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A Tensor-Based Hierarchical Process Monitoring
Approach for Anomaly Detection in Additive

Manufacturing
Wei Yang, Marco Grasso, Bianca Maria Colosimo, Kamran Paynabar

Abstract—Additive Manufacturing (AM) is a technology that
enables the creation of complex shapes with advanced structural
and functional properties. It has transformed the traditional
manufacturing operations into a more flexible and efficient
process, reshaping the whole value chain and allowing new levels
of product customization. AM is a layer-by-layer manufacturing
process, in which materials are deposited in each layer to create
the object of interest. Due to the layer-wise nature of the process,
anomalies and defects might occur within each layer, across
several layers or throughout the whole sample. An accurate
and responsive detection strategy that enables the detection of
various types of anomalies is essential for ensuring the quality
and integrity of the manufactured product. In this paper, a
hierarchical in-situ process monitoring approach, namely, a three
level monitoring strategy, is proposed to detect local, layer-wise
and sample-wise anomalies using thermal videos acquired during
the manufacturing process. The proposed approach integrates hi-
erarchical low-rank tensor decomposition methods with statistical
monitoring techniques to effectively detect anomalies at different
levels, namely, the within-layer level, the layer level, and the
sample level. Simulations are used to evaluate the performance of
the method and compare with existing benchmarks. The proposed
approach is also applied to thermal videos acquired during the
laser powder bed fusion process to illustrate its effectiveness in
practice.

Note to Practitioners—The problem of this paper is motivated
by the need to anticipate the detection of anomalies and defects
while the part is being built, exploiting various possible sources of
in-line data available in additive manufacturing processes. More
precisely, this study deals with the problem of in-line and in-
situ detection of process anomalies via infrared video imaging
in laser powder bed fusion, a metal 3D printing process that
enables very high accuracy, resolution and mechanical properties.
Existing image-based monitoring approaches focus either on
a frame-wise detection of anomalous patterns, where single
frames are considered as random realizations of the process,
or on spatio-temporal methods, where the temporal evolution
of process patterns in consecutive frames is taken into account.
However, real process anomalies may occur at different levels
and on different scales, making existing methods suitable to
detect just a reduced set of possible unstable states. To be
specific, anomalies might occur within each layer, across the
whole layer and throughout the entire sample. This study shows
that the integration of frame-wise, layer-wise and sample-wise
monitoring levels, which is referred to as hierarchical moni-
toring, represents an effective approach for anomaly detection
in industrial applications where the type and severity of the
anomaly are unpredictable. The performance of the proposed
methods is examined under various noise levels and different
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anomaly scenarios, and compared against benchmark monitoring
approaches. The results demonstrate the importance of adopting
hierarchical process monitoring approach. In future research, its
possible extensions to other industrial processes can be explored.

Index Terms—Process Monitoring, Low-Rank Tensor Decom-
position, Control Charts, Additive Manufacturing

I. INTRODUCTION

Additive manufacturing (AM), also known as 3D printing,
has seen increasing number of applications in the era of
industry 4.0 due to its ability of creating new and complex
shapes that overcomes the limits of traditional manufacturing
processes and reshapes the whole value chain [1][2]. AM
technologies also contribute to the digital and twin transition
of the advanced manufacturing industry, thanks to new levels
of data availability throughout the entire duration of the
process. Such big data can be acquired by means of a variety
of different sensors installed on AM systems exploiting the
layer-by-layer production paradigm. Indeed, different from
any other processes, quantities of interest can be measured
in every layer, while the part is being produced, leading to
brand new opportunities in terms of enhanced process and
product qualification practices as well as new ways to reduce
wastes and defects within the whole production process. A
large and rapidly growing number of studies and industrial
investments have been devoted to the development of data-
driven solutions in this framework. A major field of research
regards the use of in-line data coming from in-situ sensors
to automatically detect process anomalies and the onsets of
defects in the part. Methods in this field are commonly referred
to as ”in-situ process monitoring” [3][4][5][6]. A key driver
for in-situ monitoring in AM is the ability to anticipate
unstable and out-of-control states during the process rather
then relying on costly and time-consuming post-process non-
destructive tests. Combining this ability with reactive, adaptive
or corrective actions could help one mitigate undesired part-to-
part variations and keep defect rates compliant with stringent
quality requirements. To this aims, the majority of studies
in the literature has focused on the use of high-dimensional
(HD) data streams, i.e., images or videos acquired with high
spatial and/or high temporal resolution cameras in different
wavelength ranges. Mainstream methods commonly aim to
detect anomalies on a layer-by-layer basis (also referred to
as ”level 1” methods in Grasso et al. [4]) or anomalies
occurring within the layer, during the production of the layer
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(corresponding to ”level 2” and ”level 3” methods according
to the classification in Grasso et al. [4]). In the former case,
the anomaly can be detected once the production of the layer
has been completed, implying a temporal scale that coincides
with the sequence of layers. In the latter case, anomalies
can be detected only if fast process dynamics are monitored
with a high temporal resolution. This implies a much finer
temporal scale, which corresponds to the frame rate of video-
image data recording. A large portion of in-situ image- and
video image-based process monitoring methods proposed in
the AM literature involve the computation and analysis of pre-
defined synthetic descriptors [7][4][3]. The selection of these
descriptors is usually driven by engineering knowledge about
the underlying process physics (e.g., melt pool size, number
of spatters, time spent above a temperature threshold, etc.).
Traditional process monitoring or classification techniques are
then applied to these descriptors to determine the quality
and stability of the process. Another category of methods
investigated by several authors involve the use of deep neural
networks [8][9][10][11][12][13]. They take advantage of big
data streams commonly available in AM, and they avoid any
ad-hoc selection of relevant descriptor. A third, and more
restricted, category of methods includes statistical techniques
used to model and synthesize the information content enclosed
in video image streams via spatial, spatio-temporal or data
reduction models [14][15][16]. They aim to overcome the
information loss entailed in descriptor selection, avoiding at
the same time a black box analytic framework.

Each of these in-situ monitoring methods in AM is com-
monly designed to detect one single type of process anomaly,
occurring on one single level. Nevertheless, real anomalies
may occur at different levels, i.e., they may generate within
a small area of the layer, or they may introduce shifts in the
measured quantities in one whole layer, or they can even affect
one entire region of the build along many consecutive layers
or the whole part. Process monitoring techniques designed to
detect anomalies at one level may be not (or poorly) effective
in the detection of anomalies on other levels. Moreover, it
is not possible to predict in advance the type of anomaly or
when it will occur, or how it will generate and propagate.
This makes the use of one single monitoring tool suitable
to detect only one subset of possible out-of-control states.
The possibility to overcome this limitation motivated the
present study. The underlying idea consists of monitoring the
process by combining different spatial and temporal scales at
which the information content enclosed in HD video-image
data streams can be decomposed in low-dimensional (LD)
spaces using tensor decomposition techniques. The resulting
method is named ”hierarchical process monitoring” approach,
since out-of-control shifts (anomalies) can be searched for at
different levels and on different scales. The aim is to expand
the range of anomaly types that can be effectively identified,
enhancing the flexibility of the process monitoring tool, while
preserving the performances in terms of false positives and
false negatives. It should be noted that the applications of
the proposed hierarchical process monitoring approach goes
beyond AM. Generally speaking, the proposed approach may
be used for monitoring processes whose multi-level variability

is measured by HD data streams. As an example, in batch
processes, anomalies may affect the process behaviour within
the batch, its variability from batch to batch or from part to
part. In this case, a hierarchical monitoring approach may
enhance the detection of anomalies, thanks to a multi-level
representation of the information extracted from monitored
data.

