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A B S T R A C T   

Long-term monitoring brings an important benefit for health monitoring of civil structures due to covering all 
possible unpredictable variations in measured vibration data and providing relatively adequate training samples 
for unsupervised learning algorithms. Despite such merits, this process may encounter large data with missing 
values and also yield erroneous results caused by severe environmental changes, particularly those emerge as 
sharp increases in modal frequencies during freezing weather. To address these challenges, this article proposes a 
novel unsupervised meta-learning method that entails four steps of an initial data analysis, data segmentation, 
subspace searching by a novel approach called nearest cluster selection, and anomaly detection. The first step 
intends to initially analyze measured data/features for cleaning missing samples. Next, the second step exploits 
spectral clustering to divide clean data into some segments. In the third step, the proposed nearest cluster se-
lection is utilized to measure dissimilarities between the segments by a distance metric and select a cluster with 
the minimum distance as the representative of the main segment. Finally, a locally robust Mahalanobis-squared 
distance is applied by merging the concepts of robust statistics and local metric learning for online anomaly 
detection. The key innovations of this research contain developing a new unsupervised learning strategy 
alongside a locally robust distance and proposing the idea of nearest cluster selection. Long-term modal fre-
quencies of full-scale concrete and steel bridges are used to verify the proposed method. Results demonstrate that 
this method succeeds in mitigating severe environmental effects and accurately detecting damage.   

1. Introduction 

Civil structures are important and basic systems of any society due to 
their dependency on economic and social life. These structures are 
subjected to various excitation sources of live loads, natural and man- 
made hazards. On the other hand, most of the civil structures were 
designed and built several decades ago with outdated design codes and 
construction techniques. Under such circumstances, material deterio-
ration and aging are critical factors that jeopardize structural safety and 
integrity. To prevent any catastrophic events such as failure and collapse 
due to the occurrence and growth of damage, structural health moni-
toring (SHM) has become an essential necessity in civil engineering 
communities for bridges [1], buildings [2], dams [3], etc. The main 
objective of an SHM program is to design a systematic framework for 
assessing the current state of a civil structure in terms of early damage 
detection, damage localization, and damage severity estimation by 

measuring different structural responses. 
Because of recent progress in sensing technologies alongside data 

acquisition and transmission systems, it is possible to equip civil struc-
tures with various sensors [4,5]. On this basis, one can extract mean-
ingful features directly relevant to inherent physical properties, 
particularly structural stiffness, from measured structural responses. 
Natural frequencies are among popular and suitable features for long- 
term SHM, which is often conducted within one or several years 
[6–8], and early damage detection due to their simple identification via 
different modal analysis techniques [9] and the minimum requirement 
for sensor deployment and placement. However, such dynamic features 
are profoundly influenced by unpredictable environmental (e.g., tem-
perature, moisture, humidity, wind) and operational (e.g., excessive live 
loads, massive traffic) changes. The demanding issue is that both envi-
ronmental and/or operational (E/O) conditions can vary the intrinsic 
physical properties and structural responses similar to damage. In this 

* Corresponding author. 
E-mail address: alireza.entezami@polimi.it (A. Entezami).  

Contents lists available at ScienceDirect 

Engineering Structures 

journal homepage: www.elsevier.com/locate/engstruct 

https://doi.org/10.1016/j.engstruct.2023.115616 
Received 15 September 2022; Received in revised form 8 December 2022; Accepted 8 January 2023   

mailto:alireza.entezami@polimi.it
www.sciencedirect.com/science/journal/01410296
https://www.elsevier.com/locate/engstruct
https://doi.org/10.1016/j.engstruct.2023.115616
https://doi.org/10.1016/j.engstruct.2023.115616
https://doi.org/10.1016/j.engstruct.2023.115616
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2023.115616&domain=pdf


Engineering Structures 279 (2023) 115616

2

regard, Larsson et al. [8] studied long-term analysis of environmental 
changes in modal data of a hybrid timber-concrete building and 
concluded that the natural frequencies are significantly sensitive to 
seasonal temperature fluctuations. Zhou and Sun [10] evaluated the 
effects of the E/O changes on a sea-crossing bridge and deduced that 
temperature and traffic loads are the critical factors for structural 
changes. Zonno et al. [11] analyzed long and short-term influences of 
temperature and humidity on an adobe church building and concluded 
that humidity changes have stronger impacts on the structural proper-
ties in long-term monitoring, while both temperature and humidity are 
more important for short-term monitoring. Martin et al. [12] conducted 
dynamic monitoring on a stadium suspension roof under temperature 
and wind effects and deduced that such environmental conditions, 
especially temperature variability, can make the most changes in the 
roof natural frequencies. 

On the other hand, the other important point regarding the E/O 
variability is sudden changes in vibration data, particularly natural 
frequencies, during normal operations. In some slender structures (e.g., 
bridges or masonry bell towers), the temperature variability in cold days 
(i.e., when the temperature is often below 0 ◦C), the natural frequencies 
exhibit sharp increases. An interesting note is that this phenomenon is 
independent of the type of structural material so that it was observed in 
different civil structures such as a concrete box-girder bridge [13], an 
arch steel bridge [14], and masonry buildings [6]. Under such circum-
stances, it is possible to receive an incorrect alarm regarding the 
occurrence of damage, while the structure operates normally. This sit-
uation refers to a false alarm or false positive error that leads to eco-
nomic losses alongside time-consuming and redundant inspection 
efforts. On the other hand, the severity of the E/O variability can be 
much larger than structural damage, particularly minor damage, in such 
a way that one cannot detect damage appropriately. This situation re-
sults in a false negative error that threatens human safety and causes 
injuries or even deaths in case of the occurrence of failure or collapse. 
Thus, it is indispensable to capture all possible E/O changes in contin-
uous long-term monitoring and remove their influences on structural 
responses and features to perform a reliable SHM process [15]. 

1.1. Background of machine learning-aided SHM 

The important issue in long-term SHM is concerned with the main 
methodology for this process. Recently, artificial intelligence brings a 
great opportunity to simulate the human brain based on various ma-
chine learning (ML) algorithms [16,17]. Generally, a ML algorithm aims 
to develop a computational model using training data in terms of su-
pervised and unsupervised learning classes. In the context of SHM, a 
fully labeled set suitable for supervised learning contains the damage- 
sensitive features of both undamaged and damaged conditions, while 
unlabeled data used in unsupervised learning consists of the features of 
the only undamaged condition. When there is no sufficient information 
about the damaged state during the training phase (i.e., unlabeled data 
is only available), unsupervised learing is a proper choice. 

