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We perform discrete numerical simulations at constant volume of dense, steady, homogeneous flows
of true cylinders interacting via Hertzian contacts, with and without friction, in the absence of
preferential alignment. We determine the critical values of solid volume fraction and average number
of contacts per particle above which rate-independent components of the stresses develop, along
with a sharp increase in the fluctuations of angular velocity. We show that kinetic theory, extended
to account for velocity correlation at solid volume fractions larger than 0.49, can quantitatively
predict the measured fluctuations of translational velocity, at least for sufficiently rigid cylinders,
for any values of the cylinder aspect ratio and friction here investigated. The measured pressure
above and below the critical solid volume fraction is in agreement with a recent theory originally
intended for spheres that conjugates extended kinetic theory, the finite duration of collisions between
soft particles and the development of an elastic network of long-lasting contacts responsible for the
rate-independency of the flows in the supercritical regime. Finally, we find that, for sufficiently rigid
cylinders, the ratio of shear stress to pressure in the subcritical regime is a linear function of the ratio
of the shear rate to a suitable measure of the fluctuations of translational velocity, in qualitative
accordance with kinetic theory, with an intercept that increases with friction. A decrease in the
particle stiffness gives rise to nonlinear effects that greatly diminishes the stress ratio.

1 Introduction
Granular flows composed of non-spherical particles are encoun-
tered in a number of applications, ranging from industry to geo-
physics. Reliable mathematical models of flows of particles with
complicated shape would permit, e.g., to increase the efficiency
and decrease the energy required for handling and transporting
granular materials in industrial apparati.

Discrete modelling of granular flows composed of spheres have
been around for a long time1 and are now able to deal with a
number of complicated effects such as aggregation, breakage, co-
hesion and poly-dispersity.2–5 Continuum models that extend the
seminal works on kinetic theory of granular gases6,7 to account
for strong inelasticity,8 friction,9–11 velocity correlation,12,13 fi-
nite stiffness and presence of rate-independent components of the
stresses14 can now satisfactorily reproduce the flows of rigid and
soft spheres in a number of geometrical configurations.

In the last decade, discrete element simulations of shearing
flows of true cylinders15–18 and spherocylinders19–22 have also
been carried out. These simulations confirmed the experimental
observation23,24 that non-spherical particles, in which the ratio of
major-to-minor axis is sufficiently far from one, develop a prefer-
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ential alignment. This has a number of consequences on the con-
stitutive relations to be adopted in continuum models.19,21,25–28

In particular, it means that at least the mean orientation angle
should be treated as an additional state variable, while phrasing
the associated evolution equation.29

Kinetic theory of granular gases is capable of predicting stresses
and velocity fluctuations in homogeneous shearing flows of fric-
tionless cylinders in a wide range of length-to-diameter (aspect)
ratio and solid volume fraction.30,31 To do that, one has to intro-
duce a number of phenomenological, although physically sound,
modifications: the critical solid volume fraction at which the func-
tions of kinetic theory diverge, because the particles are on aver-
age in close contact, depends on the cylinder aspect ratio;30 the
shape of the particles induces rotation in collisions even in the
absence of friction, so that the effective coefficient of restitution
(the negative ratio of post- to pre-collisional normal relative ve-
locity between two impending cylinders) in the rate of collisional
dissipation of fluctuation kinetic energy is less than the actual
value set in the numerical simulations;31 a measure of the cylin-
der alignment, relevant when the aspect ratio is less than 0.5 or
greater than 2, must be taken into account in the expressions of
the shear stress30 and was shown to increase the correlation in
the particle velocity fluctuations at solid volume fractions larger
than 0.49.31

Here, we extend our previous works to include the roles of
friction and stiffness on the steady, homogeneous, shearing flows
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of cylinders. We perform discrete numerical simulations of true
cylinders, interacting through inelastic, Hertzian contacts, in the
absence of preferential alignment, at solid volume fractions as
large as 0.68 and measure stresses, average number of contacts
per particle, translational and rotational velocity fluctuations.
This permits us to first identify the dependence of the critical vol-
ume fraction, at which the cylinders are on average in close con-
tact, on particle friction and aspect ratio. We then highlight sim-
ilarities and differences with what is observed in the case of soft,
frictional spheres in terms of velocity fluctuations and stresses.
We also show that the stresses can be qualitatively, and sometimes
even quantitatively, predicted by constitutive relations that merge
contributions associated with collisional exchange of momentum,
modelled with extended kinetic theory, and elastic deformations
of the contact network, once the critical volume fraction is ex-
ceeded.

