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Abstract 

In spite of the fast spread of Additive Manufacturing (AM) in several countries and industries, its impact on 

employment is still unexplored and theoretically ambiguous. On the one hand, higher product customization 

and shorter time-to-market entail an expansion of the market, thus fostering labour demand; on the other hand, 

AM profoundly changes the way goods are produced and little evidence exists regarding the complementarity 

or substitutability between AM technologies and labour. 

In this article, we contribute to fill this gap. Namely, we estimate labour demand functions augmented with 

a (patent-based) proxy of AM-related innovation in 31 OECD countries, across 21 manufacturing industries, 

over the 2009–2017 period. Our econometric findings show an overall positive relationship between AM 

technologies and employment at the industry level, due to both market expansion and complementarity 

between labour and AM technologies, while no labour-saving effect emerges. The importance of each 

mechanism, however, is heterogeneous across sectors. 
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1. Introduction 

Since the early stages of industrialization, the question of whether technological progress creates 

more jobs than it destroys has been at the centre of the academic and policy debates and dates back 

to the contributions of classical economists, such as the famous chapter ‘On Machinery’ of Ricardo’s 

Principles ([1821], 1951). More recently, this debate has been fed by important contributions related 

to the impact of Information and Communication Technology (ICT) on employment initiated by the 

seminal contribution of Autor et al. (2003). A renewed interest in the effect of technology has emerged 

with the diffusion of automation, robotics, and artificial intelligence. In particular, in the 1990s and 

2000s the diffusion of robots created fear that this new wave of innovations may create technological 

unemployment. However, extant contributions show employment polarization effects but more mixed 

findings on total employment (e.g. Graetz and Michels, 2018; Acemoglu and Restrepo, 2020). 

Automation and robotization are not the sole technological trends characterizing recent times. 

Indeed, Additive Manufacturing (or 3D printing; AM hereafter) is taking on an increasingly important 

role. There has been widespread diffusion of AM technologies in several countries and industries 

(OECD, 2017; EIB, 2019; Eurostat, 20211) and wide discussion in policy circles where AM receives 

significant attention from institutional actors and policymakers for its potential impacts on the 

economy (OECD, 2016; European Commission, 2016, 2017; UNCTAD, 2017, 2020).2 Despite this, 

the effects of AM on employment remain unexplored and it is difficult to find quantitative 

assessments, extant contributions often providing only anecdotal evidence. In this paper, we aim to 

fill this gap by empirically investigating the relationship between AM and employment at the industry 

level, thus providing an important contribution to the current debate. In particular, we maintain that 

AM technology deserves a special focus, given the differences with respect to the other digital 

production technologies that have been investigated in the literature so far. 

                                                            
1 See also Table A1 in the Appendix. 
2 AM is becoming one of the main areas of study in the social sciences, from economics to business and management 

(Mariani and Borghi, 2019). 
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Specifically, AM embodies a radical process of innovation that reduces the number of production 

stages but at the same time increases product customization and, therefore, demand. In particular, 

differently from other capital-embodied process innovations such as robotization, the diffusion of 

AM technologies is more likely to stem from a market-seeking—rather than a labour-saving—

economic incentive.3 

However, AM also ‘activates’ all of the channels through which a capital-embodied technological 

innovation can affect employment. First, the market-driven effect on employment acts both in 

upstream industries (i.e. a displacing effect on old machines and materials vs a need for new machines 

and materials) and in downstream industries (i.e. a displacing effect on old products vs the creation 

of new products). Second, in both the adopting and producing industries, the effect of AM on 

employment for a given level of production will depend on the degree of complementarity between 

labour and the other factors of production in AM with respect to the traditional methods of production. 

For these reasons, in order to investigate the effect of AM on total employment at the industry 

level, we need to capture the whole spectrum of innovations related to this new capital-embodied 

technology, concerning both the adoption and production of AM machines and related products. To 

this end, we build a proxy based on patents in AM, namely patent family applications (hereafter, 

patents) to the United States Patent and Trademark Office (USPTO), capturing the whole ecosystem 

of innovations related to AM. More specifically, the proxy is based on patents related to the 

production of AM machines and apparatus, the production of materials used in AM, pre- and post-

processing operations related to AM, software for AM, products made via AM techniques. We 

attribute patents to countries through the inventor’s residence and to NACE 2-digit industries by using 

the concordance methodology, which is also used by PATSTAT. Thus, we match AM innovations to 

                                                            
3 Indeed, this revolutionary manufacturing perspective, which involves adding and instantly joining layers of various 

materials in specific locations and creating objects from digital 3D data (ASTM International, 2013), has progressively 
gained attention in several fields, being used either as a complementary or mainstream manufacturing technology 
(Laplume et al., 2016). 
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those manufacturing industries that are likely to produce and/or adopt AM technology or related 

products. 

Labour demand functions augmented with a proxy capturing the AM-related innovations are 

estimated across 31 OECD countries and 21 manufacturing industries over the 2009–2017 period. 

Differently from most of the contributions focusing on the effects of technological progress on 

employment, we estimate both unconditional (i.e. uncompensated) labour demand functions and 

conditional (i.e. compensated or constant-output) demand functions, where labour demand is 

estimated for a given level of output (Ugur et al., 2018) and the market expansion channel is ‘switched 

off’. Estimating the two types of labour demand provides useful insights into the mechanisms through 

which AM affects employment. 

 As a second step, since we expect the channels linking AM to employment to work differently 

depending on industry characteristics, we extend the analysis to allow for industry heterogeneity by 

considering the Pavitt classification (Pavitt, 1984). 

Our analysis demonstrates an overall positive relationship between AM innovations and the level 

of employment for both conditional and unconditional labour demand estimations, albeit of a larger 

magnitude in the latter. Conversely, we find no labour-saving effect. Market expansion and 

complementarity between labour and AM technologies both drive the positive relationship with 

employment. This relationship holds in all industry groups, but the magnitude is highly heterogeneous 

across sectors depending on the main source of innovation, the level of product differentiation, the 

degree of economies of scale, the related magnitude of market expansion, and factor complementarity 

effects. 

The remainder of the paper is organised as follows. In Section 2, after shortly reviewing the main 

theories and empirical evidence on the relationship between technological change and employment, 

we develop our conceptual framework and hypotheses related to AM technology and employment. 

In Section 3, we describe the data used and the construction of the AM proxy of production and 

adoption based on patent data. Section 4 introduces the methodology used for the empirical strategy, 
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while Section 5 focuses on the main findings. Section 6 draws conclusions and discusses limitations 

and future research avenues. 

 

2. Technological change, employment, and the case of AM 

Since the contributions of the classical economists, capital-embodied technological progress has been 

viewed as mainly induced by cost-saving motivations, ultimately being labour-saving. Accordingly, 

the effect of new production technologies on employment is generally expected to be negative, but 

possibly counterbalanced by indirect channels. The latter are typically related to market expansion 

induced by lower prices in the firm/industry where the innovation is used, by the expansion of product 

demand in upstream firms/industries producing the new machines or complementary inputs (process 

innovation is a product innovation in upstream industries), and by higher income at the aggregate 

level (Freeman et al., 1982; Stoneman, 1983; Petit, 1995). Several contributions have also argued that 

the adoption of new production processes may have an effect on the composition of labour by skill 

or other dimensions, without affecting the total demand for labour (Acemoglu, 2002). Product 

innovation, instead, has usually been seen as positively affecting employment by creating new 

markets. Obviously, this type of innovation can also have counterbalancing forces to the extent that 

new products displace old ones (Katsoulacos 1984, 1986), i.e. cannibalization or business stealing.4 

A wide empirical literature investigates the relationship between technological progress and 

employment at different levels of aggregation (i.e. firm, industry, and country level), using different 

sources of information to proxy technological progress (i.e. survey data, R&D or investment 

expenditures, patent data). 

Many contributions—mostly those using patents or R&D investments as proxies—look at the 

innovation–employment nexus, neither distinguishing between type of innovation (product vs 

process) nor focusing on a specific type of technology/product (for a recent survey, see Ugur et al., 

                                                            
4 For recent surveys, see Pianta (2006) and Vivarelli (2014). 
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2018). When distinguishing between product and process innovation (usually relying on survey data), 

scholars find a positive relationship between product innovation and employment. Conversely, results 

for process innovation (i.e. capital-embodied technological innovation) are more mixed, the relevance 

and sign depending on the level of aggregation considered, and varying by country and industry group 

(for comprehensive surveys, see Chennells and Van Reenen, 2002, and Ugur et al., 2018). 

A more recent stream of literature has focused on the diffusion of specific capital-embodied 

innovations such as ICT, automation processes, and industrial robots. The empirical evidence is 

inconclusive when looking at the effect on total employment, while results are quite robust in showing 

a labour market polarization effect of these technologies (Autor et al., 2013; Michaels et al., 2014; 

Dauth et al., 2018; Graetz and Michels, 2018; Acemoglu and Restrepo, 2020).  

Differently from other new digital production technologies, AM is not motivated by labour-saving 

aims. In fact, given its inherent characteristics—in particular, increasing product customization and 

reducing costs but not primarily labour costs (see below)—AM technologies show novel relationships 

with employment compared to other types of capital-embodied technological changes. For these 

reasons, it deserves special attention and an empirical assessment of its effects on employment 

looking at all of the channels highlighted by the literature. In particular, we expect the effect of AM 

on the employment level for a given level of output—i.e. the potential substitution of labour—to be 

less relevant than the effect associated with market seeking, compared to robotization, for instance. 

 

2.1. AM and changes in production and organization processes 

AM is an innovative manufacturing technique used in both prototyping and in the production phase 

of tools and final products (Mellor et al., 2014). This technology works in a rather simple way: a 

digital model of the object to be printed is transferred to an AM machine and the model is decomposed 
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into a series of 2D layers, which one or more printing heads physically reproduce and juxtapose, 

recreating the whole. Depending on the input, different fabrication processes exist.5 

Two main characteristics distinguish AM production techniques from previous technologies: the 

reduction in the number of production stages and the potential to customise products, creating 

potential advantages for adopting firms (Attaran, 2017; see also Weller et al., 2015, for a theoretical 

analysis of the economic aspects of AM). 

Traditional manufacturing techniques can generally produce only simple components, requiring 

assembly procedures to build articulated products. Instead, AM allows for the production of 

functional articulated assemblies in a single or a few steps, thus strongly reducing or completely 

eliminating the need for post-manufacturing assembly (Weller et al., 2015; Cuellar et al., 2018; 

Singamneni et al., 2019). 

Furthermore, by shortening the duration to market, AM allows reducing inventory stocks and 

therefore logistic, transport, and communication costs—i.e. overall supply chain simplification 

(Holmström et al., 2010; Liu et al., 2014; Delic and Eyers, 2020). As for other production costs, the 

effect of adopting AM is more ambiguous: costs can decrease thanks to lower waste but more costly 

materials might be required (Tuck et al., 2008; Atzeni and Salmi, 2012; Achillas et al., 2015; Weller 

et al., 2015; Baumers et al., 2016). 

At the same time, AM enhances the manufacturability of highly complex products (Diegel et al., 

2010; Schniederjans, 2017). As AM creates the product without the need for tools and moulds, it 

offers designers and engineers complete freedom, high flexibility in manufacturing and prototyping 

and, therefore, ample room for customization (Rosen, 2014), better satisfying customer demand. Such 

capability comes at a minimal cost while also achieving enhanced technical and physical product 

characteristics (Atzeni and Salmi, 2012; Petrick and Simpson, 2013), thus enabling new business 

opportunities and applications in several industries (Mellor et al., 2014; Bogers et al., 2016; Attaran, 

                                                            
5 See ASTM International (2013) for a detailed description of processes and specificities. 
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2017). A few examples are prosthetics and dental implants (Chen et al., 2016), hearing aid 

apparatuses, (Petrovic et al., 2011) and the aerospace industry (Singamneni et al., 2019). 

AM also allows shortening the time-to-market for new products (Petrovic et al., 2011, Petrick and 

Simpson, 2013; Achillas et al., 2015), speeding up the design process and boosting product innovation 

and the overall production cycle (Leal et al., 2017). 

Together, greater product customization and faster delivery times increase consumers’ willingness 

to pay for additively manufactured goods (Bogers et al., 2016; Rayna and Striukova, 2016), reducing 

demand shrinkage and potentially increasing mark-ups for adopting firms (Weller et al., 2015). 

These advantages over traditional manufacturing techniques emerge in the low-volume production 

of complex design products for which traditional manufacturing techniques would be too expensive, 

requiring high volumes to exploit scale economies (Ruffo and Hague, 2007; Baumer et al., 2016). 

Hence, customization motives prevail over scale-seeking ones. Conversely, applying AM to the mass 

production of standardized goods requires a complete re-design of the product (Kianian et al., 2015), 

making the cost advantages less clear. Therefore, in principle AM brings higher benefits in markets 

with strong demand for customization and flexible parts, allowing for the acquisition of broader 

customer domains (Weller et al., 2015). Yet, in recent years AM techniques have been adopted in the 

production of mass-consumption products, such as Adidas shoes (Cheng, 2018), signalling 

technological maturity and a shift from a primary use in rapid prototyping to direct manufacturing in 

a growing number of industries (Laplume et al., 2016; Attaran, 2017). Finally, AM is likely to reduce 

the cost advantages of producing in low-wage countries, potentially inducing some reshoring in the 

long run (Weller et al., 2015; UNCTAD, 2020). 

 

2.2. AM and employment: conceptual framework and hypotheses 

In order to investigate the relationship between AM and employment and to distinguish the main 

channels at work, we estimate both unconditional and conditional labour demand functions 

(Hamermesh, 1986; Lichter et al., 2015; Ugur et al., 2018). In the former, innovation can affect 
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sectoral employment through all possible channels, i.e. both by affecting firm product demand and 

therefore the level of production and employment, and by changing the relative intensity of the factors 

used in production. Conversely, in conditional labour demand the market expansion channel is 

‘switched off’. 

With some notable exceptions (see Van Reenen, 1997, and Michels et al., 2014), most of the 

literature on the employment effects of innovation does not compare the two types of labour demand, 

focusing either on the conditional (e.g. Bogliacino and Pianta, 2010¸ Bogliacino et al., 2012; Dachs 

et al., 2017; Pantea et al., 2017; Van Roy et al., 2018; Acemoglu and Restrepo, 2020) or the 

unconditional demand (Dauth et al., 2018; Graetz and Michaels, 2018). In our opinion, this distinction 

is instead relevant for disentangling the mechanisms through which AM affects employment, 

especially given the main goal of AM technologies. 

On the one hand, AM increases the opportunities for product innovation and customization, 

potentially having a market expansion effect that could nonetheless be mitigated to the extent that 

new products might substitute older ones and make the marginal contribution of AM to innovation 

negligible. The overall market expansion effect will therefore depend on the relative magnitude of 

these contrasting forces. 

On the other hand, AM is a radical capital-embodied technological innovation that entails the 

production of new machines specifically requiring new specific intermediate inputs (e.g. materials 

and software) and represents a wave of product innovations for the upstream industries. AM 

innovations are likely to open new market segments. Thus, the employment effect at the industry 

level depends on the extent to which these new machines and inputs substitute the old ones, something 

that is to be assessed empirically. 

The effect of AM on total employment for a given level of output—i.e. the ‘classical’ potential 

substitution of labour with capital-embodied technological progress—in the adopting industries 

depends on the degree of complementarity between labour and capital (or other production inputs) 
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and on whether and how this complementarity itself is affected by the innovation.6 The direct effect 

on total labour demand also depends on how technology affects different types of labour (e.g. skilled 

vs unskilled, male vs female, old vs young) and their substitutability with the other factors of 

production. 

Several recent contributions focus on the effect of technological progress on employment 

composition, pointing out that investment in new technologies, such as ICT, can change the relative 

demand for high-skilled, medium-skilled, and unskilled workers (Michaels et al. 2014) or between 

different tasks (Autor et al., 2013; Graetz and Michaels, 2017), although not necessarily affecting the 

total labour demand. 

