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ABSTRACT
Drug repurposing, which involves using already approved drugs
for new clinical targets, represents a cost-effective alternative to
the development of new drugs. In this study, we introduce an inno-
vative computational strategy, which uses Non-negative Matrix Tri-
Factorization (NMTF) to generate vector embeddings of given sizes
for drugs and drug targets; vector embeddings are then employed
to generate predictions for drug repurposing using conventional
classifiers, like random forest, logistic regression, and multi-layer
perceptron.

Our approach leverages the NMTF method within a new ap-
proach to classification, named two-tower architecture, which is
effective in solving complex tasks, such as the optimal prediction of
targets for already approved drugs. This approach produces robust
models, with AUROC reaching 0.90, which outperform traditional
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NMTF. We evaluate our method in the context of Parkinson’s Dis-
ease; within the newly revealed drug-target predictions, we high-
light compounds that exhibit potential in mitigating neurodegener-
ation, thereby revealing a potentially useful drug in relationships
with a well-identified target.
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representations; • Applied computing→ Computational bi-
ology.
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1 INTRODUCTION
In the landscape of drug development, the quest for innovative
and effective treatments has traditionally involved the painstaking
process of discovering and developing entirely new compounds.
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However, this approach is not only time-consuming but also finan-
cially burdensome, with the average cost of bringing a novel drug
to market exceeding billions of dollars and spanning over a decade.
Moreover, the vast majority of new molecules fail in early-stage
clinical trials. Recent studies estimated that only 14% of compounds
initially identified as potential drugs get approved by FDA [38].

Drug repurposing offers a novel and cost-effective alternative
to the conventional drug development paradigm. It involves the
identification of already approved drugs, initially developed for one
medical condition, to treat different conditions, with significantly
less time and investment. The repurposing of a compound may
be performed either experimentally or computationally; however,
computational tools can rapidly and efficiently test a large number
of potential drugs and biological targets at a reasonable cost [24, 26].

We previously demonstrated the efficacy of the Non-negative
Matrix Tri-Factorization (NMTF), a method that allows exploit-
ing both data integration and machine learning, to various tasks
in computational drug repurposing, including prediction of novel
therapeutic indications [4], unknown drug targets [5], drug syn-
ergism [25], anticancer drug sensitivity [34], and synthetic lethal
gene pairs [33]. NMTF takes a multipartite graph as input, which is
represented as a set of association matrices between different node
classes. By factorizing and reconstructing these matrices, NMTF
can infer missing connections.

The capability of NMTF to process multipartite graphs enables
the easy integration of multiple and heterogeneous data sources. In-
deed, our previous research showed that the performance of NMTF
in predicting new associations between a set of nodes X (e.g., drugs)
and a set of nodes Y (e.g., targets) can be significantly improved
when either X or Y is associated with side data (e.g., extracted from
knowledge bases or derived from experiments). The association
with side data, however, presents some limitations. First, as NMTF
is typically trained using incremental update rules that consider all
layers of the multipartite graph at each iteration, dealing with very
large input graphs (in terms of number of layers) can dilute the
information and lead to a significant drop in performance. Second,
NMTF is a linear method - as it minimizes the Frobenius norm of the
difference between the original and reconstructed matrices, which
is linear in the model’s parameters. However complex prediction
tasks may benefit of non-linear classifiers.

In this study, we propose a novel approach, by embedding the
NMTF method in a two-tower architecture, i.e. a novel machine
learning model that learns two representations of the data: one for
the drugs and one for the targets. The two representations are then
merged and passed to a classifier, to generate a final prediction.
In this setup, NMTF is used to create two embeddings, i.e. vector
representations of drugs and targets, starting from two multipartite
graph independently representing them, thus integrating and fusing
information from heterogeneous sources. The embeddings are then
used to train a common classifier to generate predictions. While
NMTF has already been used for embedding generation [39], to
the best of our knowledge, it has not been used before to generate
embeddings from multipartite graphs.