As mentioned earlier, the proposed approach is applied to
video-image data streams. Generally speaking, a video-image
data stream represents a HD data format, where intensity
(color), spatial and temporal scales shall be preserved to
capture and model the relevant information content [17]. A
suitable framework to deal with this type of data regards the
use of tensor statistics. The proposed approach belongs to this
framework. Various tensor-based process monitoring methods
have been proposed so far [18][19]. In [20], an image-based
process monitoring approach has been developed by treating
the collections of image frames as a tensorial object. Yan
et al. [20] used the tensor rank-one decomposition approach
to extract monitoring features, under the assumption of a
stationary process. In order to deal with more challenging
applications where the process pattern in video frames is non-
stationary, as it occurs in the application considered in this
study, Yan et al. [21] proposed a spatio-temporal smooth sparse
decomposition to separate anomalies, in the form of abrupt
changes, from the natural spatio-temporal structure. Variants
of the method were also developed and applied in AM to
detect specific types of process anomaly, i.e., so-called hot-
spot events [15], or melt pool anomalies [22]. Such tensor-
based methods are quite effective in the detection of spatial
anomalies in one frame and/or spatio-temporal anomalies in a
sequence of frames. However, they still rely on the classical
paradigm where the method is suitable to detect just a specific
type of anomalies (as in [15] or in [22]) or anomalies occurring
on a specific level or scale (i.e., intensity shifts among pixels
or pattern changes among frames).

The main contribution of this paper is to introduce a differ-
ent and novel perspective in the use of tensor-based methods.
Indeed, the proposed idea consists of using the tensor decom-
position, more specifically the Tucker decomposition [23], not
only to monitor the process within a lower dimensional space,
but also to decompose the whole information on different
scales, leading to multiple levels at which sensor data can be
processed and monitored. The resulting process monitoring
perspective is ”hierarchical” in nature, because the monitoring
levels can be hierarchically ordered from the local to the global
scale. This allows dealing with process monitoring applica-
tions where the nature and variety of anomalies go beyond
the limitations mentioned above. In the AM application that
motivates this study, these levels consist of events that may
occur within one single layer, layer-wise (i.e., from one layer
to another) and sample-wise (i.e., from one sample, or part, to
another). Thanks to the hierarchical monitoring framework,
it is therefore possible to detect a wide variety of out-of-
control events, from very local and spatially-clustered ones
(typically characterized also by a fast temporal dynamic), to
phenomena that have a more global effect, causing process
shifts on a slower and longer term scale. By simultaneously
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Fig. 1. The illustration of Tucker decomposition of rank-3 tensor

monitoring the process at these different levels, a broader
variety of possible anomalies can be effectively detected, with
the advantage of using one single hierarchical data modeling
and monitoring framework, instead of combining several ad-
hoc statistical tools.

The proposed monitoring approach is applied to laser pow-
der bed fusion (L-PBF) [24], the most largely adopted metal
AM technology for highly complex parts. Infrared videos
capturing the laser-material interaction and the thermal history
within multiple layers and different parts have been used as
data source for in-line and in-situ anomaly detection. As the
process entails a local melting and fast solidification of the
material, thermal video imaging in the infrared range provides
a rich information content about most relevant heating and
cooling patterns, which are strongly connected to the possible
onset of process defects. Additionally, the effectiveness of the
methodology was tested using simulated data. Its performance
was compared against different benchmark methods and in the
presence of different noise levels in the input video-image data.

Section 2 introduces the tensor notation and multilinear
algebra the proposed approach grounds on. In Section 3,
the proposed tensor-based hierarchical process monitoring
methodology is presented. Section 4 presents the simulation
study and comparison with benchmark methods. Section 5
focuses on the case study and the achieved results. Section
6 concludes the paper.

II. TENSOR NOTATION AND MULTILINEAR ALGEBRA

In this section, we introduce basic notations, definitions and
operators in tensor analysis. Throughout this paper, we denote
scalars and vectors by lowercase letters, e.g., x and boldface
lowercase letters, e.g., x respectively. Matrices and tensors are
denoted by boldface uppercase letters, e.g., U and calligraphic
letters X respectively. An Nth order tensor is represented by
X ∈ RI1×I2×...IN , where Ik denotes the number of elements
in the kth dimension. A rank one tensor can be produced by
extending the concept of vector outer product to tensor product
for N vectors. For example, an N -way tensor of rank one can
be represented by X = a(1) ◦ a(2) ◦ · · · · a(N) where the
a(k) is the a vector of dimension Ik. The rank of a tensor X
is defined as the smallest number of rank-one tensors whose
sum can generate X . Tensor matricization is the operation
which unfolds or flattens an N -way tensor into a matrix.
Mode-n matricization of a tensor X ∈ RI1×I2×...IN is denoted

by X(k) ∈ RI1×(I1·I2·...·IN ) whose columns are the mode-n
vectors. The Kronecker product of matrices A ∈ RI×J and
B ∈ RK×L is denoted by A ⊗B, which is a matrix of size
(IK)× (JL):

A⊗B =

 a11B · · · a1LB
...

. . .
...

aK1B · · · aKLB

 .
The Khaoti-Rao Product between two matrices A ∈ RI×K

and B ∈ RJ×K is denoted by A � B, is a matrix of size
(IJ)×K and defined by the column-wise Kronecker product:

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 a2 ⊗ b2

]
.

The k-mode product of a tensor X ∈ RI1×I2×...IN

by a matrix U ∈ RJ×Ik is a defined as (X ×k

U)i1,i2,··· ,ik−1,j,ik+1,··· ,iN =
∑Ik

ik=1 Xi1,··· ,ik,··· ,iNUj,ik . The
Frobenius norm of a tensor X ∈ RI1×I2×...IN is defined as
tensor scalar product of X with itself: ‖X‖F =

√
〈X ,X〉 =√∑

i1
· · ·
∑

iN
Xi1,i2,··· ,iNXi1,i2,··· ,iN .

The CP decomposition decomposes a tensor as a sum
of rank-one tensors. The decomposition of a tensor X ∈
RI1×I2×...IN can be represented as X ≈

∑R
r=1 λra

(1)
r ◦ a(2)r ◦

· · · ◦ a(N)
r with ‖a(i)r ‖ = 1; i = 1, 2, · · · , N .