By increasing efficiency in the production of customized goods (e.g. by eliminating the assembly 

stages), AM requires more highly specialized workers in both design and operations activities as 

compared to traditional manufacturing techniques. Thus, AM is a production process that is typically 

skill-biased (Kianian et al., 2015). As for industries producing these technologies or complementary 

inputs, nothing suggests that labour demand should decrease, while again, its composition is likely to 

be affected in favour of higher-skilled workers. 

As a second step to further explore the channels affecting the relationship between AM 

technologies and employment we take into account sectoral heterogeneity using industry groups (see 

also Van Reenen, 1997; Greenhalg et al., 2001; Bogliacino et al., 2012; Dachs et al., 2017; Van Roy 

et al., 2018). We rely on the Pavitt taxonomy (Pavitt, 1984) in the revised version of Bogliacino and 

Pianta (2016) (see Table A2 in the Appendix). The Pavitt taxonomy is widely employed, from 

theoretical and empirical investigation to policy analysis. It is useful also for our purposes since it 

groups industries with different degrees of product differentiation, different sources of innovation 

(industries producing and adopting the new technology), and different degrees of economies of scale, 

all factors that should affect their exposure to AM technologies and the effect of the latter. 

                                                            
6 An innovation can be labour-augmenting (i.e. increasing labour productivity) and at the same time labour-biased 

(requiring more labour) if the elasticity of substitution between labour and other factors in production is low enough 
(Acemoglu, 2009, pp. 500–503). 
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Specifically, Science Based (SB) and Specialized Supplier (SS) sectors include industries 

producing AM machinery and equipment as well as sectors producing the chemical materials used in 

AM production and those high-tech sectors adopting the AM technology (e.g. manufacture of 

computer, electronic, and optical products and the manufacture of other transport equipment). 

Additionally, these are also highly specialized and innovative sectors (many small innovative firms 

populate SS industries). On the one hand, in highly differentiated sectors producing specialty goods 

the adoption of AM could increase a firm’s ability to meet sophisticated needs, with a strong market 

expansion effect since in these sectors demand for customization is higher. On the other hand, this 

market expansion could nonetheless be mitigated by the fact that in these industries products are 

already highly customized and competition occurs largely through product innovation and quality 

improvement. Therefore, new AM-related machines, materials, and products could substitute older 

ones, either by the same firm or by competitors belonging to the same sector.7 AM technologies might 

help firms survive competition instead of increasing market shares. Generally speaking, these 

industries are already at the innovation frontier, implying that the marginal contribution of AM is 

possibly limited. 

Conversely, Supplier Dominated (SD) industries include traditional sectors, generally adopting 

outside-generated innovations. Industries such as fabricated metal product manufacturing, furniture, 

and other manufacturing have been shown to increasingly adopt AM production techniques. A large 

share of the employment in sectors belonging to the SD class produces standardized goods by 

employing scale-intensive techniques. In standardized industries, the new AM techniques allow for 

the potential customization of previously standardized products. On the one hand, the adoption of 

AM techniques could be too costly and therefore too limited to have a large impact in increasing 

demand. On the other hand, when adopting AM technologies in these industries, AM customized 

goods are likely to create new market niches instead of substituting existing standardized products. 

                                                            
7 Several studies analysing the effect of product innovation report evidence on business stealing and cannibalization 

(recently, Harrison et al., 2014). 
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Hence, AM could be a relevant source of innovation also in traditional industries, where product 

customization for an increasingly sophisticated demand has started playing a relevant role in 

surviving competition.   

Finally, the Scale and Information Intensive (SII) category includes both adopting industries such 

as manufacturers of motor vehicles, trailers, and semi-trailers and industries producing some of the 

materials used in AM methods (i.e. manufacture of rubber and plastic products and manufacture of 

basic metals). These industries are characterized by large economies of scale, this possibly reducing 

the incentives to adopt AM technologies. 

 As for the effect at a given level of product demand, AM is likely to play a positive or nil role on 

employment in SB and SS classes; in these industries the complementarity between skilled labour 

and capital is already high but AM technologies may further increase it. As for SII and SD industries, 

AM technologies show more skilled labour complementarities than mature production techniques 

typically employed in these sectors; therefore, the effect could be positive and larger than in SB and 

SS classes. 

Building on the above discussion, our main hypotheses on the relationship between AM innovation 

and employment are summarized below. 

H1. AM technologies will have, on average, a positive effect on employment in both 

uncompensated and compensated demand estimations since the primary goal of AM is not saving on 

labour costs. 

H2. AM technologies will have, on average, a higher positive effect in uncompensated than in 

compensated demand estimations, driven by large and positive market-creation effects. 

What we claim should hold for the whole economic system on average may, however, apply with 

different degrees to the different industries (according to the Pavitt classification). Indeed, as we have 

argued above, the classical contrasting forces at play operate differently across industry classes. 

Assessing what effect prevails in each industry is therefore a question that must be addressed 

empirically. 
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3. Main variable construction and data 

3.1. AM patents and construction of the AM innovation proxy 

Despite their limitations, patent data are widely accepted and used as a measure of technological 

innovation in studies investigating the relationship between innovation and employment (see, for 

instance, Van Reenen, 1997, and more recently, Mann and Puttman, 2020). 

A proxy suitable for investigating the effect of AM innovation on total employment should be 

correlated with both production and adoption of the technology and related inputs, in order to capture 

all of the channels through which the new technology can affect labour demand. AM technologies 

are indeed new products for the producers of both the capital goods and the complementary goods 

used in production (e.g. materials, software). At the same time, AM also changes the production 

process and/or the organization of production of the using firms/sectors. Thus, we build our proxy 

relying on patent data, with the aim of capturing both production and adoption of the new technology.8 

In order to build our proxy, we identified AM-related patents and matched them to industries and 

countries following the methodology described below in this Section. By using patent data at the 

sectoral level, we can capture the effects of AM on employment that are external to the firm and we 

can consider heterogeneous effects in the AM–employment nexus. This strategy has limitations, 

however. Our industry-level analysis does not allow us to capture the effects of AM external to the 

sector/country and general equilibrium effects. Moreover, a patent-based proxy computed at the 

industry–level entails that we are likely to capture the adoption of AM technologies only partially, 

and, in any case, it does not allow differentiating between adoption and production of the capital-

embedded technological innovation. Although disentangling the two is not strictly required to answer 

the core question of this work, i.e. whether technological innovations related to AM produce more 

                                                            
8 The pros and cons of different innovation proxies are well known, being extensively stressed in the literature 

(Archibugi and Pianta, 1996; Hagedoorn and Cloodt, 2003). 
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jobs than they destroy, a distinction between the two would provide relevant insights. Alternative 

approaches followed in the literature share similar limitations.9 Namely, survey data—collected ad 

hoc to include separate information on the production and adoption of AM—could help distinguish 

between the different channels. Yet, existing surveys on AM do not include information on the 

production of the new technologies and materials.10 Beyond that, due to their cross-sectional 

dimension existing surveys on AM are not suitable to capture long-run technological trends. The 

majority of the recent contributions investigating the impact of ICT or industrial robots on 

employment use survey data regarding adoption since their aim is to gauge the substitutability vs 

complementarity of new machines with different types of labour/tasks. This legitimises their focus 

on adopting sectors only since the relationship between the new machine and the use of different 

types of labour takes place where the machine is used.11 

We collected information on AM patents at the USPTO12 from the PATSTAT data set.13 

Specifically, our SQL query14 includes a list of selected keywords (see Table A3.1 in the Appendix), 

identified using several sources (i.e. engineering literature, product catalogues of AM producers). In 

addition, we included patents belonging to the International Patent Classification (IPC) class B33Y, 

specifically created in 2015 by the World Intellectual Property Organisation (WIPO) to cover all 

innovations associated with AM processes, apparatuses, materials, ancillary equipment and software, 

                                                            
9 For instance, survey data from the International Federation of Robotics (used by several contributions cited above) 

do not allow disentangling manufacturing users of robots from integrators, i.e. the firms ‘integrating’ the robot into the 
manufacturing process. This challenges a correct attribution of robots to the sector/country adopting it.  

10 Including a proxy for either adoption or production alone would imply a serious omitted-variable problem when 
dealing with the total employment effect at the industry level of the introduction of a new technology, since each of them 
taken alone overlooks one important part of the employment implications of a specific technology.  

11 Nonetheless, the use of data on adoption of the new technology is more questionable whenever the research question 
regards total employment, and therefore, the results are reported in terms of the ‘effect of ICT/robots on employment’. 
Indeed, by using proxies of pure adoption at the industry level, they capture the effect of ICT/robot ‘adoption’ on 
employment, i.e. not taking into account the effect on employment in industries producing the new machines and the 
related goods (e.g. software). The related bias can be more or less relevant depending on the type of technology under 
investigation, i.e. its relative impact in adopting and producing industries. For instance, while the impact of ICT has been 
radical in both producing and adopting industries, opening up entirely new markets (e.g. personal computers and mobile 
phones), the impact of industrial robots in producing industries is probably much more limited. 

12 We focus on applications to the USPTO as it is considered the reference patent office when seeking protection for 
innovative technologies (Cantwell, 1995). 

13 The version of PATSTAT used is PATSTAT Online (2019 Autumn edition) V5.14, accessed between September 
and October 2019. 

14 We followed guidelines from Pasimeni (2019) to improve the effectiveness of our SQL query in PATSTAT. 
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as well as products made via 3D printing, i.e. all aspects of the technology not covered elsewhere in 

the IPC classification (WIPO, 2019). This selection includes patents protecting AM innovations 

related to both adoption and production of the technology, as emerges from the terminology used by 

WIPO for the subcategories of the patents belonging to the IPC B33Y class. 

 

3.1.1. Sectoral attribution of AM patents 

PATSTAT data include several aspects of information on inventors, applicants, IPC classes, and 

probability scores for 2-digit NACE Rev.2 sectors in which each patent is more likely to be used. To 

match patents to industries, we rely on the DG Concordance Table constructed by Schmoch et al. 

(2003) and subsequently updated in more recent years (Van Looy et al., 2014; 2015). This attribution 

strategy—included in PATSTAT data—is commonly accepted and particularly appropriate for our 

purposes. The matching exploits a statistical approach building the concordance between IPC and 

NACE Rev.2 by identifying the NACE 2-digit sector with the highest occurrence rate amongst those 

of firms applying for a patent classified under a specific IPC code. This is very useful for us in case 

the applicant is, for instance, a group of firms, but also in case it is a large firm operating in a value 

chain (and patents are more likely to be introduced by large firms). In these cases, the potential effect 

of the patent on employment would emerge in the sector to which the supplier (or controlled firm) 

using the patent belongs to. In fact, in the case of large firms, multinationals, or conglomerate firms, 

it would be misleading to attribute the patent to the applicant’s NACE sector, a possible alternative 

strategy. 

To show how the sectoral attribution method we adopted works, Table 1 illustrates two examples 

of AM patents in our data, their focus/content, applicants, and matched sectors. These examples 

suggest that the AM patents we collected also capture the adoption of AM for production purposes—

in this specific case, of footwear and other apparel products by Nike and Adidas. As shown in Table 

1, the larger sectoral weight of the patent describes its probability-of-use in NACE sector 15 

(manufacturing of leather and related products), indicating that the applicants adopt AM methods to 
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produce specific and customised products for commercialisation. Nonetheless, minority shares of the 

first patent link to other sectors. Patents pertaining to additively manufactured products may also 

relate to other aspects of the described AM innovation (e.g. the AM production technique or the 

materials). Specifically, as sports footwear and equipment are mostly plastic products, the patent 

shows some probability-of-use in NACE sector 22 (manufacturing of rubber and plastic products); 

furthermore, since it describes possible production techniques it also features a lower probability-of-

use in NACE sector 28 (manufacturing of machinery and equipment). This stems from the 

characteristic of patents of usually featuring more than one IPC code and hence being cross-matched 

to multiple industries according to different proportions. In general, depending on the inner nature of 

an AM innovation, the probabilistic matching between patents and sectors in the DG Concordance 

Table allows us to gain insight into the distribution of AM innovations across industries. Yet, as in 

the example in Table 1, the correspondence between patents and sectors is not unique, the subject of 

a patent being potentially relevant to multiple industries. This makes it almost impossible to 

unambiguously disentangle patents relating to either adoption or production. Further details on the 

case shown in Table 1 and other examples of our sectoral attribution are provided and discussed in 

Appendix A3. 

-------------------------- 
Table 1 around here 

-------------------------- 

Mann and Putmann (2020) adopt a similar sectoral attribution strategy—the Yale Technology 

Concordance (Kortum and Putnam, 1997)—to investigate the effect of automation on employment 

across US commuting zones, using patent data selected through text analysis to proxy for automation. 

Our choice of the PATSTAT concordance method is motivated by its fit to the current NACE Rev.2 

industrial classification, being also widely appreciated for its user-friendliness and international 

comparability thanks to the correspondence between NACE Rev.2 and ISIC Rev.4 classifications. 

Hence, we discarded other matching methodologies as they are used less frequently or provide 

matching for older or different industrial classifications (see Dorner and Harhoff, 2018). Similarly, 
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we decided to rely on the DG Concordance Table and not on newer ones such as those provided by 

Lybbert and Zolas (2014) and Dorner and Harhoff (2018), given the lack of empirical testing for these 

new concordances. More importantly, as shown in Dorner and Harhoff (2018) the three concordance 

methodologies lead to a highly similar matching of patents to sectors in manufacturing. 

 

3.1.2. Geographical attribution of AM patents 

Although we focus on applications made at a single patent office—the USPTO—since the same 

invention can be filed more than once in the same jurisdiction, to avoid double-counting issues we 

used patent families instead of overall patent applications in our data set. We then allocated patents 

to the year in which their priority filing (i.e. the earliest filing) occurred, and to the country of 

residence of their inventors using fractional counting, a diffused principle to assign patents to the 

country of invention, used, among the others, by Eurostat and the OECD (2009). The resulting 

structure of our AM data is then the patent fraction by inventor country and by related sector in each 

year. 

The underlying assumption we make by attributing patents to the country of residence of the 

inventor(s) is that countries not patenting (either AM or related innovations) are likely to display a 

lower level of adoption than those developing the innovation, i.e. countries producing the technology. 

An alternative strategy would be to attribute the patent on the basis of the jurisdiction, i.e. where the 

patent provides protection, or to attribute it to the applicants’ country. While recognising the 

limitations of our strategy, we argue in Appendix A3 that alternative approaches would result in a 

proxy less appropriate for our purposes. 

Geographical or sectoral proximity and path dependence are fundamental in driving technology 

diffusion (Farinha et al., 2019; Baumgartinger-Seiringer et al., 2020), and the adoption of new 

technological innovations tends to be dumped by geographical distance to their locations of origin 

(Gertler, 1995; Baptista, 2001). The rich technological leaders are usually those innovating and 

adopting new technologies the earliest. After the initial adoption by the leading countries, the laggards 
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follow and partially catch up with the leaders. As documented empirically for most technologies by 

Comin and Hobijn (2004), this catching up can take a long time, depending on many factors at the 

country level such as human capital endowment, quality of institutions, degree of openness to trade, 

and adoption of predecessor technologies.15  

This is confirmed also for AM by the latest empirical evidence, finding AM innovations to be 

highly concentrated geographically due to the role played by spatial proximity, knowledge relatedness 

and cumulativeness in their diffusion (Corradini et al., 2021). 

