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Abstract: This paper focuses on the evaluation of bi-axial shear demand for reinforced concrete (RC)
beam–column joints assuming: (i) the SPEAR frame as a benchmark; and (ii) different structural
analysis methods which share the same seismic input. A numerical model was implemented using
lumped plasticity. The joints were modeled as rigid offsets of beams and columns. The shear demand
at a joint is evaluated as a post-process of the beam’s nodal moment. The discussion focuses on the
differences between the estimated shear demand considering modal-response-spectrum analysis
(MRSA), non-linear static analysis (NLSA) and non-linear time history (NLTH). Strength assessment
of joints is discussed as well. Significant strength differences were recognized by using different
building codes targeted to existing structures which, in general, behaved on the safe side. The
elliptical shear strength domain resulted in being conservative when compared to NLTH shear
demand orbits. NLSA, using modal combination, proved to estimate the larger shear demand with
respect to MRSA and NLTH.

Keywords: SPEAR; RC beam-column joint; pushover

1. Introduction

Post-earthquakes surveys revealed that beam–column joint failure is recurrent in RC
buildings showing structural deficiencies such as inadequate joint reinforcement [1]. When
a beam–column joint fails prematurely, the RC frame is both not able to sustain significant
displacement demand and, eventually, loses its gravity load carrying capacity because of
the buckling of column reinforcement [2].

The stress state of a beam–column joint is prevalently characterized by shear developed
at the boundaries of the joint and at the interfaces between the joint concrete and the
beam or column reinforcement [3]. Given its shear nature, design check is based on
equilibrium between shear demand and shear strength [4]. Nonetheless, compatible
models, defining the shear stress vs shear distortion constitutive law, are used in more
sophisticated numerical applications [5].

According to Mohele [6], a beam column joint is defined as that portion of the column
within the depth of the deepest beam that frames into the column. This definition implies
that more than one beam can frame into the column and, consequently, force input should
be considered bi-axial.

This paper focuses on the evaluation of bi-axial shear demand for beam–column
joints, comparing different numerical methods to carry out seismic structural analysis. The
selected benchmark structure is the SPEAR building [7]. First, the definition of joint shear
demand and joint shear strength are summarized in the section titled “Fundamentals of RC
beam–column joint”. Second, the section “Numerical study” presents the SPEAR frame by
recalling the associated literature; details of the implemented numerical models are given
as well. Third, the section “Results and Discussion” focuses on the shear demand at beam–
column joints, highlighting the differences between modal-response-spectrum analysis,
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non-linear-static-analysis and non-linear-time-history. Strength assessment according to
building codes targeted to existing structures is discussed as well. Finally, some conclusions
summarize the work.

2. Fundamentals of RC Beam-Column Joints
2.1. Joint Shear Demand

Considering an RC seismic primary frame such as the one shown in the Figure 1, a
beam–column joint panel is defined as the zone where both the beam and column converge.
A remarkable definition of the joint shear demand (Vj) is due to Paulay and Priestley [8],
who assumed the joint panel as a continuous part of the column (the same considerations
apply if it is considered as a part of the beam). When the diagram of bending moments are
characterized by a seismic prevalent condition, a sign inversion is needed, passing from the
top face to the bottom face of the joint panel. In this regard, Vj can be defined as follows, by
considering it as the gradient of the bending moment within the beam depth:

Vjh =
Vc(H − hb)

hb
, (1)

where Vc is the column shear, H is the distance between the column’s contraflexure points,
hb is the beam depth. As a result, by considering a common value of 3 m for H and 0.30
for hb, the ratio Vjh/Vc amounts to 9, roughly suggesting that the shear demand in the
beam–column joint has a different order of magnitude with respect to shear force either
in the column or in the beam. Different results have been suggested by Paulay [8], who
claimed the occurrence of a reduced gradient. In fact, Vjh/Vc was supposed to vary from
four to six. Similarly, Mohele [6] suggested Vjh/Vc ranging from three to five for interior
joints and half of those values for the exterior.

Gravity
G + 0.30q

Earthquake
E = Sa(q;T;..) ꞏW

W E

Beam-Column Joint
Free-body diagram

H
hb

Vb

Vc

C
olum

n B
ending 

Vj = Vc(H-hb)/hb

Contraflex.

M(G+0.3ꞏq) M(E) M(G+0.3ꞏq +E)

Joint Panel
Reduced 
Gradient

Figure 1. Beam–column joint definition for a planar moment-resisting frame under gravity and lateral
forces. (Notes. The diagram of bending moment (M) are obtained from a simplified 2D analysis
carried out on SPEAR frame).
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The conventional definition of Vjh, widely adopted in design codes, is shown in Figure 2a.
An interior beam–column joint is considered when the hogging moment acts on the right
beam. After cutting with a horizontal plane, the horizontal free-body equilibrium requires:

Vjh = TR + CL − Vc, (2)

where TR is the tensile force of the top reinforcement on the right part, CL is the result of
compression stresses on the left part. This study assumes neglecting Vc in Equation (2).
Such an assumption will always result in being conservative as long as the seismic condition
is dominant for the bending moment diagram.