A prominent demand in unsupervised learning-based SHM is related 
to accurate decision-making via large and missing data (features) in 
long-term monitoring under severe E/O changes. Generally, long-term 
SHM through unlabeled data in the presence of unpredictable vari-
ability conditions is a complex process. This is because such a process 
can produce large data with different types of outliers caused by the E/O 
conditions and also loss some important information (missing data) due 
to sensor and measurement instrument malfunctions, poor installation, 
storage and transmission system downtime, harsh working environ-
ment, etc. [18]. Therefore, it is essential to develop a robust unsuper-
vised learning model that should not only overcome the serious E/O 
effects but also suit under large and missing data. Regarding ML-aided 
methods for SHM under the E/O changes, Sarmadi and Yuen [19] pro-
posed an unsupervised kernel-based method under the concept of kernel 
null space, which could significantly eliminate the variations in natural 

frequencies caused by the E/O conditions and provide discriminative 
anomaly scores for long-term SHM. Giglioni et al. [20] compared some 
state-of-the-art unsupervised learners developed from principal 
component analysis (PCA) in global and local versions and Gaussian 
mixture model (GMM) for removing the influences of environmental 
variability in long-term SHM of a concrete bridge and a masonry 
building. In their research, the local PCA demonstrated the best per-
formance. Mousavi et al. [21] studied the influence of temperature on 
natural frequencies by exploiting some state-of-the-art supervised 
regression models and extracting their prediction errors for damage 
detection. Daneshvar and Sarmadi [22] proposed a novel anomaly de-
tector based on the concepts of unsupervised feature selection and local 
density analysis for SHM under different E/O variability in short- and 
long-term monitoring. Their anomaly detector could not only mitigate 
the E/O effects but also yield high damage detectability. Rogers et al. 
[23] developed an innovative Bayesian non-parametric clustering al-
gorithm based on Dirichlet process mixture models in terms of semi- 
supervised learning for SHM under severe E/O changes and the avail-
ability of limited training data. Sarmadi and Yuen [24] proposed a novel 
probabilistic unsupervised learning method via the concepts of extreme 
value theory, mixture quantile modeling, and unsupervised nearest 
neighbor searching for damage detection in concrete bridges with sta-
tistical and dynamic features. They concluded that the unsupervised 
nearest neighbor searching is an effective tool for removing the E/O 
effects. Entezami et al. [25] introduced the theory of empirical learning 
to SHM by proposing an innovative unsupervised learner in a non- 
parametric fashion for bridge damage identification under severe envi-
ronmental variability. An important note about the aforementioned 
techniques is that those disregard missing data and continue the SHM 
process by the remaining data/features. 

As an alternative, the second methodology brings the possibility of 
recovering or predicting missing data and performs long-term SHM via 
original and recovered data/features. In this regard, Ma et al. [26] 
suggested a probabilistic PCA model for recovering missing samples of a 
feature dataset comprising static stress data and then considered Q- 
statistic and T2-statistic of this model as anomaly detectors. Under 
multiple operational conditions of a stadium with a retractable roof and 
missing data, Ma et al. [27] developed a mixture of the probabilistic PCA 
for retrieving missing points and implementing damage detection and 
localization with the aid of three anomaly detectors (i.e., the Q-statistic 
and T2-statistic along with a residual statistic). Xu et al. [28] took 
advantage of a robust PCA model to predict missing data by adding 
virtual random errors to the locations of the missing entities and then 
detect damage under such data prediction. Xu et al. [29] proposed a low- 
rank matrix approximation method to impute missing data and then 
considered a cointegration analysis to remove the E/O influences from 
modal frequencies for long-term SHM. Despite the applicability of the 
second methodology, it may need additional techniques for missing data 
recovery and also more computational time compared to the first 
methodology, which is only based on removing missing data. Thus, this 
article intends to take advantage of the first methodology. 

On the other hand, since no labeled data is available in unsupervised 
learning-based SHM, the main task is to measure the dissimilarity be-
tween at least two feature sets regarding two different structural con-
ditions in an effort to detect and localize damage [42,46]. In most cases, 
the use of a standard distance measure by considering the whole data (e. 
g., the Mahalanobis distance by estimating the mean vector and 
covariance matrix of the entire training data) is prevalent. However, this 
global learning approach encounters two major limitations. First, it may 
ignore some important properties available in unlabeled data. Second, 
the consideration of the whole data is not a robust way for anomaly 
detection. This is because outliers, noise, and E/O conditions may affect 
the statistical properties of the whole data (e.g., the mean and standard 
deviation) and cause erroneous outputs [30]. This issue is directly 
related to the problem of damage detectability in SHM [31]. In other 
words, a robust unsupervised learner is one that can provide 
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discriminative damage indices for decision-making and differentiate the 
possibly damaged condition from the normal one. 

To deal with the problem stemming from the utilization of the whole 
large data in ML, local learning is an effective solution. This technique 
takes advantage of some new concepts such as subspace searching [32] 
and local distance learning [33]. The idea behind the local distance 
learning emanates from the development of a distance function for a 
specific problem (i.e., the mitigation of the negative effects of the E/O 
conditions) by using local subsets of the whole data. The major advan-
tages of this technique contain the preparation of more rich data 
compared to global learning and the resilient to outliers due to utilizing 
the local information [34]. On the other hand, the theory of subspace 
searching relies upon analyzing different subsets of features and 
extracting the most useful feature samples from such local information 
while keeping original contents of the whole data. Although this tech-
nique resembles feature selection, it is implemented locally. 

