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Abstract
We prove that linear extensions of the Bruhat order of
a matroid are shelling orders and that the barycentric
subdivision of a matroid is a Coxeter matroid, view-
ing barycentric subdivisions as subsets of a parabolic
quotient of a symmetric group. A similar result holds
for order ideals in minuscule quotients of symmetric
groups and in their barycentric subdivisions. Moreover,
we apply promotion and evacuation for labeled graphs
of Malvenuto and Reutenauer to dual graphs of simpli-
cial complexes, introducing promotion and evacuation
of shelling orders.
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1 INTRODUCTION

A pure simplicial complex is shellable if its facets admit a total order, called shelling order, such
that each facet can be added gluing it along a subcomplex of codimension 1. Shellability is one
of the most studied combinatorial properties of simplicial complexes. Its pivotal role in combi-
natorics and commutative algebra is due to the fact that a shellable simplicial complex is also
Cohen–Macaulay over every field. It is combinatorial because there exist both shellable and non-
shellable triangulations of the same topological space (for nonshellable triangulations of spheres
and balls, see, e.g., [2]).
Examples of shellable simplicial complexes are vertex-decomposable ones (see, e.g.,

[16, Theorem 3.33]), boundaries of simplicial polytopes [24, Theorem 8.11], order complexes of
Bruhat intervals in parabolic quotients of Coxeter groups [6] and of Bruhat intervals in their
complements [20], order complexes of face posets of electrical networks [15], among others.
A subclass of vertex-decomposable simplicial complexes are independence complexes of

matroids (see, for instance, [16, Theorem 13.1]), for which a shelling order is given by the
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2 BOLOGNINI and SENTINELLI

lexicographic order of the facets. The set of facets of a pure 𝑘-dimensional simplicial complex
on 𝑛 vertices can be identified with a subset of the set 𝑆(𝑘)𝑛 of Grassmannian permutations, which
can be endowed with the Bruhat order. Therefore, if 𝑋 ⊆ 𝑆

(𝑘)
𝑛 is the set of bases of a matroid, we

view 𝑋 as a poset with the induced order, so we can speak about the Bruhat order of the matroid
𝑋 (also called Gale order). Inspired by the fact that the lexicographic order is a linear extension
of 𝑋, we state in Theorem 3.4 that all the linear extensions of 𝑋 are shelling orders. Actually
we prove this result for the larger class of simplicial complexes with the quasi-exchange prop-
erty, introduced in [19]; this class includes also order ideals of 𝑆(𝑘)𝑛 , see Corollary 3.5. As there are
shellable simplicial complexes for which no linear extension is a shelling order (we checked it for
the so-called Hachimori’s complex, see, e.g., [7, Example 4.5] for a list of facets), this result pro-
vides a structural connection between shellings orders of matroids and linear extensions of their
Bruhat orders. Nevertheless, as expected, there are shelling orders of matroids that are not linear
extensions, also up to relabeling (see Example 3.10).
Coxeter matroids generalize, via the maximality property, standard matroids. By extending

maximality property to different contexts, in [8] we generalized flag matroids to 𝑃-flag matroids
and in [9] matroids to 𝜒-matroids, where 𝑃 is any finite poset and 𝜒 a one-dimensional charac-
ter of a finite group. In this paper, we provide another connection between matroids and Coxeter
matroids involving barycentric subdivisions of simplicial complexes (Theorem 4.1).
The interpretation of the facets of a pure simplicial complex 𝑋 as elements of 𝑆(𝑘)𝑛 allows us to

view the facets of the barycentric subdivision (𝑋) of 𝑋 as permutations in 𝑆𝑛 obtained by acting
with 𝑆𝑘 on the elements of𝑋. InDefinition 4.3, we introduce a notion of flag shellability for subsets
of the barycentric subdivision (𝑆

(𝑘)
𝑛 ). Flag shellability of (𝑋) coincides with shellability of the

order complex of the face poset of 𝑋. In Theorem 4.5, we prove that the linear extensions of order
ideals of (𝑆(𝑘)𝑛 ) are flag shelling orders.
Although shellable simplicial complexes are extremely nice from a combinatorial point of view,

also in this realmweird thingsmay happen: for instance there exist shellable simplicial complexes
such that every possible shelling order is forced to end with a specific facet (see [21, Appendix F]).
For this reason, it is crucial to know if and how a shelling order can be rearranged to have a new
shelling order. The promotion function was defined on linear extensions of posets (see [23] for a
survey and [13, 14] for recent results and new developments): given a linear extension of a poset,
its promotion is a new linear extension, obtained rearranging the first. By taking advantage of
the generalization given in [18] and by considering the so-called dual graph of a pure simplicial
complex (or, equivalently, its undirected Bruhat graph, see Remark 5.6), in Section 5 we introduce
promotion and evacaution of shelling orders; see Theorems 5.4 and 5.11. The core of the proof is
given by a structural property of shelling orders, which is interesting by itself, see Proposition 5.3.
For simplicial complexes for which linear extensions are shelling orders, it is natural to ask if the
promotion of shelling orders agreeswith promotion of linear extensions: under a suitable assump-
tion, in Proposition 5.7 we prove that this is the case; this assumption is fulfilled by interesting
classes of simplicial complexes, see Corollary 5.8.

2 NOTATION AND PRELIMINARIES

In this section, we fix notation and recall some definitions useful for the rest of the paper.We refer
to [22] for posets, to [5] for Coxeter groups, and to [10] for matroids and Coxeter matroids.
Let ℤ be the ring of integers and ℕ the set of positive integers. For 𝑛 ∈ ℕ, we use the notation

[𝑛] ∶= {1, 2, … , 𝑛}. For a finite set 𝑋, we denote by |𝑋| its cardinality and by (𝑋) its power set,
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LINEAR EXTENSIONS AND SHELLING ORDERS 3

which is an abelian group with the operation given by symmetric difference 𝐴 + 𝐵 ∶= (𝐴 ⧵ 𝐵) ∪

(𝐵 ⧵ 𝐴), for all 𝐴, 𝐵 ⊆ 𝑋. We denote by 𝑋𝑛 the 𝑛th power under Cartesian product, by 𝑥𝑖 the pro-
jection of 𝑥 ∈ 𝑋𝑛 on the 𝑖th factor, and we set 𝑁(𝑥) ∶= 𝑛. For 𝑘 ∈ ℕ, 𝑘 ⩽ |𝑋|, we define the 𝑘th
configuration space of 𝑋 by

Conf𝑘(𝑋) ∶=
{
𝑥 ∈ 𝑋𝑘 ∶ 𝑥𝑖 = 𝑥𝑗 ⇒ 𝑖 = 𝑗, ∀ 𝑖, 𝑗 ∈ [𝑘]

}
,

and, if < is a total order on 𝑋, the 𝑘th unordered configuration space of 𝑋 by

𝑋𝑘
< ∶=

{
𝑥 ∈ 𝑋𝑘 ∶ 𝑖 < 𝑗 ⇒ 𝑥𝑖 < 𝑥𝑗, ∀ 𝑖, 𝑗 ∈ [𝑘]

}
.

