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A B S T R A C T

The reuse of reclaimed wastewater is increasingly recognized as a viable alternative water source for irrigation.
Its application, whether direct or indirect, impacts several interconnected compartments, including groundwater,
surface water, soil, crops, and humans. Reclaimed wastewater provides essential resources for crops, like water
and nutrients. However, it also introduces pathogens, and contaminants of emerging concern (CECs), defined as
chemicals that may pose risks to human health and ecosystems but are not yet fully regulated, such as phar-
maceuticals and personal care products, among others. Additionally, reclaimed wastewater may contain
antibiotic-resistant bacteria (ARBs) and disinfection by-products (DBPs), all of which present potential health
and environmental risks. Therefore, regulatory bodies stress the need for preventive risk assessments to ensure
safe reuse.
This paper critically reviews available models for assessing the impacts of reclaimed wastewater reuse in

agriculture. It identifies gaps in current modelling approaches and outlines future research directions. Key areas
requiring further investigation include the fate and transfer of CECs, ARBs and DBPs, and the co-occurrence of
multiple risks in such interconnected systems, especially in the indirect reuse. To address these gaps, we pro-
posed a simplified approach to integrate three types of risk associated with CECs in indirect reuse, focusing on
risks posed by antibiotics and other pharmaceuticals: human health risk, environmental risk and risk from
antibiotic resistance development. This approach aids in identifying the most critical endpoints within the One
Health approach, supporting (i) CECs prioritization in regulations based on their critical endpoints and (ii) the
adoption of CEC-specific mitigation measures.

1. Introduction

The growing urbanization and the increasing establishment of water-
demanding lifestyles has boosted water withdrawals. Besides, climate
change exacerbates water scarcity. The convergence of these two issues
emphasizes the pressing need for implementing policies for a sustainable
water management. Agriculture is the most water-intensive sector
(Mojid et al., 2021), and reuse of reclaimed wastewater has been
recognized as a reliable alternative to conventional freshwater sources
for irrigation (Jaramillo and Restrepo, 2017).

Reclaimed wastewater might be loaded with a variety of contami-
nants, including pathogens, such as bacteria, viruses and parasites,
which can directly cause diseases in humans and animals, and con-
taminants of emerging concern (CECs), defined as a broad category of

chemicals that have been detected in the environment and may pose
risks to human health or ecosystems but are not yet fully regulated
(Kumar et al., 2022). They include chemicals such as pharmaceuticals,
personal care products, endocrine disruptors, pesticides, per- and poly-
fluoroalkyl substances, among others (NORMAN network website).
Additionally, antibiotic resistant bacteria (ARB) and antibiotic resistant
genes (ARGs), which develop resistance due to the presence of antibi-
otics in the wastewater, pose significant public health challenges, while
disinfection by-products (DBPs), formed during wastewater disinfection
processes, may include potentially toxic compounds, like tri-
halomethanes and nitrosamines. Finally, conventional contaminants
such as heavy metals, salts, organic matter and suspended solids can be
present in reclaimed wastewater. This mixture of contaminants com-
plicates the management of reclaimed wastewater for irrigation (Yalin
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et al., 2023).
Based on where the wastewater treatment plant (WWTP) effluent is

discharged, the agricultural reuse can be (i) indirect, when the effluent is
discharged into a surface water recipient and irrigation water is derived
downstream the point of discharge, or (ii) direct, when the effluent is
directly used for crops irrigation, through a dedicated distribution
network, without any dilution with freshwater (Kesari et al., 2021).
Understanding this distinction is crucial, as it directly influences the
quality of the irrigation water. In fact, in case of direct reuse, the irri-
gation water quality corresponds exactly to the quality of the WWTP
effluent, enabling straightforward quality control by managing effluent
quality. Conversely, indirect reuse poses greater complexity in control-
ling the irrigation water quality, since it depends on diverse factors,
including effluent and freshwater qualities, dilution factor achieved by
the receiving surface water and hydrological conditions (Jeong et al.,
2016).

In both cases, it emerges that the agricultural reuse of reclaimed
wastewater inherently connects water in numerous compartments (e.g.,
WWTP, surface water, groundwater, soil, crop), leading to a series of
impacts, either positive or negative, which need to be evaluated. As for
positive impacts, besides alleviating the water stress, the reuse of
reclaimed wastewater provides a source of nutrients (e.g., nitrogen and
phosphorus) to enhance agricultural productivity. Conversely, the
presence of a wide range of contaminants (e.g. CECs, ARB, DBPs, heavy
metals) in WWTPs effluent, even after extensive treatments, favors the
cross-contamination of different compartments (Delli Compagni et al.,
2020). For example, contaminants can accumulate in soil, causing sali-
nization and changes to the soil properties (Khaskhoussy et al., 2022).
From the soil, these contaminants can either be uptaken and accumu-
lated by crops, potentially affecting their growth and entering the food
chain (Seyoum et al., 2022a), or contaminate groundwater, where
aquifers are present (Dahmouni et al., 2022), with consequences on the
safety of drinking water supplies. Finally, the consumption of crops
contaminated by pathogens, heavy metals and CECs, could imply a not
negligible risk for human health (Penserini et al., 2023). Beyond direct
health impacts, the social perception of reclaimed wastewater reuse, as
well as the associated costs and energy requirements for the imple-
mentation of reuse, especially in direct reuse scenarios, are also
important to be considered.

The One Health approach (WHO, 2022) underscores the intercon-
nectedness of human, animal, and environmental health. This perspec-
tive is crucial in the context of agricultural reuse of reclaimed
wastewater, as it recognizes that contaminants in wastewater can
simultaneously affect multiple compartments. Recognizing these inter-
connected risks, the European Union has established quality standards
for reclaimed wastewater intended for direct reuse in irrigation, setting
four quality classes based on physical, chemical, and microbiological
criteria (EU Commission, 2020). Although this regulation emphasizes
the adoption of preventive risk assessments, the specific methods for
integrating multiple, co-occurring risks across interconnected systems
remain undefined. For example, environmental risk assessments are
being increasingly applied to WWTP effluent discharge (Ianes et al.,
2023). These assessments often refer to regulations such as the EU
Watch List (Cortes et al., 2022), which identifies specific CECs that must
be monitored. However, current risk assessment procedures often
consider individual risks in isolation, which is insufficient for the holistic
management required by the One Health approach (Ardiyanti et al.,
2024a). Hence, it becomes fundamental to understand the status of
available models for impacts assessment, especially for the integrated
risk quantification models.

This literature review first aims to present an overview of the
available models to assess the impacts of reclaimed wastewater reuse in
agriculture, focusing on the connections among modelled impacts,
involved compartments, and targeted variables. This review outlines the
existing primary gaps, emphasizing key features and areas of application
of models adopted for impacts evaluation, and delineating future

directions for research in this field. Secondly, based on the review out-
comes, we propose a simplified, yet holistic risk assessment approach
aligned to the One Health perspective to evaluate the co-occurring im-
plications of reclaimed wastewater indirect reuse. This approach in-
tegrates risks that are often assessed separately. In details, we
simultaneously estimate three types of risks related to distinct end-
points: human health risk, environmental risk and risk of antibiotic
resistance development. Our approach was applied to 6 pharmaceuti-
cals, including three antibiotics, based on the availability of data in the
reviewed papers. The goal is to highlight the critical need for a
comprehensive regulation that effectively protect both ecosystems and
human health. In this perspective, the proposed approach might be used
to identify the most vulnerable endpoints and inform the adoption of
targeted contaminant-specific mitigation measures.

2. Conceptualization of the reclaimed wastewater reuse system
and studies’ selection criteria

A conceptual framework was defined to describe the reclaimed
wastewater reuse system, visualized in Fig. 1. This framework permits
an easy visualization of the three key aspects addressed in this work,
focusing on (i) the compartments involved in the agricultural reuse
system, (ii) the available models for the impacts assessment, and (ii) the
targeted models’ variables, which account directly an impact or are
proxy of an impact.

The compartments correspond to the physical boundaries for the
impact assessment, and they are differentiated in six categories: (i)
WWTP, (ii) environment (intended as the natural water system), (iii)
irrigation system, (iv) soil, (v) crop and (vi) humans.