The Tucker decomposition decomposes a tensor X ∈
RI1×I2×...IN into a core tensor C ∈ RQ1×Q2×···QN and a set
of factorizing matrix along each mode (see Figure 1), which
can be defined as X = C ×1 U

(1) ×2 U
(2) · · ·U (N) where

each factorizing matrix U (k) ∈ RIk×Qk . The core tensor with
the ability of capturing interaction among different modes is
considered as compressed version of the original tensor as
often Qk < Ik k = (1, 2, · · · , N).

III. THE HIERARCHICAL MONITORING APPROACH
APPLIED TO AM

The underlying idea of the proposed hierarchical monitoring
approach consists of decomposing the process monitoring
problem at different temporal and spatial scales. In the AM
application presented in this study, such scales include the
within-layer, the between-layer and the between-sample scales.
When process monitoring is designed and applied on one
single scale, its anomaly detection power may considerably
vary depending on the nature of the occurred anomaly. As an
example, an alarm rule designed to signal a variation from one
layer to another may be not effective in detecting an anomaly
that affects a small portion of one single layer. Without prior
information about the nature, extension and propagation mode
of the anomaly, traditional process monitoring methods may
be effective only for a restricted subset of out-of-control
states. The idea behind the proposed hierarchical monitoring
approach is precisely to overcome such limitation, enhancing
the flexibility of the anomaly detection capability while pre-
serving the performances in terms of false positives and false
negatives. Figure 2 shows a general scheme of the proposed
hierarchical methodology applied to the anomaly detection
problem in the L-PBF process. It integrates tensor analysis
with statistical process monitoring at three different levels to
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Fig. 2. General scheme of the proposed hierarchical process monitoring
applied to the L-PBF process

detect anomalies in each of the three levels. If at least one of
the three monitoring tools raises an alarm, a conclusion that an
anomaly has occurred in the process can be drawn. Moreover,
being a hierarchical method, diagnostic information about the
nature of the occurred anomaly may be gathered as well, as
shown in Figure 2. Indeed, depending on which monitoring
tool has raised an alarm, it is possible to label the detected
anomaly accordingly. In the subsequent sections, we elaborate
this tensor-based hierarchical process monitoring approach.

Fig. 3. Pictorial representation of the dimensions of the N in-control samples

A. Dimension Reduction using Tensor Decomposition

As mentioned earlier, video streams are used to monitoring
the process at different levels. One particular challenge in
dealing with video streams is high-dimensionality that impact
the detection of any monitoring approaches. However, since
the essential information of the video streams lies in a low-
dimensional space, an effective dimension reduction method
such as low-rank recovery approaches will help extract im-
portant feature for process monitoring. Specifically, due to
the tensor structure of the video streams, we utilize Tucker
decomposition to extract multi-resolution monitoring features.

Suppose N in-control samples of dimension I1×I2×I3×I4
are available for training (phase I analysis), where I1 × I2 is
the size of each image frame, I3 is the number of frames
captured for monitoring each layer, and I4 is the number
of layers in each sample (part). See Figure 3 for pictorial
representation of the samples. We first use Tucker decomposi-
tion to learn the low-rank in-control structure of the data and
extract the core tensors of the ith; i = 1, 2, · · · , I4 layer, the
jth; j = 1, 2, · · · , I3 frame in the ith layer, and the kth; k =
1, 2, · · · , N sample for between layer monitoring, within layer
monitoring and between sample monitoring, respectively. In
addition, we demonstrate how to extract monitoring features
for an incoming sample at the online monitoring stage using
the low-rank structure recovered from the N in-control sam-
ples. Tucker decomposition decomposes a tensor into a set of
basis matrices and a low-dimensional core tensor. As it offers
more flexibility in comparison with CP decomposition where
the core tensor is restricted to be diagonal, we utilize it for
feature extractions.

1) Between-layer Monitoring: Between-layer monitoring
strategy aims to monitor the printing process at the layer level.
In AM process monitoring using thermal cameras, the creation
of each layer is monitored by a sequence of image frames. We
denote this sequence of images as X ∈ RI1×I2×I3 . The first
and second dimensions, I1 and I2, correspond to the width
and height of a single image frame respectively. The third
dimension I3 corresponds to the number of frames recorded
for printing one layer. Then, given N in-control samples for
the ith layer, we learn the basis matrices and the core tensors
using the following optimization for Tucker decomposition:

Ĝ(k)i , Âi, B̂i, Ĉi = argmin
G(k)
i ,Ai,Bi,Ci

N∑
k=1

‖Xk −
R1∑
p=1

R2∑
q=1

R3∑
r=1

g
(k)
ipqr
aip ◦ biq ◦ cir‖2F

= argmin
G(k)
i ,Ai,Bi,Ci

N∑
k=1

‖Xk − [[G(k)i ;Ai,Bi,Ci]]‖2F (1)

Subject to G(k)i ∈ RR1×R2×R3 , Ai ∈ RI1×R1 , Bi ∈
RI2×R2 , Ci ∈ RI3×R3 and columnwise orthogonality for
Ai,Bi,Ci where Ĝ(k)i is the core tensor extracted for the
sample Xk; k = 1, 2, · · · , N , g(k)ipqr

is the (p, q, r)th element

of G(k)i , Âi, B̂i, Ĉi are the learned basis matrices and aip ,
biq and cir denote the pth, qth and rth column of the basis
matrices Ai, Bi and Ci, respectively.
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In order to solve Problem 1 more efficiently, one can
concatenate the samples and create a new tensor with higher
order. Specifically, the tensor Xk of order 3 is transformed to
Y ∈ RI1×I2×I3×N , where the last order corresponds to the
samples. This is shown in the following proposition.

Proposition 1: Let Y ∈ RI1×I2×I3×N denote the tensor of
N in-control samples Xk; k = 1, 2, · · · , N . The basis matrices
Âi, B̂i and Ĉi obtained through Tucker decomposition of
Y are the same solutions to (1) and

∑R4

l=1 d̂
(k)
il
× ŝipqrl =

ĝ
(k)
ipqr

where d̂(k)il
is the (k, l)th element of D̂i and ŝipqrl is the

(p, q, r, l)th element of Ŝi

Ŝi, Âi, B̂i, Ĉi, D̂i = argmin
Si,Ai,Bi,Ci,Di

‖Y −
R1∑
p=1

R2∑
q=1

R3∑
r=1

R4∑
l=1

sipqrlaip ◦ biq ◦ cir ◦ dil‖2F
= argmin
Si,Ai,Bi,Ci,Di

‖Y − [[Si;Ai,Bi,Ci,Di]]‖2F (2)

Subject to Si ∈ RR1×R2×R3×R4 , Ai ∈ RI1×R1 , Bi ∈
RI2×R2 , Ci ∈ RI3×R3 , Di ∈ RN×R4 and columnwise
orthogonality for Ai,Bi,Ci,Di where Di is the basis matrix
corresponding to the sample dimension, Ŝi is the core tensor
extracted.