Vjh

VcVc

TR

CR

TL

CL TR CL

Vc

Beam Reinforcement

Cut Plane

Beam End Moment

Stress Distribution

τjx

τjy x

y

z

Mx

Ty

Tx

MyVcy

Vcx
Vcx

Vcy

Aj

Aj,y

Aj,x

τj

(a)

(b)

Cut Plane

Figure 2. Horizontal joint shear (Vjh) definition: (a) Case of a 2D interior joint; (b) 3D corner joint.

A similar definition can apply, considering the case of a bi-dimensional joint as the
one shown in Figure 2b. In this case, Equation (2) should apply both in x-z and y-z planes.

Frequently, shear stresses are used instead of shear forces. The definition is given
as follows:

τj =
Vjh

Aj
, (3)

where Aj is the horizontal projection of the joint area.
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According to ACI318 [9], the forces TR and CL, in Equation (2), should be calculated
either from: (i) the maximum moments transferred between the beam and column as
determined from factored-load analysis for beam–column joints with continuous beams in
the direction of joint shear considered; or (ii) from the beam nominal moments strength
possibly with overstrength. The latter is intended to account for: (a) the actual yield stress
of a typical reinforcing bar being commonly 10 to 25% higher than the nominal value; and
(b) the reinforcing bars strain hardening at member displacements only slightly larger
than the yield rotation. EC8 [10] and ACI352 [11], specifying an overstrength factor (γRd)
equal to 1.20 and 1.25, respectively. As an example, by defining As as the area of the beam
reinforcement anchored within the joint and fy the yielding stress, the yielding force (Ty)
can be written as follows:

Ty = As fyγRd. (4)

2.2. Joint Shear Strength

The following section reviews the evaluation of joint shear strength according to
three different building codes targeted to the assessment of existing structures, i.e., Eu-
ropean code [12] (draft of the new generation version), New Zealand code [13] and US
code [14]. The background of the analytical method is summarized in the following. A
final parametrical comparison is given.

2.2.1. Ec8

The draft of the new Eurocode 8 [12] applies the principal stress criterion for the
assessment of an existing RC beam–column joint. With reference to Figure 3a, the joint
volume is studied in the plane stress condition. The input forces are the horizontal shear
force (assumed to be equal to T) and the axial force in the column (N). The stress condition
is studied via Mohr’s circle as the one shown in Figure 3b. Both the cases of un-reinforced
and reinforced joint are represented.

When the principal tensile stress reaches fct the joint shear stress (τρ), for a reinforced
joint, can be written as follows:

τρ = fc

√(
νρsh +

fct

fc

)(
ν +

fct

fc

)
, (5)

where:

• ρsh = Ash
Ab

is the reinforcement ratio;

• ν = N
Ac fc

is the normalized axial force.

The shear stress is usually divided by the factor
√

fc. Such normalization is commonly
adopted by US authors and building codes, the cracking resistance of a beam–column
joint being assimilated to the tensile strength of concrete which is traditionally given as a
function of

√
fc [15]. Assuming ρsh is equal to zero in Equation (5) (un-reinforced joint),

the tensile normalized shear strength (vj,t) is written as follows:

vj,t =
fct√

fc

√
1 +

ν fc

fct
. (6)

The procedure to obtain the compressive normalized shear strength (vj,c) is similar to
that presented above for vj,t. First, Mohr’s circle is used to obtain the shear stress by im-
posing the value η fc for the compressive principal stress, where η = 0.55[min(1; 30/ fc)]1/3

is a reduction factor which takes into account the detrimental effect of transversal tensile
strains. Second,

√
fc normalization is used. Finally, the expression is as follows:

vj,c = η
fc√

fc

√
1 − ν

η
. (7)
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Figure 3. Principal stress method application to beam–column joint: (a) Free body diagram and stress
state definition for un-reinforced and reinforced joint; (b) Mohr’s Circle.

2.2.2. Nzsee-2017

Similarly to Eurocode 8, NZSEE-2017 [13] assumes the principal stress method to
evaluate the joint shear strength. However, an empirical coefficient (k j) is used: (i) to define
the increased strength of interior joint with respect to exterior; and (ii) to represent the
strength reduction at an imposed ductility level. The background of k j is experimental.
Further details are due to Hakuto [16]. k j values and its effect on the Mohr’s Circle are
shown in Figure 4.

The normalized shear strengths, vj,t and vj,c, are written as follows:

vj,t =
0.85√

fc

√
(k j
√

fc)2 + k j
√

fcν fc (8)

vj,c =
0.85√

fc

√
(0.60 fc)2 − 0.60 f 2

c ν. (9)
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A reduction of 30% is prescribed for joint shear strength when the joint is subjected to
bidirectional loading.

1.0√fc

τ

σ

0.40√fc

½ σv

kj reduction

Figure 4. Definition of kj coefficient according to New Zealand code [13].

2.2.3. Asce41-17

ASCE 41-17 [14] prescribes nominal values for normalized joint shear strength by
selecting the joint type (interior or exterior) and the presence of transverse beam (defined
as the beam orthogonal to the flexural plane). This definition has been adapted for three-
dimensional joints, either having two-ways or three-ways converging beams, by defining
the joint type in each flexural plane as shown in Figure 5.

The reduced value of the strength is given for “non-conforming” joints, i.e., joints
characterized by the absence of horizontal reinforcement.