We also set

Conf(𝑋) ∶=

|𝑋|⋃
𝑘=1

Conf𝑘(𝑋).

Sometimes we write 𝑎1 …𝑎𝑘 ∈ Conf𝑘(𝑋) instead of (𝑎1, … , 𝑎𝑘) ∈ Conf𝑘(𝑋).
We consider the symmetric group 𝑆𝑛 of order 𝑛! as a Coxeter group, with generators given by

simple transpositions 𝑆 ∶= {𝑠1, … , 𝑠𝑛−1}, where, in one-line notation, 𝑠𝑖 ∶= 12… (𝑖 + 1)𝑖 … 𝑛, for
all 𝑖 ∈ [𝑛 − 1]. The right descent set of a permutation 𝑤 ∈ 𝑆𝑛 is defined by

𝐷𝑅(𝑤) ∶= {𝑖 ∈ [𝑛 − 1] ∶ 𝑤(𝑖) > 𝑤(𝑖 + 1)}.

For 𝐽 ⊆ [𝑛 − 1], define

𝑆𝐽𝑛 ∶= {𝑤 ∈ 𝑆𝑛 ∶ 𝑖 ∈ 𝐽 ⇒ 𝑤(𝑖) < 𝑤(𝑖 + 1)}.

There is a function 𝑃𝐽 ∶ 𝑆𝑛 → 𝑆𝐽𝑛 defined bymapping a permutation𝑤 to an increasing rearrange-
ment according to 𝐽, as described in [5, section 2.4]. The following example shouldmake clear how
to obtain the permutation 𝑃𝐽(𝑤).

Example 2.1. Let 𝑛 = 7, 𝐽 = {1, 2, 4, 6} and 𝑤 = 4317625. Therefore, we have to rearrange
increasingly the blocks 431, 76 and 25. It follows that 𝑃𝐽(𝑤) = 1346725.

If 𝑘 ∈ [𝑛 − 1], the Bruhat order† ⩽ on the minuscule quotient 𝑆(𝑘)𝑛 ∶= 𝑆
[𝑛−1]⧵{𝑘}
𝑛 is defined by

setting 𝑢 ⩽ 𝑣 if and only if 𝑢(𝑖) ⩽ 𝑣(𝑖), for all 1 ⩽ 𝑖 ⩽ 𝑘 (see [5, Proposition 2.4.8]). We let 𝑆(𝑛)𝑛 ∶=

𝑆
[𝑛−1]
𝑛 = {𝑒}. The elements of 𝑆(𝑘)𝑛 are called Grassmannian permutations. The Bruhat order on 𝑆𝑛
can be defined by setting

𝑢 ⩽ 𝑣 ⇔ 𝑃[𝑛−1]⧵{𝑘}(𝑢) ⩽ 𝑃[𝑛−1]⧵{𝑘}(𝑣), for all 𝑘 ∈ [𝑛 − 1], (1)

for all 𝑢, 𝑣 ∈ 𝑆𝑛 (see [5, Theorem 2.6.1]). On the subset 𝑆𝐽𝑛 of 𝑆𝑛 we consider the induced order,
and this leads to the definition of Coxeter matroid via themaximality property.

† The Bruhat order on a minuscule quotient of 𝑆𝑛 is also known as Gale order.
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4 BOLOGNINI and SENTINELLI

Definition 2.2. A subset𝑋 ⊆ 𝑆𝐽𝑛 is aCoxeter matroid if the induced subposet {𝑃
𝐽(𝑤𝑥) ∶ 𝑥 ∈ 𝑋} ⊆

𝑆𝐽𝑛 has a unique maximum (equivalently, has a unique minimum) for all 𝑤 ∈ 𝑆𝑛.

For example, if 𝐽 = [𝑛 − 1] ⧵ {𝑘}, then a Coxeter matroid is a matroid of rank 𝑘 on the set [𝑛]
(see [10, section 1.3]). For 𝐽 = ∅ a Coxeter matroid is a flag matroid (see [10, section 1.7]). In Sec-
tion 4, we prove that some Coxeter matroids for 𝐽 = [𝑛 − 1] ⧵ [𝑘] can be realized as barycentric
subdivisions of independence complexes of matroids.
The 𝑘th configuration space of [𝑛] can be identified with the quotient 𝑆[𝑛−1]⧵[𝑘]𝑛 , that is, as sets,

Conf𝑘([𝑛]) ≃ 𝑆
[𝑛−1]⧵[𝑘]
𝑛 .

Then it makes sense to consider on Conf𝑘([𝑛]) the Bruhat order.
On [𝑛]𝑘< ⊆ Conf𝑘([𝑛]) we consider the induced order; this poset is isomorphic to 𝑆

(𝑘)
𝑛 with the

Bruhat order. Then, as posets,

[𝑛]𝑘< ≃ 𝑆
(𝑘)
𝑛 .

For example, in [8]4< we have 3456 ⩽ 4568 and 2568 ≰ 3478. We also repeatedly use the
identification

[𝑛]𝑘< ≃ {𝑋 ⊆ [𝑛] ∶ |𝑋| = 𝑘},

where [𝑛]0< ∶= {∅}. Then, identifying 𝑈 ∶=
𝑛⋃

𝑘=0

[𝑛]𝑘< with (𝑋), it makes sense to write 𝑥 ∩ 𝑦,

𝑥 ∪ 𝑦 and the symmetric difference 𝑥 + 𝑦, for all 𝑥, 𝑦 ∈ 𝑈.
As Conf([𝑛]) ≃

⋃𝑛
𝑖=1 𝑆

[𝑛−1]⧵[𝑖]
𝑛 , for 𝑘 ∈ [𝑛] we have a function 𝑃(𝑘) ∶ Conf([𝑛]) → [𝑛]𝑘<

obtained by gluing the functions 𝑃[𝑛−1]⧵{𝑘} ∶ 𝑆[𝑛−1]⧵[𝑖]𝑛 → 𝑆
(𝑘)
𝑛 for all 𝑖 ∈ [𝑛]. Notice that 𝑥 ⩽ 𝑦 in

the Bruhat order of Conf𝑘([𝑛]) if and only if 𝑃(𝑖)(𝑥) ⩽ 𝑃(𝑖)(𝑦) in [𝑛]𝑖< for all 𝑖 ∈ [𝑘]. For example,
3125 ⩽ 4251 in Conf4([5]). On the other hand, 3152 ≰ 4215 in Conf4([5]), as 𝑃(3)(3152) = 135 ≰

124 = 𝑃(3)(4215).
By our identifications, a matroid of rank 𝑘 on the set [𝑛] is a subset of [𝑛]𝑘<, and a Coxeter

matroid in the quotient 𝑆[𝑛−1]⧵[𝑘]𝑛 is a subset of Conf𝑘([𝑛]). We have defined a matroid by the
maximality property, which is equivalent to the exchange property (see [10, Theorem 1.3.1]):

Definition 2.3 (Exchange property). A set 𝑋 ⊆ [𝑛]𝑘< is a matroid if and only if for all 𝐴, 𝐵 ∈ 𝑋

and 𝑎 ∈ 𝐴 ⧵ 𝐵, there exists 𝑏 ∈ 𝐵 ⧵ 𝐴 such that 𝐴 + {𝑎, 𝑏} ∈ 𝑋.

