + 𝛿c(�−1) , with the first term defined as 
an “average” value of c(�−1) (represented as a dashed blue line in Fig. 2) such that 
P(F) = E�−1

[

Φ
(

F1(�−1)
)]

= Φ
(

F1(�−1)
)

= Φ(ĉ) , and the second term as a variation 
with respect to this average value.

The hypothesis is made that �c(�−1) represents a small variation with respect 
to the average value ĉ , as in the case of a quasi rectilinear border of the region F 
orthogonal to the sampling direction � . Under this hypothesis, the integral in Eq. 
(29) can be rewritten as

(29)

Φ
(

F1(�−1)
)

=

+∞

∫
−∞

IF(�−1) �1(�1) d�1

=

+∞

∫
c(�−1)

�1(�1) d�1 = 1 − Φ
(

c(�−1)
)

= Φ
(

−c(�−1)
)

Fig. 2  Scheme representing the approximations used to express the variance of the LS method as a func-
tion of the probability estimate
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resulting in

Taking Eq. (31) into account, and defining in a compact way Δc(�−1) = E�−1

[

�c(�−1)
]

 , 
the variance given by the LS in Eqs. (24) and (22) becomes

Highlighting the new terms in Eq. (32)

this means that a new estimation for the worst covariance given by the LS method 
(nominally, from Eq. (27), equal to the one given by the standard MC) was obtained, 
which takes into account the probability level through the term 𝜙(ĉ) , and the shape 
of the region F and the direction of sampling through the term Δc(�−1).

When the approximation of small �c(�−1) is valid, meaning that the region 
F has a regular shape and is distributed across the initial uncertainty and the 
sampling direction is chosen properly so that it points toward it, and the prob-
ability level is low, the term 𝜙2(ĉ) ⋅ E�−1

[

𝛿c2(�−1)
]

 is also small, and we can say 
that the variance given by the LS is below a value f

(

P(F),Δc(�−1)
)

 such that 
�2(P(F))LS ≤ f

(

P(F),Δc(�−1)
) ≤ �2(P(F))MC , thus increasing the convergence 

rate of LS with respect to standard MC. On the contrary, when the approximation 
does not hold (that is in cases with high probability levels, non-optimal sampling 

(30)

Φ
(

F1(�−1)
)

=

+∞

∫
c(�−1)

𝜙1(𝜃1) d𝜃1 =

+∞

∫
ĉ+𝛿c(�−1)

𝜙1(𝜃1) d𝜃1

=

+∞

∫̂
c

𝜙1(𝜃1) d𝜃1 −

ĉ+𝛿c(�−1)

∫̂
c

𝜙1(𝜃1) d𝜃1

≈ Φ(ĉ) − 𝜙(ĉ) 𝛿c(�−1)

(31)

E�−1

[

Φ2
(

F1(�−1)
)]

≈ E�−1

[

(

Φ(ĉ) − 𝜙(ĉ) 𝛿c(�−1)
)2
]

= E�−1

[

Φ2(ĉ) − 2Φ(ĉ) 𝜙(ĉ) 𝛿c(�−1) + 𝜙2(ĉ) 𝛿c2(�−1)
]

= E�−1

[

Φ2(ĉ)
]

− E�−1

[

2Φ(ĉ) 𝜙(ĉ) 𝛿c(�−1)
]

+ E�−1

[

𝜙2(ĉ) 𝛿c2(�−1)
]

= P(F)2 − P(F) ⋅ 2𝜙(ĉ) ⋅ E�−1

[

𝛿c(�−1)
]

+ 𝜙2(ĉ) ⋅ E�−1

[

𝛿c2(�−1)
]

(32)

𝜎2(P(F)) = 𝜎2
[

Φ
(

F1(�−1)
)]

= E�−1

[

Φ2
(

F1(�−1)
)]

− P(F)2

≈ −P(F) ⋅ 2𝜙(ĉ) ⋅ Δc(�−1) + 𝜙2(ĉ) ⋅ E�−1

[

𝛿c2(�−1)
]

≈ −P(F) ⋅ 2𝜙(ĉ) ⋅ Δc(�−1)

≤ P(F)(1 − P(F)) = 𝜎2
[

IF(�)
]

(33)
𝜎2
(

Φ
(

F1(�−1)
))

≈ −P(F) ⋅ 2𝜙(ĉ) ⋅ Δc(�−1)

≤ P(F)(1 − P(F)) = 𝜎2
[

IF(�)
]



1551

1 3

The Journal of the Astronautical Sciences (2022) 69:1537–1572 

direction, or irregurarly shaped impact regions), f
(

P(F),Δc(�−1)
)

 grows toward the 
covariance level of the MC.

4  Additional Techniques

4.1  Correction of the Sampling Direction

As pointed out both in the available literature and in the previous considerations, the 
sampling direction is one of the key parameters determining the accuracy and effi-
ciency of the LS method, where the ideal case is represented by the sampling direc-
tion being (almost) orthogonal to the boundary of the impact region.