Finally, the other major challenge in unsupervised SHM is to apply a 
single learner (model) for a problem. Although this strategy is plausible 
and promising, it is possible to obtain better results by leveraging meta- 
learning. From the ML perspective, meta-learning is an advanced 
method that intends to develop a new hybrid model by using the outputs 
of other single machine learners previously learned from data [35]. 
Simply speaking, if a single model learns how to appropriately use in-
formation for a task (e.g., classification, prediction, clustering, anomaly 
detection), a meta-learner learns how to best utilize the outputs of that 
single learner for performing the same learning task or provide new 
(better) outputs. For this purpose, it suffices to learn from prior infor-
mation or outputs of the previous learners in a systematic data-driven 
manner. On this basis, one initially needs to collect meta-data or 
meta-features that describe prior learning tasks and previously learned 
models. Subsequently, it is necessary to learn from meta-features based 
on the prior learning process to extract and transfer new knowledge 
(features) that can yield better performance [35]. As a meta-learner can 
be developed by combining some single learners in a hybrid fashion, the 
great advantage of meta-learning is to improve the overall performance 
of a single learner. For the long-term monitoring, this technique can 
bring some benefits such as addressing the challenges of this kind of 
monitoring scheme (e.g., the E/O effects) and achieving reliable results 
of SHM with the minimum rates of decision-making errors. 

1.2. Motivations 

This article proposes an innovative unsupervised meta-learing (UML) 
method for long-term monitoring of civil structures, especially bridges, 
in the presence of large and missing data (features) influenced by pro-
found environmental variability during freezing weather. In essence, 
this method develops a hybrid unsupervised learner that entails four 
main steps of an initial data analysis, data segmentation through spec-
tral clustering, a subspace search algorithm by a new idea called nearest 
cluster selection (NCS), and anomaly detection via a locally robust 
Mahalanobis-squared distance (LRMSD) based on the concepts of local 
distance metric learning and robust statistics. In order to alleviate the 
limitation of the existence of missing data, the initial data analysis in the 
first step seeks in training and test datasets to remove any missing value 
and provide clean features for the next steps. Having considered the 
whole clean training data, the second step exploits the spectral clus-
tering to divide the training features into some segments/clusters and 
provide the initial local information/subsets. This process refers to the 
first step of meta-learning, in which case the outputs of clustering are 
indicative of meta-features. Utilizing the idea of the subspace searching 
based on the proposed NCS algorithm, the third step makes an attempt to 
extract the most useful features within a cluster from the initial local 
subsets. For this purpose, a cumulative Mahalanobis-squared distance 
(CMSD) is applied to perform distance calculations among these subsets 
and find a segment/cluster with the minimum distance value, which is 
the representative set with the most useful information. Eventually, the 

proposed LRMSD measure is employed to compute anomaly indicators 
(scores) for damage detection. Large sets of long-term modal frequencies 
of two different bridges (i.e., a concrete box-girder bridge and a steel 
arch bridge) are incorporated to validate the effectiveness and reliability 
of the proposed method alongside several comparisons. Results 
demonstrate that this method is able to detect damage and mitigate the 
serious influences of environmental variations. 

2. Contributions 

The main contributions of this research can be summarized as: (i) 
developing a novel UML framework for long-term SHM under severe E/ 
O changes, (ii) proposing the idea of NCS, and (iii) applying a locally 
robust multivariate distance metric for anomaly detection. In relation to 
the second contribution, it should be clarified that the key novel part of 
the NCS is to select the representative of an original cluster and use this 
representative and its feature samples in a learning process rather than 
the information (features) of the original cluster. The other novelty of 
this approach is to implement a locally unsupervised feature selection. 
Compared to most of the unsupervised feature selection techniques, 
which consider the whole data and choose a part of such data, the 
proposed NCS approach conducts a different feature selection procedure 
in a local manner. Regarding the third contribution, the main innovation 
of the LRMSD relates to its general framework that originates from the 
ideas of local learning and robust statistics for long-term health moni-
toring of civil structures. Even though Sarmadi et al. [34] developed a 
locally distance measure based on the MSD, this article enhances their 
work by merging the concepts of robust statistics and local distance 
learning. More precisely, they exploited a locally centered covariance 
estimator for developing their local distance measure, while this article 
exploits a robust covariance estimator in conjunction with local infor-
mation from the previous steps of the proposed UML method for 
deriving the LRMSD metric. 

3. Proposed method 

3.1. Initial data analysis 

ML methods may not operate properly in the presence of missing 
data in both training and test datasets. On the other hand, it may be 
difficult to predict such data. In this case, an initial data analysis is 
needed to explore available data and discard any missing samples before 
learning any ML model. In the proposed method, this analysis is carried 
out in two stages of offline learning and online anomaly detection in the 
training and inspection stages, respectively. Throughout the training 
period, one supposes that there are adequate training samples, which 
can capture all possible E/O conditions and obtain large data. Accord-
ingly, these points are collected into a matrix whose rows and columns 
represent the feature values (e.g., the modal frequencies of all measured 
modes) and feature samples (e.g., the number of measurements). On this 
basis, one attempts to seek in the feature samples (i.e., the column 
vectors of the training matrix) and remove any feature vector with only 
one missing value. Fig. 1(a) shows the graphical representation of the 
initial data analysis in the training phase. 

For the inspection phase, it is assumed that there is only one test 
sample at each time to perform online anomaly detection. Therefore, the 
initial data analysis should be implemented on a feature vector. If this 
vector contains any missing value, one should ignore it. One of the ad-
vantages of implementing online anomaly detection in the inspection 
phase is that both data measurement and initial analysis can be con-
ducted simultaneously. Hence, if a test sample should be eliminated, one 
can repeat the measurement process for providing new test data. Fig. 1 
(b) illustrates the procedure of the initial data analysis in the inspection 
phase. Note that the word “sample” refers to a feature vector. In this 
article, a sample is a vector of the natural frequencies obtained from 
some modes. For example, the test vector in Fig. 1(b) is a sample. 
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3.2. Data segmentation by spectral clustering 

Spectral clustering is a graph-based data segmentation technique 
under the graph theory for finding some arbitrary shaped clusters in 
sampling data [36]. This technique is based on representing the data in a 
low dimension so that clusters are more widely separated. To implement 
the spectral clustering, one needs to determine its requirements; that is, 
an undirected graph as well as similarity and Laplacian matrices. The 
undirected graph models the local neighborhood relationships between 
data points. The nodes in the graph are indicative of these points and the 
undirected edges build their connections. The similarity matrix de-
scribes the similarity graph that consists of pairwise distance quantities 
between the connected nodes in the graph. Eventually, the Laplacian 
matrix is a set for representing the similarity graph. 