Impact models are the tools to evaluate one or more specific impacts
of reclaimed wastewater reuse. In total, based on models found to be
applied in the literature on reclaimed wastewater reuse in agriculture,
ten categories were identified, discerning between quantity-based and
quality-based models. Quantity-based impact models assess the impacts
related to the volume of reclaimed wastewater provided by WWTPs for
irrigation. These models estimate how much the use of reclaimed
wastewater affects freshwater availability, economy, energy consump-
tion and public health within a specific area. The analysis is typically
conducted through: (i) water mass flow analysis, (ii) Life Cycle Assess-
ment (LCA), (iii) cost analysis, (iv) energy consumption estimation, and
(v) social analysis. Conversely, quality-based impact models analyze the
impacts associated to reclaimed wastewater quality, studying the effects
(vi) of treatment processes, (vii) on soil and (viii) crop, or estimating (ix)
the environmental risk and (x) the human risk. They model the fate of
contaminants across the compartments using indicators, like concen-
trations or derived values (e.g., Sodium Absorption Ratio as proxy for
salinity). In addition, they also evaluate the specific effect generated by
the water quality on the involved compartment.

The model variables represent those quantities targeted by the
considered models, that are: (i) water volume for the quantity-based
impact models, and content of (ii) pathogens (i.e., bacteria, viruses,
protozoa and helminths), (iii) CECs (i.e., pharmaceuticals, personal care
products, endocrine disrupting chemicals, pesticides, per- and poly-
fluoroalkyl substances, plasticizers and transformation products) (iv)
ARBs and ARGs (from now on referred as ARBs category), (v) DBPs, (vi)
heavy metals, (vii) nutrients, (viii) salinity and (ix) conventional con-
taminants (i.e., organic matter and suspended solids) for the quality-
based impact models.

Scopus database was used for collecting studies written in English
and published in the period 2017–2023 from peer-reviewed journals.
The resulting articles were filtered off after the analysis of title, abstract
and conclusions, resulting in 268 articles, which were hence analyzed
through the following conceptual pipeline: for each study, the type of
reclaimed wastewater reuse (direct or indirect) was indicated; each
study was classified assigning one or more categories as a function of (i)
compartments, (ii) impact models and (iii) targeted variables addressed
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by the study. Only studies with at least one category for each feature in
Fig. 1 (compartment, model, variable) were further considered, leading
to 165 articles.

3. Models for impacts assessment of reclaimed wastewater reuse

A summary of the main features of the models is reported in Table 1,
indicating the total number of articles available for each of them, the
evaluated impacts, and the compartments and target variables most
frequently included in the studies reviewed.

3.1. Quantity-based impacts models

As shown in Table 1, all the quantity-based models primarily focus
on (i) water volume as the main targeted variable, and (ii) WWTPs and
the environment as the main involved compartments. Models relying on
water mass flow primarily assess the impacts in terms of water volumes
that can be delivered by WWTPs. These models solve water mass flow
balances to evaluate how the water volume can meet crop irrigation
water requirement (Vivaldi et al., 2022) or alleviate water scarcity by
reducing withdrawals from freshwater sources (Abd-Elaty et al., 2022).
They are often utilized in decision-support systems for regional water
reuse planning, matching and optimizing water needs and sources in a
given area (Wang et al., 2019).

LCA models provide a comprehensive framework to assess the
environmental sustainability of the whole life cycle of reclaimed
wastewater reuse in agriculture. When coupled with Life Cycle Cost
analysis, LCA can provide also an assessment of the economic feasibility
of such practice (Canaj et al., 2021a). LCA models include various types

of impacts, which can be customized depending on the impact of in-
terest: in the case of reclaimed wastewater reuse in agriculture, the
commonly studied impacts are climate change potential, water deple-
tion, eutrophication potential, toxicities (e.g., toxicity for humans,
environment, marine ecosystem) and ozone depletion (Moretti et al.,
2019). Hence, despite being quantity-based models, LCA models enable
the calculation of risks, and humans are often included among the
studied compartments, as shown in Table 1. However, the primary
function of LCA models applied to reclaimed wastewater reuse is the
sustainability evaluation of this practice, while they display limitations
in accurately and comprehensively quantifying environmental and
human health risks. These limitations include the loss of spatial, tem-
poral, dose-response, and threshold information variations in modeling
choices (Klöpffer and Curran, 2014), requiring the use of additional risk
assessment models.

Cost models aim at assessing the economic viability and cost-
effectiveness of reclaimed wastewater reuse, focusing on its imple-
mentation, maintenance and optimization. They frequently employ Cost
Benefit Analysis (CBA) to compare the infrastructure capital and oper-
ating costs of the reuse project with its associated benefits, which usually
correspond with savings related to water recovery (Bolinches et al.,
2022). Scenario-based modeling is employed too, to simulate costs
under different conditions to support stakeholders in the
decision-making (Golfam et al., 2021).

Energy models are adopted to assess the energy balance resulting
from the implementation and operation of reclaimed wastewater reuse
in agriculture. They quantify the energy required for both the recla-
mation treatment processes (Mendret et al., 2019) and the agronomic
practices (Yenkie et al., 2019). These models strive to optimize the direct

Fig. 1. Schematic overview of the conceptual framework for a reclaimed wastewater reuse system: involved compartments (in red), available models for impacts
assessment (in blue), and targeted models’ variables (in green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Table 1
Summary of models’ main features and number of available studies for each model: assessed impacts, compartments and variables most frequently addressed, defined
as in Fig. 1.

Model type Model # available
studies

Impacts Compartments Variables References

QUANTITY-
BASED

Water mass flow
analysis

44 • Freshwater sources
depletion

• Required irrigation
water fulfilment

• Regional-scale
water management

WWTP,
Environment

Water volume (Vivaldi et al., 2022; Abd-Elaty et al., 2022; Wang
et al., 2019; Canaj et al., 2021a; Moretti et al.,
2019), (Bolinches et al., 2022; Golfam et al., 2021;
Mendret et al., 2019; Yenkie et al., 2019; Jeong
et al., 2020; Chhipi-Shrestha et al., 2019), (Arena
et al., 2020), (Vergine et al., 2017), (Tran et al.,
2017), (Gormaz-Cuevas et al., 2021; Penserini
et al., 2024; Foglia et al., 2021), (Canaj et al.,
2021b; Canaj et al., 2021c; Jeuland et al., 2021;
López-Serrano et al., 2021; Paul et al., 2021; Pronk
et al., 2021; Shakeri et al., 2021;
Soltani-Gerdefaramarzi et al.; Zolfaghary et al.,
2021; Al-Shutayri and Al-Juaidi, 2019; Azeb et al.,
2020; Dehaghi and Khoshfetrat, 2020; Di Maria
et al., 2020; Oertlé et al., 2020; Oubelkacem et al.,
2020; Paul et al., 2020; Zimmermann and Fischer,
2020; Busari et al., 2019; Giannoccaro et al., 2019;
Goodwin et al., 2019; Pan et al., 2019; Romeiko,
2019; Akhoundi and Nazif, 2018; Ansari et al.,
2018; Geem et al., 2018; Büyükkamaci and Karaca,
2017; Shiu et al., 2017)

LCA 17 • Global warming
potential

• Eutrophication
potential

• Toxicities
• Freshwater sources
depletion

• Environmental
sustainability

WWTP,
Environment,
Human

Water volume (Canaj et al., 2021a), (Moretti et al., 2019), (
Chhipi-Shrestha et al., 2019), (Foglia et al., 2021), (
Canaj et al., 2021b), (Canaj et al., 2021c), (Azeb
et al., 2020), (Di Maria et al., 2020), (Oertlé et al.,
2020), (Pan et al., 2019; Romeiko, 2019; Akhoundi
and Nazif, 2018), (Geem et al., 2018; Büyükkamaci
and Karaca, 2017; Shiu et al., 2017; Xu et al., 2020;
Dong et al., 2017)