Proof is given in Appendix A. The solutions to (2), can
be obtained by using the alternating least square (ALS)
algorithm [23].

The low-dimensional core tensor, Gi, can be used as a set of
features for monitoring layer i. Assuming that the underlying
distribution of extracted features is tensor normal distribution,
i.e., Gi ∼ N(µGi ,Σ1,Σ2,Σ3), where µGi is the core tensor
mean, and Σi is the covariance matrix along mode i, one can
use a T 2 monitoring statistic and its corresponding control
limit [25] given the mean and covariance matrices as discussed
in Section B.

However, for online monitoring, the core tensor features
should be extracted for each incoming sample. This is accom-
plished by using the low-dimensional basis matrices learned
from the training phase, i.e., Âi, B̂i, Ĉi using the N in-control
samples. Specifically, the core tensor for layer i of a new
sample, Xm, is obtained by the following optimization:

G̃(m)
i = argmin

G(m)
i

‖Xm −
R1∑
p=1

R2∑
q=1

R3∑
r=1

g
(m)
ipqr
âip ◦ b̂iq ◦ ĉir‖2F

= argmin
G(m)
i

‖Xm − [[G(m)
i ; Âi, B̂i, Ĉi]‖2F (3)

where G̃(m)
i ∈ RR1×R2×R3 is the extracted core tensor for the

new sample Xm.
Proposition 2: Given Âi, B̂i, Ĉi, the core tensor G(m)

i in
(3) has a closed-form solution:

G̃(m)
i = Xm ×1 Âi

T
×2 B̂i

T
×3 Ĉi

T
(4)

Proof is given in Appendix B.
Then, monitoring the ith layer of an incoming sample

is essentially to monitor the core tensor G̃(m)
i under the

assumption that core tensor comes from a tensor normal
distribution with the estimated mean and covariance matrices,
i.e., G̃(m)

i ∼ N(Ḡ(m)
i , Σ̂

(m)
1 , Σ̂

(m)
2 , Σ̂

(m)
3 ) or equivalently

vec(G̃(m)
i ) ∼ N(vec(Ḡ(m)

i ), Σ̂
(m)
3 ⊗ Σ̂

(m)
2 ⊗ Σ̂

(m)
1 ), where

Ḡ(m)
i is the core tensor mean and Σ̂

(m)
i is the covariance

matrix along mode i. The details on estimation and control
limits are discussed in Section B.

2) Within-layer Monitoring: The within-layer monitoring
strategy monitors the printing process at the frame level. We
denote frame j in layer i of sample v as Fijv ∈ RI1×I2 ;
v = 1, 2, · · · , N . The first and second dimensions, I1 and
I2, correspond to the width and height of the image frame,
respectively. Performing Tucker decomposition on each frame
is computationally expensive due to the large number of the
frames. As a sequence of frames form a layer, it can be
assumed that layer i and its corresponding frames share the
same basis matrices. Therefore, we utilize the basis vectors
learnt from the between-layer monitoring (i.e., Eq. 2) and try
to learn a set of low-dimensional frame features that captures
frame variability by solving the following optimization:

Ĥ(v)
ij = argmin

G(v)
ij

N∑
v=1

‖Fijv −
R1∑
p=1

R2∑
q=1

R3∑
l=1

(h
(v)
ijpql
× ĉijl)

âip ◦ b̂iq‖2F (5)

where ĉijl is a scalar which corresponds to (j, l)th element
of the learnt basis matrix Ĉi from between-layer monitoring,
Ĥ(v)

ij ∈ RR1×R2×R3 is the extracted core tensor for Fijv;
v = 1, 2, · · · , N , and h(v)ijpql

is the (p, q, l)th element of H(v)
ij .

Proposition 3: Given Âi, B̂i, Ĉi, the closed form solution
to (5) is:

vec(Ĥ(v)
ij ) = [Âi ⊗ B̂i ⊗ ĉij ]†vec(Fijv) (6)

where M † = (MTM)−1MT . The proof is given in Ap-
pendix C. These core tensors are used as monitoring features to
set up the within-layer control charts and estimate its necessary
parameters, i.e., the mean, covariance matrices and the control
limit.

Similarly, we can determine the core tensor for the ith layer
and the jth frame of a new sample, Fijl ∈ RI1×I2 using
following optimization:

H̃(l)
ij = argmin

H(l)
ij

‖Fijl −
R1∑
p=1

R2∑
q=1

R3∑
l=1

(h
(l)
ijpql
× ĉijl)âip ◦ b̂iq‖2F

(7)
where H̃(l)

ij ∈ RR1×R2×R3 is the extracted core tensor for
Fijl. Following from proposition 3, the solution to (7) is
given by vec(H̃(l)

ij ) = [Âi ⊗ B̂i ⊗ Ĉij ]†vec(Fl). The ob-
tained core tensors H̃ij are used as monitoring features under
the assumption that they follow a tensor normal distribution
H̃(l)

ij ∼ N(H̄(l)
ij , Σ̂

(l)
1 , Σ̂

(l)
2 , Σ̂

(l)
3 ) or equivalently vec(H̃(l)

ij ) ∼
N(vec(H̄(l)

ij ), Σ̂
(l)
3 ⊗Σ̂

(l)
2 ⊗Σ̂

(l)
1 ), where H̄(l)

ij is the core tensor
mean, and Σ̂

(l)
i is the covariance matrix along mode i.

3) Between-sample Monitoring: In AM process, each sam-
ple can be regarded as the stacking of multiple layers that are
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collection of a sequence of frames. Between-sample monitor-
ing strategy monitors the printing process at the sample level.
We denote an input sample as U ∈ RI1×I2×I3×I4 . The first
and second dimensions, I1 and I2, correspond to the width
and height of a single image frame, respectively. The third
dimension I3 corresponds to the number of frames recorded
for printing one layer, and the fourth dimension I4 corresponds
to the number of layers. Then, given N in-control samples
Uk ∈ RI1×I2×I3×I4 ; k = 1, 2, · · · , N , the basis matrices and
the core tensor are extracted using the following optimization:

Q̂(k), Â, B̂, Ĉ, D̂ = argmin
Q(k),A,B,C,D

N∑
k=1

‖Uk −
R1∑
p=1

R2∑
q=1

R3∑
r=1

R4∑
l=1

q
(k)
pqrlap ◦ bq ◦ cr ◦ dl‖2F

= argmin
Q(k),A,B,C,D

N∑
k=1

‖Uk − [[Q(k);A,B,C,D]]‖2F (8)

Subject to Q(k) ∈ RR1×R2×R3×R4 , A ∈ RI1×R1 , B ∈
RI2×R2 , C ∈ RI3×R3 ,D ∈ RI4×R4 and column-wise or-
thogonality for A,B,C,D where A,B,C,D are the basis
matrices corresponding to the first, second, third and fourth di-
mension of input sample U , respectively. Q̂(k) is the extracted
core tensor for the kth sample Uk; k = 1, 2, · · · , N , and q(k)pqrl

is the (p, q, r, l)th element of Q(k).
Let V ∈ RI1×I2×I3×I4×N denote the tensor of N in-control

samples Uk; k = 1, 2, · · · , N . Using proposition 1, we can
argue that the basis matrices Â, B̂, Ĉ and D̂ obtained through
Tucker decomposition of V provide the same solutions to (8)