The persistence in the observed cross-country differences in the technology used can be explained 

on the basis of the arguments of the Evolutionary Economic Geography literature, according to which 

history and path dependence are core in shaping economic structure (Boschma and Martin, 2010), of 

the National Innovation Systems literature (Lundvall (ed.), 1992; Patel and Pavitt, 1994; Nelson, 

2002; Malerba, 2004) stressing the role of country-sector-specific institutional factors, as well as 

those of the literature on demand pull factors of innovation, underlining that innovations are often 

spurred by the needs of specialized users, typically in upstream–downstream relationships (Von 

Hippel, 1988; Baldwin and Von Hippel, 2011). 

All of these arguments support the assumption that even if a capital-embodied innovation is a 

tradable good and can therefore be imported, its use in the countries developing the new technology 

is likely to be persistently higher than in a country accessing the technology through imports, i.e. 

international diffusion in the use of a technology is far from being instantaneous. For all of these 

reasons, we think that patents in country A are more strongly correlated with higher adoption in 

country A than with adoption in other countries. This may not necessarily be true for similar and 

geographically close countries. In this case, inter-country and inter-sectoral exchanges might occur, 

challenging our assumption. This caveat is investigated in Section 5.1.1.  

 

                                                            
15 See Cappelli et al. (2018) on the relationship between economic resilience, measured by unemployment rate, and 

technological resilience after the 2008 crisis in 248 EU regions, highlighting the role of institutions and policies at the 
country level in affecting the interaction between the two and their dynamics. 
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3.1.3. Descriptive evidence on AM diffusion 

Our analysis focuses on the 2009–2017 period, since between 2009 and 2014 core patents protecting 

AM technologies—such as fused deposition modelling (FDM) and selective laser sintering (SLS)—

expired, thus boosting patenting activity.16 Before 2009, activity was instead quite limited (Laplume 

et al., 2016). In total, over our investigation period we count about 3,500 AM patents. 

Figure 1 shows the distribution of AM patents at the USPTO between 2009 and 2017. As the 

distribution for our AM patents is highly skewed across years, we transformed the data into natural 

logarithms to increase comparability across years (we also report the actual value of the AM patent 

count at the end of each bar in Figure 1). The pattern shows a steep increase between 2009 and 2015, 

moving from an initial patent count of around 70 to a peak of more than 900 AM patents. More recent 

years instead witnessed a decline in the number of applications filed. However, this pattern is not 

related to a decline in innovation activity in AM per se, but rather relates to bureaucratic delays 

affecting the filing of an application at the patent office due to screening and checking procedures, 

corrections, and resubmission requests. 

-------------------------- 
Figure 1 around here 
-------------------------- 

Figure 2 presents the breakdown of AM patents by country (panel A) and by sector in our sample 

(panel B), while Figure 3 shows the distribution of AM patents across countries and years, by each 

of the four sectoral groups included in the Pavitt classification. Here, we also report data on a 

logarithmic scale. Furthermore, it is worth noting that these are absolute numbers, i.e. they are not 

normalized by country population or by industry employment. This must be taken into account when 

looking at the distribution by country and industry. In particular, the four industry classes have very 

different weights in terms of total employment. 

 

                                                            
16 FDM and SLS were invented and their patent applications first filed at the USPTO in 1989 and 1986, respectively. 

Patents were granted in 1992 and 1997. The core patent for FDM expired in 2009 and SLS’s one in 2014. 
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-------------------------- 
Figures 2 and 3 around here 

-------------------------- 

 

3.2. Data and variables 

Our dependent variable is the natural logarithm of the number of people employed in each sector–

country pair in each year. 

For our main explanatory variable, i.e. AM innovations, we use the three-year-lagged natural 

logarithm of the AM-related stock of patents applied for at the USPTO.17 For each country-sector-

year observation, our stock of AM patents is computed through the perpetual inventory method as 

𝐴𝑀௜௝௧ ൌ 𝐹௜௝௧
஺ெ ൅ ሺ1 െ 𝛿ሻ 𝐴𝑀௜௝௧ିଵ, where 𝐹௜௝௧

஺ெ represents the patent count (i.e. the flow).18 We assume 

a depreciation rate of 15%, similarly to Venturini (2019). 

All other explanatory variables in our models derive from a standard labour demand equation 

(Hamermesh, 1986; Van Reenen, 1997). We use sectoral data on employment, labour cost, and output 

from the Statistical Analysis (STAN) database of the OECD for 2-digit manufacturing industries of 

the NACE Rev.2 classification. Specifically, sectoral labour cost is measured by the natural logarithm 

of labour cost per thousand employees and gross output through the natural logarithm of gross sectoral 

output produced. 

We further include a control for the stock of non-AM patents filed at the USPTO at the industry 

level, i.e. the complement to our main explanatory variable. This control allows us to isolate the effect 

of AM-related innovations from other types of innovation. We compute the sectoral stock of non-AM 

                                                            
17 Since the variables include zeros, we added 1 before taking natural logarithms.  
18 According to the perpetual inventory method, the initial stock is given by 𝐹௜௝଴

஺ெ/ሺ𝛿 ൅ 𝐺𝑅௜௝ሻ, with 𝐺𝑅௜௝ representing 
the average growth rate in AM patent families between 1989 and 2015. Having collected patent information over the 
1989–2017 period, we build the stock using additional information on pre-sample years. We use 2015 as the last year to 
compute 𝐺𝑅௜௝ as 𝐹௜௝௧

஺ெ drops in absolute value after that year. This does not depend on declining interest in the technology 
per se, as explained above. 
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patents following the perpetual inventory method, with the same assumption regarding the 

depreciation rate as for our main explanatory variable. 

All nominal variables are reported in local currency units in the OECD data sets. As industry-

specific deflators are not available for all countries considered here, to compare sectoral variables 

across OECD members we convert them into Purchasing Power Parity (PPP)-constant 2011 US 

dollars using country-wide PPP conversion factors from the World Development Indicators (WDI) 

data set of the World Bank. 

Our sample includes 31 OECD countries (see the list of countries in Appendix A2) and 21 2-digit 

manufacturing industries (see Table A2 in the Appendix). The resulting dataset is an unbalanced 

panel of 5,741 country-sector observations between 2009 and 2017. 

Table 2 presents a summary description of the variables used in our empirical analysis, while Table 

A4 in the Appendix reports the related summary statistics and the correlation matrix. 

-------------------------- 
Table 2 around here 

-------------------------- 

Figure 4 illustrates the correlation between the level of employment and the stock of AM innovations, 

measured at the average levels of logged variables over the 2009–2017 period. Panel A shows the 

cross-country variation in the relationship, on average, across 21 manufacturing industries. Looking 

at the simple OLS cross-sectional linear regression fit line, there appears to be a positive relationship 

between our measure of AM-related patents and employment.19 

Similarly, panel B in Figure 4 plots sectoral employment against AM innovation stock, expressed 

as the average across 31 OECD countries, between 2009 and 2017. Although this suggestive evidence 

goes in the same direction as our model’s predictions (as the slope is positive), it does not account for 

potential confounders that might influence the relationship at the country and industry level. In 

                                                            
19 Panel A in Figure 4 shows a higher number of countries presenting no patenting activity as compared to panel A in 

Figure 2. This is due to constraints in the computation of the stock measure used in our estimations because of countries 
showing single or few patent applications, hence making it impossible to compute an average growth rate 𝐺𝑅௜,௝ ൒ 0. The 
same holds for similar sectoral cases reported in panel B. 
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general, several factors might influence the link between labour demand and AM. Hence, our 

econometric strategy in the following analysis aims to account for country and industry factors that 

might confound the relation under investigation. 

-------------------------- 
Figure 4 around here 
-------------------------- 

 

4. Empirical strategy 

To investigate the relationship between employment and AM, we estimate an industry-level labour 

demand function augmented with a variable specifically capturing the AM-related innovations (see 

also Van Reenen, 1997, for a similar approach). We estimate both unconditional labour demand 

functions and conditional demand functions, where labour demand is estimated conditional on the 

level of output (Hamermesh, 1986; Lichter et al., 2015; Ugur et al., 2018). 

We start from the following baseline specification:  

𝐿௜௝௧ ൌ 𝛼଴ ൅ 𝛼ଵ𝐴𝑀௜௝௧ିଷ ൅ 𝛼ଶ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷ ൅ 𝜶ଷ𝑿௜௝௧ିଵ ൅ 𝛾௜ ൅ 𝛾௝ ൅ 𝛾௧ ൅ 𝑢௜௝௧, (1)

where 𝐴𝑀௜௝௧ିଷ indicates our measure of AM innovations, 𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷ indicates our measure of non-

AM innovations, 𝑿௜,௝,௧ିଵ is a vector of sectoral control variables, namely, labour cost per thousand 

workers (𝐿𝐶௜௝௧ିଵ), in the unconditional demand specification and both labour cost per thousand 

workers and gross output (𝑌௜௝௧ିଵ) in the conditional demand specification. 𝛾௜, 𝛾௝, and 𝛾௧ are country, 

industry, and year fixed effects (FEs, hereafter), respectively, and 𝑢௜,௝,௧ is the idiosyncratic error term. 

Including all non-AM patented innovations, we control for all (patented) output of innovation 

different from AM. We do not include controls for input of innovation at the sectoral level, such as 

sectoral R&D, since they are supposed to affect employment by affecting the output of innovation, 

i.e. they are correlated with non-AM patents, which we cannot exclude since we would end up with 

a serious omitted-variable problem. 
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We include FEs in order to account for potential unobserved heterogeneity. In particular, we 

include country FEs to capture all country-specific institutional factors that may affect the level of 

employment, such as labour market institutions and union activity, and which might not be captured 

by sectoral FEs (Graetz and Michaels, 2017; 2018). 

Sector FEs are instead meant to capture the characteristics of technology and production that are 

industry-specific and common to all countries, such as the level of efficiency, the degree of 

standardization and economies of scale, the use of natural resources, the weight of intermediate inputs 

in production, and the degree of competition of the market. 

Year FEs should capture the cost of capital, which we do not have in the data and is usually 

assumed to be common to all firms in an industry, as well as time-varying, but neither sectoral- nor 

country-specific (Van Reenen, 1997; Onaran, 2008). Year FEs also capture the component of 

technological progress that evolves in time, affecting all countries and sectors. 

However, in our preferred specifications instead of year, industry, and country FEs we include 

country-year (𝛾௜௧) and sector-year (𝛾௝௧) FEs. These combinations allow us to control for time patterns 

or unobservables that may characterize employment at the country and industry level, such as those 

produced by the dynamics of technological progress or aggregate stock of R&D specific to some 

countries, or such as the robotisation process or the use of ICT, which are specific to some sectors. 

Country-year FEs should also capture the country-specific dynamics of income, population, 

demographic structure, and other macroeconomic factors potentially affecting the employment level. 

It is worth noting that country-year and sector-year FEs also represent a robustness check of the 

assumption in the main specification that the cost of capital is common to all countries and sectors. 

Country-year FEs also capture the fact that (especially in some countries) labour cost is partially 

determined at the national level and not at the industry level (Michaels et al., 2014). Our alternative 

combination of FEs should also control for the dynamics of prices of other factors of production, such 

as capital goods incorporating other innovations. 
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All of our models are estimated using the pooled OLS estimator. The main reason is that our panel 

is quite short and we do not have enough time variation to use the within estimator (i.e. to include 

country-industry (𝛾௜௝) FEs). Indeed, the country-sector FEs capture almost all of the variation in our 

employment data (the R2 of the regression of employment on country-industry and year FEs is above 

0.99). 

All explanatory variables are included with a one-year lag to offset potential contemporaneity 

issues (e.g. reverse causation), while our main explanatory variable is included in the model with a 

three-year lag in order to account for the delay in the potential impact of the new technology on 

employment. Indeed, we argue that in our case a three-year time window is the proper lag as it 

accounts for pendency following the application process at the USPTO (see Figure 1 in Section 3) 

and the average time needed to receive the grant (USPTO, 2019) and use the patent in production. 

 After the analysis of the average relationship between employment and AM innovation (i.e. across 

all countries and sectors), as a second step we estimate the same specifications described above but 

allowing for heterogeneity across sectoral classes, as suggested by the literature on the characteristics 

of this technology (discussed in Section 2). We rely on the updated version (Bogliacino and Pianta, 

2016) of Pavitt’s sectoral taxonomy (see Table A2 in the Appendix). We therefore estimate the 

following specification: 

𝐿௜௝௧ ൌ 𝛼଴ ൅ 𝛼ଵ𝐴𝑀௜௝௧ିଷ ൅ 𝛼ଶ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐵 ൅ 𝛼ଷ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝑆 ൅ 𝛼ସ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐼𝐼 

൅𝛼ହ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷ ൅ 𝜶଺𝑿௜௝௧ିଵ ൅ 𝛾௜ ൅ 𝛾௝ ൅ 𝛾௧ ൅ 𝑢௜௝௧, 
(2)

where 𝑆𝐵, 𝑆𝑆, and 𝑆𝐼𝐼 are dummies for Science Based, Specialized Suppliers, and Scale- and 

Information- Intensive, respectively, and all other terms are defined as in equation (1). In this 

specification, the coefficient of our AM proxy captures the AM–employment relationship for the 
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omitted class of Supplier Dominated industries.20 Results are reported in Tables 3 and 4 in the 

following Section. 

 We undertake several robustness checks, which are described in Section 5.1.1 and Appendix A5, 

and an analysis using instrumental variables, reported in Section 5.2.1. 

 

5. Econometric results 

5.1. Main results 

Table 3 shows the results of the estimations of equation (1), where we look at the average relationship 

(across all sectors) between employment and AM innovation. 

In the first model in column (1), a positive relationship emerges between AM and employment. In 

columns (2) and (3) we estimate the unconditional demand functions, including labour cost per 

worker and the stock of non-AM patents and controlling for sector-year and country-year FEs 

(columns (2) and (3), respectively). In all models, the coefficient of AM is positive and statistically 

significant at the 1% level, dropping from 0.2 to 0.09 with the inclusion of labour cost per worker and 

innovations other than AM. The elasticity of employment to AM is 0.095 in our favourite 

specification, i.e. column (3), where we control for the more demanding combination of FEs. Thus, 

a one-percent increase in the AM patent stock at the industry level is associated with about a 0.1 

percent increase in sector-level employment, on average. 

In columns (4) and (5), we estimate the conditional demand function by including the level of 

gross output, with the combination of FEs as in columns (2) and (3), respectively. The relationship 

between employment and AM is still positive and statistically significant at the 1% level, but the 

coefficient is slightly smaller than in the unconditional models. A one-percent increase in the AM 

patent stock is associated with an increase of 0.065 percent in employment. This is in line with 

                                                            
20 We omit the terms 𝑆𝐵, 𝑆𝑆, and 𝑆𝐼𝐼 in equation (2) as they are collinear with the sector FEs included in all 

specifications. 
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theoretical expectations, since in our interpretation the conditional demand estimation ‘switches off’ 

the market-driven channel through which AM innovation is likely to have an important effect on 

employment due to its very nature. The fact that we are left with a positive average relationship in 

the conditional demand estimations suggests a certain degree of complementarity between capital and 

(total) labour. 

Interestingly enough, the difference in the conditional vs unconditional demand coefficients is 

much larger in the case of non-AM patents, suggesting a larger role of market expansion for the 

bundle including all patents other than AM. This is reasonable since non-AM patents include all 

patented innovations, thus typically—even if not only—product innovations, while AM patents are a 

process innovation for downstream industries. Instead, the coefficient of non-AM patents is smaller 

in conditional demand estimations, showing that AM technologies have a higher degree of 

complementarity with labour than the bundle of all other innovations. The signs of the other variables 

included in our specifications, i.e. labour costs and gross output, are in line with what is predicted by 

the theory. In the conditional demand estimation of columns (4) and (5), where they are both included, 

labour cost and gross output are negatively and positively associated with the level of employment, 

respectively. 

