
1 INTRODUCTION  

Many river crossing bridges are susceptible to flood 
induced scour events. The possible consequences of 
scour events include increased risk to safety, interrup-
tion of transportation, and expenditures associated 
with maintenance, repair, or replacement costs. Scour 
events at bridge sites originates from the combination 
of diverse phenomena, and are classified as natural, 
constriction and local scour. Contrary to natural 
scour, constriction and local scour are related directly 
to the presence of the bridge (Maroni, Tubaldi, D. 
Val, et al., 2020). 

Flood-induced scour is among the main causes of 
bridge collapses in US and between 1966 and 2005 
more than 20 bridges failed or were closed due to 
damages of scour (Maroni, Tubaldi, D. V. Val, et al., 
2020). Between 1989 and 2000, 53% of recorded 
bridge failures were due to flooding and scour 
(Prendergast and Gavin, 2014).  In UK, almost 95,000 
bridge spans are susceptible to scour processes 
(Maroni, Tubaldi, D. Val, et al., 2020). 

Each bridge must be managed by taking the prob-
ability of scour events into account so that the deci-
sion alternatives can be assessed, and the optimal ac-
tion can be identified and implemented for resilience 
management. 

In the literature, the concept of resilience manage-
ment has been referred as short-term ability of the 
system to recover from disturbance events. However, 
the resilient system must be capable of both to sustain 
functionality and to generate capacity for adaptation, 
recovery, and efficient organization after disturbance 
events (Faber et al., 2017; Faber, 2019; Faber, Qin 
and Nielsen, 2019). To define resilience management 
of infrastructure systems, the framework (Turksezer, 
Limongelli and Faber, 2020) has been developed.  

In the present paper, we introduce a decision anal-
ysis tool based on Bayesian Probabilistic Networks 
(BPN) for resilience management of systems. With 
this tool the probabilistic representation of resilience 
system characteristics and decision alternatives are 
addressed. This paper is the first attempt of the au-
thors to transform the previously proposed frame-
work into a decision-making tool addressing transport 
infrastructure systems. Other types of systems such as 
electricity distribution systems and wind turbine park 
systems are addressed in e.g.(Qin, Sansavini and 
Faber, 2017; Qin and Faber, 2019; Qin et al., 2019).  

In any decision analysis for the resilience manage-
ment of systems, the first step is to identify the sys-
tem. In Section 2, the system representation is given, 
and the resilience indicators, decision options and 
making is discussed. In Section 3, the principal 
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example is illustrated by two steps followed to build 
the tool and the analysis is undertaken. In Section 4 
we discuss the results, and finally Section 5 concludes 
the paper. 

2 RESILIENCE MANAGEMENT 

Resilience management can be explained as the gov-
ernance of the system based on ranking decision al-
ternatives through their identification, and organiza-
tion and communication of actions to be taken on the 
system constituents during the life cycle of the sys-
tem. 

This section takes basis in the resilience manage-
ment framework proposed in (Turksezer, Limongelli 
and Faber, 2020) which represents the management 
of the system exposed to disturbance events that 
cause direct and indirect consequences in each sub-
system (see also (Faber et al., 2007)). In this frame-
work, the resilience management is supported by in-
formation on the system characteristics and on the 
exposure, provided through resilience indicators.  

2.1 System representation and characteristics 

A complex system, i.e., socio-ecological technologi-
cal system, consists of a group of interacting, interre-
lated or interdependent constituents such as assets 
(e.g., structures, infrastructures), their constituents 
(e.g., structural, and non-structural components), in-
dividuals, environment, technological systems (e.g., 
telecommunication, IoT), organizations and organi-
zational processes. 

Each subsystem is itself a constituent of the main 
system and provides specific functionalities that con-
tribute to the functionality of the overall system. 
There are two functionalities of a physical subsystem: 
to withstand all actions and service-related function-
ality, which for example is to ensure spatial connec-
tivity, housing and so on. The information subsystem 
provides collection, processing, and transmission of 
information. It is desired that the information subsys-
tem functions both under normal operating conditions 
as well as under extreme events. The organizational 
subsystem manages the entire system and as a conse-
quence of its actions the expenditures are generated 
in this system. 