2 Simulations
True, identical cylinders of mass density ρp, diameter d and
length l are placed in a cell of constant volume and subjected
to steady, homogeneous shearing in the absence of gravity. The
flow, gradient and vorticity directions are x, y and z, respectively
(Fig. 1).

Periodic, in the x- and z-directions, and Lees-Edwards,32 in the
y–direction, boundary conditions ensure that, once the simula-
tion reaches a steady state, the x–component of the mean veloc-
ity, u, the only one present, is a linear function of y (that is, the
shear rate u′ is constant) and the flow is uniform. The number of
cylinders in the cell is chosen to attain the desired solid volume
fraction ν , in the range between 0.5 and 0.68.

Cylinders interact via Hertzian contact model in the normal di-
rection, with Young’s modulus E and a fixed Poisson ratio ψ equal
to 0.3; and Coulomb sliding in the tangential direction, with µ

the coefficient of sliding friction. The normal contact is damped
to mimic the energy dissipation due to the propagation of elastic
waves inside the material; this results in a coefficient of normal
restitution en that we kept constant and equal to 0.95. More de-
tails about the numerical implementation of the discrete simula-
tions are reported elsewhere.15–17

Fig. 1 Snapshot of a simulated dense shear flow of cylinders with aspect
ratio l/d = 0.8.

We vary the aspect ratio l/d, from 0.5 to 2, the surface fric-
tion µ, from 0 to 1, and the dimensionless Young’s modulus
E/
(
ρpu′2d2

v
)

(where dv is the equivalent diameter of a sphere hav-
ing the same volume of the cylinder), from 2.6 · 104 to 2.6 · 108,
and report in the following section measurement of coordination
number Z (average number of contacts per particle), average ro-
tational and translational velocity fluctuations, particle pressure
p and shear stress s. In all simulations, the order parameter, that
is the largest eigenvalue of a symmetric traceless tensor measur-
ing the average orientation of the cylinders,23 is always less than
0.35, well below the value 0.6 above which a phase transition be-
tween a disordered, gaseous and a liquid crystal state takes place
in the frictionless case.30,31

3 Results and modelling

3.1 Critical point

Discrete element simulations of steady, homogeneous shearing
flows of soft, identical spheres at constant volume33,34 show that,
above a critical value νc of the solid volume fraction that is only a
function of the sliding friction µ, the stresses are characterized by
rate-independent components proportional to the particle stiff-
ness. In the proximity of νc, average stresses and translational
velocity fluctuations dramatically increase11 while fluctuations in
pressure and coordination number peak.34

Peaks in the fluctuations of Z have also permitted to identify νc

in the case of steady, inhomogeneous shearing flows35,36 and con-
firm the presence of rate-independent components of the stresses
above the critical solid volume fraction. Rate-independency has
instead been observed at values of the coordination number
larger than a critical Zc in the case of unsteady, homogeneous
shearing flows37 at constant volume fractions less than νc. De-
pending on the flow configuration, then, either νc or Zc can de-
termine the phase transition from a purely rate-dependent to a
combination of rate-dependent and rate-independent stresses.

Actually, in steady, homogeneous shearing, there is a one-
to-one relation between solid volume fraction and coordination
number, so that when ν = νc also Z = Zc. It has been suggested14

that at solid volume fractions larger than νc the spheres in the
discrete simulations are on average overlapped, thus creating a
continuously rearranging network of slightly compressed springs.
This would explain why the rate-independent components of the
stresses are proportional to the particle stiffness. It also implies
that, at the critical solid volume fraction, the average overlap be-
tween the spheres as well as the average interparticle distance,
at least along the principal axis of compression, are exactly zero.
Instead, the average interparticle distance measured along the
principal axis of extension might be nonzero. This anisotropy,
associated also with differences in the normal stresses,38,39 in-
creases with friction,33 hence providing a physical explanation of
the monotonic decrease of νc (and Zc) with µ.