-------------------------- 
Table 3 around here 

-------------------------- 

Summarizing, we can claim that our findings confirm hypotheses H1 and H2. In both uncompensated 

and compensated demand estimations, AM and employment are positively associated: AM 

technologies are not labour-saving, both overall and for a constant level of output. The elasticity of 

employment to AM is slightly larger in uncompensated than in compensated demand (H2), 

confirming a market-creation effect of AM. However, the magnitude of the effect is smaller than 

expected. This might be explained by the market creation and by the AM–labour complementarity 

being different across industries, as we argued in Section 2.2. For this reason, in Section 5.2 we 
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analyse industry heterogeneity, while hereafter we discuss potential caveats for the main results and 

discuss some robustness checks. 

 

5.1.1. Robustness checks 

Exploring an alternative proxy of AM and inter-sectoral/inter-country AM effects 

Our analysis is subject to some caveats. By carrying out the analysis at the industry level and including 

only the industry’s own-AM proxy—i.e. the stock of AM patents belonging to each industry—we 

miss inter-sectoral linkages through which AM technologies may affect an industry’s employment, 

i.e. general equilibrium effects going through production linkages along the supply chain. In the same 

way, we miss the role of inter-country linkages. For instance, AM in other sectors/countries may 

impact a country’s sectoral employment through the acquisition of intermediate goods that have some 

AM content, e.g. which were produced through AM technologies. The intermediate goods 

incorporating the AM content can entail different labour requirements in the assembly stages or they 

can change the competitiveness of the sector using it, by changing the quality content of the good 

incorporating it or reducing its costs.21 Reshoring induced by the adoption of AM technologies in a 

country could also affect sectoral employment in countries where production was offshored. 

Another caveat is that the proxy used in our baseline analysis might in some cases miss the 

adoption of AM. In Section 3.1 and Appendix A3, describing in detail how we selected the AM 

patents and our strategy in attributing patents by industry and country, we argued why we think this 

proxy captures both the production and adoption of AM innovations, and we also discuss the 

weaknesses of other alternative strategies. We are nonetheless aware that in some cases an industry 

                                                            
21 In order to capture potential between-sector interactions and general equilibrium effects, we also carried out the 

analysis at the macro level. Moreover, using macro data allows us to also undertake a preliminary exploration of the 
potential heterogeneous effects of AM on employment by education level. Results are reported in Table A6.1 in the 
Appendix and details of the analysis are reported in the table’s notes. On average, the elasticity of employment to AM is 
about 0.12 and 0.06 in unconditional and conditional demand estimations, respectively, and both are statistically 
significant at the 1% level. The elasticity is larger for middle-educated workers compared to highly educated workers; it 
is very small and not significant for low-educated workers. 
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could use AM machines (i.e. adoption) produced by other sectors/countries without this always 

showing up in ‘its own’ AM patenting activity. 

For both of these reasons (between-sector/country effects and external AM adoption), in this 

Section we develop a robustness analysis building another proxy for sectoral AM that better accounts 

for ‘external AM’ patenting activity, i.e. for AM patents from other sectors and countries, and which 

is included as an additional variable in the regression models. By using world input-output tables 

from the WIOD data set (Timmer et al., 2015), we build an AM variable by country, sector, year, 

which is the weighted sum of all industries and countries’ AM patent stocks. 

The index is built as follows: 

𝑒𝑥𝑡𝐴𝑀௜௝௧ ൌ ෍ ෍ 𝐴𝑀௖௦௧

௦

ൈ ቆ
𝑖𝑛𝑡௜௝ଶ଴଴଼

௖௦

𝑖𝑛𝑡௜௝ଶ଴଴଼
ቇ

௖

 (3)

for each country 𝑖, sector 𝑗 and year 𝑡, 𝑒𝑥𝑡𝐴𝑀௜௝௧ variable is then the weighted sum of the AM patent 

stock of each country and industry, where the weights are built as the ratio of intermediate goods 

bought by sector 𝑗 of country 𝑖 from sector 𝑠 ് 𝑗 in country 𝑖 and from all industries in country 𝑐 ് 𝑖  

(i.e. all sectoral domestic intermediates bought from all sectors excluding owns, plus all foreign 

intermediates bought from all sectors) over total intermediate goods used by sector 𝑗 in country 𝑖 

(𝑖𝑛𝑡௜௝). We take predetermined weights in order to minimize potential endogeneity concerns and 

avoid biases induced by reverse causality. 

The construction of this ‘external AM’ proxy is based on the assumption that the more a sector 

buys from sectors/countries with a large AM patent stock, the larger the AM content of its upstream 

relationships. This additional proxy of AM should capture at least in part those inter-sectoral and 

inter-country effects mentioned above. Moreover, it should capture part of the ‘adoption’ not 

emerging in a sector-own AM patent stock. 

We estimate the models in Table 3 by including this new variable together with three new control 

variables: a similar ‘external non-AM’ variable built for all non-AM innovation, a measure of 
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domestic vertical fragmentation, and a measure of foreign exposure. The latter is done since the new 

AM proxy could otherwise capture both of these industry-country-specific characteristics. 

The details of the construction of the variables, the estimated model, and the results are reported 

in Appendix A5. Our results in Table A5.1 are robust to the inclusion of the new proxy and the 

additional control variables. The employment elasticity to the original AM proxy is about 0.075 in 

unconditional demand estimations and 0.045 in the conditional demand estimations, and both are 

statistically significant at the 1% level. In contrast, ‘external AM’ is not statistically significant in the 

unconditional demand estimations; for conditional demand, it is positive and statistically significant 

(0.07 and significant at the 5% level in the most demanding specification in terms of fixed effects). 

All in all, these results confirm the positive relationship between labour and AM technologies. 

 

Countries and sectors 

Figure 2 in Section 3 (Panel a) highlights that the distribution of AM patents is very skewed. To check 

that our results are not driven by major AM producers, we estimate specifications in which we exclude 

the top six countries producing AM-related patents (US, Japan, Germany, UK, France, and Korea) 

from our estimation sample. Results, reported in Table A5.2 in the Appendix, confirm our main 

findings. 

Similarly, Figure 2 in Section 3 (Panel b) highlights that a larger share of AM patents belongs to 

NACE sector 28 (manufacturing of machinery and equipment), which is also the sector producing 

the AM machines. We therefore estimate specifications excluding this sector. The results, reported in 

Table A5.3 in the Appendix, show that the findings of the main analysis are robust and unlikely to be 

solely driven by producers of AM technology.22 

 

                                                            
22 Our sample includes a few countries (i.e. Estonia, Greece, Latvia, and Portugal) and sectors (i.e. 19–Coke and 

refined petroleum products; 33–Repair and installation of machinery and equipment) that do not have AM patents at the 
USPTO over the period considered in our sample. Thus, we further control for the robustness of our main results when 
we drop observations related to these countries and sectors. Similarly, the results (reported in Table A5.4) are robust. 
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Other robustness checks: alternative patent offices and lag structures 

We further conduct several robustness checks by employing patent applications to other major patent 

authorities (i.e. the European Patent Office and the Patent Cooperation Treaty) to check for the 

presence of home bias resulting from the usage of USPTO patent applications and lag structures in 

the regression analysis, the details of which are reported in Appendix A5. As can be seen in Tables 

A5.5 and A5.6, our results are robust to these additional checks. 

 

5.2. Sectoral heterogeneity by industry class 

The average positive relationship could hide heterogeneous effects at the industry level, as argued in 

Section 2. We therefore turn our attention to the results reported in Table 4, where we allow for 

heterogeneous effects across Pavitt classes, estimating equation (2). 

In models (1) and (2), we estimate the unconditional labour demand by including the labour cost 

per worker and controlling for the stock of non-AM patents, with the two combinations of Fes as 

before. In columns (3) and (4), we estimate the conditional labour demand by including the level of 

production. Panel A reports the coefficients of the baseline class (SD) and the interaction coefficients; 

panel B reports the sum of the two coefficients and the standard error, i.e. the coefficients of the 

classes SB, SS, and SII. 

-------------------------- 
Table 4 around here 

-------------------------- 

At first glance, the results in Table 4 confirm what emerged in Table 3 for the average relationship. 

AM is positively associated with employment in both unconditional and conditional demand 

estimations. On the other hand, an interesting sectoral heterogeneity emerges. The average effect 

shown in Table 3 is mainly driven by two classes, SB and SD. The effect, both in unconditional and 

in conditional estimations, is much smaller in the SS and SII classes. On the other hand, the difference 

in the unconditional and conditional estimations reported in Table 3, i.e. the role of market expansion, 

is driven entirely by the SD class since in the other classes the differences in the two coefficients are 
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not statistically significant (or, as in the SII class, the conditional demand shows a larger coefficient). 

This means that the expansion of the market emerges as relevant for the SD class only. Overall, in all 

classes a complementarity between AM and labour emerges, with positive coefficients in conditional 

demand estimations in all classes; nonetheless, the complementarity is higher in the SD and SB 

classes (elasticities of 0.08 and 0.12, respectively, and statistically significant at the 1% level). 

As we have stressed, the role of market expansion clearly emerges in the SD class, where the 

difference in the coefficients between unconditional and conditional demand estimations is the largest 

(0.23 vs 0.08, respectively; all statistically significant at the 1% level) and is almost aligned with that 

of non-AM patents (0.28 vs 0.035). Still, the level of complementarity between AM and labour is 

higher than for other non-AM innovations. The SD class includes traditional industries adopting AM 

technologies; therefore, the role of the market is likely to reflect the market-seeking aim of the 

adopting firms, where new products do not substitute old ones and where the marginal contribution 

of AM to the overall innovation rate of the sectors is likely to be higher. 

On the other hand, the SS class shows an elasticity of 0.06 in unconditional demand estimations, 

while the estimation for a given level of output shows an elasticity of about 0.04; both are statistically 

significant at the 1% level. Nonetheless, the difference in the coefficients is not statistically 

significant. The SS class includes sectors producing AM devices and adopting industries; on average, 

firms are small and highly specialized. Market expansion was expected to possibly play a large role 

in these sectors. However, these results suggest that new AM machines and products may, to a certain 

extent, be substituting older ones. 

In the SB class the effect in both conditional and unconditional estimations is of a similar 

magnitude (around 0.12 and statistically significant at the 1% level). SB industries generally include 

large R&D-intensive firms, among which feature producers of materials related to AM technologies. 

Here, the adoption of AM is probably limited to prototyping while the use of AM to produce final 

goods is negligible. Moreover, SB industries are already operating at the innovation frontier, limiting 

the space for AM innovations to expand the market. The magnitude of the elasticity in conditional 
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demand estimations suggests that AM increases capital–labour complementarities in already highly 

skilled industries, like SB industries. 

As expected, SII industries seem to be far less responsive to AM technologies than the other 

classes. In unconditional demand estimations, the results are not statistically significant and are very 

small (0.003), while estimation for a constant level of output confirms a complementarity between 

AM and labour (0.04, statistically significant at the 1% level) of the same magnitude as in SS 

industries.  

The larger coefficient of compensated demand estimates might be a consequence of the new 

products produced by a firm via AM either eroding the market shares of the competitors belonging 

to the same sector or eroding its sales of existing products. The SII class includes some sectors 

producing the materials used in AM production processes, but the adoption of AM techniques is 

probably still very limited due to the role played by scale economies in these sectors. This probably 

also explains the lower elasticity in the compensated demand estimation compared to SD industries. 

To further single out the heterogeneity in the market-creation channel, we regress the total output 

on our AM proxy by Pavitt class. The results, shown in Table 5, clearly highlight that the market-

expansion channel strongly emerges in the SD class, while it does not show up in the SS class and is 

actually negative in the SII class. 

To summarize, market expansion is a channel through which AM affects employment only in SD 

industries. In the other industry classes, AM technologies seem to help survive competition or 

increase mark-ups more than expand the market. This can be explained by the level of substitution 

for old products in both upstream and downstream industries, which is higher in the SS class and even 

more so in the SB and SII classes. Moreover, the results confirm that the marginal contribution of 

AM technologies in increasing product innovation—and in this way, market shares—is likely to be 

more relevant in traditional sectors (SD) than in already highly innovative sectors (SB, SS). 

As for conditional demand estimations, a complementarity between AM and labour emerges in all 

industries and is particularly large in SB and SD industries.   
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-------------------------- 
Table 5 around here 

-------------------------- 

 

5.2.1. Instrumental variables estimations 

Although our model assumes AM innovations to be predetermined to employment decisions, we still 

may have endogeneity issues if unobservable factors entering the error term affect both the production 

and/or the adoption of AM technologies and labour demand (e.g. shocks to product demand). 

Similarly, we might have reverse-causality issues as, for instance, the level of sectoral employment 

might drive the choice of the technology, and in particular the introduction of AM technologies. 

Thus, although our main results show a strong correlation between our proxy of AM innovation 

and employment, the interpretation of such a result as causal requires cautiousness. To address these 

potential concerns, as a robustness check we implement an instrumental variables (IV) approach using 

the Two-Stage Least Squares (2SLS) estimator. Specifically, we instrument the current stock of AM 

innovations with past patenting activity. The idea is that past patenting activity should be a good 

predictor of current activity since innovation activity is usually path-dependent and industries 

introducing a new technology are likely to be the ones updating the technology in subsequent years. 

At the same time, as we focus on a specific technology and use sufficient lags, it is unlikely that past 

patenting in AM directly affects employment, unless through its updates. Specifically, we use longer-

lagged values of AM innovation flow (i.e. 𝐹௜௝௧ିସ
஺ெ , 𝐹௜௝௧ିହ

஺ெ ) as instruments for the stock of AM patents 

(𝐴𝑀௜௝௧ିଷ). In specifications investigating sectoral heterogeneity, we use lags of the interacted 

variables as instruments for the interaction terms between AM patents and Pavitt classes. 

Similarly, as we cannot exclude sources of endogeneity simultaneously affecting sectoral 

employment and all other explanatory variables in our model, we also instrument all the control 

variables following the same strategy. The results are reported in Table 6. Specifically, Table 6 reports 

2SLS estimates for the unconditional (uncompensated) labour demand equation augmented with the 

proxies capturing AM and non-AM innovations, on average across all sectors and by sectoral class, 
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in column (1) and column (2), respectively. Columns (3) and (4) replicate the analysis by focusing 

on the conditional (compensated) labour demand function, i.e. controlling for total output. Estimates 

in Table 6 confirm the findings of our main specifications; only small differences in the magnitudes 

of the elasticities emerge. 

As for relevance, all our IV estimates show no sign of under identification issues (the Kleibergen–

Paap rk LM test whether the instruments are correlated with the endogenous regressors): under the 

null hypothesis, the estimated equation is underidentified; our tests always reject the null hypothesis 

(p-values are always below 0.05). Furthermore, the chosen instruments (i.e. lags) perform well in all 

IV specifications, presenting no sign of weak identification (the Kleibergen–Paap rk Wald F-statistics 

are always well above the Stock–Yogo critical values for maximal bias). Furthermore, the null 

hypothesis of valid instruments is never rejected by the Hansen J-statistics, confirming that the set of 

chosen instruments is valid and uncorrelated with the error term 𝑢௜௝௧. 

-------------------------- 
Table 6 around here 

-------------------------- 

 

6. Conclusions 

In this paper, we investigate the relationship between AM and employment by relying on patents filed 

at the USPTO in order to proxy for the whole innovation ecosystem around AM, i.e. aiming to capture 

both the production and adoption of these technologies. To this end, we labour demand functions 

augmented with AM patent stock in a panel of 31 OECD countries and across 21 manufacturing 

industries over the period of 2009 to 2017. 

Our analysis demonstrates a statistically significant positive relationship between AM and overall 

employment in both conditional and unconditional labour demand estimations, with a smaller 

elasticity in the former. This result on the one hand supports our intuition, suggested by the very 

nature of this technology, that the market-driven channel is particularly important for AM; on the 
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other hand, it suggests a certain level of complementarity between AM and labour for a given level 

of output since the estimated conditional demand elasticities are positive. 