Additional provisions for bi-axial strength are given in ACI352 [11], i.e., the elliptical
interaction domain is assumed.

2.2.4. Parametrical Comparison

A parametrical analysis was carried out using the predicted values of the normalized
shear strength according to the reviewed building codes. The investigated parameters are:
(i) the compressive strength of concrete ( fc); and (ii) the normalized axial load (ν) ranging
from 10 to 60 MPa and from 0 to 0.70, respectively. The un-reinforced beam–column joints
being the target of this paper, Equation (5) was not addressed. A value of k j equal to 0.40
was assumed for NZSEE2017.

Figure 6a,b represents the EC8 results using Equations (6) and (7), respectively. The
condition of ν larger than η implies the lost of meaning for Equation (7), which is then
conveniently represented with zero resistance. Figure 6c,d shows the NZSEE2017 outcomes
using Equations (8) and (9), respectively. Fixed values of shear strength are given by
ASCE41-17 for different joint types, i.e., (INT) interior, (INT-TR) interior with transverse
beam, (EXT) exterior, and (EXT-TR) exterior with transverse beam.

As expected, for un-reinforced joints, tensile strength is generally lower with respect
to the compressive one. Exceptions are due to large values of the normalized axial force
contemporary to low values of fc, e.g., ν larger than 0.5 and fc lower than 30 MPa for EC8.

The normalized shear strength calculated according to the reviewed building codes
partly illustrates substantial differences to the point that a variation in the safety margin
should be expected if an existing structure is assessed according to different codes as will
be proved in the following numerical study.
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Figure 5. Beam–column classification according to ASCE41-17 [14].
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(a) (b)

(c) (d)

ASCE41-17
INT-TR
INT
EXT-TR
EXT

Exterior
Interior

0.996

0.883

0.498
0.664

Dark
Grey

Figure 6. Results for parametrical analysis on beam–column joint strength (normalized shear strength
vj []MPa0.5]) predicted by different building codes: (a) Equation (6); (b) Equation (7); (c) Equation (8);
(d) Equation (9). All the plots includes the constant values of the prediction given by ASCE41-17 [14].

3. Numerical Study
3.1. Scope

A numerical study is presented addressing the estimated shear demand for beam–
column joints of an RC 3D frame structure using different methods for the seismic structural
analysis, such as modal-response-spectrum-analysis (MRSA), non-linear-static-analysis
(NLSA) and non-linear-time-history (NLTH). The selected benchmark structure is the
SPEAR frame which was tested in 2004 pseudo-dynamically (PsD) at the European Joint
Research Centre at Ispra, Italy. Details of the structure as well as of the structural analysis
methods are given in the following.

3.2. Details of SPEAR Frame

The frame was a three storey frame with two bays in both plan directions. The details
of the structures are represented in Figure 7.
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Figure 7. SPEAR frame layout.

The structure was conceived by Prof. Fardis [17] as a typical RC structure designed
for gravity load only. Beams had a 250 × 500 mm cross-section, column had 250 × 250 mm
cross-section, 250 × 750 mm cross-section was used for one column. Flat slab had 150 mm
thickness with reinforcement mesh grid of 8 mm diameter bar spaced at 20 cm or 40 cm.
Beam–column joints were characterized by the absence of stirrups and straight anchorage
for the beam longitudinal reinforcement both at the bottom (two bars with diameter 12 mm)
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and top layers (four bars with diameter 12 mm). The estimated seismic masses were
65.5 tons for the first and second floors and 64.1 for the third floor.

The structure was tested both in the as-built condition and retrofitted using differ-
ent techniques for column strengthening, i.e., fiber-reinforced polymer (FRP) or jacket-
ing [17,18]. PsD tests were carried out with bi-axial seismic input. Montenegro 1979
Herceg–Novi ground motion record was selected. The recordings of the two orthogonal
components of horizontal accelerations were modified from natural records to be compati-
ble with the Eurocode 8 [10], Type 1 design spectrum, soil type C and 5% damping [19].
Time histories were scaled to conventional values of peak-ground-acceleration (PGA) equal
to 0.15 g and 0.20 g.

During the strongest test (0.20 g of PGA), the obtained displacements at the third floor
were in the order of 100 mm in both directions and 20 mrad of floor rotation. Columns
were the most damaged members of the structure, especially at the second story; significant
inclined cracks were observed on their compressive sides and on the tensile side at the beam–
column interface [20]. The damage on the rectangular column C6 was less important, even
though the crushing of concrete and cracks at the interface with beams were observed [18].

Through the years many researchers [7] addressed the SPEAR frame to validate
numerical models; a survey of the most relevant studies is summarized in Table 1. NLTH
analysis in conjunction with frame modeling was often adopted. In one case [21] brick
finite elements were used. The validation chain usually adopted: (i) experimental results of
the PsD test against NLTH; and (ii) NLTH against either NLSA or MRSA. To facilitate the
validation, the modeling criteria used in this study, which are summarized in the following,
were generally compliant with those assumed by the surveyed literature.

Table 1. Literature survey of numerical studies addressing SPEAR frame.