If the average overlap is zero at νc, then the particle stiffness
should play little to no role there. In the plane ν–Z, curves ob-
tained on steady, homogeneous shearing flows of spheres of dif-
ferent dimensionless particle stiffness are expected to intersect at
the critical point νc–Zc. This was indeed firstly observed many
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years ago40 and exploited to determine the critical values of solid
volume fraction and coordination number for frictionless41 and
frictional42 spheres.

Our discrete numerical simulations reveal that curves of coordi-
nation number against solid volume fraction, measured for values
of the dimensionless Young’s modulus that differ in orders of mag-
nitude, also intersect at a critical point in the case of steady, homo-
geneous shearing flows of true cylinders (an example is reported
in Fig. 2a). This permits us to obtain the dependence of νc and Zc

on the friction coefficient µ for different cylinder aspect ratios and
make comparisons with previous results on spheres (Figs. 2b and
c). Both νc and Zc monotonically decrease with µ irrespective of
the particle geometry, hinting at the crucial role that friction plays
on the spatial anisotropy in the particle arrangement also in the
case of cylinders. The critical coordination number is always less
for spheres than for cylinders (Fig. 2c). On the other hand, the
critical solid volume fraction is less for frictionless spheres than
for frictionless cylinders, whereas the opposite is true when fric-
tion exceeds 0.3 (Fig. 2b).

3.2 Velocity fluctuations

If we define as C and Ω the fluctuation in translational and angu-
lar velocity, respectively, with respect to their average values, we
can measure the intensities of such fluctuations in the simulations
via the translational temperature, T =

〈
C2〉/3, and the rotational

temperature, Θ= I
〈
Ω2〉/Nrotm,43 where the angular brackets de-

note ensemble averaging and Nrot is the number of rotational de-
grees of freedom (2 or 3 for frictionless or frictional cylinders,
respectively). In the expression of Θ, I is the moment of inertia
and m is the mass of the particle. In steady, homogeneous gran-
ular flows, the ratio Θ/T is a measure of how much translational
fluctuation energy is transformed into rotational fluctuation en-
ergy.44 As such, it is an indicator of the geometry of the collisions
at the microscopic level.45

Figure 3a depicts the behaviour of the measured ratio Θ/T as
a function of ν − νc –with the critical volume fraction given in
Fig. 2b– in our simulations on cylinders with E/

(
ρpu′2d2

v
)
= 2.6 ·

108 for all the investigated values of friction and aspect ratio. Also
shown are the theoretical predictions in the case of spheres.10

Spheres and cylinders behave very differently. Frictionless
spheres interact through central forces, i.e., directed along the
line joining the centers of the particles, so that rotation cannot be
induced in contacts, and therefore the rotational temperature is
zero. Collisions between frictionless cylinders can instead gener-
ate rotation, and indeed the fluctuations in the angular velocity
are about the same as the fluctuations in the translational veloc-
ity, irrespective of the cylinder aspect ratio and the solid volume
fraction (Fig. 3a).

When µ increases, more and more spheres interact through
rolling contacts and the ratio Θ/T increases. Unexpectedly, this is
not the case for frictional cylinders. Apart from a few points, we
observe a nice collapse, irrespective of aspect ratio and friction
coefficient, as long as the latter is nonzero: Θ/T is roughly con-
stant and about 0.4 at solid volume fractions less than the critical
and dramatically increases for ν > νc (Fig. 3a). The increasing
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Fig. 2 (a) Measured coordination number against solid volume frac-
tion for cylinders with aspect ratio l/d = 0.8, sliding friction µ = 0.1,
and Young’s modulus E/

(
ρpu′2d2

v
)
= 2.6 · 108 (hollow diamonds) and

E/
(
ρpu′2d2

v
)
= 2.6 ·104 (solid diamonds). Critical (b) solid volume fraction

and (c) coordination number as functions of sliding friction for spheres
(solid circles, after33) and cylinders with aspect ratio l/d equal to: 0.5
(squares); 0.8 (diamonds); 1 (hollow circles); 1.25 (lower triangles); 2
(upper triangles).
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Fig. 3 (a) Measured ratio of rotational to translational temperature
against the deviation from the critical solid volume fraction for cylinders
with different aspect ratios (same symbols as in Fig. 2) and E/