The three subsystems are interrelated and con-
nected through the flow of information provided by 
the information subsystem, and they are all managed 
by the organizational subsystem through actions. 
Moreover, there are demands to be met by each sub-
system, implicitly or explicitly defined through the 
requirements to the functionalities of the overall sys-
tem. 

2.2 Resilience indicators 

Resilience indicators can be considered as instru-
ments transmitting specific information to the deci-
sion makers on the state of the system and its constit-
uents (i.e., subsystems). In the subsystem level, seven 
indicators (i.e., resistance, ductility, redundancy, di-
versity, vulnerability, robustness, and functionality), 
shown in Figure 1, carry information about the state 
of the subsystem.  
 

 

Figure 1 Subsystem level indicators. 

 
At the subsystem level, diversity contributes to re-
sistance, ductility, and redundancy. These indicators 
are the main indicators that characterize the state and 
performances of the system and/or its constituents.  

Diversity relates to the ability of the system to pro-
vide functionality and sustain demands by different 
means and thereby reduce the likelihood of common 
cause failures of its constituents. Considering physi-
cal/structural subsystems, diversity may be present 
through the use of constituents made for example of 
different materials which are not affected by the same 
deterioration mechanisms.  

Resistance relates to the demand the system can 
meet. When the demand exceeds the ultimate re-
sistance, the system fails. Capacity and strength are 
sometimes introduced as synonyms for resistance, 
e.g., for structural systems for which the ultimate re-
sistance can be increased by changing the capacities 
or strengths of the components. 

Ductility is the ability of a system or its constitu-
ents to enable service provision through secondary 
mechanisms in the face of demands increasing be-
yond the levels for which the design has been based. 
Figure 2 illustrates the ductility behavior of a system 
in terms of service provision and demand. In Figure 
2, demand and service increase up to a certain level 
(i.e., a certain characteristic is reached) through 
Mechanism 1 which is the level underlying the de-
sign. When this level is reached, the increasing de-
mand can be fulfilled through the Mechanism 2. The 
change from one mechanism of service provision to 
another is represented by a star in the figure. 

 



 

Figure 2 The representation of ductility mechanism-service vs 

demand graph. 

 
Considering structural systems, the ability to meet the 
demand by means of Mechanism 2 is related to the 
deformation capacity. When the ultimate (design) re-
sistance is reached in a linear elastic transfer of en-
ergy, and the demand is further increased, additional 
energy can be absorbed through the deformation ca-
pacity of the materials of the structure. A bridge con-
structed in 50’s can be an example. The design pur-
pose of the bridge is to accommodate the traffic in its 
construction time and in 60 years the demand in-
creases. The bridge may meet demand, but some de-
fects and deformations may occur due to ultimate re-
sistances being exceeded. After reaching the ultimate 
resistance in elastic deformations, the bridge may 
start to absorb some energy in plastic deformation 
modes, may collapse partially or entirely. Ductility 
can be improved by retrofitting the structure. 

Redundancy relates to the ability of a system to re-
distribute demands among subsystems and constitu-
ents, given damages and partial failures of constitu-
ents and subsystems. Redundant physical subsystems 
such as structural systems, facilitate the transfer and 
absorption of energy through multiple paths. The sim-
plest example relates to statically indeterminate struc-
tural systems, which even if some structural elements 
are damaged and/or removed will still be able to 
transfer loads without failure of the structural sys-
tems. The redundancy of a structure can be improved 
by adding new components, or by changing the con-
nection between its components.  