Author Ele (a)
Type of Analysis

Scope of Investigation Refs.MRSA NLSA NLTH

Bento F 7 3 3 Validation of non-linear static procedures. [22]

Bhatt F 7 3 3
Extension of Capacity Spectrum Method [23] to
non-symmetric case. [24]

Brun F 7 7 3 Validation of GC [25] time integration algorithms. [26]

Di Ludovico F 7 3 3 Assessment of experimental results. [27]

Dolsek F 7 3 7
Validation of a probabilistic seismic performance
assessment. [28]

Fajfar F 3 7 3
Definition of torsional amplification to be applied to
N2 method [29]. [30,31]

Kosmopoulos F 3 7 3 Validation of chord rotation demand from MRSA. [17]

Mola F 7 3 3 Assessment of experimental results. [32]

Pardalopoulos F 7 7 3
Validation of lumped non-linear hinges representing
brittle failures. [33]

Reynouard B 7 7 3 Assessment of experimental results. [21]

Rozman F 3 3 7
Comparison of seismic conforming variants of
SPEAR frame. [34]

Stratan F 7 3 3
Assessment of experimental results. Influence of
modelling assumptions. [35,36]

Notes. (a) Type of elements: [F] frame; [B] Bricks or shells.

3.3. Structural Modeling and Seismic Demand

A three dimensional frame structural model was developed using SAP2000 [37]. De-
tails are given in Figure 8. Beams and columns were modeled using a lumped-plasticity [38]
approach. Specifically, elastic 3D frame elements (two nodes, 12 dofs) were used in conjunc-
tion with rotational non-linear springs (plastic hinges) assigned at the same location (zero
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length) of the extreme nodes. The element size was kept equal to one half of the inter-storey
height for the columns and half-bay for the beams. Columns were clamped at the base.
Floor masses were lumped at the centers of mass. Diaphragm kinematic constraint was
assigned at each floor.

Elastic beam element

Plastic Hinge

Details of 
beam-column joint

Rigid 
Offsets

hb

hc

Node

Zero
Length

Figure 8. Modeling features.

The plastic hinges’ constitutive law (moment vs rotation) was defined for each beam
and columns, considering different axial load levels for the latter. In particular, a preliminary
sectional analysis was carried out using Response2000 [39]. The yielding moment was
evaluated from the moment–curvature diagrams (examples are given in Figure 9). Plastic
rotation capacities were attributed empirically as shown in Figure 10, complying with the
FEMA356 [40], similarly with what was presented by Stratan [35]. Takeda [41] model was
used for the hysteretic response.

Slab contribution to the flexural capacity of the beam was neglected because it would
activate only for large ductility demand [42], which was not reached at the imposed seismic
level. Furthermore, a weak column condition is recognized even using the beam’s nominal
dimensions, as can be inferred from Figure 9. Indeed, despite the case of the strong column
(cross-section 25 × 75 cm), beam bending capacity (nominal cross section 25 × 50 cm)
results in being larger with respect to the columns having a 25 × 25 cm cross-section.
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Figure 9. Moment–curvature diagrams for the cross sections of beams and columns of SPEAR frame.
Results were obtained using the software Response 2000 [39].
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a
bM/My

θθy

1

c

N/Afc a b c

(-) (rad) (-)

Beam 0.0 0.020 0.040 0.20

Column 0.1 0.006 0.015 0.20

0.4 0.003 0.010 0.20

Figure 10. Definition of plastic hinges according to FEMA356 [40].

Beam–column joints were modeled as rigid. The half depth of both the column and
beam was set as a rigid length. A discussion about differences in adopting center-line
modeling, which assumes beams and columns that are entirely flexible, can be generally
found in [43]. Moreover, Stratan [35] studied the influence for SPEAR frame’s joint. In
essence, higher shear demand is a consequence of rigid offsets. Center-line modeling may
be used as a simple way to account for both the reduction of stiffness and strength due to
additional deformation in the joint regions [44].

Different methods were used to carry out the seismic structural analysis as presented
in Table 2. The seismic demand was chosen such that the comparison between different
methods can be sustained as explained in the following.

NLTH assumed Herceg–Novi (1979) spectrum-compatible accelerograms as shown in
Figure 11. The original time recordings, available at http://ngawest2.berkeley.edu in April
2022, were processed (using OpenSeismoMath [45]) to fit the elastic spectra (5% damping,
Type I, Soil C), defined according to Eurocode 8 [10]. This procedure is consistent with
what was described by Negro [19] for the execution of the PsD test.

MRSA used a design spectrum. A behavior factor (q) equal to 3.45 was assumed to be
similar to that declared by Rozman [34].

NLSA simply assumed 100 mm roof displacement (center of mass), in both x and y
directions, as a target displacement. This condition is comparable to the results obtained
via both NLTH and MRSA. Gravity load and P-∆ effect were not taken into account.

Time Window used in NLTH

(a) (b)

q = 3.45

5% Damping
SOIL C

Figure 11. Seismic demand: (a) Response spectrum; (b) Herceg–Novi (1979) acceleration time histories.

http://ngawest2.berkeley.edu
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Table 2. Details for structural analyses.

Method Seismic Demand Notes Ref. (a) Bi-Dir. (b)

MRSA Design Response Spectrum with q = 3.45
according to Figure 11. Modal Combination uses CQC rule. [34] 30% rule.

NLSA Capacity Spectrum with 100 mm target
displacement in both directions. Multi-Modal according to [46]. [18,36] SRSS.