Suppose that X∈ℝp×n is a training matrix containing n natural fre-
quencies obtained from p modes. The first step of the spectral clustering 
is to determine the similarity matrix by calculating the pairwise dis-
tances between n feature samples (i.e., natural frequencies) of X as 
follows: 

Sij = exp

((
dij

σ

)2
)

(1)  

where Sij stands for the ith row and the jth column of the similarity matrix 
S∈ℝn×n; dij is the distance between the ith and jth samples; and σ denotes 
the kernel scale, which corresponds to one in this article. In the 
following, the Laplacian matrix can be determined by using one of the 
following equations: 

Lu = Dg − S (2)  

Ln = Dg
− 1Lu (3)  

Ls = Dg
− 1

2LuDg
− 1

2 (4)  

where Lu, Ln, and Ls represent the unnormalized, normalized, and 
symmetric normalized Laplacian matrices, respectively. In Eqs. (2)-(4), 
Dg∈ℝn×n refers to the degree matrix derived from S whose ith diagonal 
element is expressed by Dg(i, i) =

∑n
j=1Si,j. In Eq. (3), the normalized 

Laplacian matrix is determined by solving the generalized eigenvalue 
problem Luv = λDgv, where v is a column eigenvector of length n, 
and λ is an eigenvalue. Using the Laplacian matrix and considering the 
number of clusters c, the spectral clustering makes the matrix V∈ℝn×c 

containing c eigenvectors {v1,…,vc} obtained from the c smallest ei-
genvalues of the Laplacian matrix. Each n-dimensional row of the matrix 
V can be clustered by one of the partition-based clustering algorithms (e. 
g., k-means or k-medoids clustering1). Eventually, the n feature samples 
of X are allocated to the same clusters as their corresponding rows in V 
and get the labels {1,…,c} leading to obtaining c clusters/partitions {C1, 
…,Cc}. 

To determine the number of clusters c, which is the only hyper-
parameter of the spectral clustering, this article utilizes the gap statistic 
proposed by Tibshirani et al. [37]. This technique compares the total 
intra-cluster variations in different cluster numbers with their expected 
values under null reference distribution (i.e., a distribution with no 
obvious clustering) of data. The output of this process is the value of the 
gap statistic (G). For the kth cluster number (trial), this value is given by: 

Fig. 1. The graphical representation of the initial data analysis for discarding missing values: (a) the training phase, (b) the inspection phase.  

1 The variable k in these clustering techniques refers to the number of 
clusters. 
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Gk = E(logWk) − logWk(5). 
where E denotes the expectation value and Wk is a measure of the 

compactness of the spectral clustering based on the within-cluster-sum- 
of-squared error in the kth cluster, which is expressed as follows: 

Wk =
∑k

i=1

1
2ri

ρi (6)  

where ri denotes the number of samples (i.e., column vectors) of the ith 

cluster Ci ∈ Rp×ri and ρi is the sum of the pairwise distances of all samples 
in this cluster. Under different cluster numbers (trials), the optimal 
choice is one that satisfies the following condition: 

Gk ≥ Gk+1 − δk+1 (7)  

where δ is the one-standard-error of W with respect to the reference data 
for each cluster. It is worth remarking that E(logWk) is determined by 
Monte Carlo sampling from a reference distribution, and logWk is 
computed from the sample data. 

3.3. Subspace searching by nearest cluster selection 

Generally, most of the cluster-based anomaly detection methods 
consider all clusters to determine anomaly scores with the aid of a de-
tector model (e.g., MSD) and select the minimum score value as the final 
choice. This article proposes the idea of NCS originated from the sub-
space searching, which neither transforms the original feature space nor 
reduces the dimension of data [32]. On this basis, the NCS approach 
aims to find the nearest cluster/subset of each initial segment obtained 
from the data segmentation step and use it as the representative of the 
original initial segment for anomaly detection. For simplicity, Fig. 2 
shows the graphical representation of this approach. 

Given the clusters/segments {C1,…,Cc} from the data segmentation 
process (i.e., meta-features), the key step of the NCS is to perform dis-
tance calculations. For this purpose, one of the initial segments is chosen 
as reference and the remaining clusters as targets. The distance calcu-
lation is based on computing the dissimilarity between the reference and 
target clusters. In the next step, the target subset with the minimum 
distance (i.e., the nearest cluster) is selected as the representative of the 
reference cluster. Let Ci and {C1,…,Ci-1,Ci+1,…,Cc} denote the reference 
and target clusters, respectively. Since all of them are multivariate, the 
distance calculation can be carried out by any multivariate statistical 

distance such as the proposed CMSD. For example, the distance calcu-
lation between the ith and (i-1)th clusters can be expressed as follows: 

D(Ci,Ci− 1) =
∑ri

j=1

((
c(j)i− 1 − mi

)T
H− 1

i

(
c(j)i− 1 − mi

))

(8)  

where mi∈ ℝp and Hi∈ ℝp×p denote the mean vector and standard 
covariance matrix of the ith (reference) cluster; c(j)i− 1∈Rp is the jth row 
vector of the (i-1)th target cluster. Moreover, D(Ci,Ci-1) stands for the 
CMSD value between Ci and Ci-1. Accordingly, the nearest cluster Ĉi is 
one of the target clusters with the minimum distance mathematically 
expressed as follows: 

Ĉi ∈ (C1,⋯,Ci− 1,Ci+1,⋯,Cc),

s.t. D(Ci, Ĉi) = min(D(Ci,C1),⋯,D(Ci,Ci− 1),D(Ci,Ci+1),⋯,D(Ci,Cc) )

(9) 

Having considered all reference clusters, their nearest clusters {Ĉ1,⋯ 
, Ĉc} are used in anomaly detection instead of {C1,…,Cc}. In contrast to 
most of the cluster-based anomaly detectors, the NCS does not allow the 
information of all clusters to use in the process of anomaly detection. 
Moreover, it is possible that a target segment is selected as the nearest 
cluster of some reference segments. For these reasons, the NCS can 
ignore those features that are influenced by any variability condition so 
that this benefit enables it to mitigate the negative effects of the E/O 
variability. 