Cost analysis 36 • Cost-effectiveness WWTP,
Environment

Water volume (Canaj et al., 2021a), (Moretti et al., 2019), (
Bolinches et al., 2022; Golfam et al., 2021;
Mendret et al., 2019; Yenkie et al., 2019), (
Chhipi-Shrestha et al., 2019), (López-Serrano et al.,
2022), (Arena et al., 2020), (Vergine et al., 2017), (
Tran et al., 2017), (Gormaz-Cuevas et al., 2021;
Penserini et al., 2024; Foglia et al., 2021), (Canaj
et al., 2021b), (Canaj et al., 2021c), (López-Serrano
et al., 2021), (Paul et al., 2021), (Zolfaghary et al.,
2021), (Dehaghi and Khoshfetrat, 2020; Di Maria
et al., 2020; Oertlé et al., 2020; Oubelkacem et al.,
2020; Paul et al., 2020; Zimmermann and Fischer,
2020; Busari et al., 2019; Giannoccaro et al.,
2019), (Pan et al., 2019), (Akhoundi and Nazif,
2018), (Geem et al., 2018), (Büyükkamaci and
Karaca, 2017), (Xu et al., 2020), (Delanka-Pedige
et al., 2020; Aznar-Crespo et al., 2019; Zabala
et al., 2019; Montemurro et al., 2017; Ferreira
et al., 2020)

Energy analysis 19 • Energy balance
• Energy recovery

WWTP,
Environment

Water volume (Canaj et al., 2021a), (Moretti et al., 2019), (
Mendret et al., 2019), (Yenkie et al., 2019), (
Chhipi-Shrestha et al., 2019), (Arena et al., 2020), (
Vergine et al., 2017), (Foglia et al., 2021), (Canaj
et al., 2021b), (Canaj et al., 2021c), (Azeb et al.,
2020), (Pan et al., 2019; Romeiko, 2019; Akhoundi
and Nazif, 2018), (Büyükkamaci and Karaca,
2017), (Shiu et al., 2017), (Dong et al., 2017), (
Delanka-Pedige et al., 2020), (Ferreira et al., 2020)

Social analysis 18 • Public acceptance
and awareness

• Stakeholders
engagement

WWTP,
Environment,
Human

Water volume (Wang et al., 2019), (Jeong et al., 2020;
Chhipi-Shrestha et al., 2019; López-Serrano et al.,
2022), (Arena et al., 2020), (Dehaghi and
Khoshfetrat, 2020; Di Maria et al., 2020; Oertlé
et al., 2020), (Zimmermann and Fischer, 2020), (
Goodwin et al., 2019), (Akhoundi and Nazif, 2018),
(Aznar-Crespo et al., 2019), (Zabala et al., 2019), (
Deh-Haghi et al.; Deh-Haghi et al., 2020; Sohail
et al., 2021; Almanaseer et al., 2020; Mahjoub
et al., 2022)

QUALITY-
BASED

Treatment process
performance

39 • Process
management and
optimization

WWTP, Crops Pathogens, Nutrients,
Conventional

(Seyoum et al., 2022a), (Abd-Elaty et al., 2022), (
Truchado et al., 2021), (Leiva et al., 2019), (
Vergine et al., 2017), (Tran et al., 2017), (Agnelo
et al., 2020), (Penserini et al., 2024; Foglia et al.,

(continued on next page)
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Table 1 (continued )

Model type Model # available
studies

Impacts Compartments Variables References

• Release of
contaminants

2021; Ben Mordechay et al., 2021), (Contreras
et al., 2017), (Gonzales-Gustavson et al., 2019), (
Guadie et al., 2021), (Giannoccaro et al., 2019), (
Pan et al., 2019), (Geem et al., 2018), (
Büyükkamaci and Karaca, 2017), (Xu et al., 2020;
Dong et al., 2017; Delanka-Pedige et al., 2020), (
Ferreira et al., 2020), (Mahjoub et al., 2022; Ben
Mordechay et al., 2022; Pitoro et al., 2022; Yang
et al., 2021; Zaouri et al., 2021; Deepnarain et al.,
2020; Hong et al., 2020; Kulkarni et al., 2020;
Oliveira et al., 2020; Sharma et al., 2020; Marano
et al., 2019; Martínez-Piernas et al., 2019b;
Tripathi et al., 2019; Peña et al., 2019; Vergine
et al., 2020; Libutti et al., 2018; Nahim-Granados
et al., 2021; Moulia et al., 2023)

Effects on soil 73 • Salinization
• Soil structure
degradation

• Microbial
community
structure and
activity

• Contaminants
cumulation

WWTP, Soil,
Crops

Pathogens, CECs,
Heavy metals,
Nutrients,
Conventional, Salinity

(Delli Compagni et al., 2020; Khaskhoussy et al.,
2022; Seyoum et al., 2022a; Dahmouni et al.,
2022), (Shah et al., 2022; Rezapour et al., 2021;
Guedes et al., 2022; Liang et al., 2022; Hashem
et al., 2022), (Gholipour et al., 2022), (Petousi
et al., 2019), (de Santiago-Martín et al., 2020), (
Moazeni et al., 2017), (Vergine et al., 2017), (
García-Valverde et al., 2023; Bueno et al., 2022;
Agnelo et al., 2020), (Seyoum et al., 2021), (Ben
Mordechay et al., 2021), (Christou et al., 2017), (
Revitt et al., 2021), (Franklin et al., 2018; Natasha
et al., 2021; Gatta et al., 2018), (Beltrán et al.,
2020), (Bakari et al., 2022; Meffe et al., 2021; Liu
et al., 2020; Guadie et al., 2021; Tariq, 2021), (
Romeiko, 2019), (Ansari et al., 2018), (Ferreira
et al., 2020), (Ben Mordechay et al., 2022), (
Sharma et al., 2020), (Marano et al., 2019), (
Tripathi et al., 2019), (Libutti et al., 2018), (Moulia
et al., 2023; Ben Mordechay et al., 2018; Franklin
et al., 2022; Farhadkhani et al., 2020; Seyoum
et al., 2022b; Abi Saab et al., 2021; Chaganti et al.,
2021; de Carvalho et al., 2021; Feder, 2021;
Gallego et al., 2021; Bigott et al., 2022; Kampouris
et al., 2021; Musazura and Odindo, 2021; Njimat
et al., 2021; Shahriar et al., 2021; Werfelli et al.,
2021; Wu et al., 2021; Ababsa et al., 2020;
D’Alessio et al., 2020; Hussain and Qureshi, 2020;
Mendes Reis et al., 2021; Erel et al., 2019; Li et al.,
2019; Obayomi et al., 2019; Beneduce et al., 2017;
Liu et al., 2018; Sallach et al., 2018; Picó et al.,
2019; shamsizadeh et al., 2021; Sunyer-Caldú
et al., 2022; Mkhinini et al., 2019; Jahany and
Rezapour, 2020; Mehmood et al., 2019;
Farhadkhani et al., 2018)

Effects on crop 108 • Salinization
• Phytotoxicity
• Contaminants
uptake and
cumulation

WWTP, Soil,
Crops

Pathogens, CECs,
Heavy metals,
Nutrients,
Conventional

(Delli Compagni et al., 2020; Khaskhoussy et al.,
2022; Seyoum et al., 2022a; Dahmouni et al.,
2022), (Vivaldi et al., 2022), (Moretti et al., 2019),
(Golfam et al., 2021), (Truchado et al., 2021; Shah
et al., 2022; Rezapour et al., 2021), (Liang et al.,
2022; Hashem et al., 2022; Leiva et al., 2019;
Gholipour et al., 2022; Petousi et al., 2019;
Verlicchi et al., 2023; de Santiago-Martín et al.,
2020; Moazeni et al., 2017; Margenat et al., 2017),
(Arena et al., 2020), (Vergine et al., 2017), (
García-Valverde et al., 2023; Bueno et al., 2022;
Agnelo et al., 2020), (Penserini et al., 2024), (Ben
Mordechay et al., 2021), (Christou et al., 2017), (
Natasha et al., 2021; Gatta et al., 2018;
Martínez-Piernas et al., 2019a), (Masciopinto et al.,
2020), (Beltrán et al., 2020; Gonzales-Gustavson
et al., 2019; Troldborg et al., 2017; Bakari et al.,
2022; Meffe et al., 2021; Liu et al., 2020; Guadie
et al., 2021; Tariq, 2021), (Canaj et al., 2021b), (
Canaj et al., 2021c), (López-Serrano et al., 2021), (
Paul et al., 2021), (Soltani-Gerdefaramarzi et al.), (
Zolfaghary et al., 2021), (Azeb et al., 2020), (
Dehaghi and Khoshfetrat, 2020), (Oubelkacem
et al., 2020; Paul et al., 2020; Zimmermann and
Fischer, 2020; Busari et al., 2019), (Romeiko,
2019), (Ansari et al., 2018), (Xu et al., 2020), (

(continued on next page)
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and indirect energy usage, promote renewable energy integration, and
recover energy throughout the process.