2.3 Decision making 

The management of the resilience of systems may be 
greatly enhanced by means of monitoring. Based on 
the observed performances of the system, decisions 
may be identified which optimally adapt or improve 
its resilience performances. The information gathered 
in terms of observations comprise resilience indica-
tors which when conveyed to the decision maker sup-
ports the ranking of decision alternatives regarding 
possible interventions. The optimal decision is asso-
ciated with the largest expected value of life cycle 
benefits.  

Numerical evaluation of decision alternatives can 
be performed after formulating the decision problem 
in terms of a decision/event tree by assigning the ap-
propriate utilities and probability structures to the dif-
ferent branches.  

The decision tree shown in Figure 3 starts with the 
choice among decisions to monitor (or not) the con-
dition of the system. The monitoring decision de-
creases the uncertainties (by obtaining additional in-
formation) and updates the probabilistic model of 
(condition) state of the system. With additional infor-
mation (and knowledge through Bayesian updating), 
the decision maker has an enhanced basis for manag-
ing the system.  

 

 

Figure 3 Event tree. 
 
The pre-posterior decision analysis (Raiffa and 
Schlaifer, 1961) forms the basis for assessing the po-
tential benefits associated with collection of addi-
tional information (e.g. through implementation of 
monitoring), see also (JCSS, 2008). 

2.4 Consequences 

When the system experiences an exposure event, 
damages to or loss of system constituents may cause 
direct and indirect consequences. The direct conse-
quences consist of damage and failures of the system 
constituents and indirect consequences are related to 
the loss of functionalities of subsystems.  

In case of a bridge collapse under an exposure 
event, the possible direct consequences are environ-
mental effects, loss of cultural and historic values 
stored in the bridge and loss of lives and injuries. The 
indirect consequences include loss of reputation of 
the asset manager or the bridge owner as well as cost 
associated with the loss of transportation within the 
transportation network. 

3 PRINCIPAL EXAMPLE: BRIDGE UNDER A 
FLOOD EVENT 

The resilience management framework described in 
the previous sections includes several interacting 
components that affect the decision-making process. 

In this section a principal example is presented to 
describe how Bayesian Probabilistic Networks (BPN) 
can be adopted to model the system and to investigate 
the impact of different decision scenarios on the sys-
tem resilience. The example addresses the specific 



case of a bridge exposed to scour and the focus is on 
demonstrating how a BPN facilitates the inclusion of 
the possible decision alternatives among which the 
bridge owner can choose and to rank these decisions 
in accordance with their expected values of life cycle 
benefits. The information provided on the state of the 
system and on the exposure event, through monitor-
ing enhances the knowledge of the decision maker 
thereby improving the choice of the optimal decision. 
Herein, the main idea is to use the updated infor-
mation about the scour event and the system charac-
teristics to inform optimal decision making. 

The tool is prepared by using Hugin (Handling Un-
certainty in General Inference Network) Expert soft-
ware (Hugin Expert A/S, 2008) which is utilized to 
construct BPN that facilitate the modelling of uncer-
tain information, and to solve decision problems. 
Moreover they are able to manage many dependent 
random variables (for the terminology and detailed 
information see (Jensen, 2001; Kjærulff and Madsen, 
2013)). 

3.1 STEP 1: Building the BPN  

In the present example, the system includes a bridge, 
providing transportation of goods and people func-
tionality, and which is exposed to local scour due to a 
flash flood event. The bridge is managed by its owner 
who is responsible of decisions aimed to optimally 
maintain the functionality of the bridge. The optimal 
decision is intended as the one that maximizes the ex-
pected value of benefits associated with the function-
ality, i.e., the service provided by the bridge, net the 
costs associated with ensuring this. With reference to 
the system described in section 2, which is structured 
into three subsystems; physical, information and or-
ganizational, this example only addresses the physical 
subsystem, i.e., the bridge. However, the approach 
can be easily adapted to the other two subsystems.  

In a BPN, events and their causal relationships are 
represented graphically in terms of, respectively, 
nodes and arrows connecting the nodes. Discrete 
states and relevant conditional probabilities, together 
with consequences are assigned to each node (event) 
of the BPN (Faber et al., 2002). 