Let𝑀 ⊆ [𝑛]𝑘< be a matroid and 𝑖 ∈ [𝑛 − 1]. Then {𝑃(𝑖)(𝑥) ∶ 𝑥 ∈ 𝑀} is a matroid, called the shift
of 𝑀 to [𝑛]𝑖< (see [10, section 6.12.1]). The underlying flag matroid of 𝑀 is the union of cosets⨄

𝑥∈𝑀 𝑥(𝑆𝑛)𝑆⧵{𝑠𝑘}, where (𝑆𝑛)𝑆⧵{𝑠𝑘} is the parabolic subgroup of 𝑆𝑛 generated by 𝑆 ⧵ {𝑠𝑘} (see [10,
section 6.6]).

Example 2.4. Let 𝑀 ∶= {13, 34} ⊆ [4]2<. Then the shift of the matroid 𝑀 to [4]3< is the matroid
{123, 134}. The underlying flag matroid of 𝑀 is {1324, 3124, 1342, 3142, 3412, 4312, 3421, 4321} ⊆
Conf4([4]) ≃ 𝑆4.
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LINEAR EXTENSIONS AND SHELLING ORDERS 5

In general, for 𝐼, 𝐽 ⊆ [𝑛 − 1], the shift of a Coxeter matroid𝑀 ⊆ 𝑆𝐽𝑛 to 𝑆
𝐼
𝑛 is the Coxeter matroid

{𝑃𝐼(𝑥) ∶ 𝑥 ∈ 𝑀}.

3 LINEAR EXTENSIONS OF PURE SIMPLICIAL COMPLEXES

Let 𝑘, 𝑛 ∈ ℕ be such that 𝑘 ⩽ 𝑛. We identify a pure simplicial complex 𝑋 of dimension 𝑘 − 1 on
𝑛 vertices with the set of its facets. As any facet of 𝑋 corresponds to a subset of [𝑛] of cardinality
𝑘, we can view the 𝑋 as a subset of [𝑛]𝑘<. On the other hand, any subset of [𝑛]

𝑘
< provides a pure

simplicial complex of dimension 𝑘 − 1 on 𝑛 vertices. Therefore, matroids of rank 𝑘 on the set [𝑛]
are pure simplicial complexes of dimension 𝑘 − 1.

Definition 3.1. An element 𝐿 ∈ Conf([𝑛]𝑘<) is a linear extension if 𝐿𝑖 < 𝐿𝑗 in the Bruhat order
implies 𝑖 < 𝑗, for all 𝑖, 𝑗 ∈ [𝑁(𝐿)].

For example, (357, 268, 468) ∈ Conf([8]3<) is a linear extension. We provide now the definition
of shelling order.

Definition 3.2. An element 𝐶 ∈ Conf([𝑛]𝑘<) is a shelling order if 𝑖 < 𝑗 implies that there exists
𝑧 < 𝑗 such that |𝐶𝑧 ∩ 𝐶𝑗| = |𝐶𝑗| − 1 and 𝐶𝑖 ∩ 𝐶𝑗 ⊆ 𝐶𝑧 ∩ 𝐶𝑗 , for all 𝑖, 𝑗 ∈ [𝑁(𝐶)].

A pure simplicial complex 𝑋 ⊆ [𝑛]𝑘< is said to be shellable if there exists a shelling order 𝐶 ∈

Conf([𝑛]𝑘<) such that 𝑋 = {𝐶1, … , 𝐶𝑁(𝐶)}. It is well-known that, if 𝑋 ⊆ [𝑛]𝑘< is a matroid, then
the lexicographic order on 𝑋 is a shelling order (see [4, Theorems 7.3.3 and 7.3.4]) and a linear
extension of the Bruhat order of 𝑋.
In the following theorem, we prove that for a wide class of simplicial complexes, including

matroids and order ideals in [𝑛]𝑘<, actually any linear extension of the Bruhat order provides a
shelling order. This class is defined by the following property (see [19, Definition 4.1]).

Definition 3.3. A subset 𝑋 ⊆ [𝑛]𝑘< has the quasi-exchange property if, given 𝑥, 𝑦 ∈ 𝑋, then 𝑖 ∈

𝑥 ⧵ 𝑦 and 𝑖 > max(𝑦 ⧵ 𝑥) imply that there exists 𝑗 ∈ 𝑦 ⧵ 𝑥 such that 𝑥 + {𝑖, 𝑗} ∈ 𝑋.

Notice that if 𝑖 ∈ 𝑥, 𝑖 > max(𝑦 ⧵ 𝑥) and 𝑗 ∈ 𝑦 ⧵ 𝑥, then 𝑥 + {𝑖, 𝑗} < 𝑥 in the Bruhat order, for all
𝑥, 𝑦 ∈ [𝑛]𝑘<.

Theorem 3.4. If 𝑋 ⊆ [𝑛]𝑘< has the quasi-exchange property, then any linear extension of 𝑋 is a
shelling order.

Proof. If 𝑘 = 𝑛 the statement is trivial. So wemay assume 𝑘 < 𝑛. Let ℎ ∶= |𝑋| and 𝐿 = (𝐿1, … , 𝐿ℎ)

be a linear extension of 𝑋. If ℎ = 1we have nothing to show. So let ℎ > 1. Assume that (𝐿1, … , 𝐿𝑟)

is a shelling order for 𝑟 < ℎ and consider the linear extension (𝐿1, … , 𝐿𝑟, 𝐿𝑟+1). Let 𝑖 ∈ [𝑟]. As 𝐿 is a
linear extensionwe have that 𝐿𝑖 ≱ 𝐿𝑟+1.We are going to show that there exists 𝐿𝑧 with 𝑧 ∈ [𝑟] such
that |𝐿𝑧 ∩ 𝐿𝑟+1| = |𝐿𝑟+1| − 1 and 𝐿𝑖 ∩ 𝐿𝑟+1 ⊆ 𝐿𝑧 ∩ 𝐿𝑟+1. Let 𝑣 ∶= max{𝑗 ∈ [𝑘] ∶ 𝐿𝑟+1(𝑗) ≠ 𝐿𝑖(𝑗)}.
We have two cases.