While it is generally impossible to determine an optimal sampling direction a 
priori, Zio et al. [17] suggest a strategy to identify it as the one minimising the vari-
ance 𝜎2

(

P̂(F)NT

)

 of the probability estimator P̂(F)NT
 . This strategy consists in an 

optimisation search having the variance 𝜎2
(

P̂(F)NT

)

 as the objective function to be 
minimised, requiring the iterative evaluation of hundreds or thousands of possible 
solutions �guess and 2NT or 3NT system model evaluations to be carried out to cal-
culate the objective function 𝜎2

(

P̂(F)NT

)

 for each proposed solution. Therefore, the 
computational effort associated to this technique could be prohibitive with a system 
model code requiring hours or even days to run a single simulation.

The method that was developed for this work, instead, goes through a pre-pro-
cessing phase used to correct an initial guess for the sampling direction �guess . This 
guess solution is obtained from the set of NS samples generated in the initial Markov 
Chain already described in Sect. 2.2, and is then used in a short LS analysis over a 
low number of samples to gain information about the general position and shape 
of the impact region; the solutions given by this preliminary sampling are used to 

Fig. 3  Scheme representing the algorithm for the correction of the sampling direction using multilinear 
regression
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approximate the impact region as a hyperplane according to a multilinear regression 
(assuming this approximation is valid), thus using the norm vector orthogonal to the 
hyperplane as new sampling direction.

The full algorithm represented in Fig. 3 follows the following steps: 

1. The initial Markov Chain is performed and a guess for the sampling direction 
�guess is found;

2. A short LS is performed using a few initial samples (also drawn from the Markov Chain 
itself), obtaining the corresponding ck values at the boundary of the impact region;

3. The reference frame is rotated to an orthonormal base aligned with �guess , in order 
to later define the hyperplane during the regression more easily;

4. The ck values are used to approximate the impact boundary of the impact 
region as a hyperplane, according to a multilinear regression scheme as 
c
k
= b1 + b2�

k,⟂

2
+ b3�

k,⟂

3
+ b4�

k,⟂

4
+⋯ =

[

� �k,⟂
]

⋅ � , where � ∈ ℝ
d is the vector 

collecting the coefficients defining the d-dimensional hyperplane and orthogonal 
to it;

5. The reference frame is rotated back to the initial frame of the standard normal 
coordinate space and the vector � is set as the new sampling direction;

6. The main LS procedure is performed following the “corrected” direction.

The efficiency of this scheme relies on two main hypotheses: first, as already 
stated, that the impact region or its boundary can be approximated as a hyperplane; 
second, that the “corrected” sampling direction is “more optimal” than the initial 
one due to it being orthogonal to the boundary of the impact region, thus closer to 
the ideal case for the LS.

The application of this technique and its comparison with the LS using the stand-
ard procedure are shown in Sect. 5.

4.1.1  Definition of the Orthonormal Base

The orthonormal base used in the multilinear regression is generated according to 
the Gram–Schmidt orthogonalisation process [18] starting from the guess sampling 
direction, in order to obtain a base that is aligned with �guess.

This algorithm constructs an orthonormal basis starting from a set of d lin-
early independent vectors �i ∈ ℝ

d, i = 1,… , d as � = [�1 ... �d] . Since an 
initial set is needed, it is set �1 = �guess in order to construct it starting from 
�guess only; the other vectors �1,… , �d of the initial set are generated as 
�i = (�i,… , �d, �1,… , �i−1), i = 1,… , d in order to avoid singularities.

The orthogonalisation algorithm proceeds as follows: 

1. �1 = �1 = �guess

2. �i = �i −
∑

j≤i−1
⟨�j,�i⟩

⟨�j,�j⟩
�j, i = 2,… , d

3. �i =
�i

‖�i‖
, i = 1,… , d
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The operation ⟨�, �⟩ denotes the inner or scalar product between two vectors 
�, � ∈ ℝ

d , with ⟨�,�⟩
⟨�,�⟩

� being the projection of � onto � . In this way, � = [�1 … �d] is 
defined as an orthonormal base, with �1 parallel to �guess , making it possible to 
express the regression hyperplane in a more convenient way.

4.1.2  Algorithm for Multilinear Regression

Given a set of n dependent values yi, i = 1,… , n and a set of n independent varia-
bles �i = (xi1,… , xid)

T ∈ ℝ
d, i = 1,… , n , the linear regression model assumes that 

there exists a relationship f (�i) = yi ∀i = 1,… , n which can be modelled linearly as

with � ∈ ℝ
d being an error variable representing the random noise due to the 

approximation.
Defining the following quantities

the coefficients � are found by imposing the minimisation of the quadratic quantity

which gives as solution

The vector of coefficients � also contains the components of the defining vec-
tor orthogonal to the hyperplane. Thus, in the correction procedure described 
in Sect.  4.1, the new sampling direction � is set parallel to the vector defined as 
(b1,… , bd,−1)

T in order to point toward the hyperplane approximating the impact 
region.