The probability of occurrence of an event is calcu-
lated through 
 
𝑃(𝐸1 ∩ 𝐸2) = 𝑃(𝐸1|𝐸2) × 𝑃(𝐸2)       (1) 

 
where 𝑃(𝐸1|𝐸2) is the conditional probability of 
event 𝐸1 given that the event 𝐸2 has occurred. When 
this equation is applied in the following section, the 
probability of event 𝐸1 is the occurrence of scour 
event given a flood event has occurred.  

Scour is a function of several parameters such as 
the waterflow (Q), the foundation characteristics 
(e.g., foundation depth), the nature of the riverbed, 
etc. A hydrological model can be employed to 

correlate all these parameters to the scour depth, but 
this is out of scope of this paper. Herein the causal 
relationships between events are simply represented 
assigning values of the conditional probabilities.  

For detailed analysis carried out for real case stud-
ies the interested reader is addressed to the following 
references (Johnson and Dock, 1998; National 
Academies of Sciences Engineering and Medicine 
(NASEM), 2007; Prendergast, Hester and Gavin, 
2016; Department of Transport and Main Roads, 
2019; Giordano, Prendergast and Limongelli, 2020; 
Maroni, Tubaldi, D. V. Val, et al., 2020; Pizarro, 
Manfreda and Tubaldi, 2020)). 
 

 

Figure 4 BPN tool for the bridge. 
 

Each node of the BPN is described by a matrix that 
contains a number of discrete states and the relevant 
probabilities. Herein for the scour depth node, two 
states are considered, i.e., high, and low scour depth, 
that correspond to respectively a scour depth higher 
or lower than the foundation depth. Low scour is 
treated as no exposure state. 

As shown in Figure 4, scour affects the bridge con-
dition, which depends on the bridge characteristics 
described through the resilience indicators (i.e., re-
sistance, ductility, redundancy) previously introduced 
in Section 2.2.  

Two states ‘bad’ and ‘good’ are assigned to the 
bridge condition node. The relevant conditional prob-
abilities with respect to the indicator nodes are re-
ported in Figure 7. It is assumed that, when the bridge 
is under high scour, if it is redundant, ductile and has 
high resistance, then the probability of being in good 
condition is 85%. Vice versa, when the bridge is not 
redundant or ductile and has low resistance under 
high scour, then it is assumed that the probability of 
being in bad condition is 100%. 

The actions (decision alternatives) that have been 
considered to change the bridge characteristic are de-
scribed in Table 1. 

 
Table 1 Decision alternatives considered in the 
BPN 

Resistance Ductility Redundancy 



Repair/maintain the 

component 

Install collar disk 

on pier 

Construct sacrificial 

components (e.g., 

dummy piers) 

Substitute the dam-

aged component 

with a new one  

Do jacketing on 

piles 

Add underpinning 

pile 

Do nothing Do nothing Do nothing 

 
Direct consequences are associated to damages and 
losses due to the failure of the bridge, whereas indi-
rect consequences are related to its loss of functional-
ity (JCSS, 2008; Turksezer, Limongelli and Faber, 
2020). In Figure 4 each decision (pink rectangles) and 
consequences (yellow nodes) are linked to costs 
(green diamonds) that herein are defined in terms of 
monetary values.  

When the BPN model is run, the direct and indirect 
consequences generated by the events and their rele-
vant probabilities, are calculated for each discrete 
state of the bridge condition. For each decision alter-
native the total costs are given by the sum of the costs 
of the relevant actions and of the monetary values of 
direct and indirect consequences. In this way the BPN 
evaluates the total costs associated to each decision 
alternative. 

The consequences of the decisions given in Table 
1 are computed for specific system states (i.e., bad, or 
good condition). To illustrate this with an example, 
when the decision of ‘do nothing’ is considered, if 
bridge survives from the exposure event (which 
means good condition) then the cost of consequences 
is zero. If the condition is ‘bad’, the total cost is the 
sum of direct and indirect consequences (in monetary 
values).  