T̂ , Â, B̂, Ĉ, D̂, Ê = argmin
T ,A,B,C,D,E

‖V −
R1∑
p=1

R2∑
q=1

R3∑
r=1

R4∑
l=1

R5∑
h=1

tpqrlhap ◦ bq ◦ cr ◦ dl ◦ eh‖2F
= argmin
Ti,Ai,B,C,D,E

‖V − [[T ;A,B,C,D,E]]‖2F (9)

Subject to T ∈ RR1×R2×R3×R4×R5 , A ∈ RI1×R1 , B ∈
RI2×R2 , C ∈ RI3×R3 , D ∈ RI4×R4 , E ∈ RN×R5 and
columnwise orthogonality for A,B,C,D,E where E is the
basis matrix corresponding to the last dimension (sample) of
tensor V , T̂ is the extracted core tensor and tpqrlh is the
(p, q, r, l, h)th element of core tensor T . Using proposition
1, given T̂ and Ê the core tensor Q̂(k) in (8) can be obtained
by:

q̂
(k)
pqrl =

R5∑
h=1

ê
(k)
h × t̂pqrlh (10)

where ê
(k)
h is the (k, h)th element of matrix Ê. These N

core tensors are used as features to setup the control chart
for between-sample monitoring and estimate the necessary pa-
rameters. For online monitoring, using the learnt basis matrices
Â, B̂, Ĉ, D̂, we then determine the core tensor feature Q(w)

for a new sample Uw, using the following optimization:

Q̃(w) = argmin
Q(w)

‖Uw −
R1∑
p=1

R2∑
q=1

R3∑
r=1

R4∑
l=1

q
(w)
pqrlâp ◦ b̂q ◦ ĉr ◦ d̂l‖2F

= argmin
Q(w)

‖Uw − [[Q(w); Â, B̂, Ĉ, D̂]]‖2F (11)

To increase the computation efficiency, we can rewrite the
above objective function in vectorized form as ‖vec(Uw) −
(Â⊗B̂⊗Ĉ⊗D̂)vec(Q(w))‖2, with the closed-form solution
in the form of vec(Q̃w) = (Â ⊗ B̂ ⊗ Ĉ ⊗ D̂)T vec(Uw).
Therefore, the core tensor for an incoming sample becomes
Q̃(w) = Uw ×1 Â

T ×2 B̂
T ×3 Ĉ

T ×4 D̂
T . To monitor the

core tensor Q̃(w), we assume that they follow tensor nor-
mal distribution Q̃(w) ∼ N(Q̄(w), Σ̂

(w)
1 , Σ̂

(w)
2 , Σ̂

(w)
3 , Σ̂

(w)
4 )

or equivalently vec(Q̃(w)) ∼ N(vec(Q̄(w)), Σ̂
(w)
4 ⊗ Σ̂

(w)
3 ⊗

Σ̂
(w)
2 ⊗ Σ̂

(w)
1 ) where Q̄(w) is the core tensor mean, and Σ̂

(w)
i

is the covariance matrix along mode i.

B. Monitoring Statistics

Based on the multivariate normal assumption on the ex-
tracted features (i.e., the core tensors at the frame, layer
and sample levels), we propose to use Hotelling’s T-squared
control chart for monitoring the process. We denote the p-
dimensional extracted features as θw for the new sample,
which is the vectorized form of the core tensor. The T 2

monitoring statistics is calculated as N(θw− θ̄)S−1(θw− θ̄),
where θ̄ and S are the mean and covariance learnt from the N
in-control samples. For example, the θ̄ and S for the between-
layer monitoring features are vec(Ḡi) and (Σ̂3 ⊗ Σ̂2 ⊗ Σ̂1),
respectively. θ̄ is calculated as

∑N
k=1 θk
N where θk; k =

1, 2, · · · , N is the extracted feature vector for the core tensor
of the kth in-control sample. The covariance S is calculated
as
∑N

k=1
1

N−1 (θk − θ̄)(θk − θ̄)T .
The transformed T 2 statistics N−p

(N−1)pN(θw− θ̄)S−1(θw−
θ̄) follows an F -distribution with p and N − p degrees of
freedom [26]. The (1−α)100 percentile of the F -distribution
can be used to determine the control limits. However, in
the cases where the normality assumption may not be valid,
empirical distributions of the core tensors obtained from the
training data set are used to determine the control limits.
The number of features is determined by the length of the
vectorized core tensors. The dimension of the core tensors is
determined based on the Bayesian Information Criterion (BIC)
using [27]:

argmax
Ĝ

BIC(Ĝ) = 2M ln(‖G − Ĝ‖F ) + L ln(M) +C (12)

where original tensor G has M elements, L is the number of
free parameters in Ĝ and C is a constant independent of Ĝ.

IV. SIMULATION STUDY

The simulation study presented in this section relies on
real video image data acquired during the L-PBF process of
stainless steel specimens. This data set were then processed
to simulate realistic process anomalies at different levels and
with different severity. An L-PBF prototype system, called
Penelope, characterized by an open and highly sensorized
architecture was used. The system is quipped with a IPG
YLR-150/750-QCW-AC single mode fiber, a Ytterbium-doped
yttrium aluminum garnet (Yb:YAG) laser source (maximum
power of 250 W and a wavelength of 1060 nm). The industrial
scan head ScanLab Hurryscan14 is controlled by an Optoprim
EC1000 controller, while the prototype control is based on an
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Fig. 4. Experimental setup (left) and the placement of the specimens produced
with nominal process parameters within the build area (right).

in-house produced controller. The build chamber operates in an
inert environment, filled with argon. Additional details about
the L-PBF system can be found in [28]. The experimentation
involved the production of cubic specimens of size 5 x 5
x 5 mm with gas-atomized AISI 316L powder with average
particle size of 25 µm. The cubes were printed with different
energy density levels by varying the laser power. For the
simulation case study presented in this section, only three
cubes printed with the nominal laser power of 225W were
considered. All other process parameters were set at nominal
values: layer thickness t=50 µm, scan speed v=500 mm/s
and hatch spacing h=70 µm. During the L-PBF, infrared
videos were acquired by means of a FLIR X6580sc thermal
camera, operating in the spectral range 3 - 5 µ m, calibrated
in a temperature range of 300 − 1500◦C. The videos were
acquired with a frame rate of 100 fps and a spatial resolution
of about 200 µm/pixel. Figure 4 shows the experimental
setup and the placement of the specimens produced with
nominal process parameters within the build area. The infrared
videos acquired in 10 non-consecutive layers were then post-
processed to introduce realistic variations of local and global
heating and cooling patters, representative of different types
of process anomalies. Three different types of anomalies were
selected and simulated. The first set consists of a hot-spot
event, i.e., a region of the layer that stays hot for a long
time after the laser beam displaces to a different region.
This anomaly has been discussed in previous studies [29][16],
and it is known to be a possible driver of micro and macro
geometrical distortions and/or micro-structural discontinuities.
It is therefore representative of a local anomaly affecting a
small location of a single layer (the anomaly may disappear
in following layers to the variation of the scan strategy).
Hot-spots of different sizes were introduced and simulated
following the same approach presented in [16], by modifying
the time history of pixel intensities within a given area. The
second anomaly consists of a global change of the thermal
history of the process in one whole layer, which may disappear
in following layers. An over-heating effect was simulated
by multiplying the intensity of every pixel by a so-called
temperature increase factor, starting from the frame where
the pixel was heated up to the melting temperature by the
laser. This anomaly is representative of a global over-heating