(1) 𝐿𝑟+1(𝑣) > 𝐿𝑖(𝑣): in this case 𝐿𝑟+1(𝑣) > 𝐿𝑖(𝑣) = max(𝐿𝑖 ⧵ 𝐿𝑟+1) and 𝐿𝑟+1(𝑣) ∉ 𝐿𝑖 . By the quasi-
exchange property, there exists 𝑦 ∈ 𝐿𝑖 ⧵ 𝐿𝑟+1 such that 𝑌 ∶= 𝐿𝑟+1 + {𝐿𝑟+1(𝑣), 𝑦} ∈ 𝑋. Hence,
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6 BOLOGNINI and SENTINELLI

𝑌 < 𝐿𝑟+1 in the Bruhat order, that is, there exists 𝑧 ∈ [𝑟] such that 𝑌 = 𝐿𝑧, as 𝐿 is a linear
extension of the Bruhat order of 𝑋. Therefore, 𝐿𝑧 has the required properties.

(2) 𝐿𝑟+1(𝑣) < 𝐿𝑖(𝑣): in this case 𝐿𝑖(𝑣) > 𝐿𝑟+1(𝑣) = max(𝐿𝑟+1 ⧵ 𝐿𝑖) and 𝐿𝑖(𝑣) ∉ 𝐿𝑟+1. By the quasi-
exchange property, there exists 𝑦 ∈ 𝐿𝑟+1 ⧵ 𝐿𝑖 such that𝑌 ∶= 𝐿𝑖 + {𝑦, 𝐿𝑖(𝑣)} ∈ 𝑋, and𝑌 < 𝐿𝑖 in
theBruhat order. Then 𝑖 > 1 and there exists 𝑗 ∈ [𝑖 − 1] such that𝑌 = 𝐿𝑗 , as𝐿 is a linear exten-
sion of 𝑋. Moreover, if 𝑢 ∶= max{𝑗 ∈ [𝑘] ∶ 𝐿𝑟+1(𝑗) ≠ 𝐿1(𝑗)}, then 𝐿1(𝑢) < 𝐿𝑟+1(𝑢). In fact,
if 𝐿1(𝑢) > 𝐿𝑟+1(𝑢), then 𝐿𝑟+1(𝑢) = max(𝐿𝑟+1 ⧵ 𝐿1) and there exists 𝑚 ∈ 𝐿𝑟+1 ⧵ 𝐿1 such that
𝑀 ∶= 𝐿1 + {𝑚, 𝐿1(𝑢)} ∈ 𝑋 with 𝑀 < 𝐿1 in the Bruhat order, a contradiction. So, 𝐿𝑟+1(𝑢) >
𝐿1(𝑢) = max(𝐿1 ⧵ 𝐿𝑟+1). By the previous case, there exists 𝑤 ∈ 𝐿𝑟+1 ⧵ 𝐿1 and 𝑤′ ∈ 𝐿1 ⧵ 𝐿𝑟+1
such that𝑤′ < 𝑤 and 𝐿𝑟+1 + {𝑤,𝑤′} ∈ 𝑋. Assume that, for all 𝑗 < 𝑖, there exist𝑤 ∈ 𝐿𝑟+1 ⧵ 𝐿𝑗
and 𝑤′ ∈ 𝐿𝑗 ⧵ 𝐿𝑟+1 such that 𝑤′ < 𝑤 and 𝐿𝑟+1 + {𝑤,𝑤′} ∈ 𝑋. By our inductive assumption,
there exists𝑤 ∈ 𝐿𝑟+1 ⧵ 𝑌 and𝑤′ ∈ 𝑌 ⧵ 𝐿𝑟+1 such that𝑤′ < 𝑤 and𝑊 ∶= 𝐿𝑟+1 + {𝑤,𝑤′} ∈ 𝑋;
therefore𝑊 < 𝐿𝑟+1 in the Bruhat order. This implies that there exists 𝑧 ∈ [𝑟] such that𝑊 =

𝐿𝑧. Notice that𝑤 ∉ 𝐿𝑖; in fact, as 𝑌 = 𝐿𝑖 + {𝐿𝑖(𝑣), 𝑦}, if𝑤 ∈ 𝐿𝑖 we have that𝑤 = 𝐿𝑖(𝑣) ∉ 𝐿𝑟+1,
a contradiction. Then |𝐿𝑧 ∩ 𝐿𝑟+1| = |𝐿𝑟+1| − 1 and 𝐿𝑖 ∩ 𝐿𝑟+1 ⊆ 𝐿𝑧 ∩ 𝐿𝑟+1. □

Corollary 3.5. Let 𝑋 ⊆ [𝑛]𝑘< be an order ideal or a matroid. Then any linear extension of 𝑋 is a
shelling order.

Proof. Clearly any matroid has the quasi-exchange property. Moreover by [19, Theorem 4.11], any
order ideal of [𝑛]𝑘< has the quasi-exchange property. So, the result follows by Theorem 3.4. □

Remark 3.6. Recall that there exist matroids that are not order ideals, for example, the nonrep-
resentable ones. Analogously, by the maximality property of matroids, nonprincipal order ideals
are not matroids.

Remark 3.7. In a private communication, J. A. Samper pointed out to us that the statement of
Corollary 3.5 for matroids can be deduced by combining [1, Theorem 1.3] and [19, Theorem 4.14].

We formalize now a notion of isomorphism between shelling orders. A permutation 𝜎 ∈ 𝑆𝑛
induces a function

𝜎 ∶ Conf
(
[𝑛]𝑘<

)
→ Conf

(
[𝑛]𝑘<

)
,

defined by 𝜎(𝑋) = ((𝑃(𝑘)◦𝜎)(𝑋1), … , (𝑃(𝑘)◦𝜎)(𝑋𝑘)), for all 𝑋 ∈ Conf([𝑛]𝑘<), where 𝜎 ∶ [𝑛]𝑘< →

Conf𝑘([𝑛]) is the function defined by 𝜎(𝑥) = (𝜎(𝑥1), … , 𝜎(𝑥𝑘)), for all 𝑥 ∈ [𝑛]𝑘<.

Definition 3.8. Two elements 𝐴, 𝐵 ∈ Conf([𝑛]𝑘<) are isomorphic if there exists 𝜎 ∈ 𝑆𝑛 such that
𝜎(𝐴) = 𝐵.

Essentially, two shelling orders are isomorphic if they are the same up to relabeling. For exam-
ple, all shelling orders inConf2([𝑛]𝑘<) are isomorphic; on the other hand, the shelling orders𝐴1 ∶=

(123, 124, 125), 𝐴2 ∶= (123, 124, 135) and 𝐴3 ∶= (123, 124, 145) are pairwise not isomorphic in
Conf3([5]

3
<).

In the following example, we observe that there exist linear extensions of a matroid that are not
isomorphic to a lexicographic order.

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12890 by C

ochraneItalia, W
iley O

nline L
ibrary on [11/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LINEAR EXTENSIONS AND SHELLING ORDERS 7

Example 3.9. The Bruhat interval [12, 24] = {12, 13, 14, 23, 24} ⊆ [4]2< is a matroid and it has two
linear extensions: the lexicographic order and 𝐿 ∶= (12, 13, 23, 14, 24). As the linear extension 𝐿 is
a shelling order, 𝜎(𝐿) is a shelling order; it is different from the lexicographic order, for all 𝜎 ∈ 𝑆4.