(
ρpu′2d2

v
)
=

2.6 ·108 when: µ = 0 (blue symbols); µ = 0.1 (orange symbols); µ = 0.3
(yellow symbols); µ = 0.5 (purple symbols); µ = 1 (green symbols). The
dashed lines represent the theoretical predictions in the case of spheres.
Measured (b) ratio of rotational to translational temperature and (c)
dimensionless translational temperature against the solid volume fraction
for cylinders with l/d = 0.5, µ = 0 (blue squares) and µ = 0.3 (yellow
squares), and E/

(
ρpu′2d2

v
)
= 2.6 ·108 (hollow squares) and E/

(
ρpu′2d2

v
)
=

2.6 ·104 (solid squares). The solid lines in Fig. 3c are the predictions of
extended kinetic theory (Eqs. 1 and 2).

fluctuations in angular velocity with the distance from the criti-
cal point are further evidence that a phase transition takes place
there.

Decreasing the particle stiffness by 4 orders of magnitude
slightly increases the ratio Θ/T in the case of frictionless cylin-
ders. In the case of frictional cylinders, instead, Θ/T decreases
by 2 to 3 orders of magnitude (see an example in Fig. 3b for
l/d = 0.5; we obtained similar results, not shown here for brevity,
for all aspect ratios).

Decreasing the cylinder stiffness greatly increases the fluctua-
tions in translational velocity for both frictionless and frictional
cylinders (Fig. 3c). However, Fig. 3b reveals that softer friction-
less cylinders also experience larger fluctuations in rotational ve-
locity, that are instead suppressed when friction is present. It has
been shown, on the other hand, that stiffness plays a little role on
the fluctuations in translational velocity in the case of frictional
spheres.14

Extended kinetic theory,13,46 that is kinetic theory which takes
into account the decrease in the collisional rate of dissipation
of translational fluctuation energy due to correlation in veloc-
ities that develops once the freezing point, ν = 0.49,47 is ex-
ceeded, predicts the dependence of the dimensionless transla-
tional temperature on the solid volume fraction in dense, hom-
geneous shearing flows of spheres as14

T
d2

v u′2
=

2J∞

15
(
1− ε2

) [26(1− ε)

15
ν−0.49
νrcp−ν

+1
]
, (1)

when ν ≤ νc, and

T
d2

v u′2
=

2J∞

15
(
1− ε2

) [26(1− ε)

15
νc−0.49
νrcp−νc

+1
]
, (2)

when ν > νc. Here, J∞ = (1+ en)/2 +

π (1+ en)
2 (3en−1)/

[
96−24(1− en)

2−20
(
1− e2

n
)]

, while

νrcp is the random close packing, which, for spheres, is roughly
equal to the critical solid volume fraction νc when µ = 0.11 Here,
we assume that the same applies to cylinders.

In Eqs. 1 and 2, ε is an effective coefficient of restitution that
is used in the expression for the collisional dissipation rate of ki-
netic theory to incorporate the exchange between rotational and
translational kinetic energy in the translational fluctuation energy
balance and avoid the necessity of introducing an additional bal-
ance equation for the rotational fluctuation energy. For cylinders,
ε should be a function of both the aspect ratio and the friction
coefficient. Here, we have determined ε from the translational
temperature measured in our simulations via linear regression by
approximating Eqs. 1 and 2 as first-order Taylor series around
ε = e, where e is the effective coefficient of restitution in the case
of frictionless cylinders.31 The obtained deviation ε−e as a func-
tion of the friction coefficient is reported in Fig. 4. Also shown
are the results in the case of spheres (for which e = en) and a
previously suggested analytical expression.48

Figure 4 indicates that the influence of the particle geometry
on the effective coefficient of restitution in the presence of fric-
tion cannot be simply captured through its value e in the absence
of friction. We also notice that ε for cylinders seems to peak for
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Fig. 4 Dependence of the deviation of the effective coefficient of resti-
tution from its value at µ = 0 on the friction coefficient for cylinders with
different aspect ratios (same symbols as in Fig. 2a). Also shown are
the results for spheres (solid circles) and the corresponding interpolating

expression
3
2

µ exp(−3µ) (dashed line).48

µ about 0.1 (in the case of spheres the peak is closer to µ = 0.3)
and that the complicated interaction between friction and shape
can even lead, counter-intuitively, to an effective coefficient of
restitution that is higher for frictional than for frictionless cylin-
ders. Finally, the collapse of Θ/T in the case of frictional cylinders
(Fig. 3a) also points out that the effective coefficient of restitution
is not simply a function of the temperature ratio, as in the case of
spheres.9,10