3.4. Anomaly detection by locally robust Mahalanobis-squared distance 

Anomaly detection via the LRMSD metric is carried out in two main 
parts. First, the outputs of the NCS (i.e., the nearest clusters) are incor-
porated into the distance function instead of the mean vector of the 
whole training data. Second, the fast algorithm of the minimum 
covariance determinant (MCD) proposed by Rousseeuw and Driessen 
[38], called here FAST-MCD, is considered to estimate the robust version 
of the covariance matrix of each nearest cluster. Given the matrix of the 
modal frequencies X∈ℝp×n (i.e., the whole training data), the FAST-MCD 
selects h samples out of n, where n2 < h ≤ n, whose classical covariance 
matrix has the lowest possible determinant. Accordingly, FAST-MCD 
gives a robust covariance matrix of the h selected samples [38]. 

Using the nearest clusters and their robust covariance matrices, it 
suffices to replace the training and test feature samples in the LRMSD 
equation and determine their anomaly scores. Given the ith training 
feature sample xi, its LRMSD value or damage index (DI) is computed as 
follows: 

DI(xi) = min

(
∑rj

t=1

((
xi − ĉ(t)

j

)T
Ĥ

− 1
j

(
xi − ĉ(t)

j

))
)

(10)  

where i=1,…,n; ĉ(t)j ∈Rp is the tth column vector of the jth nearest cluster 

Ĉj, where t=1,…,rj and j=1,…,c; and Ĥj∈Rp×p denotes the robust 
covariance matrix of this cluster. Having considered the c nearest clus-
ters, one can determine c cumulative LRMSD values and subsequently 
adopt the minimum quantity as the final anomaly score of xi. For all 
training samples, it can be obtained n distance quantities {DI(x1),…,DI 
(xn)}. To make a reliable decision, it needs to estimate a threshold limit 
via the obtained distances. Using the standard confidence interval under 
a significance level (α), the threshold limit is estimated in the following 
form: 

τ = μDI + ζασDI (11)  

where μDI and σDI represent the mean and standard deviation of the 
novelty scores {DI(x1),…,DI(xn)}. Moreover, ζα refers to the 1–α critical 
value of the distribution of these scores. 

In the inspection phase, if all test features are collected sequentially, Fig. 2. The graphical representation of the proposed NCS approach.  
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one can generate the test matrix Z∈ℝp×m, where m stands for the number 
of test samples. By incorporating the lth test sample zl, where l=1,2,…,m, 
the process of anomaly detection is performed by using the nearest 
clusters {Ĉ1,⋯, Ĉc} and their robust covariance matrices {Ĥ1,⋯, Ĥc}. 
Accordingly, it only suffices to replace zl with xi in Eq. (10) and obtain its 
anomaly score DI(zl). For the assessment of the state of the structure, if 
the anomaly score of the test sample exceeds the threshold (i.e., DI(zl) >
τ), the proposed UML method triggers the occurrence of damage. This 
means that the structure sustained from damage. In contrast, if the 
anomaly score is smaller than the threshold, it makes sense of the un-
damaged state of the structure. 

4. Validation by real-world bridge structures 

4.1. A concrete box-girder bridge 

This structure was a three-span pretensioned concrete box-girder 
bridge, called the Z24 Bridge, which was constructed in Switzerland 
between 1961 and 1963 [39]. The dimensions of this bridge included the 
main span of 30 m and two sides of 14 m. Fig. 3 displays the Z24 Bridge, 
its side and top views, and some actual images. The bridge superstruc-
ture was comprised of a two-cell box girder and tendons in the three 
webs. The two abutments contained triple concrete columns connected 
with concrete hinges to the girder, while the two intermediate supports 
were concrete piers clamped into the girder. Even though the Z24 Bridge 
operated normally, it was demolished in 1998 to construct a new bridge 
with a larger side span. Before this procedure, the bridge was subjected 
to several progressive damage patterns under a long-term continuous 
monitoring test. This test was carried out during one year before de-
molition in an effort to quantify the environmental variability of the 
bridge dynamics, while the progressive damage patterns were imposed 
over a month, shortly before complete demolition [39]. 

During the monitoring program, an operational modal analysis 
(OMA) based on stochastic subspace identification was conducted by 
Peeters and De Roeck [13] to identify long-term modal properties from 
acceleration time histories. In this article, the natural frequencies of four 
modes are considered to assess the proposed method. The total number 
of measured natural frequencies related to both the undamaged and 
damaged conditions is identical to 5652. Based on the proposed initial 
data analysis, the missing values are removed from the modal dataset, in 

which case the numbers of missing samples for the first, second, third, 
and fourth modes correspond to 101, 375, 240, and 1294, respectively. 
Hence, the final collection of the natural frequencies contains 3932 
feature samples, where the first 3475 samples pertain to the undamaged 
state and the remaining 457 samples are associated with the damaged 
condition. Fig. 4 illustrates the final natural frequencies (i.e., the clean 
features) of the Z24 Bridge, where the acronyms “E/O”, “NC”, and “DC” 
refer to Environmental/Operational, Normal (undamaged) Condition, 
and Damaged Condition, respectively. As can be seen, the natural fre-
quencies of the NC were seriously influenced by the E/O conditions, 
which cause sudden and sharp increases. For this reason, the proposed 
method is suggested to deal with this issue. 

To perform the proposed method, it needs to define the training and 
test data. In this regard, 75% of the natural frequencies of the NC is 
gathered to generate the training matrix X∈ ℝ4×2606, which includes 
2606 feature vectors (n) from four modes (p). Furthermore, the 
remaining 25% of the natural frequencies of the NC as well as all fea-
tures of the DC are collected to make the test matrix Z∈ ℝ4×1326, where 
the number 1326 refers to the total number of test samples (m). It should 
be mentioned that the first 869 feature vectors (i.e., the natural fre-
quencies related to the samples 2607–3475) of the test matrix are 
equivalent to the validation data. 