Exploring industry heterogeneity through the Pavitt sectoral classification, we find that the positive 

effect is substantially driven by the relationship in Supplier-Dominated and in Science-Based 

industries. In particular, the role of market expansion emerges in the former, while the latter group 

exhibits the highest complementarity between AM technology and labour. Overall, these findings 

suggest that AM technologies are associated with market-seeking and mark-up-increasing rather than 

labour-saving aims.  

Our estimates are robust to the inclusion of different combinations of fixed effects and to an 

instrumental variables approach. They are also robust to using an alternative AM innovation proxy 

that aims to control for the role of inter-sectoral and inter-country effects, to controlling for other 

innovation output, and to excluding top AM patenting countries and industries producing AM 

machines. 

We believe that our results, showing a labour-increasing effect of AM, are particularly relevant 

for policymakers aiming to foster the diffusion of welfare-enhancing innovations and job creation, 

providing insights into the type of industries that are more likely to gain from AM in terms of 

employment. Furthermore, our findings add new and complement existing evidence from the 

emerging strain of research focusing on the latest forms of technological change brought by new 

digital technologies (e.g. Acemoglu and Restrepo, 2020)—showing the specificities of AM, however. 

By conducting the analysis at the sectoral level, we capture inter-firm employment effects such as 

competition effects (as opposed to firm-level analyses) and we are able to analyse industry 

heterogeneity (as opposed to country-level analyses). Both of these aspects are shown to be relevant 

in our results.  

However, our study is not exempt from limitations. The use of patent data at the sectoral level has 

some relevant shortcomings. The methodology we adopted to select AM-related patents (i.e. patents 

related to the production of AM machines and apparatus, production of materials used in AM, pre- 
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and post-processing operations related to AM, software for AM, and products made via AM 

techniques) and their geographical and sectoral attribution is, in our opinion, suitable to correctly 

capture both the adoption and production of AM innovations. Yet, a portion of the adoption of AM 

devices may not show up in an industry’s patent stock. Secondly, in our industry-level analysis we 

might miss some relevant inter-sectoral and inter-country AM effects.  

We made an attempt to address these issues by using a second patent-based proxy of AM 

innovation capturing AM innovations external to the industry/country but potentially affecting it 

through (input–output) production linkages.   

Future work could develop along different lines, depending mostly on data availability. Analyses 

based on survey data—in particular at the firm level—may further investigate the different role played 

by adoption versus production of AM technologies in affecting the employment level and 

composition. Analyses at the country level, with possibly longer time series, would better capture all 

potential general equilibrium effects following the diffusion of AM innovations. In particular, the 

literature suggests that AM technologies may differently impact skilled and unskilled labour as well 

as different tasks (e.g. manual and non-manual work); unfortunately, we could not address this issue, 

due to lack of data on employment skill and task composition disaggregated by industry. A deeper 

investigation of the relationship between AM and employment by skill level and task composition 

would be very important to explain the complementarity between AM and labour, and it certainly 

ranks high in our future research agenda. A promising avenue for future research would also be to 

further explore the role of inter-country effects, i.e. the employment effects of AM diffusion in other 

countries due to reshoring and/or the relocation of production across countries.  

Finally, we have shown that in our relatively short panel data employment levels exhibit too little 

time variation within country and industry, preventing us from including fixed effects at this level 

(country-industry) in the empirical specifications. In other words, although we separately control for 

country and industry fixed effects, and in some specifications for country-year and industry-year fixed 

effects, our source of identification of the relationship of interest is mainly cross-sectional, i.e. it 
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leverages the different production and adoption of AM across countries and industries. In this regard, 

it would be important to exploit additional sources of within-sector or within-firm variation in the 

data to shed light on the employment effects of AM. 
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Figures and Tables 

Figure 1. Distribution of AM patents between 2009 and 2017 

 

Notes: Authors’ own computations based on USPTO data. Data reported on a natural logarithmic scale. Numbers reported at the 

edge of each bar are actual AM patent counts. The total number of AM patents is 3,500.6. 

 

Figure 2. Distribution of AM patents by country and sector, 2009–2017 period 

 

Notes: Authors’ own computations based on USPTO data. Data reported on a natural logarithmic scale. Numbers reported at 
the edge of each bar are actual AM patent counts. We omit Estonia, Greece, Latvia, and Portugal from panel A and sectors 
19 (Coke and refined petroleum products) and 33 (Repair and installation of machinery and equipment) from panel B as they 
feature zero AM patents. The total number of AM patents is 3,500.6. 
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Figure 3. Distribution of AM patents by Pavitt taxonomy class, 2009–2017 period 

 

Notes: Authors’ own computations based on USPTO data. Data reported on a natural logarithmic scale. Numbers reported at the 

edge of each bar are actual AM patent counts. The total number of AM patents is 3,500.6. 

 

Figure 4. Cross‐country and cross‐sector variation in employment and AM patent stock, average values, 2009–2017 period 

 

Notes: Panel A plots the average employment level between 2009 and 2017 against the average stock of AM patents at the USPTO 

(both  expressed  as  their  natural  logarithms)  by  country,  averaged  across  industries.  Panel  B  repeats  the exercise by  sector  and 

averaging across countries. 
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Table 1. Examples of the link between AM patents and NACE Rev.2 sectors 

Title  Abstract  Applicant  NACE 2 
Sectors

Sectoral 
Weights 

Articles  and 
methods  of 
manufacture 
of articles 

Various articles, such as footwear, apparel, athletic equipment, watchbands, 
and the like, and methods of forming those articles are presented. The articles 
are  generally  formed,  in  whole  or  in  part,  using  rapid  manufacturing 
techniques,  such  as  laser  sintering,  stereolithography,  solid  deposition 
modeling,  and  the  like.  The use of  rapid manufacturing allows  for  relatively 
economical  and  time  efficient  manufacture  of  customized  articles.  [...]  The 
methods may also include performing a scan of an appropriate body part of a 
user, such as a foot, in order to create a customized article of footwear for the 
user. 

Nike 
International 
Ltd., US 

22 
15 
28.9 

0.25 
0.5 
0.25 

Additive 
manufactured 
metal  sports 
performance 
footwear 
components 

The present  invention relates  to a sole  for a shoe,  in particular  for a cycling 
shoe, comprising: (a.) a three‐dimensionally shaped rim; and (b.) a plurality of 
first  reinforcing  struts,  wherein  (c.)  at  least  two  of  the  plurality  of  first 
reinforcing  struts  extend  from a heel  region of  the  rim of  the  sole  to  a  toe 
region  of  the  rim of  the  sole,  and wherein  (d.)  the  rim of  the  sole  and  the 
plurality of first reinforcing struts are integrally manufactured as a single piece 
in an additive manufacturing process. 

Adidas  AG., 
DE 

15  1.0 

Notes: Data source is PATSTAT data set. 
 

Table 2. Descriptions of the variables used 

Variable Name  Variable Description  Variable Label 

Employment  Natural logarithm of the number of people employed, by 
sector 

𝐿௜௝௧ 

AM patent stock  Natural  logarithm  of  the  stock  of  AM  patents  at  the 
USPTO, by sector, 3‐y lagged 

𝐴𝑀௜௝௧ିଷ 

Non‐AM patent stock  Natural  logarithm of the stock of non‐AM patents at the 
USPTO (in thousands), by sector, 3‐y lagged 

𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷ 

Labour cost  Natural  logarithm  of  the  cost  of  labour  per  thousand 
employees, by sector, 1‐y lagged 

𝐿𝐶௜௝௧ିଵ 

Gross output  Natural logarithm of gross output, by sector, 1‐y lagged  𝑌௜௝௧ିଵ 

Notes: Data on sectoral variables comes from OECD's STAN data set; data on AM and non‐AM patents collected 
from PATSTAT database. 

 

Table 3. Relationship between AM patent stock and average employment, 2009–2017 period 

  Unconditional    Conditional 

Employment ሺ𝐿௜௝௧ሻ  (1)  (2)  (3)    (4)  (5) 

                    
AM patent stock ሺ𝐴𝑀௜௝௧ିଷሻ  0.190***  0.090***  0.095***    0.065***  0.069*** 

  (0.019)  (0.017)  (0.019)    (0.008)  (0.008) 
Non‐AM patent stock ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷሻ    0.270***  0.270***    0.036***  0.034*** 

   (0.011)  (0.011)    (0.005)  (0.005) 
Labour cost ሺ𝐿𝐶௜௝௧ିଵሻ    ‐0.186***  ‐0.202***    ‐0.793***  ‐0.806*** 

   (0.065)  (0.065)    (0.040)  (0.039) 
Gross output ሺ𝑌௜௝௧ିଵሻ       0.782***  0.788*** 

      (0.011)  (0.011) 

        
Observations  5,741  5,741  5,741    5,741  5,741 

R2  0.865  0.881  0.883    0.974  0.975 

Country, Sector, Year FEs  🗸 🗸   🗸  
Country‐Year, Sector‐Year FEs        🗸       🗸 
Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms 
and measure elasticities. The dependent variable is sectoral employment (𝐿௜௝௧). Coefficients for the constant term, for 59 countries, 

for sector and year dummies (columns (1), (2), and (4)), and for 459 country‐year and sector‐year dummies (columns (3) and (5)) 
are omitted due to space limitations. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4. Relationship between AM patent stock and employment by Pavitt class, 2009–2017 period 

  Unconditional    Conditional 

Employment ሺ𝐿௜௝௧ሻ  (1)  (2)    (3)  (4) 

Panel A. OLS estimates                

AM patent stock ሺ𝐴𝑀௜௝௧ିଷሻ  0.219***  0.228***    0.080***  0.080*** 

  (0.043)  (0.045)    (0.011)  (0.012) 

ሺ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐵ሻ  ‐0.102**  ‐0.104**    0.034**  0.036** 

  (0.044)  (0.046)    (0.017)  (0.018) 

ሺ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝑆ሻ  ‐0.164***  ‐0.171***    ‐0.046***  ‐0.044*** 

  (0.045)  (0.047)    (0.012)  (0.012) 

ሺ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐼𝐼ሻ  ‐0.214***  ‐0.225***    ‐0.047***  ‐0.043*** 

  (0.043)  (0.045)    (0.012)  (0.013) 

Non‐AM patent stock ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷሻ  0.280***  0.281***    0.037***  0.035*** 

  (0.011)  (0.011)    (0.005)  (0.005) 

Labour cost ሺ𝐿𝐶௜௝௧ିଵሻ  ‐0.193***  ‐0.210***    ‐0.798***  ‐0.811*** 

  (0.065)  (0.065)    (0.040)  (0.039) 

Gross output ሺ𝑌௜௝௧ିଵሻ      0.782***  0.787*** 

     (0.011)  (0.011) 

       
Observations  5,741  5,741    5,741  5,741 

R2  0.882  0.883    0.974  0.975 

Country, Sector, Year FEs  🗸   🗸  
Country‐Year, Sector‐Year FEs     🗸       🗸 
Panel B. Baseline + sectoral interaction coefficients        
൫𝐴𝑀௜௝௧ିଷ൯ ൅ ൫𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐵൯  0.117***  0.124***    0.114***  0.116*** 

  (0.022)  (0.022)    (0.015)  (0.016) 

൫𝐴𝑀௜௝௧ିଷ൯ ൅ ൫𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝑆൯  0.055***  0.057***    0.034***  0.036*** 

  (0.020)  (0.021)    (0.008)  (0.008) 

൫𝐴𝑀௜௝௧ିଷ൯ ൅ ൫𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐼𝐼൯  0.005  0.003    0.033***  0.037*** 

  (0.020)  (0.022)    (0.009)  (0.011) 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms 
and measure elasticities. The dependent variable is sectoral employment (𝐿௜௝௧). Dummies for 𝑆𝐵, 𝑆𝑆, and 𝑆𝐼𝐼 classes are omitted 

due to collinearity with sector FEs. The excluded class captured by the coefficient of the main variable is 𝑆𝐷. Coefficients for the 
constant  term,  for 59 countries,  for  sector and year dummies  (columns  (1) and  (3)), and  for 459 country‐year and sector‐year 
dummies (columns (2) and (4)) are omitted due to space limitations. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5. Relationship between AM patent stock and gross output by Pavitt class, 2009–2017 period 

Gross output ሺ𝑌௜௝௧ሻ  (1)  (2) 

Panel A. OLS estimates       

AM patent stock ሺ𝐴𝑀௜௝௧ିଷሻ  0.164***  0.170*** 

  (0.055)  (0.058) 

ሺ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐵ሻ  ‐0.127**  ‐0.128** 

  (0.057)  (0.059) 

ሺ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝑆ሻ  ‐0.152***  ‐0.160*** 

  (0.056)  (0.059) 

ሺ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐼𝐼ሻ  ‐0.260***  ‐0.279*** 

  (0.055)  (0.058) 

Non‐AM patent stock ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷሻ  0.319***  0.321*** 

  (0.012)  (0.013) 

    
Observations  5,741  5,741 

R‐squared  0.866  0.868 

Country, Sector, Year FEs  🗸  
Country‐Year, Sector‐Year FEs     🗸 
Panel B. Baseline + Pavitt interaction coefficients     
൫𝐴𝑀௜௝௧ିଷ൯ ൅ ൫𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐵൯  0.037  0.042 

  (0.027)  (0.028) 

൫𝐴𝑀௜௝௧ିଷ൯ ൅ ൫𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝑆൯  0.011  0.011 

  (0.024)  (0.025) 

൫𝐴𝑀௜௝௧ିଷ൯ ൅ ൫𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐼𝐼൯  ‐0.096***  ‐0.109*** 

  (0.025)  (0.028) 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. 
The dependent variable is sectoral gross output ሺ𝑌௜௝௧ሻ. Dummies for 𝑆𝐵, 𝑆𝑆, and 𝑆𝐼𝐼 Pavitt categories are omitted due to collinearity 

with sector FEs. The excluded Pavitt category captured by the coefficient of the main variable is 𝑆𝐷. Coefficients for the constant 
term, for 59 countries, for sector and year dummies (column (1)), and for 459 country‐year and sector‐year dummies (column (2)) 
are omitted due to space limitations. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Table 6. Effect of AM patent stock on employment, on average and by Pavitt class, 2009–2017 period 

  Unconditional  Conditional 

Employment ሺ𝐿௜௝௧ሻ  (1)  (2)  (3)  (4) 

Panel A. 2SLS estimates                

AM patent stock ሺ𝐴𝑀௜௝௧ିଷሻ  0.098***  0.300***  0.059***  0.082*** 

  (0.021)  (0.053)  (0.010)  (0.014) 

ሺ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐵ሻ    ‐0.164***    0.037* 

  (0.053)    (0.020) 

ሺ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝑆ሻ    ‐0.250***    ‐0.058*** 

  (0.053)    (0.014) 

ሺ𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐼𝐼ሻ    ‐0.303***    ‐0.058*** 

  (0.052)    (0.015) 

Non‐AM patent stock ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷሻ  0.286***  0.301***  0.050***  0.050*** 

  (0.012)  (0.012)  (0.006)  (0.006) 

Labour cost ሺ𝐿𝐶௜௝௧ିଵሻ  ‐0.204***  ‐0.213***  ‐0.838***  ‐0.845*** 

  (0.065)  (0.065)  (0.039)  (0.039) 

Gross output ሺ𝑌௜௝௧ିଵሻ    0.785***  0.785*** 

  (0.011)  (0.011) 

     
Observations  5,741  5,741  5,741  5,741 

R2  0.883  0.883  0.975  0.975 

Country‐Year, Sector‐Year FEs  🗸 🗸 🗸 🗸 
Underidentification test  300.347***  289.375***  296.481***  307.178*** 

Weak identification test  419.958  203.236  427.203  215.442 

Hansen J statistic (p‐value)  0.635  0.809  0.439  0.628 

        
Panel B. Baseline + Pavitt interaction coefficients       
൫𝐴𝑀௜௝௧ିଷ൯ ൅ ൫𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐵൯    0.136***    0.119*** 