4.2  Multi‑event Analysis

As will be presented in Sect.  5, LS can be more efficient (to reach the same 
accuracy) than the standard MC in estimating the impact probability for a sin-
gle event, meaning for a close encounter with a specific body in a specific nar-
row time interval. However, using the same procedure to analyse multiple events 
(more close approaches with more bodies over an extended period) can lead to 
less accurate results (for the same number of samples) than the standard MC: as 

(34)yi = b0 + b1xi1 + b2xi2 +⋯ + bdxid + �i = [1 �T
i
] ⋅ � + �, i = 1,… , n

� =

⎛

⎜

⎜

⎝

y1
⋮

yn

⎞

⎟

⎟

⎠

, � =

⎡

⎢

⎢

⎣

1 �T
1

⋮ ⋮

1 �T
n

⎤

⎥

⎥

⎦

, � =

⎛

⎜

⎜

⎝

b0
⋮

bd

⎞

⎟

⎟

⎠

, � =

⎛

⎜

⎜

⎝

�1
⋮

�n

⎞

⎟

⎟

⎠

(35)
∑

i

�2
i
= �T� = (� − ��)T (� − ��)

(36)� = (�T�)−1�T�
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the sampling direction is computed to be orthogonal or nearly orthogonal to one 
impact region, using the same to sample different regions in the initial disper-
sion will increase the variance of the probability estimates corresponding to those 
impact regions, since that sampling direction will intersect them at a larger angle 
when compared with any direction computed specifically for those cases.

In order to maintain a high level of accuracy throughout the analysis, a repeti-
tive process is presented, as represented in Fig. 4. The proposed solution makes 
use of repeated LS procedures based on different sampling directions: these 
directions are identified according to close approach windows, that is the time 
intervals where close approaches with planets occur, which can be visualised in 
the example in Fig.  5: in the picture, each dot represents a fly-by (crossing of 
the sphere of influence, or SOI) plotted according to the epoch and the minimum 

Fig. 4  Block scheme representing the algorithm to perform the multi-event analysis with LS: the prelimi-
nary MC survey and identification of the CA windows, the Markov chain generation, the determination 
and correction of the sampling direction, and the estimation of the impact probability with LS

Fig. 5  Close approach window given by the preliminary MC analysis in the case of the post-Earth 
return trajectory of the Mars Sample Return mission. Each fly-by (crossing of the sphere of influence) 
is reported as a dot according to the epoch and the distance, and different close approach windows are 
reported as thin rectangles; the colour identifies the order of sampling, starting from the intervals with 
the lowest distance
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distance, while the thin rectangles represent the time intervals used to look for 
impact regions; the colour identifies the order that will be followed for the sam-
pling, starting from the interval with the lowest distance. For each of these win-
dows, a Markov Chain is started, so that a sampling direction can be determined 
in case an impact region is present. 

The full procedure, as it is described in the scheme in Fig.  4, follows these 
steps: 

1. A preliminary MC is performed, using a low number of initial samples, and every 
close approach occurring during the propagations is stored in memory: this initial 
phase allows to obtain a first estimate of how many and where the impact regions 
might be;

2. The data about the fly-bys is analysed and the close approach (CA) windows are 
identified and sorted according to the minimum distance (with priority given to 
the the window leading to the closest CA): this allows to focus on the impact 
regions corresponding to the most relevant impact events (if any);

3. A Markov Chain is started to search for an impact region inside the first close 
approach window: this allows to populate the impact region (if any) and determine 
a first guess for the sampling direction;

4. At the end of the Markov Chain 

(a) In case impacts were detected, A preliminary LS is performed using a first 
guess for the sampling direction, which is then corrected using the algo-
rithm introduced in Sect. 4.1; this allows to obtain a new sampling direction 
that is ideally closer to the optimal case for LS, which in turns allows to 
improve its accuracy;

(b) A new set of random initial conditions is drawn from the distribution and a 
complete LS is performed as described in the previous sections to identify 
the impact region and compute the corresponding impact probability;

(c) In case no impacts were detected, the next CA window in the priority order 
is selected, and the procedure goes back to point 4 to start a new Markov 
chain;

5. After all CA windows have been analysed, the impact probability is given by the 
weighted sum of all the partial impact probabilities as computed in Eq. (13).

Despite being computationally more complex and less memory efficient (due to 
the larger number of parameters involved and to the larger output size) than a sin-
gle LS analysis, this method can ideally offer a complete overview of the impact 
regions inside the initial uncertainty distribution, providing additional informa-
tion with respect to a normal planetary protection analysis, thus being able to be 
used directly in mission design.
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Many parameters can affect the efficiency of this method in terms of number 
of propagations (compared with the standard MC) and its reliability in identify-
ing correctly the impact regions (if any). In particular, the number of samples 
of preliminary MC (determined by confidence level), the length of the Markov 
Chains, the number of sampling lines, the tolerances used in the iterative process 
to determine the intersections between each sampling line and the impact region 
were identified as key parameters in these regards. For each of them, a trade off 
is required: while higher values would increase the accuracy of the determination 
of the impact regions and, consequently, of the probability estimate, the impact 
on the computational load may make the LS process less efficient than the stand-
ard MC; on the contrary, lower values would reduce substantially the number of 
orbital propagations needed to identify and sample the CA windows, but would 
not ensure the correct recognition of the impact regions.