Fig. 5. The local anomaly starts in the middle of 5th layer and lasts for 10
frames (left), the layer-wise anomaly occurs at the 5th layer (middle) and the
sample-wise anomaly (right).

effect occurring in one layer as a consequence of either a
change of the inter-layer cooling time or a diminished heat
flux towards the surroundings (e.g., in large overhang areas).
This anomaly may lead to micro-structural discontinuities
and porosity in the part. The third anomaly consists of a
global under-heating effect involving a large portion of the
layer and persisting through all consecutive layers, possibly
affecting the whole part. It can be representative of a laser
beam attenuation, induced by a dirty laser window, i.e., by
an excessive deposition of vaporized metal on the window
through which the laser beam is headed to the material. A
decrease of the energy input may cause so-called lack-of-
fusion defects, i.e., pores and discontinuities resulting from
a non complete melting and solidification of the layer. In this
case, the pixel intensities within a given area in multiple layers
were multiplied by a temperature decrease factor to simulate
the anomaly.

These three anomalies were selected as they are representa-
tive of real process anomalies in L-PBF that may occur at
either local, layer-wise and sample-wise level, respectively
(see Figure 5). Figure 6 shows, in false color (revealing
or enhancing features otherwise invisible or poorly visible
to a human eye), an example of video frames from an in-
control IR video recording during the production of one part
and examples of video frames from simulated anomalies. In
Figure 6, the video frame area roughly coincides with the area
scanned by the laser during the production of our specimen.
The peak temperature is achieved in the melt pool, were the
laser melts the powder, and a heat affected zone is present as
well, characterized by a quickly decreasing temperature as the
laser moves along the predefined path melting other regions
of the layer.

The simulation study was designed to evaluate the per-
formance of the within-layer, between-layer and between-
sample monitoring approach, separately. The video image data
recorded during the production of one specimen in one layer
can be considered as a tensor sample of size 32×26×100×10,
where 32x26 is the size in pixels of the region of interest
corresponding to the area scanned by the laser to produce one
layer of the specimen, 10 is the number of monitored layers
and 100 is the number of frames in the infrared video of L-
PBF of one specimen, in one layer.

The simulation can be split into two phases. In the first
phase, 100 normal (in-control) samples were generated based
on a single recorded video of the nominal L-PBF process.
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Fig. 6. Example of video frames from an in-control IR video recording during
the production of one part and examples of video frames from simulated
anomalies.

To simulate 100 replicates of the same in-control L-PBF, we
added a Gaussian noise to the pixel intensity of each frame.
To be specific, the noise added to the pixel at the ith row
and the jth column of a frame follows a normal distribution
N(0, σij) where the σij equals to the product of a prespecified
noise factor and the average magnitude of the pixels (i, j)
across all frames at the current layer. Intuitively speaking,
the noise factor is acting like a signal-to-noise ratio. Hence,
a large variance of the noise is expected for a pixel with a
large average intensity. For each replication of the process, we
extracted the features using the proposed methods, which are
then used to calculate T 2 monitoring statistics and build the
control charts. The control limit was chosen so that the false
alarm rate in the first phase of the analysis for each of the
three monitoring methods was 1% under different anomalous
scenarios. We generated another 100 in-control samples and
further confirmed that selected the control limit results in
a false alarm rate around predetermined 1% for the three
monitoring methods. This was followed by another 100 out-
of-control samples generated by inserting the aforementioned
anomalies. To compare the performance of the three proposed
methods, the miss detection rate was used as the performance
criteria. As these monitoring methods monitor the process at
different resolutions, we define a sample-wise miss detection
so that the results obtained for different monitoring methods

TABLE I
THE SAMPLE-WISE MISS DETECTION OF THE HIERARCHICAL PROCESS
MONITORING METHOD UNDER THREE ANOMALOUS SCENARIOS AND

THREE LEVELS OF NOISE FACTORS

Low noise Medium noise High noise

Hot-spot
anomaly

size = 1 0 0.20 0.97

size = 2 0 0 0

size = 3 0 0 0

Overheating
anomaly

offset = 5 0 0 0.03

offset = 10 0 0 0

offset = 15 0 0 0

Dirty
window
anomaly

decrease factor = 0.98 0 0 0.03

decrease factor = 0.96 0 0 0

decrease factor = 0.94 0 0 0

are comparable.
To assess the sensitivity of the different monitoring methods,

three different noise factors corresponding to three levels of
noise were considered for each type of anomaly. To quantify
the performance of the different monitoring methods, we deter-
mined their miss detection rates for each anomalous scenario
in the phase II analysis. The sample-wise miss detection rate
was calculated as the fraction of out-of-control samples which
were labeled as in-control samples by the monitoring methods.

Before demonstrating the individual performance of the
three different monitoring methods, we presented in Table I the
performance of the hierarchical process monitoring approach
as a whole as described in Figure 2. Table 1 shows that the
hierarchical monitoring approach is very effective in detecting
all types of anomalies, with miss detection errors observed
only when the severity of the anomaly was very low and the
image noise quite high. Indeed, under these conditions, the
noise may mask the occurrence of the anomaly, especially
when it is a local one.

In Figure 7, we compared the performance of the three
monitoring approaches in terms of sample-wise miss detection
rate for the hot-spot anomaly with three different sizes (i.e.
three different hot-spot severity) under three levels of noise.
In all cases, the within-layer monitoring strategy showed the
lowest miss detection rate. This confirms that a monitoring tool
designed to detect anomalies on the frame scale outperforms
monitoring tools designed to detect anomalies on layer or
sample scales.

In Figure 8, we compared the performance of the three
monitoring strategies in terms of sample-wise miss detection
rate for the global overheating anomaly with three different
temperature offsets (i.e., three different severity levels), under
three levels of noise. For this type of anomaly, as expected,
the between-layer monitoring strategy had the lowest miss
detection rate in all cases while the within-layer monitoring
strategy led to the highest miss detection rate. This confirms
that a monitoring tool designed to detect anomalies on the
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Fig. 7. The sample-wise miss detection rate for the hot-spot anomaly with three different sizes under three levels of noise factors

Fig. 8. The sample-wise miss detection rate for the global overheating anomaly with three temperature offsets under three levels of noise factors

Fig. 9. The sample-wise miss detection rate for the dirty window anomaly with three temperature decrease factors under three levels of noise factors

layer scale outperforms monitoring tools designed to detect
anomalies on frame or sample levels.