When the decision maker decides to change one 
component to increase the resistance, if the bridge 
state changes into ‘good condition’, the consequences 
are the cost of the action (cost of the new component 
and if the environmental effects due to the use of new 
material). If the bridge changes into ‘bad’ after this 
decision, there will be cost of the action in addition to 
the direct consequences of the bridge in bad condition 
(described in Section 2.4).  

3.2 STEP 2: Assigning and calculating the 
probabilities 

After building the BPN with the necessary nodes, the 
probability tables are formed. For instance, those rel-
evant to the ‘waterflow’ and ‘scour depth’ nodes are 
shown in Figure 5 and Figure 6. Log-normal proba-
bility density function is assigned for the waterflow 
because the discharge cannot be negative (Maroni, 
Tubaldi, D. V. Val, et al., 2020). In order to simplify 
the tables for this principal example, three qualitative 
values are given to the water flow node, i.e., high, me-
dium, and low, as shown in Figure 5. 
 

 

Figure 5 Representation of the probability assignment for water-

flow in a simplified example. 

Then the conditional probabilities of high or low 
scour, given the waterflow Q, are assigned as de-
scribed in Figure 6.  
 

 

Figure 6 Probabilities assigned to the water flow and the scour 

nodes. 

The values of the conditional probability of scour 
depth, calculated through Equation 1, are reported in 
Table 2 for the two considered states (high and low). 
 

Table 2 The calculated conditional probabilities of 

scour event. 
Waterflow Scour depth  Probability of 

scour event 

High flow High scour depth 19.8% 

 Low scour depth 0.2% 

Medium flow High scour depth 27.5% 

 Low scour depth 22.5% 

Low flow High scour depth 0.3% 

 Low scour depth 29.7% 

 
The BPN uses this approach to calculate all the prob-
abilities of the internal nodes shown in Figure 4. 

Same weight, equal to 0.33, is assigned to each de-
cision alternative, as shown in Table 3 where the unit 
costs assigned to each of the considered action are 
also reported. This assumption means that the deci-
sion maker will select a decision alternative only ac-
cording to their utility. The action ‘do nothing’ has a 
zero cost and the other values are given according to 
the studies and practices found in the literature 
(Whitbread, Benn and Hailes, 2000; Salamatian, 
Zarrati and Banazadeh, 2013; Chandrasekaran and 
Banerjee, 2016; Liangliang, 2020). 

 



Table 3 Cost and weight of the decision alternatives. 

Action Cost [unit] Weight 

Repair/maintain the 

component 

100 0.33 

Substitute the dam-

aged component with 

a new one  

10000 0.33 

Install collar disk on 

pier 

1000 0.33 

Do jacketing on piles 2000 0.33 

Construct sacrificial 

components (e.g., 

dummy piers) 

60000 0.33 

Add underpinning pile 600 0.33 

Do nothing 0 0.33 

 
The resilience indicators nodes, in turn, depend on the 
decisions. The conditional probability values given in 
Figure 7 are assigned according to how much the de-
cision will increase the state of the bridge. For exam-
ple, the probability that the bridge condition is re-
sistant after substituting the damaged component with 
a new one is assigned to be 0.99 whereas it is assumed 
equal to 0.8 if the ‘repair/maintain component’ alter-
native is chosen, since there is still uncertainty about 
the component performance after maintenance activ-
ity. The same reasoning is followed for other actions. 
 

 

Figure 7 Probabilities assigned to the decision alternatives. 

All conditional probabilities are presented in Figure 
8.  

The direct and indirect consequences are assigned 
as zero if the bridge condition is good and equal to the 
values reported in Table 4 if the bridge is in bad con-
dition.  
 

Table 4 Monetary value of direct and indirect conse-

quences related to bridge condition. 

 Direct conse-

quences 

Indirect conse-

quences 

Bad condition 500000 1000000 

Good condition 0 0 

 
 

 

Figure 8 The conditional probability table of ‘Bridge Condition’ node. 
 