4.2.1  Algorithm for Merging Close Approach Intervals

Given n intervals Ii = [ti
1
, ti
2
] with ti

1
< ti

2
 (corresponding, respectively, to the SOI 

entry and exit epochs of each close approach in the preliminary analysis), algorithm 
to merge the close approach intervals proceeds as follow: 

1. All intervals are sorted from earliest to latest starting epoch ti
1
 (SOI entry) and put 

into a main stack;
2. The interval on top of the main stack I1 = [t1

1
, t1
2
] is compared with the following 

one I2 = [t2
1
, t2
2
] ; 

(a) If t1
1
≤ t2

2
AND t2

1
≤ t1

2
 , the two intervals I1 and I2 overlap, and thus are 

merged into a new I = [t1
1
, t2
2
] which becomes the interval on top of the stack 

I1;
(b) Else, I1 is moved to an output stack and the comparison starts again from 

the interval on top of the main stack;

3. The comparisons are carried out until the main stack is empty.

The maximum complexity of this algorithm is of order O(N logN) (e.g., as used 
for sorting the minimum and maximum range values), with N being the number 
of recorded CAs. However, since the procedure is applied only once, it does not 
increase the computational load of the whole analysis in a relevant way.

5  Application and Results

Two test cases were selected to show how the proposed procedure works and its per-
formance in identifying impact regions shaped differently with different probability 
levels: 
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1. The launcher upper stage of Solar Orbiter:

• the data refers to an old option for a launch in October 2018, later discarded 
during the mission design (initial data in Table 1 taken from [2]);

• the analysis focuses on the trajectory of the launcher upper stage following 
the injection into the interplanetary transfer orbit (aiming to a fly-by with 
Venus) and the separation from the spacecraft;

• the planetary protection requirement applied in this case is the same used to 
protect Mars for a generic mission, with a probability level of 10−4.

2. The Mars Sample Return mission:

• the analysis focuses on the return trajectory from Mars after performing an 
Earth-avoidance manoeuvre;

• the uncertainty distribution is built assuming errors of 1 m on all position 
components and 5 m/s on all velocity components within a 3� confidence 
level

• the planetary protection requirement applied in this case is the same used 
to protect Earth for all sample return missions, with a probability level of 
10−6.

For both cases, the initial state uncertainty is expressed as a 6x6 covariance 
matrix over the state only, and all initial data (epochs, states and uncertainties) 
is reported, and defined with respect to the EME2000 inertial reference frame 
(Earth’s Mean Equator and Equinox at 12:00 Terrestrial Time on 1 January 
2000): the x-axis is aligned with the mean equinox, the z-axis is aligned with the 
Earth’s celestial North Pole, and the y-axis is rotated by 90◦ East about the celes-
tial equator [19].

Table 1  Initial conditions for the simulations of the state inaccuracy of the launcher upper stage of Solar 
Orbiter: epoch, position, velocity, and the associated covariance matrix are reported, defined in the iner-
tial EME2000 reference frame centred in the Sun

Epoch, MJD2000 6868.6194

� , km 132048839.01817, 63140185.879734, 27571915.378760

� , km/s − 12.199001757542, 20.240166264928, 9.767449779832

Covariance matrix
x, km y, km z, km v

x
 , km/s v

y
 , km/s v

z
 , km/s

5.351 × 104 5.409 × 104 −2.562 × 104 2.482 × 10−1 2.744 × 10−1 −1.205 × 10−1

5.409×104 1.355×105 4.508×103 2.337×10−1 7.100×10−1 3.427×10−2

−2.562 × 104 4.508×103 1.728×105 −1.370 × 10−1 5.015×10−2 8.333×10−1

2.482×10−1 2.337×10−1 −1.370 × 10−1 1.156×10−6 1.179×10−6 −6.485 × 10−7

2.744×10−1 7.100×10−1 5.015×10−2 1.179×10−6 3.724×10−6 3.078×10−7

−1.205 × 10−1 3.427×10−2 8.333×10−1 −6.485 × 10−7 3.078×10−7 4.019×10−6
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The propagations are carried out in normalised units (with reference length 
and time equal to 1 AU and 1 solar year, respectively) using the adaptive Dor-
mand-Prince Runge-Kutta scheme of 8th order (DOP853), with absolute and rela-
tive tolerances both set to 10−12.

For both cases, the stopping tolerance of the iterative process for the LS is 10−3 
with a maximum of 12 propagations per line.

The comparison between the standard MC and the proposed approach based on 
LS is performed by analysing the following parameters:

• the total number of orbital propagations Nprop;
• for the LS only, the total number of sampling lines Nlines;
• the impact probability estimate P̂(I);
• the sample standard deviation �̂� of P̂(I);

The overall number of propagations NP is selected as a measure of the computa-
tional burden of the methods, while the standard deviation �̂� is instead used as indi-
cator of the accuracy of the result, with lower values corresponding to lower vari-
ability [8, 9].