In Figure 9, we compared the performance of the three-level
monitoring strategies in terms of sample-wise miss detection
rate for the third anomaly type involving a global energy
attenuation simulating the effect of a dirty laser window with
three different temperature decrease factors under three levels
of noise. For this type of anomaly, the between-sample moni-
toring strategy had the lowest miss detection rate at the lowest
severity level while having the same miss detection rate as the
between-layer monitoring strategies at the two highest severity
levels. The performance of the within-layer monitoring was
the worst in all cases for this anomaly type. This confirms

that a monitoring tool designed to detect anomalies on a
global scale outperforms monitoring tools designed to detect
anomalies on the frame or layer scale. Generally speaking, an
increasing noise level in the input data yielded a decreased
monitoring performance for all the three monitoring methods.
As mentioned before, the miss detection rates of the within-

layer and between-layer monitoring methods were converted
to sample-wise to be consistent with the sample-wise miss
detection rate associated with between-sample monitoring
method for the comparison purpose. However, in order to
reveal the real performance of within-layer and between-layer
monitoring methods at their own scales, we also determined
the frame-wise miss detection rate of the within-layer moni-
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Fig. 10. The sample-wise miss detection rate for the hot-spot anomaly with three different sizes under three levels of noise factors

Fig. 11. The sample-wise miss detection rate for the global overheating anomaly with three temperature offsets under three levels of noise factors

Fig. 12. The sample-wise miss detection rate for the underheating anomaly affecting the whole part with three temperature decrease factors under three levels
of noise factors

toring method, and the layer-wise miss detection rate of the
between-layer monitoring method for the three anomalous
scenarios. The results summarized in Appendix D, confirm the
need to combine process monitoring capabilities at different
levels to achieve high anomaly detection performances in the
presence of out-of-control states that may occur on different
scales.

To further evaluate our proposed monitoring strategies, we
also compare its performance against other benchmarks. The
first benchmark we considered in our study is a monitoring
method that uses tensor rank-one decomposition or equiva-
lently CP decomposition for within-layer monitoring proposed

by Yan et al [20]. We selected this benchmark since CP
demonstrates better performance compared with other feature
extraction methods such as unfold principal analysis (UPCA)
and uncorrelated multilinear principal component analysis
(UMPCA) as mentioned in a study by Yan et al [20]. The
other benchmark is the joint Shewhart X-bar and s control
charts. This traditional control charting approach was selected
as it is the most common approach practitioners may adopt,
as it basically translates the information content of the video
data into simple synthetic statistics. The subgroup size in our
study is the number of pixels in an image frame. It is worth
noting that both X-bar and s charts, and CP decomposition
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Fig. 13. The control charts of within-layer monitoring for between-sample anomaly: test sample one (left); test sample two (middle); test sample three (right)

Fig. 14. The control charts of between-layer monitoring for between-sample anomaly: test sample one (left); test sample two (middle); test sample three
(right)

were implemented as within-layer monitoring approach, due
to the lack of a hierarchical monitoring scheme.

In Figure 10, 11 and 12, we show the miss detection rate
for our proposed monitoring method as well as the other two
benchmarks in the presence of the three simulated anomalies.
In all the cases, the performance of the X-bar and s charts
is the worst. Its poor performance is attributed to the loss of
spatial information at each frame level. Also, the performance
of CP decomposition is considerably worse than that of our
proposed monitoring strategies in most cases even though the
performance gap between CP decomposition and our proposed
monitoring approach decreases as the severity level of the
anomaly increases. The CP decomposition can be viewed as
a special case of Tucker decomposition where core tensor is
superdiagonal and each dimension of the core tensor is the
same. Therefore, the Tucker decomposition offers much more
flexibility. This can also contribute to the better performance
of our method in addition to its hierarchical advantage.

V. CASE STUDY

In this section, we show the application of the proposed
methodology in a case study where a sample-wise change was
induced by producing copies of the same cubic specimens by
varying the laser power rather than using simulations. The
same prototype experimentation and L-PBF setup described

in the previous section was adopted. During the process, the
infrared videos were acquired for 18 non-consecutive layers.
Two sets of AISI 316L cubic specimens were produced in the
same build: three specimens produced with a nominal laser
power of 225 W (90% of the maximum laser power), and
three specimens produced with a decreased laser power of 150
W (60% of the maximum laser power). Hence, the dataset
consists of three replicates of the process in its natural (in-
control) conditions, and three replicates in an out-of-control
condition, where the decreased laser power caused a severe
lack-of-fusion porosity. This type of out-of-control condition is
representative of a sample-wise anomaly. However, the small
number of specimens did not allow the design and test of
the sample-wise monitoring level. The hierarchical approach
was therefore applied and tested in a version that consists
of two levels only, i.e., the within-layer and between-layer
levels. The results of the proposed approach in this real case
study are shown in Figure 13 and Figure 14, showing the
control charts associated to the within-layer and between-layer
monitoring levels, respectively. Figure 13 and Figure 14 show
that both the monitoring levels allow detecting the change in
the processing conditions. The between-layer monitoring tool
is able to detect the change at the first layer of the sample
affected by the change, for all the monitored specimens. The
within-layer monitoring tool is able to quickly detect the
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change as well. As far as the out-of-control sample 1 is
concerned, the anomaly is detected after 32 frames, during
the production of the first anomalous layer, whereas for the
other two samples, the anomaly was signalled since the first
video-frame during the production of the first anomalous layer.
According to our framework shown in the Figure 2, the
fact that the anomaly is detected by both the within-layer
and between-layer monitoring control charts suggests that a
global anomaly is present, which affects the entire layer and
is sustained for all successive layers. It is also worth noting
that, in this case study, the within-layer and between-layer
monitoring methods signal in the presence of a global anomaly
because of the high severity of the anomaly itself. However,
as shown in the previous section, for sample-level anomalies
with a lower severity these two methods may not be effective
in detecting the change.

VI. CONCLUSION

In a variety of manufacturing processes, out-of-control shifts
may occur at different levels and on different scales. AM pro-
cesses represent one example of applications, where anomalies
may range from local to global ones, causing changes within
the single layer, from one layer to another or from one part
to another. Other example can be found in manufacturing
processes that can be decomposed into different stages and/or
different observation scales, e.g., in batch processes where
anomalies may affect the process behaviour within the batch,
its variability from batch to batch or from part to part. The
proposed hierarchical monitoring tackled the lack of process
monitoring techniques suitable to deal with multi-level/multi-
scale anomalies. It is capable of detecting a wide range of
anomalies, and at the same time, enhancing the flexibility of
process monitoring while preserving its performances in terms
of false positives and miss detection rates. The numerical
studies described in this study showed the potential of this
approach for in-line and in-situ anomaly detection in AM,
where the relevant information content in thermal video-image
streams is effectively extracted and analyzed through a tensor
based decomposition scheme. The simulation analysis showed
the potential of the method to detect process shifts occurring
on different spatial and temporal scales and with different
severity, also highlighted its better performance compared to
the benchmark methods that lack the multi-resolution capabil-
ity.