2 RELATEDWORK
Among most commonly used computational methods employed
for drug repurposing, we find Machine Learning (ML) and Net-
work Models. Machine Learning techniques applied in this context
encompass logistic regression, support vector machine (SVM), ran-
dom forest, neural networks (NN) and deep learning (DL) [12, 23].
There is a reported instance of two ML approaches based on sim-
ilarity, both exploiting logistic regression. The first is PREDICT
[9] wherein drug-drug similarity has been integrated with disease-
disease similarity, serving as features in the prediction of drugs
with similar properties for similar diseases using logistic regression.
On the other hand, SPACE [18] also utilized logistic regression to
forecast the therapeutic chemical class of a drug by integrating
data from multiple sources. A SVM classifier has been employed
by Napolitano et al. [22] to predict drug therapeutic categories of
FDA-approved compounds. Particularly, they amalgamated three
drug-drug similarity datasets, founded on gene expression signa-
tures, chemical structures, and molecular targets, into a unified
drug similarity matrix which served as kernel to train the multi-
class SVM. Similarly, Wang et al. [36] defined a kernel function
to correlate drugs with diseases integrating molecular structure,
molecular activity, and phenotype data, then training the SVM
classifier to computationally predict novel drug-disease interac-
tions. The fusion of cell line genomics and drug chemical structures
has been used to construct a feed-forward perceptron neural net-
work model and a random forest regression model by Menden et al.
[21] to predict cancer responses to drug treatments. Several other
studies have explored the use of deep neural networks for drug
repurposing and the identification of novel therapeutic indications
[1, 2, 11, 29], collectively highlighting the potential of deep learning
in this application.

In network models, entities (e.g drugs, genes, proteins, diseases,
etc.) are represented by the nodes of the network while the edges
symbolize the connections among them, representing a highly ef-
fective approach for modeling biological and biomedical objects,
as well as for capturing their interactions and relationships. These
methods allow the construction of heterogeneous networks by in-
tegrating entities and relationships from different data sources, un-
veiling previously unknown or concealed drug-disease connections
[12, 23]. Yamanishi et al. [40] proposed a bipartite graph supervised
learning model that leverages protein-protein interaction data, drug
chemical structure information, and drug-target interaction net-
works to predict diverse drug-target interaction classes. Kinnings
et al. [14] built a drug-drug network, representing drugs as nodes
and connecting them based on drug chemical structure data and
drug-target interaction similarity to uncover communities of drugs,
ultimately unveiling therapeutic potentials and novel indications
for existing drugs. On another front, Hu and Agarwal [10] used
microarray gene expression profiles to construct a disease-drug
network, coming up with a model which effectively identified drug
repositioning opportunities and potential drug side effects. Lastly,
Li and Lu [15] introduced a novel bipartite graph model that infers
drug-target indications by considering drug pairwise similarity,
combining drug chemical structure information with drug-target
interactions.
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3 METHODS
In this Section, we first introduce the Non-Negative Matrix Fac-
torization (NMTF) method for predicting novel links in a bipartite
graph. We then extend the method to multipartite graphs and show
the update rules that are used to compute the NMTF in the most
general case. Finally, we describe how we used NMTF to create
embeddings for the two-tower architecture that we used for predic-
tion.

3.1 Non-Negative Matrix Factorization (NMTF)
Let’s define a bipartite graph as a graphG = ⟨𝑁, 𝐸⟩where𝑁 = 𝐿∪𝑅,
such that 𝐿 ∩ 𝑅 = ∅, is a set of nodes and 𝐸 ⊆ 𝐿 × 𝑅 is the a set
of edges. Thus, a bipartite graph is a graph where the nodes can
be divided into two disjoint groups, such that no nodes in the
same group are connected by an edge. A bipartite graph graph can
be encoded as its association matrix 𝑋𝐿𝑅 ∈ {0, 1} |𝐿 |× |𝑅 | , where
𝑋𝐿𝑅 [𝑖, 𝑗] = 1 if and only if the node 𝑖 ∈ 𝐿 is connected to the node
𝑗 ∈ 𝑅 (i.e., (𝑖, 𝑗) ∈ 𝐸).

The NMTF can be applied to the 𝑋𝐿𝑅 matrix in order to infer
missing links between. Using iterative updated rules, NMTF decom-
poses the association matrix in three lower rank positive matrices
𝑈 ∈ R |𝐼 |×𝑘𝑟≥0 , 𝑆 ∈ R𝑘𝑟 ×𝑘𝑙≥0 , and 𝑉 ∈ R | 𝐽 |×𝑘𝑙≥0 , with 𝑘𝑟 < 𝐿 and 𝑘𝑙 < 𝑅

such that the Frobenius norm of the difference between the original
matrix and the product of the three

L(G|𝑘𝑟 , 𝑘𝑙 ) = |𝑋𝐿𝑅 −𝑈𝑆𝑉⊤ |2𝐹𝑟𝑜
is minimized.