Lastly, social models focus on analyzing interactions, behaviors and
perceptions of diverse stakeholders involved in agricultural reuse,
including farmers, policy-makers and consumers. These models often
integrate social indicators (e.g., cultural factors, income level), through
multi-criteria analysis to quantify the impacts (Jeong et al., 2020). A key
aspect of social models is their emphasis on the human compartment, as
they aim to understand and address the social implications of waste-
water reuse in agriculture. Thus, along with LCA models, social models
address impacts on humans despite being quantity-based models
(Table 1). Notably, the variable of primary interest in these models is
frequently the quantity of water reused, since it is recognized as a pivotal
factor influencing the social implications of agricultural wastewater
reuse (Chhipi-Shrestha et al., 2019). Stakeholders are usually engaged

through surveys, aiming at developing effective communication and
education campaigns to promote public acceptance (López-Serrano
et al., 2022).

3.2. Quality-based impacts models

Treatment process models focus on the quality of the wastewater as a
function of the reclamation treatment train. They are used to optimize
and manage the treatment processes aiming at (i) controlling the release
of different types of contaminants, to minimize potential harm to the
compartments downstream the point of discharge (Rizzo et al., 2020),
(ii) guaranteeing that reclaimed wastewater meets the required stan-
dards for safe irrigation (Truchado et al., 2021).

Models estimating the effects on soil of reclaimed wastewater reuse
are aimed at the assessment of several impacts, since each contaminant

Table 1 (continued )

Model type Model # available
studies

Impacts Compartments Variables References

Aznar-Crespo et al., 2019), (Montemurro et al.,
2017), (Deh-Haghi et al.), (Deh-Haghi et al., 2020),
(Almanaseer et al., 2020), (Ben Mordechay et al.,
2022), (Pitoro et al., 2022), (Zaouri et al., 2021), (
Deepnarain et al., 2020), (Sharma et al., 2020;
Marano et al., 2019; Martínez-Piernas et al.,
2019b; Tripathi et al., 2019), (Libutti et al., 2018),
(Nahim-Granados et al., 2021), (Ben Mordechay
et al., 2018), (Farhadkhani et al., 2020; Seyoum
et al., 2022b; Abi Saab et al., 2021), (de Carvalho
et al., 2021; Feder, 2021; Gallego et al., 2021;
Bigott et al., 2022), (Musazura and Odindo, 2021),
(Shahriar et al., 2021), (Werfelli et al., 2021), (
D’Alessio et al., 2020; Hussain and Qureshi, 2020;
Mendes Reis et al., 2021; Erel et al., 2019; Li et al.,
2019; Obayomi et al., 2019; Beneduce et al., 2017;
Liu et al., 2018; Sallach et al., 2018; Picó et al.,
2019; shamsizadeh et al., 2021; Sunyer-Caldú
et al., 2022), (Mehmood et al., 2019; Farhadkhani
et al., 2018; Alcaide Zaragoza et al., 2022; Khan
et al., 2022; Shtull-Trauring et al., 2022; Ben
Hassena et al., 2018, 2021; Renai et al., 2021;
Amoah et al., 2020; Perulli et al., 2019; Sofo et al.,
2019; Ashrafi et al., 2017; González García et al.,
2019; Rekik et al., 2017; Pedrero et al., 2018;
Njuguna et al., 2019; Alvarez-Holguin et al., 2022)

Environmental
risk

13 • Risk for the
environment

WWTP,
Environment

CECs, Heavy metals,
Nutrients

(Delli Compagni et al., 2020), (Canaj et al., 2021a),
(Moretti et al., 2019), (Verlicchi et al., 2023), (
Foglia et al., 2021), (Franklin et al., 2018), (Canaj
et al., 2021b), (Canaj et al., 2021c), (Azeb et al.,
2020), (Pan et al., 2019), (Romeiko, 2019), (
Büyükkamaci and Karaca, 2017), (Shiu et al.,
2017)

Human risk 45 • Risk for human
health

WWTP, Crops,
Human

Pathogens, CECs,
Heavy metals

(Delli Compagni et al., 2020), (Penserini et al.,
2023), (Canaj et al., 2021a), (Moretti et al., 2019), (
Gholipour et al., 2022), (de Santiago-Martín et al.,
2020), (Moazeni et al., 2017), (Rebelo et al., 2020),
(García-Valverde et al., 2023), (Bueno et al., 2022),
(Foglia et al., 2021), (Christou et al., 2017), (Revitt
et al., 2021), (Fonseca-Salazar et al., 2021), (
Natasha et al., 2021; Gatta et al., 2018;
Martínez-Piernas et al., 2019a), (Masciopinto et al.,
2020; Contreras et al., 2017; Beltrán et al., 2020;
Gonzales-Gustavson et al., 2019; Troldborg et al.,
2017; Bakari et al., 2022; Meffe et al., 2021; Liu
et al., 2020; Guadie et al., 2021; Tariq, 2021), (
Canaj et al., 2021b), (Canaj et al., 2021c), (Azeb
et al., 2020), (Di Maria et al., 2020), (Pan et al.,
2019), (Romeiko, 2019), (Büyükkamaci and
Karaca, 2017), (Shiu et al., 2017), (Dong et al.,
2017), (Deepnarain et al., 2020), (Nahim-Granados
et al., 2021), (Farhadkhani et al., 2020), (Shahriar
et al., 2021), (Hussain and Qureshi, 2020), (
Mehmood et al., 2019), (Amoah et al., 2020), (
Njuguna et al., 2019), (Owusu-Ansah et al., 2017)
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released in soil determines a different effect. A high level of inorganic
constituents in reclaimed wastewater, determining wastewater salinity,
may lead to soil salinization (Shah et al., 2022). Organic and inorganic
constituents, such as organic matter and ions, can determine deterio-
ration of soil hydraulic properties (Rezapour et al., 2021). The poten-
tially harmful contaminants, such as pathogens, heavy metals, CECs,
ARBs and DBPs can cumulate in soil and alter the soil microbial com-
munity structure and activity (Guedes et al., 2022). Nutrients contained
in reclaimed wastewater may lead to fertilization enhancement of soil,
or instead to a nutrient overdosage (Liang et al., 2022).

The modelled effects on crops of reclaimed wastewater reuse are
similar to the ones modelled for soil. Reclaimed wastewater contains
both conventional nutrients (nitrogen, phosphorus and potassium) as
well as micronutrients that together enhance crops growth and yield
(Hashem et al., 2022). However, chemicals such as heavy metals, CECs,
and DBPs can be uptaken from the soil and accumulate in different parts
of the plant (i.e., root, leaves or steam), leading to phytotoxicity and
hindering crop growth (Leiva et al., 2019). Pathogens and ARBs, on the
other hand, are generally not uptaken into the plant tissue, but can
adhere to the surface, posing risks primarily for crops consumed raw
(Gholipour et al., 2022). When exposed to saline conditions, crops may
experience an osmotic stress, resulting in yield loss and lower product
quality (Petousi et al., 2019).

Environmental risk models are used to assess the potential risk that
contaminants may pose to the environment. In the case of agricultural
wastewater reuse, the environmental risk is estimated for the receiving
surface water, quantifying the adverse effects on the ecosystem and the
impacted species (Verlicchi et al., 2023).