The total computational time is also reported and discussed among the results, 
however is not included the evaluations of the efficiency of the method due to the 
variability intrinsic to the choice of the machine and its workload.

5.1  Launcher Upper Stage of Solar Orbiter

Table 1 reports the initial state, associated covariance matrix, and reference epoch 
for this mission case, which are the same ones reported in [2].

A preliminary MC simulation was performed to obtain information about the CA 
windows for the multi-event analysis. The number of runs was determined using the 
probability, confidence level, and maximum number of samples reported in Table 2: 
that value was obtained by arbitrarily scaling the probability set by the planetary 
protection requirement by two orders of magnitude. The table also shows the num-
ber of close approaches that were recorded and the number of CA windows that 
were identified via the merging algorithm introduced in Sect.  4.2.1, while Fig.  6 
shows their distribution in time.  

Figure 6 shows the distribution in time of the CA windows found with the pre-
liminary MC analysis, indicating each encounter with a planet as a dot according to 

Table 2  Input data and results 
of the preliminary MC for the 
multi-event analysis for the 
Solar Orbiter mission

Probability, CL 10
−2 , 0.99

# samples 1000

# recorded CAs 660
# CA windows 108
# impact regions found 1
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its epoch and minimum distance from the encountered planet. The color scale indi-
cates the sampling priority that is given to each CA window, starting from the one 
with the closest CAs. In particular, Fig. 7 shows a close-up of the CA window that 
was assigned the highest priority, which, in this case, is also the only CA window 
where an impact region was found via the sampling with a Markov Chain. This was 
an expected result, since, in this launch option, the upper stage injects the spacecraft 
into a trajectory aiming for a direct gravity assist with Venus in the first year of the 
mission [20].

Fig. 6  Distribution in time of the close approach windows recorded during the preliminary MC sampling 
of the uncertainty for the Solar Orbiter mission: dots represent close approaches reported with their mini-
mum distance epoch and miss distance, while the thin rectangles represent the time intervals used to look 
for impact regions; the colour identifies the order of sampling, starting from the intervals with the lowest 
distance (Color figure online)

Fig. 7  Detail of the CA window identified as the first impact region for the Solar Orbiter mission
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In the case of the launcher upper stage of Solar Orbiter, the LS was applied both 
without and with the correction of the sampling direction. The solution without the 
correction is shown in Figs. 8 and 9, while the one where the correction was applied 
is shown in Figs. 10 and 11 : in both cases, the figures show the Δv distribution as 
grey dots and the impact region as red (solution of the standard MC simulation) and 
green dots (boundary found via LS), and the convergence of the solutions given by 
standard MC and LS, in terms of estimated value of the impact probability and its 

Fig. 8  Results of the application of the LS method to the case of the Solar Orbiter mission, without the 
correction of the sampling direction: a the whole initial dispersion (grey dots), impact region found with 
MC (red) and boundary found with LS (green); b the impact region in more detail (Color figure online)

Fig. 9  Convergence of the solution given by LS  (green) compared with the convergence of standard 
MC (red) in terms of impact probability in a and associated variance in b in the case of the Solar Orbiter 
mission, without the correction of the sampling direction
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Fig. 10  Results of the application of the LS method to the case of the Solar Orbiter mission, after the 
correction of the sampling direction: a the whole initial dispersion (grey dots), impact region found with 
MC (red) and boundary found with LS (green); b the impact region in more detail (Color figure online)

Fig. 11  Convergence of the solution given by LS  (green) compared with the convergence of standard 
MC (red) in terms of impact probability in a and associated variance in b in the case of the Solar Orbiter 
mission, after the correction of the sampling direction

Table 3  Results of the application of standard MC and LS (without correction and with correction of the 
sampling direction) for the case of the upper launcher stage of Solar Orbiter: number of propagations, 
number of sampling lines used by the LS, probability estimate and associated variance, and computa-
tional time

Nprop Nlines P̂(I) �̂� CPU time (h)

MC 54114 – 4.34×10−2 8.75×10−4 0.80
LS (1st CA) 96164 10564 4.00×10−2 8.75×10−4 1.22
LS (1st CA), 9437 1330 4.02×10−2 8.75×10−4 0.16
� correction
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associated standard deviation. Table 3 reports the numerical solutions in both cases, 
comparing them with the solution given by the standard MC simulation.

The results reported in Table  3 show the benefit given by the application of 
LS over standard MC, as the proposed method is able to reach the same vari-
ance of the probability estimate given by the standard MC using a much lower 
number of propagations when the sampling direction is chosen properly: not only 
the number of sampling lines is reduced by almost 8 times, but the number of 
necessary propagations is reduced as well by almost 6 times. In fact, a choice of 
the sampling direction not orthogonal or nearly orthogonal to the impact region 
affects not only the efficiency of the LS (with a higher number of sampling lines 
necessary to obtain the same accuracy), but also the accuracy of the iterative pro-
cess itself, as in average 9 propagations per line are needed against the 7 propaga-
tions per line in case the sampling direction is corrected to be “more optimal”. In 
both cases, the number of lines is initially determined based on the value of the 
probability set by the planetary protection requirement, and it is then increased to 
reach the same accuracy given by the standard MC in the non corrected case, or 
reduced when that accuracy is reached in the corrected case.