When we employ the effective coefficient of restitution of Fig. 4
in Eqs. 1 and 2, we can satisfactorily reproduce the translational
temperature measured in the simulations (see two examples in
Fig. 3c; similar agreement is obtained for all values of friction
and aspect ratio), at least for the stiffest particles. The transla-
tional temperature is, on the other hand, poorly predicted once
the particle stiffness is reduced. A reduction of 4 orders of magni-
tude of the stiffness implies an increase in T of about 2 orders of
magnitude, for both frictional and frictionless cylinders (Fig. 3c).
The latter observation, and the difference between frictional and
frictionless cylinders in terms of the relation between Θ/T and
their stiffness (Fig. 3b), suggests that the increase in translational
velocity fluctuations for softer cylinders has nothing to do with
the role of fluctuations in the angular velocity. We instead suspect
that the particle stiffness plays a role in determining the veloc-
ity correlation thus requiring larger fluctuations to dissipate the
same amount of kinetic energy. We postpone this investigation to
a future work.

3.3 Stresses
Kinetic theory of granular gases predicts that, for rigid spheres
and, thus, instantaneous collisions, the pressure, p, is propor-
tional to the translational temperature through a function of co-
efficient of normal restitution and volume fraction. In the case
of soft spheres, at volume fraction less than the critical (subcriti-
cal regime), it was suggested11 to account for the finite duration
of contact, induced by the finite particle stiffness, by taking the

dense limit of the expression of kinetic theory8,46 and multiply-
ing it by the ratio of the free flight time, t f , to the sum of free
flight time and contact duration, tc:

p = ρp2(1+ en)νGT
t f

t f + tc
, (3)

where, in the neighborhood of the critical volume fraction, G =

2ν/(νc−ν)11,14. In the case of Hertzian contacts:11

t f

t f + tc
=

[
1+30.5G

(
ρpT

1−ψ2

E

)2/5]−1

. (4)

When the solid volume fraction of the spheres exceeds νc (su-
percritical regime), an elastic component of the pressure, propor-
tional to the particle stiffness, is superimposed to a component
still associated with collisional exchange of momentum, that is
assumed to be expressed through Eq. 3, with, however, the de-
nominator t f + tc replaced by tc only (the time of free flight is
taken to be zero when the interparticle distance is zero on aver-
age). In the case of Hertzian contacts, the supercritical pressure
reads therefore:11

p = ρp2(1+ en)νGT
t f

tc
+αE

E
1−ψ2 (ν−νc) , (5)

where αE is a dimensionless numerical coefficient, and t f /tc is
given by Eq. 4 where only the second term between square brack-
ets is retained.

Using the definition of G and Eq. 4, we can recast the expres-
sion for the subcritical pressure (Eq. 3) as:

[
p
(
1−ψ2)

E|νc−ν |

]−1

=
1

4(1+ en)ν2


[

ρpT
(
1−ψ2)

E (νc−ν)2

]1/2

−2

+

15.25

(1+ en)ν (νc−ν)1/5


[

ρpT
(
1−ψ2)

E (νc−ν)2

]1/2

−6/5

. (6)

Similarly, the expression of the supercritical pressure (Eq. 5) can
be re-written as:

p
(
1−ψ2)

E|νc−ν |
=

(1+ en)ν (νc−ν)1/5

15.25


[

ρpT
(
1−ψ2)

E (νc−ν)2

]1/2


6/5

+αE .

(7)

If the analysis performed for spheres held also in the case
of cylinders, Eqs. 6 and 7 would imply a collapse of the
measured scaled pressure p

(
1−ψ2)/E/|νc − ν | as a function

of the square root of the scaled translational temperature
ρpT

(
1−ψ2)/E/(ν−νc)

2, given the low variability of ν . Figure 5
indeed shows such a collapse, independent of the cylinder aspect
ratio, friction and stiffness.