NLTH Herceg-Novi Accelerogram (PGA = 0.25 g)
according to Figure 11 Direct integration according to [47]. [33] Simultaneous

inputs.

Notes. (a) References used to compare the numerical results. (b) Method used to account for bi-directional seismic
demand.

3.4. Validation

The structural analyses were validated against both experimental and numerical
results derived from the literature. Results are briefly discussed, in the following, assuming
the global behavior of the structure as a target, e.g., inter-story drifts, capacity curves,
displacement time histories.

The influence of beam–column joints modeling was recognized by modal analysis. In
particular, rigid offsets gave shorter periods for the first three modes as can be inferred
from Table 3. Furthermore, the first three modes (Figure 12a) amount to almost 80%
of the participating mass in both x and y directions. Clearly, the third mode involved
torsional behavior, although only partly confirmed by previous numerical investigation.
Nevertheless, MRSA produced comparable results with respect to Rozman [34] for drift
values as shown in Figure 12b.

Table 3. Validation of Modal Analysis results.

Author/Model Ref. T1 MX MY T2 MX MY T3 MX MY
(s) (%) (%) (s) (%) (%) (s) (%) (%)

DiLudovico [27] 0.62 71.80 5.80 0.54 12.40 60.50 0.43 12.40 60.50
Reynouard [21] 0.64 - - 0.54 - - 0.42 - -
Stratan [36] 0.57 - - 0.48 - - 0.39 - -
Rozman [34] 0.80 69.00 4.80 0.69 15.60 47.80 0.58 2.70 30.30
Negro (Experimental) [19] 0.84 - - 0.78 - - 0.67 - -
RIGID This paper 0.85 55.00 0.00 0.47 2.18 56.00 0.35 31.00 27.00
FLEXI This paper 1.24 54.00 0.00 0.64 2.10 56.00 0.50 31.00 27.00

Notes. MX and MY are the participating masses in X and Y direction, respectively.

Results of NLSA are shown in Figure 13. For the sake of validation, two different load
patterns were adopted, i.e., uniform distribution of forces and modal; the latter resulting in
reduced lateral load bearing capacity. Plastic hinges formed in the columns. Most of the
beams remained in the elastic regime. This evidence agreed with what was presented by
Rozman [34].

Figure 14 shows the resulting displacement history (roof) in the y direction obtained
via NLTH. The comparison with experimental outcomes shows that agreement was found
for the oscillation period, the differences in peak values being in line with those obtained,
for instance, by Pardalopoulos [33].
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Figure 12. Validation of MRSA applied to the SPEAR frame: (a) Modal analysis results [Note. The
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Figure 14. Validation of NLTH applied to the SPEAR frame, y–displacement at the roof.

4. Results and Discussion
4.1. Shear Demand at a Joint

The shear demand at a beam–column joint is not conventionally given as an output
by commercial FEM software, thus post-processing is needed. Figure 15 shows the key
aspects of the implemented post-processing. At the joint labeled “i” each converging
beam delivers a bending moment, represented as arrows in the x-y plane. The horizontal
shear demand (Vjhx and Vjhy) is given in each flexural plane as the summation of T-forces
contribution coming from left and right side of the column neglecting the column’s shear.
The T forces represent the resultant of stresses at the column–face cross section under the
applied bending moment. For the sake of simplicity, a fixed value of the internal lever
arm is assumed equal to 0.83 times the effective depth of the beam. Different assumptions
should not lead to significant changes for the final shear demand [48].
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Figure 15. Post-process procedure to evaluate shear demand at beam–column joint “i”. (Note “a”,
“b”, “c”, “d” labels define the converging beams at the node).
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Considering a practical assessment scenario, the designer might be interested in
envelope values. In this regard, the following additional assumptions either on modal
combination or bi-directional seismic demand were made for the different analysis methods:

• (MRSA) Maximum values of shear demand at a joint are evaluated, considering the
30% rule for the bi-directional combination. Modal contributions were summed using
the complete-quadratic combination (CQC);

• (NLSA) Pushover curves were calculated using the modal force distribution for the
first three modes. Specifically, target displacements were assumed in the x-direction
for the mode “1” and in the y-direction for the mode “2”. Mode “3” being torsional,
both the ±x and ±y directions of target displacements were considered. Subsequently,
idealization of the pushover curve into a bi-linear curve is made. Shear demand
at a joint is extracted for each idealized pushover curve, at the target displacement.
The final shear demand is then computed, summing the modal contribution using
CQC. This procedure is compliant with what was proposed by Chopra [46], named
modal-pushover-analysis (MPA);

• (NLTH) Extreme values of shear demand at a joint are extracted from time histories.
Acceleration of time histories apply simultaneously in ±x and ±y directions. Envelope
of the results coming from different direction signs is made.

To summarize, the shear demand at each flexural plane of a beam–column joint is
computed as a post-process starting from values of beams’ bending moments converging
at one node. Two major hypotheses were made: (i) the internal lever arm at the column
face cross section of the beam is assumed to be constant; and (ii) the contribution to the
horizontal equilibrium of the column’s shear is neglected. The latter assumption has already
been discussed in Section 2.1, defining the joint shear demand for a planar joint.