 

4 DISCUSSION 

In Figure 9 is reported the impact of different deci-
sions in terms of consequences (sum of direct and in-
direct). This figure shows the bridge condition as a 
result of given values in the analysis (in previous ta-
bles). The green bars shown on the left-hand side are 
graphical representation of the probability values 
given next to them (i.e., 64.97, 35.03, 33.33). There 
are 9 decision alternatives shown in Figure 9. Each 

decision alternative corresponds to the same im-
portance weight (explained in Section 3.2) and 
33.33% of probability is assigned in the figure. Then 
in the middle of the figure there are bars showing the 
magnitude of total cost of each action with green 
color and number on them are the numerical presen-
tation of total costs. For example, the highest costs are 
associated with the ‘do nothing’ decisions. 

With given conditional probabilities the bridge 
condition is calculated as 64.97% good and 35.03% 
bad. As it can be expected, the total cost in terms of 



the consequences for bad condition is almost 8 times 
more than bad condition. 

 

 

Figure 9 Probabilities and total costs computed by the software. 
 

For the considered values of the conditional probabil-
ities the lowest cost corresponds to one of the ‘change 
ductility decision, i.e., jacketing relevant piles, then 
the second low-cost decision is to increase resistance 
by substituting the damaged component with a new 
one, as shown in Figure 9Figure 9. The Hugin Expert 
software enables to compute the probability of each 
of the two considered conditions (good and bad) for 
different decision alternatives. For instance, if the ac-
tion leading to the lower cost (jacketing relevant 
piles) is considered, the probability of the bridge be-
ing in good condition improves to 72,15%. If the 
damaged component is substituted with a new one 
(decision with the second lowest cost) the probability 
that the bridge is in good condition becomes 71,10%. 
Although the probability is almost the same, increas-
ing ductility is the optimal one since it is associated 
to a lower cost with respect to increasing redundancy. 

When the decision of do nothing is made for all the 
indicators, the probability that the bridge is in bad 
condition under a flood event becomes higher than 
45%. This depends on the high probability of bridge 
collapse to which the highest consequences are asso-
ciated. 

The results obtained depend on the values of the 
conditional probabilities associated to the nodes of 
the BPN and to the weight of the considered decision 
alternatives. 

To see which decision increases the probability of 
having good bridge condition, each decision can be 
selected in the tool (setting as the ‘condition’). BPN 
runs the analysis with the selected decision and com-
putes the bridge condition and related costs for this 
decision. The decision increasing the probability of 
being in good condition with given conditional 

probabilities is to add new component instead of the 
damaged one (18% of improvement) and the second 
one is to construct sacrificial components (12% im-
provement). 

5 CONCLUSION 

In this paper, a decision support tool based on Bayes-
ian Probabilistic Networks (BPN) is built for a bridge 
under scour hazard. The bridge characteristics are de-
fined in terms of resistance, ductility, and redundancy 
indicators which affect the resilience of the system. 
The BPN computes the consequences associated to 
two conditions of the bridge, defined as ‘good’ and 
‘bad’, for different management actions. These re-
sults enable the decision maker to choose the optimal 
management actions to provide the highest probabil-
ity that the bridge is in good condition and to face the 
lowest consequences. 

A principal example is built and scenarios corre-
sponding to different management actions aimed to 
change the bridge resilience characteristics have been 
considered. The aim of the study was to build a tool 
to model the system and to support decisions relevant 
to its resilience management. For this reason, the de-
tails of the model such as the values of the conditional 
probabilities associated to the events included in the 
analysis, were assigned taking basis on previous re-
search on the topic and on engineering judgement.  

This paper is the first attempt of the authors to pro-
pose a decision support tool addressing transport in-
frastructure systems and including resilience indica-
tors. In the future a detailed example will be 
developed for a real case study, addressing the prob-
abilistic modelling of the events included in the anal-
ysis. 
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