Having considered the training matrix, the second step of the pro-
posed method begins by segmenting X into c clusters via the spectral 
clustering. For this purpose, one needs to determine the optimal cluster 
number by the gap statistic under some sample clusters. Fig. 5 shows the 
values of the gap statistic (G) by considering 29 sample clusters (i.e., it 
starts with 2 and ends with 30). As can be seen, the optimal cluster 
number by satisfying Eq. (7) coincides with the 13th sample, which 
means that c=13. Hence, the training matrix is divided into 13 segments 
{C1,…,C13}. Fig. 6 illustrates the cluster labels for all training samples 
and the number of samples of each cluster. According to the proposed 
NCS technique, the next step of the proposed method is to find the 
nearest cluster of each segment and use it as the representative of that 
cluster in anomaly detection. The labels of the nearest clusters of all 13 
segments are shown in Fig. 7(a). For example, the nearest cluster of the 
first segment is Ĉ1=C8. In addition, Fig. 7(b) displays the amounts of the 
CMSD between C1 and the target clusters {C2,…,C13}. As can be 
observed, the eighth cluster makes the smallest distance with the first 
cluster, in which case C8 is the representative of C1 in anomaly 

Fig. 3. The Z24 Bridge: (a) the side view and the key dimensions [13], (b) the top view [13], (c) the image of the bridge side view [40], (d) the image of one of the 
piers and deck [41]. 
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detection. 
Once all nearest clusters {Ĉ1,⋯, Ĉ13} have been selected, the clus-

tered features within these segments are applied to estimate their robust 
covariance matrices {Ĥ1,⋯, Ĥ13}. Finally, the last step of the proposed 
method utilizes the selected nearest clusters, the robust covariance 
matrices, and all training and test samples to compute the LRMSD values 
{DI(x1),…,DI(x2606)} and {DI(z1),…,DI(z1326)}. Under the significance 
level α=0.001 (i.e., ζα=3.2905), a decision threshold is estimated by 
applying the anomaly scores of the training points. It needs to clarify 
that because the proposed UML method has been proposed to mitigate 
the variability condition and provide smooth and discriminative 
anomaly scores, one can choose a small rate of significance level. 

By accumulating the distance quantities of the training and test data 
points and comparing them with the decision threshold, Fig. 8 illustrates 
the result of anomaly detection in the Z24 Bridge. As can be seen, the 
majority of the DI values of the training and validation points are 
inserted below the threshold line with the exception of some false 

positive errors. An important observation in Fig. 8 is that the unexpected 
sharp increases in the natural frequencies concerning the samples 
400–1600 are no longer present in the anomaly indices of the NC. This 
demonstrates the positive influence of the proposed UML method and 
also the NCS algorithm to handle the E/O effects. Alternatively, most of 
the DI values of the DC exceed the threshold except for the only one 
point. Without considering the threshold limit, one can discern that 
there is a clear difference between the anomaly scores of the NC and DC. 
This conclusion demonstrates high damage detectability obtained by the 
proposed method. 

Despite such a reliable and effective result under severe E/O condi-
tions, it is important to compare the proposed method with its coun-
terparts. The comparative studies are based on evaluating the SHM 
result via a parametric clustering-based anomaly detector and a non- 
parametric distance-based anomaly detector. The first approach relies 

Fig. 5. Selection of the optimal cluster number concerning the spectral clus-
tering by the gap statistic concerning the Z24 Bridge. 

Fig. 6. The outputs of the data segmentation concerning the Z24 Bridge: (a) the 
cluster labels regarding all training points, (b) the number of samples within 
each cluster. 

Fig. 4. The final natural frequencies (clean features) of the Z24 Bridge: (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4.  
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on the combination of the spectral clustering and the well-known MSD 
metric. In other words, this technique called here SC-MSD aims to 
initially cluster the training data into some clusters/segments to provide 
the main requirements of the MSD; that is, the mean vectors and 
covariance matrices. Finally, the training and test samples are applied to 
the MSD to compute their minimum distance values among all clusters. 
Similar to the proposed UML method, the SC-MSD technique presents a 
locally parametric anomaly detector, for which the optimal number of 
clusters needed for the spectral clustering is gained by the gap statistic. 
The second approach is based on the well-known MSD measure [42], 
which develops a globally non-parametric anomaly detector. For this 
approach, one needs to estimate the mean vector and covariance matrix 
of the whole training data. The comparative studies are conducted to 

assess the performances of the proposed and classical methods in terms 
of: (i) the decision-making errors (i.e., false positive, false negative, and 
misclassification) using a single threshold estimator, and (ii) damage 
detectability without any threshold. 

For the first comparative study, Table 1 lists the numbers and per-
centages of the triple decision-making errors using the threshold esti-
mator, Eq. (11), based on the significance level equal to α=0.001. Note 
that the same significance level is considered here to provide a fair 
comparison. Regarding the false positive error, the proposed method 
yields the best performance. In contrast, the worst performance belongs 
to the SC-MSD. On the other hand, both the UML and SC-MSD roughly 
have the similar false negative errors. Moreover, the MSD-based 
anomaly detector has the worst performance with the largest false 
negative error. Finally, the proposed UML method outperforms the SC- 
MSD and MSD concerning the misclassification (total) error. 

For the second comparative study, Fig. 9 shows the DI values of the 
training and test samples associated with the proposed UML method and 
the SC-MSD and MSD techniques. Notice that Fig. 9(a) is exactly Fig. 8 
without the threshold line. As Fig. 9(a) appears, the UML could effec-
tively eliminate the E/O effects, particularly in the NC, and provide 
discriminative anomaly scores so that it is simply possible to distinguish 
the DC from the NC implying high damage detectability of this method. 
Fig. 9(b) depicts the anomaly scores of the SC-MSD, where there is still a 
small jump caused by the E/O changes in the DI values of the training 
data between the samples 1200–1600. Moreover, some increases in the 
DI values of the validation data are observable. Fig. 9(c) shows the 
damage indices related to the MSD. As can be seen, a large and sharp 
increase in the DI quantities concerning the training samples verifies the 
serious impact of the E/O changes on this technique. On the other hand, 
the majority of the anomaly scores of the DC are in the same range of the 
corresponding scores of the NC implying low damage detectability. 
Thus, it can be concluded that the proposed UML method is clearly 
better than the SC-MSD and MSD associated with yielding discrimina-
tive anomaly scores with the minimum decision-making errors and 
providing high damage detectability. Furthermore, one can deduce that 
the local anomaly detectors (e.g., UML and SC-MSD) outperform the 
global detector (e.g., MSD). 

4.2. A steel arch bridge 

This structure is a railway steel arch bridge called the KW51 Bridge 
that connects between Leuven and Brussels in Belgium via the railway 
line L36N [43]. The KW51 Bridge consists of the total length of 115 m 
and the width of 12.4 m. Fig. 10 shows the side and top views of the 

Fig. 7. The outputs of the NCS concerning the Z24 Bridge: (a) the labels of the nearest clusters of 13 segments, (b) the CMSD values between the first cluster and its 
target clusters. 