The differences in the values of the estimated impact probability are due both 
to the determination of the sampling direction, as already pointed out, and to 
the accuracy of the iterative process used to identify the boundary of the impact 
region. This also confirms the theoretical considerations made in Sects. 3.1 and 
3.2 about the importance of a proper determination of the sampling direction for 
a good accuracy of the LS solution.

It must be pointed out that the difference between the probability values esti-
mated by the two methods is due to LS identifying only the main impact region, 
as seen in Figs.  8 and 10, and ignoring the isolated impacts found by standard 
MC. These may belong to extremely thin impact regions, which may be captured 
by LS with different values of simulation parameters (e.g. number of preliminary 
MC runs, length of Markov Chains), or may be outliers, which would require a 
different approach to be sampled. However, since the impact probability associ-
ated with the main impact region contributes the most to the overall estimation, 
the values computed via MC and LS do not differ substantially.

Table 4, instead, shows the computational load given by the whole multi-event 
procedure compared with the one given by the standard MC, for the analysis with 
the correction of the sampling direction, highlighting the various phases of the 
LS-based procedure, which is split into:

Table 4  Numerical performance 
of LS with correction of the 
sampling direction compared to 
standard MC in the case of the 
launcher upper stage of Solar 
Orbiter

# propagations CPU time (h)

LS Preliminary MC 1000 0.02
Markov Chains 20800 0.35
LS phases 9437 0.16
Total 31237 0.53

MC Total 54114 0.80
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• preliminary MC, used to identify the CA windows;
• Markov Chains, one per CA window;
• LS phases, that is those phases where the impact regions found using the Markov 

chains (if any) are sampled using lines.

In this case, a maximum limit of 200 samples per Markov chain was set. It is 
clear that the Markov Chains are the most demanding phases with 66% of the 
total computational load of LS, since each CA window is sampled to search for 
an impact region, while, as expected, the preliminary MC phase does not increase 
significantly the computational time.

5.2  Mars Sample Return mission (Post Earth‑Avoidance Manoeuvre)

Table 5 reports the initial state, associated covariance matrix, and reference epoch 
for this mission case: the uncertainty was arbitrarily set to 1 m in position and 5 m/s 
in velocity, uniformly over all the components.

A preliminary MC simulation was performed to obtain information about the CA 
windows for the multi-event analysis. The number of runs was determined using the 
probability, confidence level, and maximum number of samples reported in Table 6. 

Table 5  Initial conditions for the simulations of the state inaccuracy of the launcher upper stage of Solar 
Orbiter: epoch, position, velocity, and the associated covariance matrix are reported, defined in the iner-
tial EME2000 reference frame centred in the Sun

Epoch, MJD2000 11601.8193

� , km 145474529.75119, 33739755.347356, − 532320.51350861

� , km/s − 9.2557070719419, 30.974849145494, − 3.5619719210297

Covariance matrix 
x, km y, km z, km v

x
 , km/s v

y
 , km/s v

z
 , km/s

1.111.10
−7 0.0 0.0 0.0 0.0 0.0

0.0 1.111.10
−7 0.0 0.0 0.0 0.0

0.0 0.0 1.111.10
−7 0.0 0.0 0.0

0.0 0.0 0.0 2.778.10
−6 0.0 0.0

0.0 0.0 0.0 0.0 2.778.10
−6 0.0

0.0 0.0 0.0 0.0 0.0 2.778.10
−6

Table 6  Input data and results 
of the preliminary MC for the 
multi-event analysis for the 
Mars Sample Return mission

Probability, CL 10−4 , 0.99
# samples 10000

# recorded CAs 8754
# CA windows 59
# impact regions found 1
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The table also shows the number of close approaches that were recorded and the 
number of CA windows that were identified, while Fig. 12 shows their distribution 
in time.

Figure 12 shows the distribution in time of the CA windows found with the pre-
liminary MC analysis. In particular, Fig.  13 shows a close-up of the CA window 
that was assigned the highest priority, which, in this case, is also the only CA win-
dow where an impact region was found via the sampling with a Markov Chain, 

Fig. 12  Distribution in time of the close approach windows recorded during the preliminary MC sam-
pling of the uncertainty for the Mars Sample Return mission: dots represent close approaches reported 
with their minimum distance epoch and miss distance, while the thin rectangles represent the time inter-
vals used to look for impact regions; the colour identifies the order of sampling, starting from the inter-
vals with the lowest distance

Fig. 13  Detail of the CA window identified as the first impact region for the Mars Sample Return mis-
sion
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corresponding to an encounter window with Earth after 23 years from the beginning 
of the propagation period.