Similar collapses, with the scaled shear rate instead of the
square root of T on the x-axis, have been previously obtained
in the case of steady, homogeneous34 and steady, inhomoge-
neous35 flows of soft spheres. For unsteady, homogeneous flows
of spheres, instead, the collapse can be obtained using the coor-
dination number rather than the volume fraction in the scaling of
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p and T .42

For the scaled T that tends to 0 (that is, for rigid particles or
very low agitated soft particles), the plot of Fig. 5 shows two lim-
iting behaviours. At volume fractions less than the critical, colli-
sions are essentially binary and instantaneous, and the soft con-
tribution to the subcritical pressure of Eq. 6 (the second term on
the right hand side) is negligible. The scaled pressure is, there-
fore, proportional to the second power of the scaled square root
of the temperature (rigid collisional limit35 or inertial regime34).

For volume fractions larger than the critical, the elastic com-
ponent of the supercritical pressure dominates in Eq. 7 and p is
independent of T . The momentum exchange in collisions is neg-
ligible and an anisotropic contact network spans the entire do-
main, corresponding to a shear jammed condition,35 also called
the quasistatic regime.34

When the scaled T tends to infinity, Eqs. 6 and 7 coincide, and
the pressure mainly arises because of momentum exchange in col-
lisions, with the frequency of interaction set by the inverse of tc.
This has been termed the soft collisional limit35 or intermediate
regime.34

Equations 6 and 7 can reproduce the results of the numerical
simulations (Fig. 5). There, for simplicity, we have taken ν = 0.6
and |ν −νc| = 0.05, but the results are only mildly dependent on
the solid volume fraction and the distance from its critical value,
at least in the range investigated in the present work.

Part of the scattering of the data in Fig. 5 might be due to the
residual dependence of the scaled pressure on the solid volume
fraction, and on some role played by the aspect ratio. Also, we
could have certainly improved the agreement between the mea-
surements and the theory in the shear jammed limit, if we had
taken different values of αE as a function of friction (as done in34

for spheres); and in the rigid collisional limit, if we had modified
the numerical constant in the expression for G (a value larger
than 2 for the case of frictionless cylinders and less than 2 for
frictional cylinders). We claim, however, that these are simply
details, while Eqs. 6 and 7 seem to capture the essential physics.

In the case of steady, homegeneous flows of soft spheres,14 the
dense limit expression of kinetic theory for the shear stress, s,
reads46

s
p
=

4J∞

5π1/2 (1+ en)

dvu′

T 1/2
, (8)

that is, the stress ratio s/p should be a linear function of the
square root of the inverse dimensionless translational temper-
ature through a function of the normal coefficient of restitu-
tion only, independently of friction (with en = 0.95, as in the
present simulations, the coefficient of proportionality is about
0.28). Equation 8 also implies that, when the shear rate vanishes
(yielding condition), the stress ratio vanishes as well.

Figure 6 indicates that Eq. 8 can indeed reproduce with suffi-
cient accuracy the stress ratio measured in previous discrete sim-
ulations of steady, homogeneous shearing of spheres interacting
via Hookean contacts41,48, for different values of friction and co-
efficient of normal restitution, at ν < νc. These simulations were
performed with dimensionless Young’s moduli ranging from 103

to 107, and we notice that the lowest values of the stress ratio,
corresponding to the largest values of the dimensionless T , are

obtained with the stiffest particles.
Figure 7 depicts the measured dependence of the stress ra-

tio on the square root of the inverse dimensionless T in the
case of true cylinders, when ν ≤ νc (subcritical regime). For
dvu′/T 1/2 > 0.3 (which roughly corresponds to the stiffest cylin-
ders, with E/

(
ρpu′2d2

v
)
= 2.6 · 108), the data indeed confirm that

s/p is proportional to dvu′/T 1/2, with a coefficient of proportion-
ality equal to 0.1, lower than the value 0.28 valid for spheres,
independent of friction. However, unlike what is predicted by ki-
netic theory, the linear interpolation gives a nonzero intercept µs

for dvu′/T 1/2 = 0, which increases with friction (see the caption
of Fig.7). The estimated values of µs, that can be interpreted as
the stress ratio at yielding, are similar to what was observed in
the case of frictional, elongated sphero-cylinders.21 At the lowest
values of dvu′/T 1/2, which, unlike for spheres, correspond to the
softest cylinders, the measured stress ratio exhibits a nonlinear
behaviour and can be extremely low (even less than 0.01). We
believe that this behaviour can be captured only by nonlinear ki-
netic theories.38,39 Without any theoretical justification, the data
of Fig. 7 can be tentatively fitted by modified logistic functions of
the form:

s
p
=

0.1dvu′/T 1/2 +µs

1+ exp
(
5−30dvu′/T 1/2

) . (9)