In the following example, we show that there exist shelling orders of a matroid not isomorphic
to any linear extension.

Example 3.10. The tuple 𝐶 ∶= (12, 23, 13, 14, 24) is a shelling order for the matroid [12, 24] ⊆
[4]2< and 𝜎(𝐶) is not a linear extension, for all 𝜎 ∈ 𝑆4.

4 BARYCENTRIC SUBDIVISIONS AND FLAG SHELLABILITY

The barycentric subdivision of a simplicial complex is the order complex of its face poset; see for
instance [11]. Let𝑋 ⊆ [𝑛]𝑘< and𝐹𝑋 be the face poset of𝑋; we denote by(𝐹𝑋) the set ofmaximal
chains of𝐹𝑋 . There exists an injective function𝐵 ∶ (𝐹𝑋) → Conf𝑘([𝑛]) defined as follows. Let
𝑐 ∈ (𝐹𝑋); then 𝑐 corresponds to a flag {𝑥1} ⊂ {𝑥1, 𝑥2} ⊂ … ⊂ {𝑥1, … , 𝑥𝑘} of subsets of the facet
{𝑥1, … , 𝑥𝑘}< ∈ 𝑋, where {𝑥1, … , 𝑥𝑘}< ∈ [𝑛]𝑘< is the tuple obtained by ordering 𝑥1, … , 𝑥𝑘 . Hence,
we set

𝐵(𝑐) ∶= (𝑥1, … , 𝑥𝑘) ∈ Conf𝑘([𝑛]).

Therefore, maximal chains in 𝐹𝑋 with maximum 𝑥 = (𝑥1, … , 𝑥𝑘) ∈ 𝑋 ⊆ [𝑛]𝑘< are in bijection
with permutations of the set {𝑥1, … , 𝑥𝑘}. We introduce a new definition of barycentric subdivi-
sion (𝑋) of 𝑋 as a union of cosets of the symmetric group 𝑆𝑘, viewing elements of [𝑛]𝑘< as
permutations:

(𝑋) ∶=
⨄
𝑥∈𝑋

{𝑥𝜎 ∶ 𝜎 ∈ 𝑆𝑘} ⊆ Conf𝑘([𝑛]).

In particular, the barycentric subdivision of [𝑛]𝑘< is Conf𝑘([𝑛]).
The standard way to subdivide barycentrically a matroid in [𝑛]𝑘< provides a simplicial complex

in a suitable [𝑚]𝑘<, which is almost never amatroid. The following theorem shows that barycentric
subdivisions of matroids, in our interpretation, are Coxeter matroids.

Theorem 4.1. A simplicial complex𝑋 ⊆ [𝑛]𝑘< is a matroid if and only if the barycentric subdivision
(𝑋) ⊆ Conf𝑘([𝑛]) is a Coxeter matroid.

Proof. Let (𝑋) be a Coxeter matroid; then 𝑋 = {𝑃(𝑘)(𝑦) ∶ 𝑦 ∈ (𝑋)} is the shift of (𝑋) to [𝑛]𝑘<
and so it is a matroid (see [10, Lemma 6.12.1]).
Conversely,(𝑋) is the shift toConf𝑘([𝑛]) of the underlying flag matroid of𝑋, so it is a Coxeter

matroid (see [10, Lemmas 6.6.1 and 6.6.2]). □

Example 4.2. An interval [𝑥, 𝑦] ⊆ [𝑛]𝑘< is a matroid and its barycentric subdivision is the interval
[𝑥, 𝑦𝑘𝑦𝑘−1 … 𝑦1] ⊆ Conf𝑘([𝑛]), which is a Coxeter matroid. In general, it is proved in [12] that any
Bruhat interval of a parabolic quotient of a finite Coxeter group is a Coxeter matroid.
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8 BOLOGNINI and SENTINELLI

We now provide a notion of shellability for subsets of Conf𝑘([𝑛]), which agrees with the
standard notion in case of barycentric subdivisions.
For 𝑦 ∈ 𝑌 ⊆ Conf𝑘([𝑛]) let us define

𝑃(𝑦) ∶= {𝑃(1)(𝑦), … , 𝑃(𝑘)(𝑦)}

and the simplicial complex Δ(𝑌) whose set of facets is {𝑃(𝑦) ∶ 𝑦 ∈ 𝑌}.

Definition 4.3. We say that a set 𝑌 ⊆ Conf𝑘([𝑛]) is flag shellable if Δ(𝑌) is shellable.

Let𝑌 = {𝑎, 𝑏, …} ⊆ Conf𝑘([𝑛]).We say that (𝑎, 𝑏, …) is a flag shelling order for𝑌 if (𝑃(𝑎), 𝑃(𝑏), …)
is a shelling order for Δ(𝑌).

Example 4.4. Consider the set 𝑌 = {132, 435} ⊆ Conf3([5]). Then Δ(𝑌) = {{1, 13, 123},

{4, 34, 345}}; hence it is not flag shellable. On the other hand, 𝑌 = {142, 143} ⊆ Conf3([4]) is flag
shellable, because ({1, 14, 124}, {1, 14, 134}) is a shelling order.

We observe that, if 𝑋 ⊆ [𝑛]𝑘<, then the simplicial complex Δ((𝑋)) is the order complex of the
face poset 𝐹𝑋 . Therefore, according to Definition 4.3, the barycentric subdivision (𝑋) is flag
shellable if and only if the order complex of𝐹𝑋 is shellable. The following theorem is the analogue
of Corollary 3.5 for order ideals of Conf𝑘([𝑛]).

Theorem 4.5. Let 𝑌 ⊆ Conf𝑘([𝑛]) be an order ideal; then any linear extension of 𝑌 is a flag
shelling order.

Proof. Let ℎ ∶= |𝑌| and 𝐿 ∶= (𝐿1, … , 𝐿ℎ) be a linear extension of 𝑌. If ℎ = 1 the result is triv-
ial. Let ℎ ⩾ 2 and assume (𝐿1, … , 𝐿ℎ−1) is a flag shelling order. Let 𝑖 ∈ [ℎ − 1]. We have that
𝐿ℎ ≠ (1, 2, … , 𝑘) and 𝐿𝑖 ≱ 𝐿ℎ, as 𝐿 is a linear extension. Notice that there exists 𝑟 ∈ 𝐷𝑅(𝐿ℎ) such
that 𝑃(𝑟)(𝐿𝑖) ≠ 𝑃(𝑟)(𝐿ℎ). In fact, if 𝑃(𝑟)(𝐿𝑖) = 𝑃(𝑟)(𝐿ℎ) for all 𝑟 ∈ 𝐷𝑅(𝐿ℎ), then 𝐿ℎ = 𝐿𝑖 , by [5, Corol-
lary 2.6.2], a contradiction.Hence, let 𝑗 ∶= min{𝑟 ∈ 𝐷𝑅(𝐿ℎ) ∶ 𝑃