Also in the case of the Mars Sample Return mission, the LS was applied both 
without and with the correction of the sampling direction. The solution without 
the correction is shown in Figs. 14 and 15, while the one where the correction was 
applied is shown in Figs. 16 and 17: in both cases, the figures show the Δv distribu-
tion as grey dots and the impact region as red (solution of the standard MC simula-
tion) and green dots (boundary found via LS), and the convergence of the solutions 

Fig. 14  Results of the application of the LS method to the case of the post-Earth return trajectory of the 
Mars Sample Return mission, without the correction of the sampling direction: a the whole initial disper-
sion (grey dots), impact region found with MC (red) and boundary found with LS (green); b the impact 
region in more detail (Color figure online)

Fig. 15  Convergence of the solution given by LS  (green) compared with the convergence of standard 
MC (red) in terms of impact probability in a and associated variance in b in the case of the Mars Sample 
Return mission, without the correction of the sampling direction
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Fig. 16  Results of the application of the LS method to the case of the post-Earth return trajectory of the 
Mars Sample Return mission: a the whole initial dispersion (grey dots), impact region found with MC 
(red) and boundary found with LS (green); b the impact region in more detail (Color figure online)

Fig. 17  Convergence of the solution given by LS  (green) compared with the convergence of standard 
MC (red) in terms of impact probability in a and associated variance in b in the case of the Mars Sample 
Return mission

Table 7  Results of the application of standard MC and LS (without correction and with correction of the 
sampling direction) for the case of the Mars Sample Return mission: number of propagations, number 
of sampling lines used by the LS, probability estimate and associated variance, and computational time

Nprop Nlines P̂(I) �̂� CPU time (h)

MC 106 – 4.70 × 10−5 6.85 × 10−6 31.22

LS (1st CA) 31815 2965 5.38×10−5 6.85 × 10−6 0.99
LS (1st CA), � cor-

rection
4879 729 3.98 × 10−5 8.60 × 10−9 0.15
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given by standard MC and LS, in terms of estimated value of the impact probability 
and its associated standard deviation. Table 7 reports the numerical solutions in both 
cases, comparing them with the solution given by the standard MC simulation.

Also in this case, the benefit of using LS is visible, as both the number of 
propagations and the variance of the probability are reduced by orders of mag-
nitude with respect to the standard MC in identifying the main impact region. 
In particular, this test case is very close to the optimal case of the application of 
LS: not only the probability value to be estimated is very low, but also the impact 
region has a planar shape extended across the uncertainty distribution. This alone 
allows a higher efficiency even without a correction of the sampling direction, 
as the LS is able to reach the same accuracy of MC with a number of propaga-
tions orders of magnitude lower. In turn, the correction of the sampling direction 
allows a further reduction of the number of propagation required and a refinement 
of the estimation of the impact probability, obtaining a direction that is almost 
orthogonal to the boundary of the impact region (these observations follow the 
ones already done in [21]).

Also in this case, the computational efficiency of the whole multi-event analy-
sis is compared with the standard MC simulation, through the data reported in 
Table 8, highlighting the various phases of the LS-based procedure with the cor-
rection of the sampling direction, as defined in the previous test case. In this case, 
a maximum limit of 1000 samples per Markov chain was set. Again, the Markov 
Chains sampling of each CA window is the most demanding phase, with almost 
80% of the total computational load of LS. However, both in this case and in the 
previous one, the complete LS-based procedure reduces the computational time 
with respect to the MC analysis.

Finally, Table 9 tries to quantify the effect on the numerical efficiency of the 
angular offset of � with respect to the corrected direction: the angular offset is 
compared to the ratios of propagations and of sampling lines in the corrected and 

Table 8  Numerical performance 
of LS with correction of the 
sampling direction compared to 
standard MC in the case of the 
Mars Sample Return mission

# propagations CPU time

LS Preliminary MC 10000 0.31
Markov Chains 59000 1.84
LS phases 4879 0.15
Total 73879 2.31

MC Total 106 31.22

Table 9  Comparison of the two test cases: analysis of the the angular offset of � with respect to the cor-
rected direction compared with the number of samples required

Δ� ( ◦) Nprop∕N
corr
prop

Nlines∕N
corr
lines

SOLO 62.73 10.19 7.94
MSR 27.46 6.52 4.07
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non corrected cases, for both tests. It is possible to observe what has already been 
pointed out while commenting the two test cases in the previous paragraphs, that 
is the effect of both the correction of the sampling direction and of the shape of 
the impact region. In the case of the Solar Orbiter mission, the angular offset is 
relatively large, which is reflected in the difference in the number of propagations 
and sampling lines up to one order of magnitude. In the case of the Mars Sam-
ple Return mission, the differences are lower, due to both the more favourable 
sampling direction (much closer to the corrected version with respected to the 
other test case) and the better shape of the impact region (which allows a higher 
efficiency in general). A more thorough analysis of this aspect is left for a future 
work.