Different strategies with respect to the one proposed in this study might facilitate the
output of shear demand. Usually they imply additional dofs for the numerical model. As
an example, explicit joint modeling can be pursued via single or multi-springs [5]. Besides,
the introduction of a stiff “shear hinge” was recently proposed by Pardalopoulos [33]. It
is worth mentioning, though, that the introduction of a large stiffness, compared with the
flexural stiffness of the beam, remains dubious in the light of numerical errors (the reader
is refereed to paragraph 8.2.5 of [49]).

4.2. Bi-Axial Shear Demand Using NLTH

Figure 16 shows the bi-axial shear demand curves obtained via NLTH analysis for
the case of +x and +y excitation. This condition is privileged in this discussion because
it is equal to the pseudo-dynamic experimental input [19]. Additionally, the elliptical
domain prescribed by ACI352 [11] is defined at each beam–column joint. The ellipse radii
represent the joint shear strength evaluated according to ASCE41-17 [14]. Moreover, the
results are compared with the yielding threshold defined according to Equation (4). For
the sake of synthesis, only the first and the second floor results are discussed. The latter
was characterized by the highest shear demand peaks. The third floor has been omitted
because shear demand results were moderate.

As expected, the shear demand does not overcome the yielding threshold, this being
inherently included in the definition backbone curves for the beams’ plastic hinges. The
elliptical envelope shape of the shear demand orbits is recognized for the majority of the
cases. The principal axes of the envelope do not necessarily coincide with x and y directions.
This result is consistent with what was proven, numerically, by Menun [50] for bi-axial
bending interaction at the columns.

Cases where the shear demand exceeds the shear resistance deserve a particular
explanation. In fact, the studies describing the experimental results [18,20] of the SPEAR
frame did not report beam–column joint failure and diagonal cracking has been described
as occasional. In this regard, and by observing that the shear resistance is exceeded
especially for the cases where bi-axial interaction becomes significant (i.e., corner joint), it
follows that the elliptical strength domain is conservative. Nothing can be said about a
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possible over-estimation of shear demand which cannot be sustained conclusively due to
the impossibility to validate the obtained results against experimental references. To the
authors’ knowledge, only Stratan [36] attempted to numerically evaluate the shear demand
at the beam–column joint of the SPEAR frame. Results were reported as mean extreme
values of NLTH analysis (the reader may find the definition of mean extreme value in the
Section titled “Probability Distribution for extreme values” in [51]). Comparison with those
is given in the following. Besides, Pardalopoulos [33] modeled the SPEAR frame including
“shear hinges” at beam–column joints but shear demands were not presented explicitly.

Scale 
1 MPa0.5

vjx

vjy

1st Floor 2nd Floor

KEY

Yielding threshold ASCE 41-17
Strength Ellipse

Figure 16. Bi-axial shear demand of beam–column joint obtained with NLTH (Case of +x and +y
excitation). The reader is referred to the color version of this figure.

4.3. Evaluated Shear Strength

Shear strengths evaluated according to building codes reviewed in Section 2.2 are
graphically presented in Figure 17. The numerical values are given in Table 4. For the
sake of synthesis, both the Figure and the Table include also the shear demand which is
discussed subsequently.

Shear strength has been evaluated considering the beam–column joints as being three
dimensional without stirrups. The definition of joint type, at each flexural plane, according
to Figure 5 applies only for ASCE41-17 and NZSEE2017. No distinction is given for EC8. A
reduction of 30% has been applied to the strength values of NZSEE2017, complying with
the provision for the bi-axial condition. The axial load for the column is considered at the
seismic combination. Only tensile failure (e.g., Equation (6)) is reported because it has been
recognized as dominant with respect to the compressive. Moreover, a constant value of 0.4
for the coefficient k j (defined at Figure 4) in Equation (8) has been assumed according to
the evidence of reduced ductility demand for the beam.

Differences between predicted values of shear strength, using different building codes,
are recognized. NZSE2017 gives generally the lowest prediction with respect to EC8 and
ASCE41-17. The latter prevails for knee joints. Figure 18 shows the ratio between the
evaluated shear demand via NLTH (assumed as the most accurate with respect to NLSA
and MRSA) with respect to predicted shear strength (demand-to-strength) as a function of
the different joint type. Demand-to-strength ratio is expected to be less than one according
to the experimental absence of joint shear failure. Values larger than one are recognized
mostly for exterior joint type. This condition can be explained as an excess of safety margins
for corner joints if the plane exterior joint type is attributed to both the flexural planes.
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Probably, a larger strength should be expected as the result of the confinement offered by
the beams in both directions as claimed by Kurose [52] discussing experimental evidence.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

C8 C9 C5 C1 C2 C4 C7 C6 C3
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

C8 C9 C5 C1 C2 C4 C7 C6 C3

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

C8 C9 C5 C1 C2 C4 C7 C6 C3
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

C8 C9 C5 C1 C2 C4 C7 C6 C3

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

C8 C9 C5 C1 C2 C4 C7 C6 C3
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

C8 C9 C5 C1 C2 C4 C7 C6 C3

C8

C9

C5
C1 C2

C3
C4

C7C6

vj,x vj,y

v j
 (M

P
a0

.5
)

KEY

Shear Strength

Shear Demand

Columns (Joints) Labels

Yielding threshold

v j
 (M

P
a0

.5
)

v j
 (M

P
a0

.5
)

v j
 (M

P
a0

.5
)

v j
 (M

P
a0

.5
)

v j
 (M

P
a0

.5
)

vj,x

vj,x

vj,y

vj,y

Y

X

Figure 17. Evaluated joint shear demand and strength for beam–column joints of SPEAR frame. The
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Figure 18. NLTH Demand-to-strength ratios for the beam–column joints of SPEAR frame. The reader
is referred to the color version of this figure. (Note. NLTH demands are evaluated using extreme
absolute values.)