Human risk models are applied to quantify human health risks for
both hazardous chemicals (de Santiago-Martín et al., 2020) and micro-
organisms (Moazeni et al., 2017), deriving from the consumption of
crops irrigated by reclaimed wastewater.

4. Studies classification between direct and indirect reuse

An essential aspect to consider when the impacts of agricultural
wastewater reuse are modelled is the distinction between direct and

indirect reuse, since it strongly affects the quality of irrigation water.
Fig. 2 delineates the partition of the collected articles between direct and
indirect reuse.

It clearly emerges that the direct reuse is the dominant focus, ac-
counting for the 84% (139 out of 165 articles) of the considered studies.
However, this does not align with the actual reality of reclaimed
wastewater reuse practices. In fact, most surface water streams are
employed de facto for indirect irrigation, especially due to the increasing
number of WWTPs discharging their effluents in the natural water
network (Margenat et al., 2017); while still a limited, and only recently
growing, number of WWTPs are applying direct reuse (Alcalde-Sanz
et al., 2014). Consequently, the indirect reuse of reclaimed wastewater
remains an understudied practice.

This research gap arises due to two main reasons. Firstly, the direct
wastewater reuse is easier to replicate at lab- or pilot-scale with respect
to the indirect one (Rizzo et al., 2020). Secondly, most of the currently
suggested and regulated water quality standards (Rebelo et al., 2020)
refer to the direct wastewater reuse, making it a more compelling sub-
ject for researchers and practitioners. Indirect reuse is often not
considered as a wastewater reuse, but it is rather implemented as an
unplanned reuse. In fact, many studies do not specify the type of reuse
under investigation, while no studies were conducted to compare the
impacts resulting from direct and indirect reuse, highlighting a disparity
between the extensive application of this practice and the gap pointed
out in literature. The fact that only direct reuse is regulated may inad-
vertently encourage the widespread application of indirect reuse, which
is unregulated. Stakeholders would find it more convenient to comply
with the conventional water quality standard for discharge in surface
water, fromwhich the irrigation water is derived, rather than complying
with more stringent water quality standards for reuse, and providing an
ad hoc infrastructure for delivering reclaimed wastewater to crops
(Angelakis and Snyder, 2015).

The cost of dedicated infrastructures coupled with the territorial
context are crucial aspects to consider, since they greatly influence the
type of reuse and the allocation of economic resources. Such in-
frastructures are suitable only where the territory does not already
provide a network of irrigation channels that can be utilized. In fact, in

Fig. 2. Number of articles mentioning the analyzed categories, differentiated per direct or indirect reuse.
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these latter cases, the reuse often shifts from direct to indirect, because
these irrigation channels are already supplied with natural waters. When
the proportion of natural water reduces in favor of reclaimed waste-
water, also pushed by climate change consequences, the reuse is brought
back towards a direct reuse, which skips yet regulations. Thus, economic
resources are more likely to be employed for the WWTPs upgrade rather
than for the creation of transport infrastructure. Two examples are
Lombardy and Apulia regions in Italy: in Lombardy, where more than
37,000 km of irrigation channels are present, reclaimed wastewater is
often indirectly reused due to the existing natural channels (Pistocchi
et al., 2018), while in Apulia, where no irrigation channels are present,
many cases of direct reuse are reported (Vivaldi et al., 2022), (Arena
et al., 2020), (Vergine et al., 2017). Therefore, the choice of reuse type
strictly depends on the local territory characteristics. Additionally,
stakeholders are often unaware about the actual use of the surface water
downstream the point of effluent discharge, and this might lead to
overlook the potential implications of an unplanned reuse (Helmecke
et al., 2020). This highlights the need for regulatory alignment in water
quality standards for both direct and indirect reuse. The EU Watch List
(Cortes et al., 2022) could serve as a starting point for developing more
uniform regulations governing indirect reuse, ensuring that the same
monitoring and risk management practices are applied across both
direct and indirect reuse scenarios. Such regulatory alignment is
essential to bridge the gap between practice and research, and to
encourage the implementation of comprehensive risk assessments that
consider both reuse types.

Moreover, there is a growing concern on how climate change can
affect freshwater availability and quality (Ianes et al., 2023). However,
among articles addressing indirect agricultural wastewater reuse, only
(Tran et al., 2017) examined how the contaminants in the WWTP
effluent and in the aquatic environment may be altered by drought,
focusing on how treatment trains may be upgraded to reduce contami-
nants concentrations. This represents an important gap, demanding
further research, being reclaimed wastewater reuse a viable alternative
water source for agriculture, to mitigate the current and projected water
scarcity.

5. Trends in categories combinations: consolidated aspects and
gaps to be filled

Given the complexity of connections between compartments (see
Fig. 1), there is a large variety of impacts that need to be quantified for
providing a comprehensive overview of pros and cons of agricultural
wastewater reuse. Hence, a heatmap of the available literature studies is
here presented in Fig. 3 to visualize, through the categories introduced
in Section 2, (i) which compartments and to which extent are consid-
ered, (ii) which variables are targeted in literature, and (iii) how the
various models are combined. For each cell, the heatmap reports the
number of articles in which the corresponding paired categories are
considered simultaneously, while along the diagonal the total number of
studies evaluating the individual categories are reported.

Regarding the analyzed compartments, from the top-left part of the
diagonal, it can be noted that most of the studies consider respectively
WWTP (161 out of 165 articles) and Crop (109 out of 165 articles)
compartments. This was somehow expected since the impacts assess-
ment of reclaimed wastewater reuse in agriculture must necessarily
consider WWTP and crops characteristics. However, the other inter-
connected compartments (environment, irrigation system, soil and
humans) are analyzed in less than half of the studies, with numbers
ranging from 39 to 74 studies per compartment. Neglecting these
compartments and their interconnections does not allow for a compre-
hensive understanding of the impacts, both positive and negative, nor
helps in identifying long-term strategies to maximize positive impacts
and minimize negative ones. For instance, beyond water and nutrient
supply, positive impacts include potential groundwater recharge, which
is closely linked to the irrigation system used. In anticipation of

increasingly prolonged drought periods, groundwater might act as a
natural reservoir (Humberto et al., 2018). Thus, ignoring the broader
context and these additional benefits can lead to incomplete impact
assessments and suboptimal strategies.

For the targeted variables, from the bottom-right part of the diago-
nal, it emerges that most of them, such as conventional contaminants (e.
g., heavy metals, nutrients, etc.), pathogens and CECs, are relatively
well-addressed in the literature, with 40–55 studies per variable. The
uniform consideration of these variables across studies demonstrates a
mature understanding of their behavior in different compartments, such
as soil, crops, and groundwater, and the risk they pose to human health
through food chain transfer. For instance, CECs have been the focus of
extensive modeling efforts (inter alia, (García-Valverde et al., 2023),
(Bueno et al., 2022)), leading to a robust body of work that evaluates
their persistence in the environment, bioaccumulation potential, and
ecotoxicological impacts. Among them, pharmaceuticals were the most
frequently studied, appearing in 35 out of 45 studies on CECs. On the
other hand, the positive effects of nutrients are frequently compared to
the negative ones of heavy metals or salinity in soil and crop models
(Agnelo et al., 2020).

Despite this comprehensive coverage, notable gaps remain in the
literature concerning ARBs and DBPs, for which only, respectively, 10
and 4 studies out of 165 were carried out, pointing out a lack of appli-
cations addressing these variables. However, these contaminants are
topics of growing interest inevitably related to the reclaimed wastewater
reuse, since WWTPs are the major contributors for their presence into
the environment (Albolafio et al., 2022). Specifically, ARBs and anti-
biotic resistance genes (ARGs) monitoring poses a specific challenge due
to their extensive breadth and high measurement cost, associated with
the complexity in correlating their presence with established monitoring
targets (e.g., Escherichia coli) (Seyoum et al., 2021). The concern for
DBPs is raised due to the high level of disinfection efficacy demanded by
direct reuse regulations. The regulatory limit for E. coli is set at 10 CFU
mL− 1 (EU Commission, 2020), in contrast with the 5,000 CFU mL− 1

allowed for discharge into surface water (UWWTD 91/271), which
eventually would apply in case of indirect reuse. Meeting this standard
requires using substantial dosages of disinfectants, which, in case of
chemical disinfection, can lead to the formation of DBPs. DBPs pose
significant risks to aquatic ecosystems, particularly in cases of indirect
reuse where treated water may eventually reach natural water bodies
(Cui et al., 2021). For humans, DBPs raise concerns about their potential
accumulation in the edible parts of crops (Christou et al., 2019). This
underscores the critical importance of including both these variables in
agricultural wastewater reuse studies. In addition, it highlights the ne-
cessity of considering the interconnections of the entire system, espe-
cially for certain types of contaminants that have the most substantial
negative impacts on both human health and the environment.
Addressing this gap is essential to develop comprehensive strategies that
ensure the safe and sustainable reuse of reclaimed wastewater in
agriculture.