6  Conclusions

This manuscript focused on the improvement of the uncertainty sampling tech-
niques currently used in planetary protection analysis. The LS method was pre-
sented as an alternative to standard MC simulations, with the goal of reducing 
the computational load of the statistical analysis by sampling the initial uncer-
tainty distribution in a more efficient way. The LS method uses lines following a 
reference direction instead of points to sample the uncertainty space, identifying 
the boundaries of the impact regions inside of it and computing the impact prob-
ability using integrals along these lines where they intersect the impact regions. 
Since these integrals are evaluated analytically, the LS method can provide an 
estimation of the impact probability that has a lower variance (thus can be con-
sidered more accurate) than the one given by standard MC when the same num-
ber of samples are used, or reach a similar accuracy using fewer samples.

While previous works adapted LS for single events, the method was improved 
by designing new algorithms to allow its application to cases where multiple 
impacts with planets are possible over long periods of time. The performance of 
LS was analysed in comparison with standard MC both numerically, by apply-
ing both methods to different mission cases, and analytically, by developing an 
approximated formula which highlights how the accuracy of LS depends on the 
geometry of the impact regions found within the initial uncertainty domain and 
the choice of the sampling direction.

In particular, two novel algorithms were devised to support the application 
of LS to cases where multiple close approaches with planets, and thus multiple 
impact regions, are possible, as commonly found in planetary protection analysis. 
One algorithm uses the information gained from a preliminary MC analysis to 
identify the time intervals where most close approaches are clustered and define 
close approach windows: this ensures that all potential impact regions, when 
present, are explored with LS. The second algorithm additionally uses an initial 
guess for the sampling direction and corrects it to make it closer to the ideal case: 
this greatly improves the accuracy of the method without increasing significantly 
the computational load, since it allows to sample the impact region in a more 
optimal way.
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The procedure shown here has been developed with the main objectives of 
making planetary protection analysis more accurate and efficient. The results pre-
sented in this work have proven that the LS method is more efficient and accurate 
of the standard MC Simulation method currently employed in planetary protec-
tion analysis, confirming the outcomes of previous studies on the subject. In all 
the test cases, the LS was able to reach a similar level of accuracy as the stand-
ard MC while using a lower number of propagations, or, viceversa, it reached a 
higher accuracy when performing the same amount of orbital propagations.

Future work will focus on different aspects of the techniques introduced here.
In the first place, the theoretical formulation of LS will be expanded further, 

with the aim of obtaining an analytical expression of the variance of LS correlat-
ing the number of sampling lines and the estimated probability level. This will 
allow to estimate in advance the number of LS runs necessary to reach a given 
confidence level, as it is already possible for the standard MC by exploiting the 
expression of the confidence interval by Wilson [6].

Secondly, efforts will be made for improving the multi-event analysis, in particu-
lar the identification of the candidate impact regions and their exploration via Mark-
ov’s Chain, with the goal of making the identification of regions of interest in the 
initial uncertainty more efficient. In particular, a general study aimed at quantifying 
the sensitivity of the proposed approach on the various parameters affecting its per-
formance shall be done: the number of runs in the preliminary MC, the length of the 
Markov chains, the sampling direction, and the iterative method to sample the lines 
are some of the most important factors on which the LS techniques work.

On a last note, more advanced sampling techniques will be explored and applied 
to the estimation of impact probability for planetary protection analysis.

Appendix: Mapping Based on Multivariate Normal Distribution 
(Rosenblatt’s Transformation)

This appendix presents the transformation used to map the physical coordinates to 
the standard normal coordinates and viceversa, as described in Sect.  2.1, starting 
from a multivariate Normal distribution. The explanation presented here follows the 
one given in [12], using a different notation.

The transformation described here is based on the mapping shown in Eq. (3), 
which preserves the CDF between the starting uncertainty and the standard nor-
mal distribution that characterises the normalised coordinate space used in the LS 
algorithm. The latter is represented by the pdf and CDF already expressed in Eqs. 
(2), (1), and (6). The direct and inverse transformations follow Eqs. (4) and (5), 
respectively.

Given the starting multivariate Normal distribution of the random vector 
� = (x1,… , xk)

T ∈ ℝ
k described by the pdf

f (�) = N(�;�,�) =
1

√

�2���
exp

�

−
1

2
(� −�)T�−1(� −�)

�
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with average � ∈ ℝ
k and covariance matrix � ∈ ℝ

d ×ℝ
d , the CDF (defined as 

F(�) = ℙ(� ≤ �), where � ∼ N(�;�,�) ) cannot be obtained in closed form, but 
only estimated numerically, due to the multidimensionality of the problem.

For this reason, the transformation is treated making use of conditional probabili-
ties, as

In this way, the mapping in Eq. (3) conserving the CDF of the distribution can be 
rewritten in a more simple way:

where Λ(r) is the determinant of the minor of Λ defined as [�ij], i, j = 1,… , r ≤ k , 
and Λ(r)

ij
 is the cofactor of the element (ij) of the minor Λ(r).

This way, the direct and the inverse transformations become linear and assume 
the forms, respectively:
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