Fig. 8. Anomaly detection in the Z24 Bridge by the proposed UML method.  

Table 1 
Performance evaluation of the proposed UML and classical methods in the SHM 
problem of the Z24 Bridge.  

Methods Triple decision-making errors 

False positive False negative Misclassification 

UML 20 (0.57 %) 1 (0.21 %) 21 (0.53 %) 
SC-MSD 135 (3.88 %) 0 (0.00 %) 135 (3.43 %) 
MSD 53 (1.52 %) 280 (61.04 %) 333 (8.46 %)  
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KW51 Bridge as well as its actual images. This structure was strength-
ened to cope with a construction problem during inspection between 15 
May to 27 September 2019. The retrofitting process included strength-
ening the connections of the diagonals to the arches and the bridge deck 
[14]. Due to the installation of an SHM system, some vibration responses 
along with modal properties were released to help researchers to vali-
date their proposed methods [43]. Until now, the KW51 Bridge was 
incorporated into different SHM applications such as data normalization 
for removing the effect of environmental variability [14], continuous 
monitoring by modal frequencies and stain mode shapes under tem-
perature variations and retrofitting [44], OMA [45], and anomaly 

(damage) detection [34]. 
An automatic OMA was implemented by Maes and Lombaert [43] to 

identify modal properties of the KW51 Bridge such as the natural fre-
quencies, mode shapes, and damping ratios between 02 October 2018 to 
15 May 2019 (before the retrofit), 16 May 2019 to 26 September 2019 
(during the retrofit), and 27 September 2019 and 01 January 2020 (after 
the retrofit). In the OMA, the acceleration responses corresponding to a 
period of five minutes of ambient vibration (i.e., no train passages on the 
bridge) were processed by a reference-based covariance-driven sto-
chastic subspace identification algorithm [14]. Totally, the automated 
OMA gave 14 modes over time. Accordingly, it can be defined two types 

D
I

Fig. 9. Performance evaluation in terms of damage detectability concerning the Z24 Bridge: (a) UML, (b) SC-MSD, (c) MSD.  

Fig. 10. The KW51 Bridge: (a) the side and top views [14], (b) an image of the south side [45].  

A. Entezami et al.                                                                                                                                                                                                                               



Engineering Structures 279 (2023) 115616

10

of modal datasets based on the variations in the natural frequencies. In 
the modes 6–8 and 10–14, the retrofit increased the magnitudes of the 
modal frequencies, while this process decreased such features in the 
modes 1–5 and 9. In this article, the first group of the natural frequencies 
is considered to validate the proposed method. Fig. 11 illustrates these 
modal frequencies before, during, and after retrofitting. Among these 
modes, some of them consist of numerous missing values that can make 
obstacles to use in any ML-based SHM due to providing insufficient 
training data. Based on the initial data analysis, the numbers of missing 
data among all 11,328 samples correspond to 393, 7963, 8223, 5263, 
5111, 3642, 1606, and 6479 for the modes 6–8 and 10–14, respectively. 
Therefore, the final choice is to incorporate the vertical modes 6, 10, 12, 
and 13, where the environmental variability (i.e., the sudden sharp in-
creases) seriously affected them. Inspired by Maes et al. [14], the natural 
frequencies of the bridge before and after retrofitting are used as the 

dynamic features of the NC and DC, respectively. 
After eliminating all missing values, the total number of natural 

frequencies before and after retrofitting is equal to 3129 as shown in 
Fig. 12, where the modal frequencies of the samples 1-2688 and 2689- 
3129 are related to the NC (i.e., before retrofitting) and DC (i.e., after 
retrofitting), respectively. As this figure reveals, there are sudden and 
sharp increases in the natural frequencies of the NC between the samples 
1200-1600 (i.e., the areas of the E/O effects). This variability pertains to 
the influence of the ambient temperature around or below 0◦C on the 
modal frequencies, similar to the Z24 Bridge [14]. This conclusion 
properly verifies the profound effects of the E/O changes on the natural 
frequencies of civil structures regardless of their material properties. The 
other important note is that the level of the E/O effects differs between 
the selected modes. To put it another way, the magnitudes of the natural 
frequencies of the modes 10, 12, and 13 regarding the samples 1200- 

Fig. 11. The complete set of the natural frequencies of the KW51 Bridge concerning the modes 6–8 and 10–14.  

Fig. 12. The final natural frequencies (clean features) of the KW51 Bridge: (a) Mode 6, (b) Mode 10, (c) Mode 12, (d) Mode 13.  
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1600 are greater in comparison with the corresponding magnitudes 
related to the DC. This note confirms the strong impact of the environ-
mental variability on the natural frequencies so that the structural 
changes attributable to the bridge strengthening cannot make such 
variations. Therefore, similar to the Z24 Bridge, it is attempted to ach-
ieve two purposes: (i) removal of the E/O influences, and (ii) accurate 
discrimination of the simulated DC from the NC. 

In a similar manner to the preceding structure, 75% of the natural 
frequencies of the NC is utilized to construct the training matrix 
X∈ ℝ4×2016 containing 2016 feature vectors (n) of four modes (p). On the 
other hand, the test matrix Z∈ ℝ4×1113 contains 672 samples of the 
natural frequencies of the NC (i.e., the remaining 25% of the features, 
which serve as the validation data) and 441 samples of the natural fre-
quencies of the simulated DC. Using the training samples and the gap 
statistic, Fig. 13 shows the optimal cluster number needed for the step of 
data segmentation via the spectral clustering under 30 cluster samples. 
As can be seen, the fourth cluster could meet the condition of Eq. (7), 
which means that c=4. In this regard, the cluster labels for all training 
samples and the number of samples within each cluster are illustrated in 
Fig. 14. 