(𝑟)(𝐿𝑖) ≠ 𝑃(𝑟)(𝐿ℎ)}. If 𝑗 < 𝑘wehave
that 𝐿ℎ𝑠𝑗 ∈ 𝑋, because 𝐿ℎ > 𝐿ℎ𝑠𝑗 ∈ Conf𝑘([𝑛]) and 𝑋 is an order ideal, and then there exists
𝑧 ∈ [ℎ − 1] such that 𝐿ℎ𝑠𝑗 = 𝐿𝑧. Moreover, 𝑃(𝑗)(𝐿ℎ) ∉ 𝑃(𝐿𝑖) and |𝑃(𝐿𝑧) ∩ 𝑃(𝐿ℎ)| = |𝑃(𝐿ℎ)| − 1.
Therefore (𝐿1, … , 𝐿ℎ) is a flag shelling order for 𝑌. If 𝑗 = 𝑘 then the result follows analo-
gously, by considering 𝐿𝑧 = 𝑃[𝑛−1]⧵[𝑘](𝐿ℎ𝑠𝑗) ∈ Conf𝑘([𝑛]), as 𝑃[𝑛−1]⧵[𝑘] is order preserving (see
[5, Proposition 2.5.1]) and then 𝐿𝑧 ⩽ 𝐿ℎ𝑠𝑗 < 𝐿ℎ. □

Although principal order ideals in Conf𝑘([𝑛]) are Coxeter matroids by [12, Theorem 6.3], the
result of Theorem 4.5 is not true for all Coxeter matroids in Conf𝑘([𝑛]), as the following example
shows.

Example 4.6. Let 𝑌 ∶= {24, 42, 34, 43} ⊆ Conf2([4]). This is the barycentric subdivision of
the matroid {24, 34} ⊆ [4]2<, hence it is a Coxeter matroids by Theorem 4.1. It is also a
Bruhat interval. We have that Δ(𝑌) = {{2, 24}, {4, 24}, {3, 34}, {4, 34}}. The linear extensions of
𝑌 are 𝐿1 ∶= (24, 34, 42, 43) and 𝐿2 ∶= (24, 42, 34, 43); but ({2, 24}, {3, 34}, {4, 24}, {3, 34}) and
({2, 24}, {4, 24}, {3, 34}, {4, 34}) are not shelling orders, and hence 𝐿1 and 𝐿2 are not flag
shelling orders.
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LINEAR EXTENSIONS AND SHELLING ORDERS 9

In the following example, we list the flag shelling orders provided by the linear extensions of
an order ideal of Conf2([4]).

Example 4.7. Let 𝑌 ∶= {12, 13, 21, 23, 14} ⊆ Conf2([4]). This is an order ideal and
Δ(𝑌) = {{1, 12}, {1, 13}, {2, 12}, {2, 23}, {1, 14}}. The linear extensions of 𝑌 are 𝐿1 ∶=

(12, 13, 21, 23, 14), 𝐿2 ∶= (12, 21, 13, 23, 14), 𝐿3 ∶= (12, 13, 21, 14, 23), 𝐿4 ∶= (12, 21, 13, 14, 23)

and 𝐿5 ∶= (12, 13, 14, 21, 23). They correspond to the following shelling orders of Δ(𝑌):

(1) ({1, 12}, {1, 13}, {2, 12}, {2, 23}, {1, 14}),
(2) ({1, 12}, {2, 12}, {1, 13}, {2, 23}, {1, 14}),
(3) ({1, 12}, {1, 13}, {2, 12}, {1, 14}, {2, 23}),
(4) ({1, 12}, {2, 12}, {1, 13}, {1, 14}, {2, 23}),
(5) ({1, 12}, {1, 13}, {1, 14}, {2, 12}, {2, 23}).

Hence, 𝐿1, 𝐿2, 𝐿3, 𝐿4 and 𝐿5 are flag shelling orders of 𝑌.

5 PROMOTION AND EVACUATION OF SHELLING ORDERS

In this section, we introduce promotion and evacuation of shelling orders. Promotion and evac-
uation functions, 𝜕𝑃 and 𝜖𝑃 respectively, can be defined on the set of linear extensions of a finite
poset 𝑃 (see [23]); we consider the generalizations 𝜕𝐺 and 𝜖𝐺 for a labeled graph 𝐺, introduced in
[18]. They coincide with 𝜕𝑃 and 𝜖𝑃 if 𝐺 is the Hasse diagram of 𝑃.
For the following construction see [18]. Let ℎ ∈ ℕ. Given a graph 𝐺 = (𝑉, 𝐸) such that𝑉 = [ℎ],

define the track 𝑇𝐺 = {𝑣1, … , 𝑣𝑟} ⊆ [ℎ] by:

(1) 𝑣1 = 1,
(2) for 𝑖 ⩾ 2, 𝑣𝑖 = min{𝑗 ∈ [ℎ] ∶ 𝑗 > 𝑣𝑖−1, {𝑣𝑖−1, 𝑗} ∈ 𝐸} if this minimum exists, otherwise

𝑟 = 𝑖 − 1.

The promotion of the labeled graph 𝐺 is the permutation 𝜕𝐺 ∈ 𝑆ℎ defined by:

(1) 𝜕𝐺(𝑖) = 𝑖 − 1, if 𝑖 ∈ [ℎ] ⧵ 𝑇𝐺 ;
(2) 𝜕𝐺(𝑣𝑗) = 𝑣𝑗+1 − 1, if 𝑗 ∈ [𝑟 − 1];
(3) 𝜕𝐺(𝑣𝑟) = ℎ.

To introduce promotion and evacuation of shelling orders, we consider the so-called dual graph
of 𝑋 ⊆ [𝑛]𝑘< (for an overview on dual graphs, see [3]).

Definition 5.1. Let 𝑋 ⊆ [𝑛]𝑘<. The dual graph 𝐷(𝑋) of 𝑋 is the graph whose vertex set is 𝑋 and
{𝑥, 𝑦} is an edge if and only if |𝑥 ∩ 𝑦| = 𝑘 − 1, for all 𝑥, 𝑦 ∈ 𝑋.

An element 𝐶 ∈ Conf([𝑛]𝑘<) uniquely determines a simplicial complex {𝐶1, … , 𝐶ℎ} ⊆ [𝑛]𝑘<,
where ℎ ∶= 𝑁(𝐶). The dual graph of 𝐶, denoted by 𝐷(𝐶), is the graph ([ℎ], 𝐸), where {𝑖, 𝑗} ∈ 𝐸 if
and only if |𝐶𝑖 ∩ 𝐶𝑗| = 𝑘 − 1, for all 𝑖, 𝑗 ∈ [ℎ]. Let us define a function

𝜕𝐷 ∶ Conf([𝑛]𝑘<) → Conf([𝑛]𝑘<)
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10 BOLOGNINI and SENTINELLI

F IGURE 1 Dual graph of the Björner’s example. The labeling is given by the shelling order 𝐶 of Example 5.2.

by setting 𝜕𝐷𝐶 ∶= 𝜕𝐷(𝐶)𝐶, where, for a permutation 𝜎 ∈ 𝑆ℎ, we let

𝜎𝐶 =
(
𝐶𝜎−1(1), … , 𝐶𝜎−1(ℎ)

)
.