  (0.022)    (0.017) 

൫𝐴𝑀௜௝௧ିଷ൯ ൅ ൫𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝑆൯    0.050**    0.023*** 

  (0.020)    (0.008) 

൫𝐴𝑀௜௝௧ିଷ൯ ൅ ൫𝐴𝑀௜௝௧ିଷ ൈ 𝑆𝐼𝐼൯    ‐0.003    0.024** 

  (0.022)    (0.010) 

Notes: Coefficients estimated by 2SLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. 
The dependent variable is sectoral employment (𝐿௜௝௧).  In columns (2) and (4), dummies for 𝑆𝐵, 𝑆𝑆, and 𝑆𝐼𝐼 sectoral classes are 
omitted due to collinearity with sector FEs. The excluded class captured by the coefficient of the main variable is 𝑆𝐷. Coefficients 
for  the constant  term and  for 459 country‐year and sector‐year dummies are omitted due to space  limitations. All  right‐hand‐
variables are considered as endogenous and instrumented with their lagged values (see the Section 5.2.1). The underidentification 
test is the Kleibergen–Paap rk LM test; weak identification test based on Kleibergen–Paap rk Wald F statistics, to be compared with 
Stock–Yogo critical values. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix (Online Supplemental Material) 

A1. AM in European countries from Eurostat survey data 

Table A1. AM usage by NACE 2‐digit sector, % of enterprises with 10+ employees, 2018 

   10–12  13–15  16–18  19–23  24–25  26  27–28  29–30  31–33  10–33 

Austria  3    2         14 

Belgium  6  5  <1  16         
Czech Republic  1  4  3  9  5  27  13  20  6  8 

Denmark  1  <1  8  19  16  58  26  17  10  17 

Estonia  <1  1  2  5  1  13  9  9  3  3 

Finland      20  12       17 

France  1  4  4  18  11  37  16  29  16  11 

Germany  1  4  6  14  14  34  20  22  14  13 

Greece  2  3  2  6  3    8    9   

Hungary  <1  3  1  7  5  13  13  10  7  5 

Ireland  2  <1  1  11  11  17  18  <1  9  8 

Italy  2  2  2  9  9  30  16  25  14  9 

Latvia  <1  1  1  3  1  19  9  11  5  3 

Lithuania  4  6  6  7  6  35  18  19  11  8 

Luxembourg      9  7       9 

Netherlands  2  6  3  16  10  27  14  19  13  11 

Norway  <1  2  6  2  9  63  20  41  6  10 

Poland  1  2  1  6  6  27  12  16  5  5 

Portugal  <1  1  10  14  11  35  14  16  14  7 

Slovakia  1  1  1  4  3  4  7  17  7  4 

Slovenia    <1  2  15  8  25  18  29  11  10 

Spain      8  7       7 

Sweden  <1  7  3  14  10  45  16  12  9  10 

United Kingdom  8  5  13  7  8        24  20  14 

Notes: Data from Eurostat's European ICT usage survey. Sectors: 10–12 ‐ Manufacture of beverages, food, and tobacco products; 
13–15 ‐ Manufacture of textiles, wearing apparel,  leather, and related products; 16–18 ‐ Manufacture of wood and products of 
wood and cork, except furniture; articles of straw and plaiting materials; paper and paper products; printing and reproduction of 
recorded media; 19–23 ‐ Manufacture of coke, refined petroleum, chemical and basic pharmaceutical products, rubber and plastics, 
other non‐metallic mineral products; 24–25 ‐ Manufacture of basic metals and fabricated metal products excluding machines and 
equipment;  26  ‐  Manufacture  of  computer,  electronic,  and  optical  products;  27–28  ‐  Manufacture  of  electrical  equipment, 
machinery and equipment n.e.c.; 29–30 ‐ Manufacture of motor vehicles, trailers and semi‐trailers, other transport equipment; 31–
33  ‐  Manufacture  of  furniture  and  other  manufacturing;  repair  and  installation  of  machinery  and  equipment;  10–33  ‐  Total 
manufacturing. Usage includes use to produce goods for both external sale and internal use and prototyping for both external sale 
and internal use. 

 

  



56 

A2. List of industries (according to Pavitt taxonomy and NACE Rev.2 

classification) and list of countries 

Industries 

Table A2. Sectors in 2‐digit NACE Rev.2 classification, by Pavitt taxonomy class 

Science Based   

Manufacture of chemicals and chemical products   20 

Manufacture of basic pharmaceutical products and pharmaceutical prep.   21 

Manufacture of computer, electronic, and optical products   26 

Specialised Suppliers   

Manufacture of electrical equipment   27 

Manufacture of machinery and equipment n.e.c.   28 

Manufacture of other transport equipment   30 

Repair and installation of machinery and equipment   33 

Scale and Information Intensive   

Manufacture of paper and paper products   17 

Printing and reproduction of recorded media   18 

Manufacture of coke and refined petroleum products   19 

Manufacture of rubber and plastic products   22 

Manufacture of other non‐metallic mineral products   23 

Manufacture of basic metals   24 

Manufacture of motor vehicles, trailers, and semi‐trailers   29 

Supplier Dominated   

Manufacture of food products, beverages, and tobacco products   10‐12 

Manufacture of textiles   13 

Manufacture of wearing apparel   14 

Manufacture of leather and related products   15 

Manufacture of wood and of products of wood and cork, except furniture   16 

Manufacture of fabricated metal products, except machinery and equipment   25 

Manufacture of furniture and other manufacturing   31‐32 

Notes: Sectors in this table refer to a simplified version of the revised Pavitt taxonomy by Bogliacino and Pianta (2016) considering 
only manufacturing sectors. 
By  considering  the  sources  and  patterns  of  innovation,  firm  characteristics,  and  market  structure,  the  taxonomy  identifies 
similarities among industries, allowing to distinguish four classes: (a) Science Based industries, where innovation is based on R&D 
and there is high propensity towards product innovation and patenting; (b) Specialized Supplier industries, where the source of 
innovation is only partially R&D and most of the innovation occurs through tacit knowledge and skills embodied in the labour force; 
average firm size is small and buyer–supplier relationships and exchange of knowledge are a fundamental source of innovation. 
The products of these industries are new processes for other industries; (c) Scale and Information Intensive industries, typically 
characterized  by  large  economies  of  scale  and  a  concentrated  industrial  structure,  where  technological  change  is  in  general 
incremental and new products and new processes coexist, and; (d) Supplier Dominated industries, where technological change is 
introduced mainly through the adoption of new inputs and machinery produced in other sectors and where internal innovation 
activities are low. These are mainly traditional sectors. 
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Countries 

Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Estonia, Finland, France, Germany, 

Greece, Hungary, Ireland, Israel, Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Mexico, 

Netherlands, Norway, New Zealand, Portugal, Slovakia, Slovenia, Spain, Sweden, United Kingdom, 

and the United States. 
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A3. On the AM proxy: keywords, industries, and countries 

AM keywords 

Table A3.1. List of keywords related to AM 

First‐tier keywords (General terminology, processes, technologies) 

  Additive manufacturing  Additive process  3d printing 

  3‐d printing  3‐dimensional printing  3d manufacturing 

  3‐d manufacturing  3‐dimensional manufacturing  Three‐d printing 

  Three‐dimensional printing  Three‐d manufacturing  Three‐dimensional manufacturing 

  Binder jetting  Direct energy deposition  Material extrusion 

  Material Jetting  Powder bed fusion  Sheet lamination 

  Vat photopolymerization  Fused deposition modelling  Fused filament fabrication 

  Laser sintering  Laser melting  Direct metal laser deposition 

  Laser metal deposition  Electron beam melting  Laser engineering net shaping 

  Stereolithography  Poly‐jet matrix  Multi‐jet modelling 

  Continuous liquid interface production     

Second‐tier keywords (Specific IPC codes) 

  B33     

Notes: Authors’ own selection based on the engineering literature, terminology from ruling bodies, and product catalogues on AM. 

 

Examples of sectoral attribution of AM patents 

Hereafter, we provide a few examples on how the DG Concordance Table (Schmoch et al., 2003; 

Van Looy et al., 2014; 2015) used by PATSTAT matches patents to industries on the basis of their 

probability of being used in a specific sector. First, we provide an example of a patent capturing 

production in our AM innovations, by describing what clearly is a product innovation for an upstream 

industry becoming a process innovation for downstream (adopting) sectors. Table A3.2 reports an 

AM patent filed at the USPTO, representative of a patent family describing an AM system and the 

related production process. The largest share of the patent is linked to NACE sector 28 (manufacture 

of machinery and equipment) as most of the information included in the patent deals with the specifics 

of the AM device. In addition, as the process described is specifically suited for the production of 

airfoils (i.e. metallic components used in engines/aerospace industries), a minor share of the patent is 

attributed to NACE sector 25 (manufacture of fabricated metal products). 

The example illustrates the way in which patents link to sectors in our data: the weights allocated 

to sector 28 measure the probability of the AM invention described in the patent being used in sector 
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28, i.e. in producing the AM device in question. On the other hand, it also shows that to a lesser extent 

the patent is likely to be related to the usage of the described AM device to produce airfoils, i.e. by 

adopting the AM machine for production purposes. 

Furthermore, and quite interestingly, the identity of the applicant—General Electric—provides 

further insight into the nature of the AM innovation process itself. In recent years, advancements in 

AM technologies have not been developed solely by established 3D printer producers (e.g. Stratasys, 

3D Systems, EOS, among others). Adopting firms like General Electric, Rolls-Royce, and several 

others have been developing their own AM processes and machines, leveraging partnerships (Colyer, 

2019) or acquisitions of other machinery producers (Kellner, 2018a; 2018b), allowing them to 

internalise core competencies. 

 

Table A3.2. Example 1 on the link between AM patents and NACE Rev.2 sectors 

Title  Abstract  Applicant  NACE 2 
Sectors

Sectoral 
Weights 

A  high  temperature 
additive 
manufacturing  system 
for  making  near  net 
shape  airfoil  leading 
edge protection with a 
cladded mandrel 

A high temperature additive manufacturing system comprising a high 
temperature additive manufacturing device  for providing a metallic 
deposit; and a tooling system comprising a mandrel for receiving and 
providing shape to, the metallic deposit, a metallic cladding applied to 
the mandrel for reducing contamination of the metallic deposit, and 
at least one cooling channel associated with the mandrel for removing 
heat from the system. 

General 
Electric 
Company, US 
 

28.9 
28.4 
25.5 

0.143 
0.714 
0.143 

Notes: Data source is the PATSTAT data set. 

 

Similarly, we now provide key examples suggesting that AM innovations in our data also relate to 

the adoption of AM technology for production purposes, i.e. the use of process innovations in 

downstream sectors. Table A3.3 presents two examples of patent applications describing 3D-printed 

products, i.e. footwear and other apparel products, and the method for producing such products. In 

these examples, the larger sectoral weight of the patent describes its probability-of-use in NACE 

sector 15 (manufacture of leather and related products), suggesting that the applicants, i.e. Nike and 

Adidas (also like Reebok) adopt AM techniques to produce specific and customised products suitable 

for commercialisation. In fact, Nike’s Zoom Vaporfly Elite Flyprint (Nike, 2018), Vapor Laser Talon, 

and Vapor Hyper Agility (Del Nibletto, 2017), and Adidas’ Futurecraft 3D (Nelson, 2015) and 
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Alphaedge 4D (Adidas, 2019) are just some of the 3D printed footwear currently sold by these two 

firms. Specifically, Nike and Adidas developed these new products in partnership with firms like 

Materialise for the design phase (Materialise, 2019), then started production by setting up dedicated 

plants with machines supplied by the 3D-printer producer Carbon (Cheng, 2018). 

Like in the previous example, here minority shares of the patent also link to other sectors 

differently related to the AM innovation described. Specifically, as sports footwear and equipment 

are mostly plastic products, the patent also shows some probability-of-use in NACE sector 22 

(manufacture of rubber and plastic products); furthermore, since it also describes possible production 

techniques, it also features a lower probability-of-use in NACE sector 28. 

 

Table A3.3. Examples 2 and 3 on the link between AM patents and NACE Rev.2 sectors (Table 1 in Section 3.1.1) 

Title  Abstract  Applicant  NACE 2 
Sectors

Sectoral 
Weights 

Articles  and 
methods  of 
manufacture 
of articles 

Various articles, such as footwear, apparel, athletic equipment, watchbands, 
and the like, and methods of forming those articles are presented. The articles 
are  generally  formed,  in  whole  or  in  part,  using  rapid  manufacturing 
techniques,  such  as  laser  sintering,  stereolithography,  solid  deposition 
modeling,  and  the  like.  The use of  rapid manufacturing allows  for  relatively 
economical  and  time  efficient  manufacture  of  customized  articles.  [...]  The 
methods may also include performing a scan of an appropriate body part of a 
user, such as a foot, in order to create a customized article of footwear for the 
user. 

Nike 
International 
Ltd., US 

22 
15 
28.9 

0.25 
0.5 
0.25 

Additive 
manufactured 
metal  sports 
performance 
footwear 
components 

The present  invention relates  to a sole  for a shoe,  in particular  for a cycling 
shoe, comprising: (a.) a three‐dimensionally shaped rim; and (b.) a plurality of 
first  reinforcing  struts,  wherein  (c.)  at  least  two  of  the  plurality  of  first 
reinforcing  struts  extend  from a heel  region of  the  rim of  the  sole  to  a  toe 
region  of  the  rim of  the  sole,  and wherein  (d.)  the  rim of  the  sole  and  the 
plurality of first reinforcing struts are integrally manufactured as a single piece 
in an additive manufacturing process. 

Adidas  AG., 
DE 

15  1.0 

Notes: Data source is the PATSTAT data set. 

 

We also report the example of an AM patent featuring a one-to-one correspondence to NACE 

sector 25 (manufacture of fabricated metal products), again suggesting adoption of the technology in 

this specific industry. The metallic product described in Table A3.4 is specifically designed to be 

manufactured using additive techniques. In fact, over the last few years companies like General 

Electric, Airbus, and Rolls-Royce have directly used AM techniques in the production of parts and 

components installed in their turbine engines (Kellner, 2018b; Kingsbury, 2019). 
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Table A3.4. Example 4 on the link between AM patents and NACE Rev.2 sectors 

Title  Abstract  Applicant  NACE 2 
Sectors

Sectoral 
Weights 

Article 
produced  by 
additive 
manufacturing 

An  article  includes  at  least  one  first  portion, wherein  the  at  least  one  first 
portion is additively manufactured by depositing successive layers of one or 
more materials  upon  a  surface  such  that  a  three  dimensional  structure  is 
obtained;  at  least  one  second  portion  […];  and  at  least  one  third  portion, 
wherein  the  at  least  one  third  portion  is  additively  manufactured  by 
depositing successive layers of one or more materials upon the at least one 
top surface such that a three dimensional structure is obtained. 

General 
Electric 
Company, US 
 

25.5  1.0 

Notes: Data source is the PATSTAT data set. 

 

Table 3.5. Example 5 and 6 on the link between AM patents and NACE Rev.2 sectors 

Title  Abstract  Applicant  NACE 2 
Sectors

Sectoral 
Weights 

3‐D  printing 
of  bone 
grafts 

Computer implemented methods of producing a bone graft are provided. These 
methods  include  obtaining  a  3‐D  image  of  an  intended  bone  graft  site; 
generating a 3‐D digital model of the bone graft based on the 3‐D image of the 
intended  bone  graft  site,  the  3‐D  digital  model  of  the  bone  graft  being 
configured to fit within a 3‐D digital model of the intended bone graft site; [..]. 
A  layered  3‐D  printed  bone  graft  prepared  by  the  computer  implemented 
method is also provided. 