Focusing on the models’ combinations, quantity-based impact
models are typically used for large scale planning, assessing impacts
across extensive systems, from freshwater resources to the domestic
water usage in cities. These models are frequently combined through
Multi-Criteria Decision Analysis (MCDA) approaches to optimize the
distribution of water volumes within the studied system, including
wastewater as one of the considered water flows. In many cases, the
optimal allocation of water volumes is obtained integrating also LCA,
cost, energy or social impact models. In fact, they are applied in,
respectively, 82%, 78%, 84% and 50% of the studies addressing water
mass flow models. For example, in (Gormaz-Cuevas et al., 2021) the
climate-induced water scarcity was addressed by formulating a
multi-objective problem for the regional optimization of water extrac-
tion from natural sources and reuse, in which environmental and eco-
nomic impacts are minimized. Occasionally reclaimed wastewater
quality is also considered, but commonly quality parameters are
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Fig. 3. Heatmap reporting the paired combinations between the categories identified as in Fig. 1, grouped per compartments (in red), models (in blue) and variables (in green). In each cell, at the intersection of a row
and column, is indicated, also by a gradient color scale, the number of articles addressing both the categories labeled in the row and column.
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converted in indicators of other impacts. Two examples can be found in
the studies of (Vivaldi et al., 2022) and (Penserini et al., 2024). In
(Vivaldi et al., 2022) a set of quantitative indices was proposed,
combining physical and operational features of both WWTPs and irri-
gation districts equipped for wastewater reuse, to quantify the reuse
environmental benefits. In (Penserini et al., 2024) the economic savings
resulting from direct reuse were estimated, combining effluent quality,
crops requirements and characteristics of WWTPs and surrounding ter-
ritory, in a prioritization framework. LCAmodels represent an exception
because they already integrate the combination of different impacts,
considering often also quality variables and risks. For example, in
(Foglia et al., 2021), LCA was adopted for the assessment of environ-
mental and economic impacts of a conventional WWTP compared to the
impacts related to the WWTP upgrade for effluent reclamation.

Regarding the integration of quality-based impact models, they are
often combined to model the transfer of contaminants between two or
more compartments. For example, soil can accumulate compounds,
blocking them from reaching crops, and, consequently, humans (Ben
Mordechay et al., 2021). Conversely, the adopted irrigation system can
affect the hazards related to specific compounds, as highlighted inter alia
by (Hamilton et al., 2018) and (Aragüés et al., 2015). In (Hamilton et al.,
2018) it was showed how the spray irrigation of reclaimed wastewater
can increase the Legionella pneumophila risk for human health due to the
formation of aerosols. While in (Aragüés et al., 2015) it was demon-
strated that the improper management of the irrigation system can bring
to soil salinization.

Regarding risk assessment models, if only studies performing
exhaustive risk assessments are considered (excluding LCA studies), it
emerges that only three studies applied an environmental risk assess-
ment to reclaimed wastewater reuse. Being the indirect reuse the main
responsible for the potential presence of an environmental risk, the lack
of studies modelling the environmental risk is in accordance with the
low number of studies addressing indirect reuse. Conversely, human risk
is modelled more frequently than the environmental one (33 studies if
LCA is not considered), but in no case these two risk assessment pro-
cedures were combined. A comprehensive risk-assessment framework
that evaluates the impacts of the reclaimed wastewater reuse from the
WWTP down to the final endpoints (environment or human health) is
still missing. Such a framework would be useful in identifying the main
contributors to the final estimated risk and it would support the prior-
itization of mitigation measures, indicating where and to which extent
apply them.

6. Overview of the available risk assessment procedures

Risk assessment procedures are usually structured in four steps:

- problem formulation, to select the contaminant of interest and the
target endpoint;

- exposure assessment, to identify exposure pathways and levels;
- hazard assessment, to determine dose-response relationships and
toxicological reference concentrations;

- risk characterization, to estimate the magnitude of the risk through a
risk index.

A preliminary distinction among risk assessment procedures regards
the selected endpoint which can be either environmental (i.e., the nat-
ural water ecosystem) or human health. Depending on the selected
endpoint, the contaminants of interest may differ.

In environmental risk assessment, target contaminants are usually
chemicals (i.e., heavymetals, CECs, and DBPs). The exposed populations
in these assessments typically include aquatic organisms (e.g., fish, in-
vertebrates, and algae), and terrestrial wildlife (that may consume
contaminated water or food) (Amiard and Amiard-Triquet, 2015). The
exposure level corresponds to the measured environmental concentra-
tion (MEC) in natural water, while the toxicological reference

concentration corresponds to the Predicted No-Effect Concentration
(PNEC), determined through eco-toxicity studies. These studies estimate
the concentration that is not expected to cause adverse effects on the
specified organism over a given exposure period. For aquatic organisms,
eco-toxicity studies typically measure effects on survival, reproduction,
and growth, which are used to define the PNEC (Belanger et al., 2021).

For antibiotics, another threshold must be mentioned, since they
may display an adverse effect directly or indirectly, through favoring the
development of antibiotic resistance. In the latter case, the Predicted No-
Effect Concentration for the antibiotic resistance development (PNECAR)
is also considered, determined through the quantification of minimum
inhibitory concentration data. These thresholds are critical for under-
standing at what concentrations antibiotics in the environment begin to
select for resistant genes or bacteria (Bengtsson-Palme and Larsson,
2016).

In human health risk assessment, the targeted contaminants can be
both chemicals or pathogens, typically characterized by, respectively,
long-term chronic effects or short-term acute effects (Ardiyanti et al.,
2024b), and the most common route of exposure is the oral ingestion
due to crop consumption (Moazeni et al., 2017), (Christou et al., 2017).
Then, exposure levels are estimated from the contaminants concentra-
tion in crops (CCROP). For chemical hazard assessment, reference doses
(RfD) are derived from toxicological studies as daily exposures levels
that are not likely to have adverse health effects on the critical endpoint
affected by the investigated substance during a person’s lifetime (Baken
et al., 2018). For microbial hazard assessment, dose-response relation-
ships are used to correlate the pathogen dose and the probability and
severity of adverse health effects (WHO, 2016), (Haas et al., 2014).

Finally, for both environmental and human health risk character-
ization, the type of approach can be qualitative, deterministic or prob-
abilistic, in which the risk is quantified through, respectively, a
qualitative index, a single precautionary value, or a statistical distribu-
tion. In particular, probabilistic approaches, as Quantitative Microbial
Risk Assessment (QMRA) and Quantitative Chemical Risk Assessment
(QCRA), permit to account for the uncertainties inherently present in
each step of the risk assessment procedures (Ardiyanti et al., 2024b),
(Zhiteneva et al., 2020). Estimating these uncertainties is crucial for
understanding the reliability of the risk estimate, especially for con-
taminants for which the knowledge is not yet consolidated. Qualitative
approaches do not have a reference procedure to rely on, but they are
commonly adopted to derive risk matrices as outputs (Rebelo et al.,
2020), (Revitt et al., 2021), (Fonseca-Salazar et al., 2021).