Notice that 𝜕𝐷𝐶 is simply obtained from 𝐶 by changing the positions of the elements in the track.
Moreover, 𝐶 ∈ Confℎ([𝑛]

𝑘
<) implies 𝜕𝐷𝐶 ∈ Confℎ([𝑛]

𝑘
<), for all ℎ ⩾ 1.

Similarly, we can define

𝜕𝐻 ∶ Conf([𝑛]𝑘<) → Conf([𝑛]𝑘<),

by setting 𝜕𝐻𝐶 ∶= 𝜕𝐻(𝐶)𝐶, where 𝐻(𝐶) = ([𝑁(𝐶)], 𝐸) and {𝑖, 𝑗} ∈ 𝐸 if and only if {𝐶𝑖, 𝐶𝑗} is an
edge of the Hasse diagram of the Bruhat order, for all 𝑖, 𝑗 ∈ [𝑁(𝐶)].

Example 5.2. Let 𝑘 = 3 and 𝑛 = 6. Consider the so-called Björner’s example (see [4, Exercise
7.7.1]), a 2-dimensional shellable simplicial complex obtained by adding a suitable facet to the
minimal triangulation of the real projective plane. We consider the shelling order

𝐶 ∶= (123, 125, 126, 234, 235, 134, 136, 145, 246, 356, 456);

the dual graph of 𝐶 is depicted in Figure 1. The dual graph track is 𝑇𝐷(𝐶) = {1, 2, 3, 7, 10, 11} and,
in Figure 1, it is denoted by overlined labels. Then 𝜕𝐷(𝐶) = (1, 2, 6, 3, 4, 5, 9, 7, 8, 10, 11) ∈ 𝑆11. We
have that

𝜕𝐷𝐶 = (123, 125, 234, 235, 134, 126, 145, 246, 136, 356, 456)

and it is not difficult to see that 𝜕𝐷𝐶 is a shelling order. The Hasse track of 𝐶 is 𝑇𝐻(𝐶) =
{1, 2, 3, 7, 9, 10, 11} and then 𝜕𝐻(𝐶) = (1, 2, 6, 3, 4, 5, 8, 7, 9, 10, 11) ∈ 𝑆11. Hence,

𝜕𝐻𝐶 = (123, 125, 234, 235, 134, 126, 145, 136, 246, 356, 456).
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LINEAR EXTENSIONS AND SHELLING ORDERS 11

F IGURE 2 Hasse diagram of the Björner’s example. The labeling is given by the shelling order 𝐶 of
Example 5.2.

The Hasse diagram of 𝐶 is depicted in Figure 2, where the overlined vertices correspond to the
Hasse track. Notice that 𝐶 is a linear extension and then 𝜕𝐻𝐶 is a linear extension; it is also a
shelling order.

Given a graph 𝐺 = (𝑉, 𝐸) such that 𝑉 = [ℎ], for 𝑖 ∈ [ℎ − 1] we define a permutation 𝑠𝐺
𝑖
∈ 𝑆ℎ

by setting

𝑠𝐺
𝑖
=

{
𝑠𝑖, if {𝑖, 𝑖 + 1} ∉ 𝐸;
𝑒, otherwise,

where 𝑠𝑖 is the simple transposition 12… (𝑖 + 1)𝑖 …ℎ. Then, for 𝐶 ∈ Confℎ([𝑛]
𝑘
<) and 𝑖 ∈ [𝑁(𝐶) −

1], we define 𝑠𝐷
𝑖
𝐶 ∶= 𝑠

𝐷(𝐶)
𝑖

𝐶. By [18, Lemma 1], we have that

𝜕𝐷𝐶 = 𝑠𝐷
ℎ−1

⋯ 𝑠𝐷1 𝐶, (2)

for all 𝐶 ∈ Confℎ([𝑛]
𝑘
<).

The following result essentially states that, if 𝐶 is a shelling order, then 𝑠𝐷
𝑖
𝐶 is a shelling order,

for all 1 ⩽ 𝑖 ⩽ 𝑁(𝐶) − 1.

Proposition 5.3. Let 𝐶 ∈ Confℎ([𝑛]
𝑘
<) be a shelling order, with ℎ ⩾ 3. If |𝐶ℎ−1 ∩ 𝐶ℎ| < 𝑘 − 1 then

(𝐶1, … , 𝐶ℎ, 𝐶ℎ−1) is a shelling order.

Proof. Consider 𝑖 < ℎ − 1. For the pair (𝐶𝑖, 𝐶ℎ−1) we have nothing to show. For the pair
(𝐶𝑖, 𝐶ℎ), there exists 𝑥 ∈ 𝐶ℎ ⧵ 𝐶𝑖 and 𝑗 < ℎ such that 𝐶𝑗 = 𝐶ℎ + {𝑥, 𝑦}, for some 𝑦 ∈ [𝑛]. By our
assumption, 𝑗 ≠ ℎ − 1 and the shellability condition on this pair follows.
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12 BOLOGNINI and SENTINELLI

It remains to verify the shellability condition for (𝐶ℎ, 𝐶ℎ−1). By the fact that𝐶 is a shelling order
and by our assumption, there exists 𝑧 ∈ 𝐶ℎ ⧵ 𝐶ℎ−1 and 𝑗 < ℎ − 1 such that 𝐶𝑗 = 𝐶ℎ + {𝑧, 𝑦}, for
some 𝑦 ∈ [𝑛]. As 𝐶 is a shelling order, there exists 𝑐 ∈ 𝐶ℎ−1 ⧵ 𝐶𝑗 and 𝑟 < ℎ − 1 such that 𝐶𝑟 =
𝐶ℎ−1 + {𝑐, 𝑣}, for some 𝑣. As 𝑐 ∉ 𝐶𝑗 = 𝐶ℎ + {𝑧, 𝑦} and 𝑐 ≠ 𝑧, hence 𝑐 ∈ 𝐶ℎ−1 ⧵ 𝐶ℎ and𝐶𝑟 = 𝐶ℎ−1 +

{𝑐, 𝑣}, with 𝑟 < ℎ − 1, and this concludes the proof. □

The statement of the following theorem is the main result of this section.

Theorem 5.4. Let 𝐶 ∈ Conf([𝑛]𝑘<) be a shelling order. Then the promotion 𝜕𝐷𝐶 is a shelling order.

Proof. The result is a direct consequence of (2) and Proposition 5.3. □

In the following example we show that Theorem 5.4 does not hold for 𝜕𝐻 .

Example 5.5. Let 𝐶 ∶= (235, 234, 246) ∈ Conf([6]3<); then 𝐶 is a shelling order and 𝜕𝐷𝐶 = 𝐶; on
the other hand, 𝜕𝐻𝐶 = (235, 246, 234) is not a shelling order.