Table 4. Shear strength and demand evaluated for beam–column joints of the SPEAR frame.

Shear Strength Shear Demand
min(vj,x) min(vj,y) max(vj,x) max(vj,y)
All the Values Are Expressed in MPa 0.5

COL FL T-XZ T-YZ ν EC8 ASCE41-17 NZSEE2017 MRSA NLSA NLTH
(a) (b) (c) (d) (e) vj,x−y vj,x vj,y vj,x vj,y vj,x vj,y vj,x vj,y vj,x vj,y
C8 1 EXT EXT 0.03 0.471 0.498 0.498 0.397 0.397 0.531 0.517 0.703 0.700 0.515 0.778

C9 1 EXT-
T

INT-
T 0.10 0.607 0.664 0.996 0.511 1.043 0.337 0.588 0.925 0.900 0.049 0.672

C5 1 EXT EXT 0.04 0.493 0.498 0.498 0.415 0.415 0.509 0.419 0.627 0.750 0.388 0.119

C1 1 INT-
T

EXT-
T 0.16 0.701 0.996 0.664 1.143 0.591 0.618 0.303 0.884 1.161 0.920 0.683

C2 1 EXT EXT 0.11 0.626 0.498 0.498 0.528 0.528 0.408 0.364 1.074 0.728 0.709 0.525
C4 1 EXT EXT 0.21 0.767 0.498 0.498 0.647 0.647 0.309 0.444 0.771 0.769 0.039 0.241
C7 1 EXT EXT 0.08 0.571 0.498 0.498 0.481 0.481 0.378 0.562 0.768 0.556 0.075 0.241

C6 1 INT-
T

EXT-
T 0.04 0.504 0.996 0.664 0.940 0.425 0.391 0.404 0.784 0.714 0.075 0.014

C3 1 EXT-
T

INT-
T 0.31 0.884 0.664 0.996 0.747 1.352 0.231 0.673 1.521 0.886 0.369 0.718

C8 2 EXT EXT 0.01 0.433 0.498 0.498 0.364 0.364 0.429 0.486 0.512 0.553 0.508 0.905

C9 2 EXT-
T

INT-
T 0.05 0.514 0.664 0.996 0.433 0.950 0.257 0.573 0.642 0.701 0.498 0.540

C5 2 EXT EXT 0.02 0.447 0.498 0.498 0.377 0.377 0.370 0.402 0.535 0.662 0.441 0.493

C1 2 INT-
T

EXT-
T 0.08 0.574 0.996 0.664 1.009 0.484 0.462 0.304 0.684 0.838 0.553 0.536

C2 2 EXT EXT 0.05 0.524 0.498 0.498 0.441 0.441 0.296 0.327 0.800 0.664 0.477 0.569
C4 2 EXT EXT 0.11 0.614 0.498 0.498 0.518 0.518 0.241 0.393 0.563 0.695 0.500 0.397
C7 2 EXT EXT 0.04 0.491 0.498 0.498 0.414 0.414 0.304 0.497 0.728 0.406 0.463 0.783

C6 2 INT-
T

EXT-
T 0.02 0.458 0.996 0.664 0.897 0.385 0.315 0.369 0.741 0.422 0.528 0.363

C3 2 EXT-
T

INT-
T 0.16 0.695 0.664 0.996 0.587 1.138 0.183 0.663 1.050 0.499 0.374 0.664

C8 3 KNEE KNEE 0.00 0.404 0.332 0.332 0.340 0.340 0.173 0.257 0.498 0.234 0.195 0.217
C9 3 KNEE KNEE 0.00 0.404 0.332 0.332 0.340 0.340 0.106 0.241 0.268 0.265 0.170 0.208
C5 3 KNEE KNEE 0.00 0.404 0.332 0.332 0.340 0.340 0.140 0.188 0.249 0.306 0.358 0.228
C1 3 KNEE KNEE 0.00 0.404 0.332 0.332 0.340 0.340 0.170 0.140 0.279 0.332 0.250 0.210
C2 3 KNEE KNEE 0.00 0.404 0.332 0.332 0.340 0.340 0.118 0.151 0.332 0.263 0.143 0.123
C4 3 KNEE KNEE 0.00 0.404 0.332 0.332 0.340 0.340 0.104 0.156 0.239 0.260 0.105 0.259
C7 3 KNEE KNEE 0.00 0.404 0.332 0.332 0.340 0.340 0.133 0.230 0.562 0.166 0.168 0.235
C6 3 KNEE KNEE 0.00 0.404 0.332 0.332 0.340 0.340 0.144 0.229 0.702 0.177 0.141 0.224
C3 3 KNEE KNEE 0.00 0.404 0.332 0.332 0.340 0.340 0.080 0.323 0.384 0.174 0.224 0.201

Notes. (a) Column label according to Figure 7. (b) Floor number. (c,d) Joint type according to Figure 5. (e) Normal-
ized axial load at top portion of the column. Shear demand at yielding of beam’s longitudinal reinforcement (top
layer) is equal to 0.89 MPa0.5.
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To summarize, beam–column joints of the SPEAR frame showed significant strength
differences. Two major aspects impacted the most , i.e.: (i) the definition of the joint type in
each flexural plane; and (ii) the use of a different building code. For the latter, a discussion
on the strength accuracy (e.g., [4]) cannot be sustained conclusively because the compared
shear demands represent a condition far from failure, as it was observed experimentally.