Deterministic approaches conventionally consider the most precau-
tionary values (i.e., maximum exposure concentration) to ensure the
absence of risk in the most critical scenario. In the Environmental Risk
Assessment (ERA), the maximum MEC is divided by PNEC or PNECAR to
estimate, respectively the Risk Quotient (RQ) (Verlicchi et al., 2023) and
the Risk Quotient for antibiotic resistance development (RQAR)
(Franklin et al., 2018) as follows:

RQ=
MEC
PNEC

(1)

RQAR =
MEC

PNECAR
(2)

In deterministic Chemical Risk Assessment (CRA) for human health,
the maximum CCROP is divided by RfD to obtain the Hazard Quotient
(HQ) of a single contaminant (Natasha et al., 2021). When multiple
contaminants are considered, the HQ values for each contaminant are
summed up to obtain the Hazard Index (HI) (Gatta et al., 2018) as
follows:

HQi =
CCROP,i
RfDi

(3)
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HI=
∑

i
HQi (4)

However, the use of a specific concentration value for the exposure
assessment, for example the 50th, 75th, 90th percentile or the maximum
concentration value, can strongly influence the risk estimation (Ianes
et al., 2023). For chemicals, when limited toxicological data are avail-
able, human risk can be evaluated through the Threshold of Toxico-
logical Concern (TTC) approach, in which chemicals are categorized
into classes based on structural similarities and known toxicological data
(e.g., Cramer classes I, II, and III) to set threshold exposure levels below
which adverse effects are unlikely to occur (Christou et al., 2017),
(Martínez-Piernas et al., 2019a).

Probabilistic approaches employ statistical indicators to determine
the probability of risk. For chemicals, QCRA procedures are available to
calculate the risk as a statistical distribution of the Benchmark Quotient
(BQ), giving insights about estimation uncertainties (Cantoni et al.,
2021), (Penserini et al., 2022). However, they have been primarily
applied to evaluate risks associated to drinking water consumption,
while only (Penserini et al., 2023) applied the QCRA to reclaimed
wastewater reuse practices, estimating the probability of risk due to the

consumption of crops irrigated with reclaimed wastewater. Conversely,
QMRA are consolidated procedures quantifying the risk in terms of
statistical distribution of Disability-Adjusted Life Year (DALY) and they
are already frequently implemented for the risk evaluation of agricul-
tural wastewater reuse (Masciopinto et al., 2020), (Contreras et al.,
2017). Within this framework of diverse risk assessment procedures,
Table 2 presents a summary of the mentioned available procedures,
indicating their specific features (e.g., endpoint, inputs, outputs, etc.)
and the number of studies that applied them to agricultural wastewater
reuse.

It is interesting to note that articles are not uniformly distributed
among the various types of risk assessment. Environmental risk assess-
ment is mainly focused on chemicals by deterministic procedures and, if
LCA studies are not considered, it is almost never applied to agricultural
wastewater reuse (only three studies). Instead, human health risk
assessment is performed more frequently in the agricultural reuse
context, adopting different approaches depending on the contaminant of
interest: for chemicals, the assessment is mainly deterministic
(García-Valverde et al., 2023), (Beltrán et al., 2020), while for micro-
organisms the assessment is mainly probabilistic (Masciopinto et al.,
2020), (Gonzales-Gustavson et al., 2019).

Table 2
Summary of the main features of risk assessment procedures applied to reclaimed wastewater reuse. The number of articles applying the specific type of risk assessment
procedure is reported in brackets.

Endpoint Risk source Type of
approach

Procedure Exposure inputs Toxicological
inputs

Output References

Environment
(13)

CECs and heavy
metals (12)

Deterministic
(12)

ERAa (2) Maximum MEC PNEC RQ (Delli Compagni et al., 2020; Verlicchi et al.,
2023)

LCA (10) Emission
concentration
from WWTP

CFETb PDFc (Canaj et al., 2021a; Canaj et al., 2021b; Canaj
et al., 2021c; Foglia et al., 2021; Azeb et al., 2020;
Moretti et al., 2019; Pan et al., 2019; Romeiko,
2019; Büyükkamaci and Karaca, 2017; Shiu et al.,
2017)

Antibiotics (1) Deterministic
(1)

ERAARa (1) Maximum MEC PNECAR RQAR (Franklin et al., 2018)

Human health
(45)

CECs, including
antibiotics, and
heavy metals (32)

Qualitative (1) Case-
specific (1)

– – Risk
matrix

(Revitt et al., 2021)

Deterministic
(30)

CRA (20) Maximum CCROP RfD, Cramer
class

HI, HQ,
TTC

(Nahim-Granados et al., 2021; Guadie et al., 2021;
Bakari et al., 2022; Bueno et al., 2022; Meffe
et al., 2021; de Santiago-Martín et al., 2020;
Shahriar et al., 2021; Natasha et al., 2021; Delli
Compagni et al., 2020; Hussain and Qureshi,
2020; Liu et al., 2020; Gatta et al., 2018; Christou
et al., 2017; Beltrán et al., 2020; García-Valverde
et al., 2023; Tariq, 2021; Mehmood et al., 2019;
Martínez-Piernas et al., 2019a; Njuguna et al.,
2019; Troldborg et al., 2017)

LCA (10) Emission
concentration
from WWTP

CFHTd DALY (Canaj et al., 2021a; Canaj et al., 2021b; Canaj
et al., 2021c; Foglia et al., 2021; Azeb et al., 2020;
Moretti et al., 2019; Pan et al., 2019; Romeiko,
2019; Büyükkamaci and Karaca, 2017; Shiu et al.,
2017)

Probabilistic
(1)

QCRA (1) Statistical
distribution of
CCROP

Statistical
distribution of
RfD

BQ (Penserini et al., 2023)

Pathogens (16) Qualitative (2) Case-
specific (2)

– – Risk
matrix

(Fonseca-Salazar et al., 2021; Rebelo et al., 2020)

Deterministic
(3)

LCA (3) Emission
concentration
from WWTP

CFHTd DALY (Foglia et al., 2021; Büyükkamaci and Karaca,
2017; Dong et al., 2017)

Probabilistic
(12)

QMRA
(12)

Statistical
distribution of
CCROP

Dose-response
model

DALY (Dong et al., 2017; Deepnarain et al., 2020;
Gonzales-Gustavson et al., 2019; Nahim-Granados
et al., 2021; Gholipour et al., 2022; Farhadkhani
et al., 2020; Hussain and Qureshi, 2020; Moazeni
et al., 2017; Amoah et al., 2020; Masciopinto
et al., 2020; Owusu-Ansah et al., 2017; Troldborg
et al., 2017)

a Environmental Risk Assessment.
b Characterization factor for environmental toxicity.
c Potentially Disappeared Fraction.
d Characterization factor for human toxicity.
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Anyway, even if the procedures for quantifying risk for chemicals
and pathogens are well consolidated, there are no studies concurrently
modelling the effects of both types of risk. (Troldborg et al., 2017) was
the only study assessing the risks associated with the presence of both
CECs and pathogens in wastewater for agricultural reuse. However,
there was no integration nor comparison undertaken.

7. Integrated risk assessment approach

The abovementioned uneven state-of-the-art about risk assessment
application to reclaimed wastewater reuse, makes it challenging to
provide a comprehensive overview of the associated impacts in a One
Health perspective, especially in the case of indirect reuse, where risks
emerge for both the environment and human health.

Only (Delli Compagni et al., 2020) assessed the risk for both human
health and environment in a case of indirect reclaimed wastewater reuse
in agriculture, but no integration nor comparison of these two results
was performed. The other existing studies estimating human health risk
for indirect reuse, completely neglected the evaluation of the concurring
environmental risk (de Santiago-Martín et al., 2020), (Bakari et al.,
2022), (Meffe et al., 2021), (Liu et al., 2020), (Guadie et al., 2021),
(Tariq, 2021).