Remark 5.6. Let𝑋 ⊆ [𝑛]𝑘< be a pure simplicial complex. Notice that {𝑥, 𝑦} is an edge of𝐷(𝑋) if and
only if there exists a reflection 𝑡 ∈ 𝑆𝑛 such that 𝑥 = 𝑃(𝑘)(𝑡𝑦), as elements of 𝑆𝑛, that is,𝐷(𝑋) is the
undirected Bruhat graph of 𝑋 (for a definition of the Bruhat graph in the parabolic setting, see,
e.g., [17, Definition 2.5]). Hence, if {𝑥, 𝑦} is an edge of 𝐷(𝑋), the elements 𝑥 and 𝑦 are comparable
in the Bruhat order.

In the next result, we prove that if a linear extension 𝐿 of𝑋 ⊆ [𝑛]𝑘< is a shelling order, promotion
of 𝐿 viewed as a linear extension and promotion of 𝐿 viewed as a shelling order coincide, under a
suitable assumption.

Proposition 5.7. Let 𝐿 ∈ Conf([𝑛]𝑘<) be a linear extension. Assume that the Hasse diagram of 𝐿 is
a subgraph of the dual graph of 𝐿. Then 𝜕𝐷𝐿 = 𝜕𝐻𝐿.

Proof. Recall that the promotion of 𝐿 as a linear extension is the linear extension 𝜕𝐻𝐿. By our
assumption, if 𝐿𝑖 ⊲ 𝐿𝑗 then {𝑖, 𝑗} is an edge of𝐷(𝐿), for all 𝑖, 𝑗 ∈ [𝑁(𝐿)]. We are going to prove that
the dual graph track 𝑇𝐷(𝐿) = {𝑖1, … , 𝑖𝑟} is equal to the Hasse track 𝑇𝐻(𝐿) = {𝑗1, … , 𝑗𝑠}.
If 𝑟 = 1, then 𝑇𝐷(𝐿) = {𝐿1} = 𝑇𝐻(𝐿), because𝐻(𝐿) is a subgraph of 𝐷(𝐿). Hence we may assume

𝑟 > 1. Suppose that 𝑖𝑎 = 𝑗𝑎, for some 𝑎 ⩽ 𝑟 − 1. Hence 𝑖𝑎+1 ⩽ 𝑗𝑎+1, because𝐻(𝐿) is a subgraph of
𝐷(𝐿). Assume 𝑖𝑎+1 < 𝑗𝑎+1. As {𝑖𝑎, 𝑖𝑎+1} is an edge of 𝐷(𝐿) and 𝐿 is a linear extension, 𝐿𝑖𝑎 < 𝐿𝑖𝑎+1 .
From the fact that {𝑖𝑎, 𝑖𝑎+1} is not an edge of 𝐻(𝐿) (i.e., 𝐿𝑖𝑎 < 𝐿𝑖𝑎+1 is not a covering relation),
there exists 𝑧 ∈ [ℎ] such that 𝐿𝑖𝑎 ⊲ 𝐿𝑧 < 𝐿𝑖𝑎+1 . As 𝐿 is a linear extension, 𝑧 < 𝑖𝑎+1. But this is a
contradiction, because in this way {𝑖𝑎, 𝑧} is an edge of 𝐷(𝐿), against the fact that 𝑖𝑎+1 ∈ 𝑇𝐷(𝐿).
Therefore 𝑖𝑎+1 = 𝑗𝑎+1. Starting with 𝑎 = 1 and proceeding inductively, we proved that 𝑖𝑎 = 𝑗𝑎 for
every 𝑎 ∈ [𝑟], that is, the first elements of the Hasse track 𝑇𝐻(𝐿) are the elements of the dual track
𝑇𝐷(𝐿). As𝐻(𝐿) is a subgraph of 𝐷(𝐿), 𝑟 = 𝑠 and 𝑇𝐷(𝐿) = 𝑇𝐻(𝐿). □

For order ideals or intervals of [𝑛]𝑘<, the assumption of Proposition 5.7 is fulfilled.

Corollary 5.8. Let 𝑋 ⊆ [𝑛]𝑘< be an order ideal or an interval. If 𝐿 is a linear extension of 𝑋 then
𝜕𝐷𝐿 = 𝜕𝐻𝐿.
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LINEAR EXTENSIONS AND SHELLING ORDERS 13

Proof. If 𝑋 ⊆ [𝑛]𝑘< is an order ideal or an interval then the Hasse diagram 𝑋 is a subgraph of the
dual graph of 𝑋. In fact, as elements of 𝑆𝑛, 𝑥 ⊲ 𝑦 in 𝑋 if and only if 𝑥 = 𝑡𝑦, for some reflection
𝑡 ∈ 𝑆𝑛 (see [5, Theorem 2.5.5]). Then the result follows by Proposition 5.7. □

Remark 5.9. Any Bruhat interval 𝐼 in [𝑛]𝑘< is a matroid. Then by Theorem 3.4, a linear extension
of 𝐼 is a shelling order. By Corollary 5.8, the promotion of a linear extension 𝐿 of 𝐼 is equal to the
promotion of 𝐿 as shelling order.

In the following example, we show that Proposition 5.7 does not hold if𝐻(𝐿) is not a subgraph
of 𝐷(𝐿). Moreover, it shows that this assumption does not hold in general for matroids.

Example 5.10. Consider the linear extension 𝐿 ∶= (123, 124, 135, 145). This is a linear extension
of a matroid that is not a Bruhat interval. We have that 𝜕𝐻𝐿 = 𝐿 but 𝜕𝐷𝐿 = (123, 135, 124, 145).
Hence, 𝜕𝐷𝐿 ≠ 𝜕𝐻𝐿.

We end the article by introducing the evacuation function with respect to the dual graph. Let
ℎ ⩾ 1 and 𝑟 ∈ [ℎ]; the 𝑟-promotion 𝜕𝑟,𝐷 ∶ Confℎ([𝑛]

𝑘
<) → Confℎ([𝑛]

𝑘
<) is defined as follows:

𝜕𝑟,𝐷𝐶 = 𝜕𝐷(𝐶1 …𝐶𝑟)𝐶𝑟+1 …𝐶ℎ,

for all 𝐶 ∈ Confℎ([𝑛]
𝑘
<). The evacuation 𝜖𝐷 ∶ Conf([𝑛]𝑘<) → Conf([𝑛]𝑘<) is the function defined

by setting

𝜖𝐷𝐶 =
(
𝜕2,𝐷◦… ◦𝜕ℎ−1,𝐷◦𝜕ℎ,𝐷

)
(𝐶),

for all 𝐶 ∈ Confℎ([𝑛]
𝑘
<), ℎ ⩾ 1. The function 𝜖𝐷 is an involution, as stated in [18, Theorem 1]. The

last theorem follows directly from Theorem 5.4 and the definition of 𝜖𝐷 .

Theorem 5.11. Let𝐶 ∈ Conf([𝑛]𝑘<) be a shelling order. Then the evacuation 𝜖𝐷𝐶 is a shelling order.
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