Warsaw 
Orthopedic, 
Inc., US 

32.5  1.0 

A method for 
fabricating  a 
hearing 
device 

A  method  for  fabricating  a  hearing  aid  using  a  self  contained  hearing  aid 
production  laboratory employing  three dimensional printing  technology. The 
method comprises the steps of conducting audiometric testing of an individual 
with a hearing impairment; selecting and customizing a product design for the 
hearing aid to be produced; producing the selected and customized hearing aid; 
and performing final adjustments to the produced hearing aid. 

Siemens 
Hearing 
Instruments, 
Inc., US 

26.3  1.0 

Notes: Data source is the PATSTAT data set. 

 

In addition to these examples, and as extensively analysed in the literature on AM, other industry 

applications deal with the production of medical devices (e.g. prostheses, surgical and dental 

implants, hearing aids), luxury goods (i.e. jewellery), and musical instruments and toys (Laplume et 

al., 2016). Several patents dealing with these types of products in our data present majority shares 

relating to sectors 26 (manufacture of computer, electronic, and optical products), 32 (other 

manufacturing, including the manufacturing of medical devices), and 22 (manufacture of rubber and 

plastic products). These industries were widely affected by the technologies well before others 

(Sandström, 2016), and direct manufacturing via AM is now an established manufacturing method, 

especially due to the high potential for customization (Laplume et al., 2016; Sandström, 2016). We 

provide some examples in Table A3.5. 

The examples just presented also highlight that in the alternative case of attributing AM patents to 

the sector of the applicant only, we would have ended up with potentially strong misallocations. 
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Obviously, with the lack of information on licencing agreements, both attribution strategies have 

drawbacks. The size of the misattribution basically depends on the number of multiproduct firms, 

conglomerates, or firms involved in complex value chains and therefore possibly patenting but not 

directly using the patent (except through firms in other sectors) that are in the sample as applicants, 

as already pointed out by Dorner and Harhoff (2018). 

 

On geographical attribution 

As explained in Section 3.1, we allocated patent families to the country of residence of their inventors 

using fractional counting. 

An alternative strategy would be to attribute the patent family on the basis of the jurisdiction, i.e. 

where the patent provides protection. This strategy would result in a worse proxy for several reasons. 

Defensive or strategic patenting would be more likely to be captured this way. Beyond that, firms 

may extend the number of countries where they apply for protection for reasons different from the 

real ‘economic’ rationale for protection. Many patent authorities, e.g. the European Patent Office 

(EPO) or Patent Cooperation Treaty (PCT), provide the opportunity to protect patent families for 

which an application is filed in all or a selection of member states (i.e. contracting states) with just 

one application (EPO, 2019). This may induce applicants to extend the countries where they seek 

protection somehow automatically, because there is no cost for doing it. This would lead to a measure 

highly skewed towards, for instance, EPO member states, not reflecting the real diffusion of the 

technology. On the other hand, even in better cases, i.e. protection is sought for protection from 

competitors where the applicant firm wants to sell the (capital-embodied) innovation, even if we 

capture the real diffusion of the technology in the importing country the proxy would capture adoption 

only (something we would not like, as explained in Section 2). It is also worth noting that the resulting 

skewed distribution, in particular for our sample of countries, would not allow for enough variation 

in the data to carry out the econometric analysis. 
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The other possible alternative strategy of assigning patent families to the country of the applicant 

would have other pitfalls. If the applicant is a small-medium firm, as often is the case in the AM field, 

this would not be an issue since the country of the applicant and the inventor would be the same. 

However, if the applicant is a large multinational, for instance, we would end up in assigning it to the 

country where the multinational enterprise (MNE) has its (legal) headquarters, which in many cases 

is not the place (or sector) where production/adoption occurs. We assume that it is more likely that 

the inventor’s residence is closer to where the patent is produced or adopted than the applicant’s. But 

of course, this is in any case a second-best option in view of the lack of direct information on where 

the patent is used. 
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A4. Summary statistics 

Table A4. Summary statistics for OECD countries and manufacturing industries, 2009–2017 period 

   [1]  [2]  [3]  [4]  [5] 

[1] Employment  1.000       

[2] AM patent stock  0.444  1.000      

[3] Non‐AM patent stock  0.524  0.529  1.000     

[4] Labour cost  0.054  0.251  0.516  1.000   

[5] Gross output  0.889  0.430  0.628  0.383  1.000 

N. of Countries  31  31  31  31  31 

N. of Sectors  21  21  21  21  21 

N. of Obs.  5,741  5,741  5,741  5,741  5,741 

Mean  10.114  0.215  3.524  17.537  8.729 

SD  1.771  0.581  2.785  0.564  1.969 

Min.  0.000  0.000  0.000  15.065  0.233 

p25  8.939  0.000  1.064  17.193  7.337 

Median  10.074  0.000  3.209  17.590  8.828 

p75  11.370  0.009  5.431  17.906  10.103 

Max.  14.458  5.627  12.604  20.347  13.737 

Notes: Statistics reported here refer to cross‐sectional variation across all country‐sector‐year cells. 
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A5. Details on the robustness checks 

An alternative AM proxy and inter-sectoral/inter-country AM effects 

As explained in Section 5.1.1, our main analysis could miss inter-sectoral and inter-country linkages 

through which AM technologies may affect industry-level employment. These mechanisms represent 

general equilibrium effects materializing through the existing links along supply chains. Moreover, 

an industry could adopt AM devices that are produced by other sectors/countries without this showing 

up in its own patent activity, i.e. our main AM innovation proxy. To check for potential bias in our 

results stemming from these mechanisms, we build measures for ‘external AM’. Hereafter, we 

illustrate in more detail the data used, the technical caveats of building these measures, and the results 

of the related analysis. 

We use the world input–output tables from the 2016 release of the WIOD data set (Timmer et al., 

2015). The use of these data results in a slight reduction of the sample used in our main investigation. 

Specifically, we drop two countries (Israel and New Zealand) and the details for two industries, 

namely NACE sectors 13 to 15 (manufacturing of textiles, wearing apparel, leather, and related 

products) is provided as a unique aggregate.  

We build an index of AM technology capturing both potential inter-sectoral and inter-country 

effects of AM innovations going through value-chain relationships. The index is built as follows: 

𝑒𝑥𝑡𝐴𝑀௜௝௧ ൌ ෍ ෍ 𝐴𝑀௖௦௧

௦

ൈ ቆ
𝑖𝑛𝑡௜௝ଶ଴଴଼

௖௦

𝑖𝑛𝑡௜௝ଶ଴଴଼
ቇ

௖

 (A1)

for each country 𝑖, sector 𝑗, and year 𝑡. The 𝑒𝑥𝑡𝐴𝑀௜௝௧ variable is then the weighted sum of the AM 

patent stock in each country and industry, where the weights are built as the ratio of intermediate 

goods bought by sector 𝑗 of country 𝑖 from sector 𝑠 ് 𝑗 in country 𝑖 and from all industries in country 

𝑐 ് 𝑖,  i.e. all sectoral domestic intermediates bought from all sectors excluding one’s own, plus all 

foreign intermediates bought from all sectors, over the total intermediate goods used by sector 𝑗 in 

country 𝑖 (𝑖𝑛𝑡௜௝). Weights 𝑖𝑛𝑡௜௝
௖௦ 𝑖𝑛𝑡௜௝⁄  are constant over time and predetermined with respect to our 
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observation period; specifically, they refer to 2008. We take predetermined weights in order to 

minimize potential endogeneity concerns and avoid biases induced by reverse causality. 

We estimate the following specification: 

𝐿௜௝௧ ൌ 𝛼଴ ൅ 𝛼ଵ𝐴𝑀௜௝௧ିଷ ൅ 𝛼ଶ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷ ൅ 𝛼ଷ𝑒𝑥𝑡𝐴𝑀௜௝௧ିଷ ൅ 𝛼ସ𝑒𝑥𝑡𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷ 

൅𝛼ହ𝐷𝑉𝐹௜௝ଶ଴଴଼ ൅ 𝛼଺𝐹𝐸௜௝ଶ଴଴଼ ൅ 𝜶଻𝑿௜௝௧ିଵ ൅ 𝛾௜ ൅ 𝛾௝ ൅ 𝛾௧ ൅ 𝑢௜௝௧, 

(A2)

where, in addition to our main AM innovation proxy used in the main analysis and all other controls, 

we include the new 𝑒𝑥𝑡𝐴𝑀௜௝௧ିଷ variable, a similar variable—built following equation (A1)—

capturing inter-sectoral and inter-country effects for the non-AM patents (𝑒𝑥𝑡𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷ), two 

controls for foreign exposure (𝐹𝐸௜௝ଶ଴଴଼,  in the spirit of the offshoring index originally introduced by 

Feenstra and Hanson, 1996), and a measure of domestic vertical fragmentation (𝐷𝑉𝐹௜௝ଶ଴଴଼). The 

numerator of the foreign-exposure variable is the sum of the value of all intermediate goods imported 

by sector 𝑗 of country 𝑖 from all sectors of all partner countries, while the denominator is the total 

value of all intermediate inputs used in production in sector  𝑗 of country 𝑖. The numerator of the 

domestic vertical fragmentation variable is the sum of the value of all intermediate goods bought by 

sector 𝑗 of country 𝑖 from all sectors 𝑠 ് 𝑗 of country 𝑖, while the denominator is the total value of all 

intermediate inputs used in production by sector 𝑗. Both variables are time-invariant since they are 

built for the year 2008, again to avoid reverse-causality issues. They both play a similar role to 

country-industry FEs (𝛾௜௝), which as explained in Section 4 cannot be included in the analysis due to 

the short time span of our series and the small time variation left along the country–industry 

dimension. We therefore underline that the inclusion of the two control variables also works as a 

relevant robustness check per se. 

As can be seen from Table A5.1, our results are robust to the inclusion of the new proxy and 

control variables. The employment elasticity to the original AM proxy is about 0.075 in unconditional 

demand estimations and 0.045 in the conditional demand estimations, both being statistically 

significant at the 1% level. 
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In contrast, the ‘external AM’ variable is not statistically significant in the unconditional demand 

estimations; for conditional demand it is positive and statistically significant (0.07, statistically 

significant at the 5% level in the most demanding specification in terms of FEs). Thus, the results 

confirm the complementarity between labour and AM technologies. The ‘external non-AM’ variable 

capturing technology transfer for all non-AM innovations is also positive and statistically significant 

at the 1% level in all specifications, with an elasticity again much larger in unconditional demand 

estimations (about 0.5) than in conditional ones (about 0.05), as in our baseline model. 

The domestic vertical fragmentation control is negatively and significantly (at the 1% level) 

correlated with employment in the unconditional demand estimation, potentially capturing an 

outsourcing effect, while it is positively and significantly correlated with sectoral employment 

(significant at the 10% level) in conditional estimations and is probably capturing a composition 

effect since most labour-intensive tasks/activities are less likely to be outsourced, both at the bottom 

and at the top of the skill distribution. The foreign-exposure variable is negatively correlated with 

employment in all specifications, but the elasticity is smaller (about 0.2) and not statistically 

significant in the unconditional demand estimations while it is about 0.7 and statistically significant 

at the 1% level in the conditional demand estimations. In line with the theoretical literature, this 

suggests that offshoring has pro-competitive effects and increases production and sales, but also a 

large labour-saving effect for a given level of output. 
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Table A5.1. Relationship between AM patent stock and average employment, 2009–2017 period, inter‐sectoral/inter‐country AM 
effects 

  Unconditional    Conditional 

Employment ሺ𝐿௜௝௧ሻ  (1)  (2)    (3)  (4) 

                 
AM patent stock ሺ𝐴𝑀௜௝௧ିଷሻ  0.075***  0.079***    0.045***  0.046*** 

  (0.017)  (0.018)    (0.008)  (0.009) 
Non‐AM patent stock ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷሻ  0.175***  0.176***    0.023***  0.021*** 

  (0.009)  (0.009)    (0.005)  (0.005) 
External AM patent stock ሺ𝑒𝑥𝑡𝐴𝑀௜௝௧ିଷሻ  ‐0.004  ‐0.001    0.044*  0.074** 

  (0.048)  (0.059)    (0.023)  (0.029) 
External non‐AM patent stock ሺ𝑒𝑥𝑡𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷሻ  0.512***  0.513***    0.051***  0.041*** 

  (0.015)  (0.016)    (0.013)  (0.014) 
Domestic vertical fragmentation ሺ𝐷𝑉𝐹௜௝ଶ଴଴଼ሻ  ‐1.304***  ‐1.318***    0.126*  0.124* 

  (0.122)  (0.126)    (0.068)  (0.070) 
Foreign exposure ሺ𝐹𝐸௜௝ଶ଴଴଼ሻ  ‐0.118  ‐0.117    ‐0.698***  ‐0.689*** 

  (0.216)  (0.222)    (0.101)  (0.104) 
Labour cost ሺ𝐿𝐶௜௝௧ିଵሻ  ‐0.107  ‐0.133*    ‐0.641***  ‐0.667*** 

  (0.069)  (0.068)    (0.029)  (0.028) 
Gross output ሺ𝑌௜௝௧ିଵሻ      0.716***  0.725*** 

     (0.016)  (0.015) 

       
Observations  4,854  4,854    4,854  4,854 

R‐squared  0.936  0.937    0.980  0.981 

Country, Sector, Year FEs  🗸   🗸  
Country‐Year, Sector‐Year FEs     🗸       🗸 
Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. 
The dependent variable  is sectoral employment (𝐿௜௝௧). Coefficients  for the constant term, for 55 countries,  for sector and year 

dummies (columns (1) and (3)), and for 423 country‐year and sector‐year dummies (columns (2) and (4)) are omitted due to space 
limitations. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 

 

Countries and sectors 

Hereafter, we provide results for the robustness checks described in Section 5.1.1 pertaining to the 

exclusion of the top six AM-patenting countries and of NACE sector 28 (manufacturing of machinery 

and equipment), which produce AM devices. As can be seen from Tables A5.2 and A5.3 below, our 

findings are robust to these checks. 
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Table A5.2. Relationship between AM patent stock and average employment, 2009–2017 period, excluding the top six AM‐
patenting countries 

  Unconditional    Conditional 

Employment ሺ𝐿௜௝௧ሻ  (1)  (2)  (3)    (4)  (5) 

                    

AM patent stock ሺ𝐴𝑀௜௝௧ିଷሻ  0.238***  0.112***  0.130***    0.093***  0.109*** 

  (0.040)  (0.036)  (0.041)    (0.018)  (0.021) 

Non‐AM patent stock ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷሻ    0.308***  0.310***    0.043***  0.041*** 

   (0.013)  (0.014)    (0.007)  (0.007) 

Labour cost ሺ𝐿𝐶௜௝௧ିଵሻ    ‐0.225***  ‐0.245***    ‐0.833***  ‐0.849*** 

   (0.077)  (0.079)    (0.048)  (0.046) 

Gross output ሺ𝑌௜௝௧ିଵሻ       0.785***  0.791*** 

      (0.012)  (0.012) 

        
Observations  4,625  4,625  4,625    4,625  4,625 

R‐squared  0.808  0.829  0.832    0.962  0.964 

Country, Sector, Year FEs  🗸 🗸   🗸  
Country‐Year, Sector‐Year FEs        🗸       🗸 
Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. 
The dependent variable  is sectoral employment (𝐿௜௝௧). Coefficients  for the constant term, for 53 countries,  for sector and year 

dummies (columns (1), (2) and (4)), and for 405 country‐year and sector‐year dummies (columns (3) and (5)) are omitted due to 
space limitations. The top six AM‐patenting countries excluded are the US, Japan, Germany, UK, France, and Korea. Significance 
levels: *** p<0.01, ** p<0.05, * p<0.1. 