To address this gap, we propose a simplified but holistic approach, in
which human health, environmental and antibiotic resistance develop-
ment risks due to CECs presence in reclaimed wastewater for indirect
reuse are simultaneously estimated. Antibiotic resistance is addressed as
a separate endpoint due to its dual impact on both human health and
environmental ecosystems. ARBs and ARGs can spread through envi-
ronmental pathways, leading to increased resistance in bacterial com-
munities, which, in turn, poses significant threats to human health
(Stanton et al., 2022). Typically, environmental risk assessments focus
on the ecological impacts of contaminants on the aquatic ecosystem,
while human health risk assessments focus on the adverse effects con-
taminants have when contacted by humans. However, both the ap-
proaches overlook the selection pressures exerted by low levels of
antibiotics on microbial communities, which promote the development
and dissemination of antibiotic resistance (WHO, 2024). This gap un-
derscores the need to incorporate antibiotic resistance development
within risk frameworks. Pharmaceuticals were selected as CECs of in-
terest due to their ubiquitous presence in different compartments, their
related risks potentially posed to human health and environment, and
because, as pointed out from the literature review results, they are the
most frequently addressed CECs in research focusing on wastewater
reuse. Among these, antibiotics were specifically considered since they
are the only class of contaminants capable of contributing to the
development of antibiotic resistance. Studies were selected in this
evaluation only if they met both the following criteria: (i) they calcu-
lated the human health risk associated to the consumption of crops
irrigated through indirect reuse, and (ii) they provided contaminants
concentration in the surface water collected and used for irrigation.

Only 4 articles out of 165 complied with the abovementioned
criteria, namely (Delli Compagni et al., 2020), (de Santiago-Martín

et al., 2020), (Meffe et al., 2021) and (Liu et al., 2020). We considered
six pharmaceuticals, being the only ones in common among these arti-
cles: three pharmaceuticals, namely carbamazepine, diclofenac and
ibuprofen, and three antibiotics, namely metronidazole, sulfamethoxa-
zole and trimethoprim. The human health risks estimated by the articles
authors and expressed as HQ, were directly taken and considered for the
human health risk. In addition, two further types of risks occurring in the
surface water used for irrigation were quantified: the environmental risk
(RQ) was calculated from MEC and PNEC as in equation (1), while the
risk for antibiotic resistance development (RQAR) was calculated from
MEC and PNECAR as in equation (2), in which MEC corresponds to the
surface water concentration data reported by the considered studies.
The PNEC and PNECAR values of the selected pharmaceuticals were
retrieved from literature, indicating threshold values for the develop-
ment of, respectively, a chronic risk for the aquatic ecosystem and
antibiotic resistance due to the selection of resistant bacterial strains.

Risk indices (i.e., HQ, RQ, RQAR) equal to 0 correspond to an absence
of risk, equal or above to 1 to a presence of risk, while values lower than
1 but higher than 0.1 indicate warning thresholds for potential risk
occurrence (Penserini et al., 2022). A summary of the data retrieved
from these studies to calculate environmental and antibiotic resistance
development risks for each CEC is reported in Table 3, while the risks
assessment results are shown in Fig. 4, where the three different risks are
visualized together and differentiated per CEC.

HQ distributions shown in Fig. 4 represent the HQ estimated by the
four studies for the selected pharmaceuticals. These results highlight
that human health risk related to the indirect reuse of reclaimed
wastewater, meaning the risk related to the consumption of crops irri-
gated with surface water in which reclaimed wastewater is discharged,
is substantially lower than the warning threshold (HQ equal to 0.1) for
all the considered pharmaceuticals. Thus, if only the human health risk
is evaluated, as done in the original studies, it might be stated that the
presence of these contaminants in the reclaimed wastewater reused for
crop irrigation, after dilution with the natural surface water stream, does
not pose any risk.

However, if environmental risk and risk of antibiotic resistance
development associated with the pharmaceuticals concentration in the
surface water are calculated, it becomes evident that they contribute
significantly to the overall risk. In fact, RQ and RQAR are always sta-
tistically higher than the HQ and, in some cases, than the risk thresholds
of 0.1 and 1. Hence, a presence of risk is established. Specifically,
diclofenac and ibuprofen have RQmarkedly higher than the threshold of
1, with estimated average RQs equal to, respectively, 5.1 and 9.4. The
estimated RQAR distribution for metronidazole straddles the threshold of
1, having an average RQAR equal to 1.6. The estimated distributions of
RQ and RQAR, for respectively, sulfamethoxazole and trimethoprim
exhibit values exceeding the threshold of 0.1.

Thus, an increased attention would be recommendable for metro-
nidazole and trimethoprim, in terms of regulatory measures or addi-
tional targeted monitoring campaigns. As for trimethoprim, it is the only
pharmaceutical whose HQ distribution is significantly higher than the
RQ one, but, on the other hand, it is slightly lower than the RQAR

Table 3
Summary of the data used for the calculation of environmental and antibiotic resistance development risks for each considered CEC. The concentrations in surface
water (MEC) are reported as average and range in brackets, with the corresponding number of available concentration data, obtained from the considered studies.
PNEC and PNECAR values were retrieved in literature.

Class of CECs CECs CAS number MEC [μg L− 1] # available concentrations PNEC [μg L− 1] PNECAR [μg L− 1]

Pharmaceuticals CBZ 298–46-4 0.12 (0.11–0.15) 4 2a –
DCF 15,307–86-5 0.25 (0.16–0.32) 4 0.05a –
IBU 15,687-27-1 0.10 (0.003–0.18) 5 0.011a –

Antibiotics MET 443–48-1 0.20 (0.06–0.33) 3 33.1a 0.125b

SMX 723–46-6 0.07 (0.006–0.13) 5 0.6a 16b

TMP 738-70-5 0.06 (0.001–0.09) 3 120a 0.5b

a NORMAN website.
b Bengtsson-Palme and Larsson (2016).
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distribution.
This analysis underscores the importance of a holistic risk assessment

employing a One Health approach. Instead of limiting the risk evalua-
tion to the human endpoint, this approach assesses also the environ-
mental and antibiotic resistance development risks for each
pharmaceutical. This ensures that human health, environmental and
antibiotic resistance development impacts are not only calculated but
also contextualized within a broader framework, which helps deter-
mining contribution of each risk to the overall risk and identify the most
critical endpoint. An important direct outcome of this One Health
approach is the identification of the compounds responsible of the
higher risk, supporting regulators and policy makers in an effective joint
protection of humans and environment.

In the context of indirect reuse, integrating regulations on direct
reuse, effluent discharge, and water body quality would be essential, as
the latter two are directly correlated, and extending this procedure to a
larger group of compounds would aid in establishing a prioritization
framework for defining minimum water quality regulation standards.
This integration would enhance the effectiveness of monitoring and
managing the risks associated with reclaimed wastewater reuse,
ensuring a more comprehensive protection of both human health and
the environment.

8. Conclusions and remarks for future research directions

The review about models available to assess the impacts of reclaimed
wastewater reuse in agriculture pointed out the main literature gaps,
delineating areas for future research directions. In synthesis:

- Despite many surface water streams are used de facto for indirect and
unplanned reuse of reclaimed wastewater, indirect reuse is not
consistently analyzed as a formal practice. Thus, there is a lack of
studies modelling the impacts of this practice.

- Only 10 and 4 articles out of 165 addressed in the last 7 years,
respectively, antibiotic resistance and disinfection by-products as
targeted variables. Given their presence in reclaimed wastewater and
the raising concern regarding (i) the risk of development of antibiotic
resistance and (ii) the trade-off between an adequate inactivation of
pathogens and the formation of by-products through chemical
disinfection, these are crucial contaminants to be considered.

- There is a lack of application of risk assessment procedures to
reclaimed wastewater reuse. Only 3 articles (if LCA is not consid-
ered) quantified the environmental risk and only 1 article estimate
both environmental and human health risk. In terms of human
health, the risk procedures focus on individual class of contaminants,
while it would be beneficial to estimate risks for both pathogens and
chemicals.

To emphasize the importance of a holistic assessment in a One Health
perspective, a simplified approach was proposed to simultaneously
assess the human health, environmental and antibiotic resistance risks
for pharmaceuticals deriving from indirect reclaimed wastewater reuse.
The results provided valuable insights on the integrated quantification
of overall risks, demonstrating that considering only the human health
risk, would underestimate the overall risk and that more critical adverse
effects (such as the environment and the potential development of
antibiotic resistance risks) could be overlooked. Therefore, it is useful to
identify the most critical endpoint for each CEC, aiming at prioritizing
the regulation and the monitoring efforts.
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