When ν is larger than the critical, Eq. 9 still agrees with the
measurements when E/

(
ρpu′2d2

v
)
= 2.6 ·104. However, there is a

larger scattering when the stiffness increases, an indication that
the stress ratio must depend on some parameters other than sim-
ply the inverse square root of the dimensionless T . In the case of
spheres, for instance, the stress ratio at ν > νc strongly depends
on the anisotropy of the fabric tensor.33

4 Conclusions
We have performed discrete numerical simulations of dense,
steady, homogeneous shearing flows of frictionless and frictional
cylinders ineteracting via Hertzian contacts at different values of
solid volume fraction and particle stiffness. The cylinder aspect
ratio ranged from 0.5 to 2, sufficiently close to unity to avoid or-
dering in the alignment of the cylinder axis.

As for spheres, we have identified a critical point in the solid
volume fraction–coordination number plane that marks the tran-
sition from a purely rate-dependent to a mixed regime, in which
rate-dependent and rate-independent components of the stresses
coexist. This critical point depends on the particle aspect ratio
and surface friction, but is independent of the particle stiffness.

We have measured fluctuations in angular and translational ve-
locity and confirmed that, due to the nonspherical shape, fluctu-
ations in angular velocity are present even in the case of friction-
less particles. Also in contrast with spheres, the ratio of the ro-
tational to the translational temperature seems a unique function
of the distance from the critical point for frictional cylinders, with
a strong increase in the supercritical regime. The rotational tem-
perature is only slightly affected by the particle stiffness, while
the translational temperature increases by 2 orders of magnitude
if the stiffness is reduced of 4 orders of magnitude. This effect
has no parallel in the case of spheres, and it might point to an
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Fig. 6 Dependence of the subcritical stress ratio on the square root of
the inverse dimensionless translational temperature in the case of spheres
interacting via Hookean contacts, with en = 0.95 (hollow circles48) and
en = 0.7 (solid circles41) and: µ = 0 (blue symbols); µ = 0.1 (orange
symbols); µ = 0.5 (purple symbols). Also shown are the predictions of
Eq. 8 when en = 0.95 (solid line) and en = 0.7 (dashed line).

enhanced velocity correlation that decreases the rate at which
translational, fluctuation kinetic energy is dissipated in collisions.
For the stiffest cylinders, however, the dependence of the transla-
tional temperature on the solid volume fraction is well predicted
using extended kinetic theory, once an appropriated effective co-
efficient of restitution depending on the particle aspect ratio and
friction is adopted.

As in the case of spheres, the granular pressure exhibits three
limits, corresponding to three physical regimes: (i) a rigid, col-
lisional limit, at solid volume fractions less than the critical and
large particle stiffness, in which particles exchange momentum
in binary, instantaneous collisions; (ii) a shear jammed limit, at
solid volume fractions larger than the critical and large particle
stiffness, where a network of long lasting contacts spans the en-
tire domain and stresses originate from the compression of the
springs in the Hertzian contact model; (iii) a soft, collisional
limit, in which particles exchange momentum in collisions at a
frequency set by the inverse time scale associated with the spring
compression. We have shown that a recent theory, developed for
spheres, that incorporates the role of the particle stiffness in a ki-
netic theory and adds a component of the pressure proportional
to the particle Young’s modulus, can also describe the pressure in
flows of true cylinders.

Finally, at solid volume fractions less than the critical, the ratio
of shear stress to pressure is a linear increasing function of the in-
verse square root of the dimensionless translational temperature
when the cylinders are sufficiently rigid. As in the case of elon-
gated spherocylinders, measurements suggest the existence of a
nonzero stress ratio in the limit of vanishing shear rate (yield)
that increases with friction. Nonlinearity arises as the particle
stiffness decreases, an effect that was never observed in the case
of spheres. This nonlinear behaviour is particularly interesting be-
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cause it is associated with extremely low values of the stress ratio,
sometimes termed as macroscopic friction, with possible practical
applications.
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