Future research will be devoted to further test and validate
the proposed approach for different types of real anomalies,
together with the possible extension and adaptation of the
method to other manufacturing processes and applications.
We also plan to extend our work from fault detection to fault
diagnosis in future studies. Although our proposed monitoring
method offers information about the scale of the anomalies,
one complementary aim is to pinpoint the nature of the
detected anomaly, supporting the diagnostic analysis.

APPENDIX A

Firstly, we show ‖Y‖2F =
∑N

i=1 ‖Xi‖2F . By vectorizing
tensor Xi for i = 1, 2, · · · , N , vec(Y) can be written as

[vec(X1), vec(X2), · · · , vec(XN )]T . It is easy to see that
‖Y‖2F =

∑N
i=1 ‖Xi‖2F . Next, we show the basis matrix

obtained through (2) is the same solution as obtained through
(1). Using the fact ‖Y‖2F =

∑N
i=1 ‖Xi‖2F

argmin
Si,Ai,Bi,Ci,Di

‖Y −
R1∑
p=1

R2∑
q=1

R3∑
r=1

R4∑
l=1

sipqrlaip ◦ biq ◦ cir◦

dil‖2F

= argmin
Si,Ai,Bi,Ci

N∑
k=1

‖Xk −
R1∑
p=1

R2∑
q=1

R3∑
r=1

(

R4∑
l=1

d
(k)
il
∗ sipqrl)

aip ◦ biq ◦ cir‖2F
By comparing this with (1), we can see that Ai,Bi,Ci
obtained using above optimization is also the solution to (1)

and
∑R4

l=1 d
(k)
il
× sipqrl = g

(k)
ipqr

.

APPENDIX B

Through rewriting the objective function (3) in a vec-
torized form as ‖vec(Xm) − (Âi ⊗ B̂i ⊗ Ĉi)vec(G(m)

i )‖2,
the closed form solution can be obtained by vec(G(m)

i ) =
((Âi ⊗ B̂i ⊗ Ĉi)

T (Âi ⊗ B̂i ⊗ Ĉi))
−1(Âi ⊗ B̂i ⊗

Ĉi)
T vec(Xm) = ((ÂT

i ⊗ Âi)(B̂
T
i ⊗ B̂i)(Ĉ

T
i ⊗ Ĉi))

−1(Âi⊗
B̂i ⊗ Ĉi)

T vec(G(m)
i )=(Âi ⊗ B̂i ⊗ Ĉi)

T vec(Xm). Therefore,
the core tensor G̃(m)

i = Xm ×1 Â
T
i ×2 B̂

T
i ×3 Ĉ

T
i .

APPENDIX C

Firstly, rewrite the original objective function in vectorized
from as:

argmin
vec(Ĥ(v)

ij )

N∑
v=1

‖vec(Fijv)− (Âi ⊗ B̂i ⊗ ĉij )vec(Ĥ(v)
ij )‖2

Since Fijv , Âi,B̂i and ĉij are known, the optimization prob-
lem is a typical least square problem. Hence, the closed form
solution is: vec(Ĥ(v)

ij ) = [Âi ⊗ B̂i ⊗ ĉij ]†vec(Fijv) where
M † = (MTM)−1MT .

APPENDIX D

The frame-wise miss detection rate of the within-layer
monitoring was calculated as the fraction of all frames in a
test sample where an anomaly was present but not detected,
averaged across all the test samples. Similarly, the layer-
wise miss detection rate of the between-layer monitoring
was calculated as the fraction of all layers in a test sample
where an anomaly was present but not detected, averaged
across all the test samples. The detailed definition of frame-
wise (within-layer monitoring) and layer-wise (between layer-
monitoring) miss detection rate can be found in Table II.
We summarized the frame-wise and layer-wise miss detection
rates for different types of anomalies in Table III, Table IV,
and Table V. These results confirm the need to combine
process monitoring capabilities at different levels to achieve
high anomaly detection performances in the presence of out-
of-control states that may occur on different scales.
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TABLE II
THE DEFINITION OF MISS DETECTION RATE AT FRAME LEVEL AND LAYER

LEVEL

Miss detection rate

within-
layer

monitoring

N∑
i=1

wmi

N∑
i=1

Wmi

where:

wmi
= number of frames missed out of all the

anomalous frames in sample i
Wmi

= number of anomalous frames in sample i
N = total number of test samples

between-
layer

monitoring

N∑
i=1

bmi

N∑
i=1

Bmi

where:

bmi
= number of layers missed out of all the

anomalous layers in sample i
Bmi

= number of anomalous layers in sample i
N = total number of test samples

TABLE III
THE RESPECTIVE FRAME-WISE AND LAYER-WISE MISS DETECTION RATE
OF WITHIN-LAYER AND BETWEEN-LAYER MONITORING STRATEGY FOR

THE HOT-SPOT ANOMALY

Noise factor = 0.05 Noise factor = 0.1 Noise factor = 0.2

within-
layer

monitoring

Size = 1 0.55 0.90 1

Size = 2 0.29 0.55 0.84

Size= 3 0.05 0.19 0.44

between-
layer

monitoring

Size = 1 1 1 1

Size = 2 0.56 0.95 1

Size = 3 0 0.28 0.96

TABLE IV
THE RESPECTIVE FRAME-WISE AND LAYER-WISE MISS DETECTION RATE
OF WITHIN-LAYER AND BETWEEN-LAYER MONITORING STRATEGY FOR

THE GLOBAL OVERHEATING ANOMALY

Noise factor = 1 Noise factor = 1.5 Noise factor = 2

within-
layer

monitoring

offset = 5 0.9998 1 1

offset = 10 0.9954 0.9995 0.9998

offset = 15 0.9550 0.9970 0.9999

between-
layer

monitoring

offset = 5 0 0 0.06

offset = 10 0 0 0

offset = 15 0 0 0

TABLE V
THE RESPECTIVE FRAME-WISE AND LAYER-WISE MISS DETECTION RATE
OF WITHIN-LAYER AND BETWEEN-LAYER MONITORING STRATEGY FOR

THE UNDERHEATING ANOMALY AFFECTING THE WHOLE PART

Noise factor = 1 Noise factor = 1.5 Noise factor = 2

within-
layer

monitoring

decrease factor = 0.98 0.9999 0.9999 1

decrease factor = 0.96 0.9996 0.9999 0.9999

decrease factor = 0.94 0.9881 0.9985 0.9995

between-
layer

monitoring

decrease factor = 0.98 0.93 0.98 0.99

decrease factor = 0.96 0 0.04 0.41

decrease factor = 0.94 0 0 0
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