4.4. Comparison of Shear Demands

The envelope values of shear demand, computed for different structural analysis
methods, are reported in Table 4 and Figure 17.

It is clearly recognized that NLSA: (i) gave larger values if compared with MRSA
and NLTH; and (ii) generally exceeded the lowest predicted strength. The latter, which
contradicts the experimental evidence, can be partly sustained by recalling what was
claimed by Chopra for the estimation of plastic hinge rotations using the modal-pushover
(MPA) [53]: . . .All pushover analysis procedures considered do not seem to compute accurately
local response quantities, such as hinge plastic rotations. Thus, the structural engineering profession
should examine the present trend of comparing computed hinge plastic rotations against rotation
limits established in FEMA-273 to judge structural performance. Perhaps structural performance
evaluation should be based on storey drifts that are known to be closely related to damage and can be
estimated to a higher degree of accuracy by pushover analyses. In this context, element forces
could also be assimilated to local response quantities, thus less accuracy should be expected
when MPA is employed. As a proof of that, cases where the estimated shear demand
overcame the yielding force were recognized. Specifically, according to Equation (4), a
value of 0.88 MPa0.5 was obtained for the hogging type moment, having considered an
overstrength factor equal to γRd 1.25. Although the sagging type moment gave half of
the value, the comparison with envelopes of shear demand can be sustained only for the
former case.

While the adoption of MPA has been considered as the state-of-the art for the inelastic
analysis of non-symmetric structure (possibly torsionally flexible) under bi-axial seismic
input, the authors are aware of other procedures such as the “modified” N2 method [30,31].
Although its computational effort is reduced with respect to MPA, the same lack of accuracy
in predicting the element forces should be expected.

Differences were recognized by comparing NLTH values with those given by Stratan [36].
The deviation trend is not easily discernible to the point that, aside from general differences
in modeling, both (i) a different definition of shear demand and (ii) use of mean extreme
values rather than absolute might have an influence.

Finally, the shear demands are represented as a function joint type in Figure 19. The
exterior joints with a transverse beam were characterized by the highest shear demand by
using NLSA. Interior joints prevailed with MRSA. NLTH did not show a quite clear trend.
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Figure 19. Shear demand of beam–column joints of SPEAR frame as a function of the joint type.
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5. Conclusions

A numerical study was presented considering a notorious benchmark in the context
of RC structures against earthquake loading, i.e., the SPEAR frame. This paper focused on
shear demand at beam–column joints. Results were obtained using a three-dimensional
numerical model validated against past studies addressing the same structure. Beam–
column joints were modeled with rigid offsets. Flexural type plastic hinges were assumed
to be inelastic sources for both beams and columns. Different methods for structural
analysis were employed such as MRSA, NLSA and NLTH, assuming a comparable seismic
demand. The obtained shear demands at joints were compared to shear strengths evaluated
according to building codes targeted to existing structures. The following conclusions can
be drawn:

1. The shear demand at a beam–column joint being a non-conventional output, a post-
process based on nodal moments is needed. Two major hypotheses were made: (i)
the internal lever arm at the column face cross section, of the beam, was assumed
constant and (ii) the contribution to the horizontal equilibrium of the column’s shear
was neglected. The last assumption’s results are conservative;

2. Shear strength evaluation should be extended to all the beam–column joints in a
three-dimensional frame, distinguishing two flexural planes. Significant strength
differences might be influenced by (i) the joint type attribute in each flexural plane
and (ii) the use of different building codes;

3. The larger safety margin was recognized for corner joints by assigning to them the
exterior joint type in both the flexural planes. Larger strength should be expected as a
result of the confinement offered by the beams in both directions. Besides, elliptical
strength interaction domain results were conservative when compared with NLTH
shear demand orbits;

4. Among the reviewed building codes, EC8 produced larger strength predictions than
ASCE41-17 and NZSEE2017. The latter produced the lowest ones. Discussion about
the strength accuracy was not intended because the compared shear demands repre-
sent a condition far from failure;

5. NLSA was proven to estimate the larger shear demand with respect to MRSA and
NLTH. Differences were explained as a consequence of the possible inaccuracy of
NLSA, using modal combination, in the evaluation of elements’ forces. Such evidence
needs to be investigated further since NLSA is frequently adopted in the assessment
of existing RC structures as a compromise between MRSA and NLTH.
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dofs degrees-of-freedom
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MRSA Modal Response Spectrum
NLSA Non-Linear Static Analysis
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NLTH Non-Linear Time History
PGA Peak Ground Acceleration
PsD Pseudo-dynamic
RC Reinforced Concrete
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