 

Table A5.3. Relationship between AM patent stock and average employment, 2009–2017 period, excluding AM machinery‐
producing sector 

  Unconditional    Conditional 

Employment ሺ𝐿௜௝௧ሻ  (1)  (2)    (3)  (4) 

                 

AM patent stock ሺ𝐴𝑀௜௝௧ିଷሻ  0.100***  0.106***    0.081***  0.086*** 

  (0.020)  (0.022)    (0.009)  (0.010) 

Non‐AM patent stock ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷሻ  0.265***  0.266***    0.036***  0.034*** 

  (0.011)  (0.012)    (0.005)  (0.005) 

Labour cost ሺ𝐿𝐶௜௝௧ିଵሻ  ‐0.189***  ‐0.204***    ‐0.792***  ‐0.805*** 

  (0.066)  (0.066)    (0.041)  (0.039) 

Gross output ሺ𝑌௜௝௧ିଵሻ      0.781***  0.787*** 

     (0.011)  (0.011) 

       
Observations  5,462  5,462    5,462  5,462 

R‐squared  0.878  0.879    0.973  0.974 

Country, Sector, Year FEs  🗸   🗸  
Country‐Year, Sector‐Year FEs     🗸       🗸 
Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. 
The dependent variable  is sectoral employment (𝐿௜௝௧). Coefficients  for the constant term, for 58 countries,  for sector and year 

dummies (columns (1) and (3)), and for 450 country‐year and sector‐year dummies (columns (2) and (4)) are omitted due to space 
limitations. The sector producing AM machinery is sector NACE 28 ‐ Manufacture of machinery and equipment. Significance levels: 
*** p<0.01, ** p<0.05, * p<0.1. 
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Table A5.4. Relationship between AM stock and average employment, 2009–2017 period, excluding countries and sectors with no 
AM patents 

  Unconditional    Conditional 

Employment ሺ𝐿௜௝௧ሻ  (1)  (2)  (3)    (4)  (5) 

                    

AM patent stock ሺ𝐴𝑀௜௝௧ିଷሻ  0.104***  0.054***  0.056***    0.039***  0.041*** 

  (0.016)  (0.017)  (0.019)    (0.008)  (0.009) 

Non‐AM patent stock ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷሻ    0.306***  0.308***    0.045***  0.043*** 

   (0.015)  (0.016)    (0.005)  (0.006) 

Labour cost ሺ𝐿𝐶௜௝௧ିଵሻ    ‐0.233***  ‐0.245***    ‐0.847***  ‐0.857*** 

   (0.059)  (0.062)    (0.022)  (0.022) 

Gross output ሺ𝑌௜௝௧ିଵሻ       0.780***  0.784*** 

      (0.009)  (0.009) 

        
Observations  4,545  4,545  4,545    4,545  4,545 

R‐squared  0.887  0.904  0.905    0.980  0.981 

Country, Sector, Year FEs  🗸 🗸   🗸  
Country‐Year, Sector‐Year FEs        🗸       🗸 
Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. 
The dependent variable  is sectoral employment (𝐿௜௝௧). Coefficients  for the constant term, for 53 countries,  for sector and year 

dummies (columns (1), (2) and (4)), and for 405 country‐year and sector‐year dummies (columns (3) and (5)) are omitted due to 
space limitations. This estimation only exploits the intensive margin of AM (i.e. it excludes observations for which the AM stock is 
zero). Countries with no AM patents are Estonia, Greece, Latvia and Portugal. Sectors with no AM patents are: sector NACE 19 ‐ 
Manufacture of  coke  and  refined petroleum products;  sector NACE 33  ‐  Repair  and  installation of machinery  and equipment. 
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 

 

Alternative patent data 

In order to test the robustness of our main results, we perform a battery of additional checks. First, in 

our main analysis we focus on AM patent families applied for at the USPTO. Although the USPTO 

represents the reference patent office where inventors and applicants worldwide tend to file their new 

inventions to seek IP protection, being a large and highly innovative market, it is not the only 

important patent authority worldwide. Thus, we collected information on AM patent families filed at 

the European Patent Office (EPO) and at the Patent Cooperation Treaty (PCT), which allow inventors 

and applicants to seek protection for their invention in a large number of countries simultaneously 

(European countries in the case of the EPO, internationally in the case of the PCT). We build AM 

patent stock measures following the methodology described in Section 3 using both EPO and PCT 

applications, which we test alternatives to our main AM measure based on USPTO data. As shown 

in Table A5.5 below, our results are robust to these checks. 
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Table A5.5. Relationship between AM patent stock and average employment, period 2009‐2017, AM patents at alternative patent authorities 

  EPO    PCT 

  Unconditional    Conditional    Unconditional    Conditional 

Employment ሺ𝐿௜௝௧ሻ  (1)  (2)    (3)  (4)    (5)  (6)    (7)  (8) 

                                

AM patent stock ሺ𝐴𝑀௜௝௧ିଷ
ா௉ை ሻ  0.120***  0.121***    0.061***  0.062***         

 (0.019)  (0.020)    (0.010)  (0.010)         
AM patent stock ሺ𝐴𝑀௜௝௧ିଷ

௉஼் ሻ       0.090***  0.093***    0.069***  0.073*** 

      (0.017)  (0.019)    (0.008)  (0.009) 

Non‐AM patent stock ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷሻ  0.270***  0.271***    0.038***  0.036***    0.269***  0.270***    0.035***  0.033*** 

  (0.011)  (0.012)    (0.005)  (0.005)    (0.011)  (0.012)    (0.005)  (0.005) 

Labour cost ሺ𝐿𝐶௜௝௧ିଵሻ  ‐0.187***  ‐0.203***   ‐0.794*** ‐0.807***   ‐0.186*** ‐0.201***    ‐0.793*** ‐0.806***

  (0.065)  (0.065)    (0.040)  (0.039)    (0.065)  (0.065)    (0.040)  (0.039) 

Gross output ሺ𝑌௜௝௧ିଵሻ     0.782***  0.788***       0.782***  0.788*** 

    (0.011)  (0.011)       (0.011)  (0.011) 

           
Observations  5,741  5,741    5,741  5,741    5,741  5,741    5,741  5,741 

R‐squared  0.881  0.883    0.974  0.975    0.881  0.883    0.974  0.975 

Country, Sector, Year FEs  🗸  🗸  🗸   🗸  
Country‐Year, Sector‐Year FEs     🗸      🗸      🗸       🗸 
Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. The dependent 
variable is sectoral employment (𝐿௜௝௧). Coefficients for the constant term, for 59 countries, for sector and year dummies (odd columns), and for 

459 country‐year and sector‐year dummies (even columns) are omitted due to space limitations. Significance levels: *** p<0.01, ** p<0.05, * 
p<0.1. 
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Alternative lag structures 

A further check we conduct concerns the lag structure that we assume for our main variable of interest, 

i.e. AM technological innovation. As described in Sections 3.2 and 4, our assumption regarding the 

three-year lag is based on both practical considerations related to the time required to get from the 

application of a patent to the moment at which the innovation it seeks to protect is actually brought 

to the market and on econometric practices in the related literature. Nonetheless, depending on the 

specificity of the innovation this time window could vary; alternatively, this rule of thumb may not 

be appropriate in the case of very narrow categories of innovation, as in the case of AM. Hence, we 

also explore specifications in which we allow for different lag structures for both our patent-based 

variables (i.e. the AM patent stock and the non-AM patent stock). Specifically, we test models in 

which these variables may have a relationship with employment over a shorter period, i.e. including 

these variables with a one-year (𝐴𝑀௜௝௧ିଵ, 𝑛𝑜𝑛𝐴𝑀௜௝௧ିଵ) and a two-year lag (𝐴𝑀௜௝௧ିଶ, 𝑛𝑜𝑛𝐴𝑀௜௝௧ିଶ). 

Alternatively, we allow the AM–employment relationship to be in place with longer lags 

(𝐴𝑀௜௝௧ିସ, 𝑛𝑜𝑛𝐴𝑀௜௝௧ିସ, 𝐴𝑀௜௝௧ିହ, 𝑛𝑜𝑛𝐴𝑀௜௝௧ିହ). These results are reported in Table A5.6 below and 

again show that our findings are robust. 

Notably, as presented in columns (1) to (8), assuming a shorter lag structure for our AM patent 

stock variable—thus, assuming the effect of AM technologies on employment happens almost 

synchronously with the filing of the related innovation—turns out to still highlight a positive 

relationship, but one predominantly driven by existing complementarities between AM and labour. 

Conversely, market-related channels appear negligible for shorter lags as we observe almost no (for 

𝐴𝑀௜௝௧ିଵ) and little (for 𝐴𝑀௜௝௧ିଶ) change in the coefficient when comparing unconditional and 

conditional specifications. 

However, and coherently with our main assumption on the appropriate lag structure to assume in 

order to properly and fully gauge the effects of AM on employment, specifications testing longer lag 

structures (columns (9) to (16)) show a positive impact of AM, highlighting both an important role 

of the market channel as well as complementarities between the technology and labour.
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Table A5.6. Relationship between AM patent stock and average employment, 2009–2017 period, alternative lag structures for AM and non‐AM patent stocks 

  1‐year lag    2‐year lag    4‐year lag    5‐year lag 

  Unconditional    Conditional    Unconditional    Conditional    Unconditional    Conditional    Unconditional    Conditional 

Employment ሺ𝐿௜௝௧ሻ  (1)  (2)    (3)  (4)    (5)  (6)    (7)  (8)     (9)  (10)    (11)  (12)    (13)  (14)     (15)  (16) 

                                     
AM patent stock ሺ𝐴𝑀௜௝௧ିଵሻ  0.059***  0.062***    0.056***  0.061***                     

(0.015)  (0.017)    (0.007)  (0.007)                     
Non‐AM patent stock 
ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଵሻ 

0.279***  0.280***    0.035***  0.033***                     

(0.011)  (0.012)    (0.005)  (0.005)                     
AM patent stock ሺ𝐴𝑀௜௝௧ିଶሻ         0.071***  0.076***    0.060***  0.065***               

      (0.016)  (0.018)    (0.007)  (0.008)               
Non‐AM patent stock 
ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଶሻ 

       0.275***  0.275***    0.035***  0.033***               

      (0.011)  (0.012)    (0.005)  (0.005)               
AM patent stock ሺ𝐴𝑀௜௝௧ିସሻ               0.109***  0.113***    0.070***  0.072***         

            (0.019)  (0.020)    (0.009)  (0.009)         
Non‐AM patent stock 
ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିସሻ 

             0.264***  0.265***    0.036***  0.034***         

            (0.011)  (0.011)    (0.005)  (0.005)         
AM patent stock ሺ𝐴𝑀௜௝௧ିହሻ                     0.119***  0.122***    0.072***  0.072*** 

                  (0.019)  (0.020)    (0.009)  (0.009) 
Non‐AM patent stock 
ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିହሻ 

                   0.260***  0.262***    0.037***  0.035*** 

                  (0.011)  (0.011)    (0.005)  (0.005) 
Labour cost ሺ𝐿𝐶௜௝௧ିଵሻ  ‐0.188*** ‐0.203***    ‐0.793*** ‐0.806***   ‐0.188*** ‐0.202***   ‐0.793*** ‐0.806***    ‐0.185*** ‐0.201***   ‐0.793*** ‐0.806***   ‐0.183*** ‐0.199***   ‐0.793***  ‐0.806*** 
  (0.064)  (0.065)    (0.040)  (0.038)    (0.064)  (0.065)    (0.040)  (0.038)    (0.065)  (0.065)    (0.040)  (0.039)    (0.065)  (0.066)    (0.040)  (0.039) 
Gross output ሺ𝑌௜௝௧ିଵሻ      0.782***  0.788***       0.782***  0.788***       0.782***  0.788***       0.782***  0.788*** 
     (0.011)  (0.011)       (0.011)  (0.011)       (0.011)  (0.011)       (0.011)  (0.011) 
                         

Observations  5,741  5,741    5,741  5,741    5,741  5,741    5,741  5,741    5,741  5,741    5,741  5,741    5,741  5,741    5,741  5,741 

R‐squared  0.882  0.883    0.974  0.975    0.882  0.883    0.974  0.975    0.881  0.883    0.974  0.975    0.881  0.882    0.974  0.975 

Country, Sector, Year FEs  🗸   🗸   🗸   🗸   🗸   🗸   🗸   🗸  
Country‐Year, Sector‐Year FEs     🗸       🗸      🗸      🗸       🗸      🗸      🗸       🗸 
Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. The dependent variable is sectoral employment (𝐿௜௝௧). Coefficients for the constant term, for 59 countries, for sector 

and year dummies (odd columns), and for 459 country‐year and sector‐year dummies (even columns) are omitted due to space limitations. Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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A6. Country-level explorative analysis 

Table A6.1. Relationship between AM patent stock and average employment, 2009–2017 period, country‐level analysis 

  Full sample     European sample    High education    Middle education    Low education 

Employment  (1)  (2)    (3)  (4)    (5)  (6)    (7)  (8)    (9)  (10) 

                                        
AM patent stock ሺ𝐴𝑀௜௝௧ିଷሻ  0.154***  0.063***    0.122***  0.064***    0.176***  0.102***    0.243***  0.177***    0.082  ‐0.005 

  (0.034)  (0.008)    (0.040)  (0.013)    (0.038)  (0.024)    (0.040)  (0.026)    (0.069)  (0.057) 
Non‐AM patent stock ሺ𝑛𝑜𝑛𝐴𝑀௜௝௧ିଷሻ  0.645***  ‐0.026    0.583***  ‐0.019    0.541***  0.045    0.616***  0.168***    0.552***  ‐0.034 

  (0.031)  (0.019)    (0.035)  (0.021)    (0.027)  (0.035)    (0.029)  (0.042)    (0.048)  (0.086) 
Labour cost ሺ𝐿𝐶௜௝௧ିଵሻ ‐1.329***  ‐0.626***    ‐0.443**  ‐0.763***    ‐0.512**  ‐0.714***    ‐1.698***  ‐1.880***    0.862***  0.624** 

  (0.121)  (0.032)    (0.197)  (0.082)    (0.221)  (0.145)    (0.179)  (0.099)    (0.306)  (0.281) 
Gross output ሺ𝑌௜௝௧ିଵሻ   0.936***     0.933***     0.801***     0.722***     0.946*** 

   (0.019)     (0.021)     (0.047)     (0.054)     (0.111) 

                
Observations  270  270    205  205    205  205    205  205    205  205 

R‐squared  0.949  0.996    0.951  0.995    0.956  0.984    0.964  0.986    0.926  0.950 

Notes: Coefficients estimated by OLS with robust standard errors in parentheses. All variables are expressed in natural logarithms. All specifications include time FEs; country FEs are not included 
since our panel is short in T, not providing enough time variation in the data (the R2 of a regression of the dependent variable on country FEs is 0.99). Coefficients for the constant term, 9 year 
dummies, and all additional country‐level controls are not reported in the table due to space limitations (full results are available upon request).The dependent variable is country‐level employment 
(𝐿௜௝௧) in columns (1) to (4); the dependent variable is country‐level employment by education category (𝐿௜௝௧

ா஽௎) in columns (5) to (10). Data on employment by education category comes from the 

EU KLEMS database. Specifications in columns (1) and (2) include 31 OECD countries in our original sample; specifications in columns (3) to (10) include 23 countries included in the EU KLEMS 
database (Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, Netherlands, Portugal, Slovakia, 
Slovenia, Spain, Sweden, United Kingdom). Variables for AM patent stock and non‐AM patent stock are included in all specifications with a three‐year lag; all other explanatory variables are 
included with a one‐year lag. All specifications include additional country‐level controls (data comes from the World Development Indicators database of the World Bank): R&D expenditure (as 
share of GDP), trade openness (the sum of import and export as share of GDP), labour force share of workers with at least post‐secondary education (age 25+), share of working‐age (age 15–64) 
population. Specifications reported in columns (5) to (10) further  include additional country‐level controls (data comes from the EU KLEMS database): employment share of female workers, 
employment share of workers aged 30–49, employment share of workers aged 50+.  
Significance levels: *** p<0.01, ** p<0.05, * p<0.1. 
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