Regarding the third step of the proposed UML method, Fig. 15(a) 
displays the labels of the nearest clusters of {C1,…,C4}, which corre-
spond to Ĉ1=C3, Ĉ2=C3, Ĉ3=C2, and Ĉ4=C2. For more details, Fig. 15 
(b) presents the CMSD values between C1 and the target clusters {C2, C3, 
C4}. As can be observed, the third cluster produces the smallest distance, 
which means that C3 is the representative of C1 in the process of anomaly 
detection. Having considered the nearest clusters {Ĉ1, ⋯, Ĉ4}, the 
selected features within these segments are incorporated to estimate 
four robust covariance matrices. Accordingly, the nearest clusters and 
estimated covariance matrices are the main elements of the LRMSD- 
based novelty detector. Using all training and test samples, their 
LRMSD values {DI(x1),…,DI(x2016)} and {DI(z1),…,DI(z1113)} are 
computed as the anomaly scores for decision-making. The result of 
anomaly detection in the KW51 Bridge is displayed in Fig. 16, where the 
horizontal line refers to the threshold limit obtained from the same 
threshold estimator and significance level as the Z24 Bridge. It is obvious 
that most of the DI values of the training and validation points are under 
the threshold with the exception of a few points. A prominent conclusion 
is that the sharp increase in the natural frequencies between the samples 
1200–1600 is not present in the anomaly scores gained by the proposed 
method. This verifies the great capability of the UML to mitigate the E/O 
effects. On the other hand, all of the DI values of the DC are over the 
threshold indicating the accurate detection of the simulated damage. 
Regardless of the threshold, it is discerned that there is a clear 
discrepancy between the anomaly scores of the NC and DC implying 
high damage detectability of the proposed UML method. 

To further validate the superiority of UML over the classical 

Fig. 13. Selection of the optimal cluster number of the spectral clustering by 
the gap statistic concerning the KW51 Bridge. 

Fig. 14. The outputs of the data segmentation concerning the KW51 Bridge: (a) 
the cluster labels regarding all training points, (b) the number of samples of 
each cluster. 

Fig. 15. The outputs of the NCS concerning the KW51 Bridge: (a) the labels of the nearest clusters of all four segments, (b) the CMSD values between the first cluster 
and its target clusters. 
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techniques SC-MSD and MSD, Table 2 presents the numbers and per-
centages of the triple decision-making errors in the SHM procedure of 
the KW51 Bridge. As the data in this table indicates, the proposed UML 
method gives the best performance in all error cases. Although all three 
techniques do not have any false negative error, one can realize that the 
proposed method outperforms the SC-MSD and MSD regarding the false 
positive and misclassification errors. Such outputs resemble the con-
clusions regarding the Z24 Bridge. In relation to the false negative error 
in Table 2, it should be clarified that the main reason for such output 
pertains to the difference between the magnitudes of the modal fre-
quencies of the NC and DC. According to the assumption regarding the 
simulated DC (i.e., the bridge after retrofitting), one can observe in the 
modal frequencies of this condition (see Fig. 12) that there is a relatively 
large difference between the modal frequencies of the NC and DC. This 
property also affects the proposed method, in which case no false 
negative error occurred in the SHM process. 

Furthermore, Fig. 17 compares the UML, SC-MSD, and MSD methods 
for the problem of damage detectability without any threshold. In 
Fig. 17(a) and (b), one can perceive that the local unsupervised anomaly 
detectors (i.e., UML and SC-MSD) could appropriately deal with the E/O 
effects. Nonetheless, the poor performance of SC-MSD relates to its low 
damage detectability compared to UML. From Fig. 17(b), it can be 
realized that the DI values of the simulated DC are in the vicinity of the 
corresponding scores of the NC. Regarding the classical MSD technique, 
it is simply observed that this approach could not cope with the major 
challenge of the E/O effects and the sharp increase is still existence in the 
DI values of the NC. Since the scales of some DI values between the 
samples 1200–1600 are equal to or greater than some DI values of the 
simulated DC, one can conclude that MSD could not provide high 
damage detectability. 

Fig. 16. Anomaly detection in the KW51 Bridge by the proposed UML method.  

Table 2 
Performance evaluation of the proposed UML and classical methods in the SHM 
problem of the KW51 Bridge.  

Methods Triple decision-making errors 

False positive False negative Misclassification 

UML 9 (0.33 %) 0 (0.00 %) 9 (0.28 %) 
SC-MSD 41 (1.52 %) 0 (0.00 %) 41 (1.31 %) 
MSD 24 (0.89 %) 0 (0.00 %) 24 (0.76 %)  

Fig. 17. Performance evaluation in terms of damage detectability concerning the KW51 Bridge: (a) UML, (b) SC-MSD, (c) MSD.  
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5. Conclusions 

This article proposed a novel unsupervised learning method based on 
the concept of meta-learning for long-term SHM under severe E/O ef-
fects. The proposed method consisted of four main parts of an initial data 
analysis for discarding missing samples, data segmentation via the 
spectral clustering, a subspace searching algorithm by the proposed NCS 
approach, and anomaly detection through the LRMSD metric. The large 
sets of the long-term natural frequencies of the concrete (Z24) and steel 
(KW51) bridges were used to demonstrate the correctness and good 
performance of the proposed method alongside some comparative 
studies. 

The results of this article indicated that the proposed UML method is 
clearly able to remove the E/O effects (i.e., the sharp increases in the 
natural frequencies caused by freezing temperature conditions) and 
provide discriminative anomaly scores for accurate damage detection. 
Furthermore, this conclusion verifies the idea of the proposed NCS 
approach. The initial data analysis can help us to disregard missing 
values and provide homogeneous real training data for the learning 
process. The comparative studies revealed that the proposed UML 
method is superior to the SC-MSD and MSD techniques in terms of 
yielding fewer errors and higher damage detectability. The comparison 
results also indicated that the locally unsupervised learning methods 
such as UML and SC-MSD are much more successful and reliable than the 
globally unsupervised learning techniques such as MSD. 

Despite the reliable and reasonable results of SHM gained by the 
proposed UML method, some issues should also be considered and 
addressed in further research. Regarding the problem of missing data, 
the proposed method disregarded such data. For further research, it is 
recommended to recover missing samples and implement the SHM 
procedure by the original and recovered features. The other important 
issue relates to long-term SHM under the concept of unsupervised 
learning. For this problem, one needs to measure data and extract fea-
tures in a fixed period and also assume that the structure is undamaged 
during this time. Therefore, it is suggested to pay more attention to other 
ML algorithms such as semi-supervised learning, active learning, and 
self-supervised learning. 
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