Then, the three matrices are used to compute the approximated
matrix

�̃�𝐿𝑅 = 𝑈𝑆𝑉⊤ .

Finally, fixed a threshold 𝜏 , we predict a connection between the
node 𝑖 ∈ 𝐿 to the node 𝑗 ∈ 𝑅 if and only if �̃�𝐿𝑅 [𝑖, 𝑗] > 𝜏 . This
technique, which is also known as matrix completion, is a popular
choice for various fields including recommender systems, signal
processing and image denoising.

3.2 NMTF for multipartite graphs
The NMTF method can be easily extended from bipartite graphs
to multipartite graphs. For the sake of clarity, but without any
loss of generality, we here present the extension in the context of
predicting novel associations between nodes in two sets, L and R,
where both L and R are connected to additional sets of nodes. We
call this auxiliary set of nodes side data. An example of this graph
topology is shown in Figure 1.

We can view a multipartite graph as a composition of bipartite
graphs, which can be encoded as a set of association matrices, one
for each bipartite graph. The extension of NMTF to multipartite
graphs is then straightforward. For each association matrix 𝑋𝐼 𝐽

connecting nodes of a set 𝐼 to nodes of a set 𝐽 , NMTF finds three
lower rank positive matrices𝑈𝐼 , 𝑆𝐼 𝐽 and𝑉𝐽 such that they minimize
the objective function:

L(G|Θ) =
∑︁

𝑋𝐼 𝐽 ∈G
|𝑋𝐼 𝐽 −𝑈𝐼𝑆𝐼 𝐽𝑉

⊤
𝐽 |

2
𝐹𝑟𝑜 ,

whereΘ is the set of all the hyperparameters, i.e., the 𝑘𝐼 and 𝑘 𝐽 . It is
clear that such a formulation would result in a set of independently

Figure 1: Example of a multipartite graph. The bipartite
graph connecting nodes in 𝐿 with nodes in 𝑅 is extended
by associating side data (i.e., links to other node sets) to both
sides. Notice that links between nodes of the same set are
not allowed.

factorized matrices, in which the data integration would play no
role. In order to take advantage of all the information in the multi-
partite graph in a holistic way, we need to impose some additional
constraints. In particular, whenever a chain is present in the graph
such that the nodes of a set 𝐼 are connected to the nodes of a set
𝐽 and the nodes of 𝐽 are connected to the nodes of a third set 𝑍
(e.g., the sub-graph connecting 𝐿1, 𝐿 and 𝑅 in Figure 1), then the𝑉𝐽
factor matrix of 𝑋𝐼 𝐽 has to be equal to the𝑈 𝐽 factor matrix of 𝑋 𝐽 𝑍 .

Under this settings, it if possible to compute the set of factor ma-
trices that minimize the objective function starting from a random
initialization and iteratively applying the following update rules:

𝑈𝐼 ← 𝑈𝐼 ⊙

∑︁
𝑄

𝑋𝐼𝑄𝑉𝑄𝑆
⊤
𝐼𝑄 +

∑︁
𝑄

𝑋⊤𝑄𝐼𝑈𝑄𝑆𝑄𝐼∑︁
𝑄

𝑈𝐼𝑆𝐼𝑄𝑉
⊤
𝑄 𝑉𝑄𝑆

⊤
𝐼𝑄 +

∑︁
𝑄

𝑈𝐼𝑆
⊤
𝑄𝐼𝑈

⊤
𝑄𝑈𝑄𝑆𝑄𝐼

𝑉𝐽 ← 𝑉𝐽 ⊙

∑︁
𝑄

𝑋⊤𝑄𝐽𝑈𝑄𝑆𝑄𝐽 +
∑︁
𝑄

𝑋 𝐽 𝑄𝑉𝑄𝑆
⊤
𝐽 𝑄∑︁

𝑄

𝑉𝐽 𝑆
⊤
𝑄𝐽𝑈

⊤
𝑄𝑈𝑄𝑆𝑄𝐽 +

∑︁
𝑄

𝑉𝐽 𝑆 𝐽 𝑄𝑉
⊤
𝑄 𝑉𝑄𝑆

⊤
𝐽 𝑄

𝑆𝐼 𝐽 ← 𝑆𝐼 𝐽 ⊙
𝑈⊤
𝐼
𝑋𝐼 𝐽𝑉𝐽

𝑈⊤
𝐼
𝑈𝐼𝑆𝐼 𝐽𝑉

⊤
𝐽
𝑉𝐽

where ⊙ and •
• stand for the element-wise multiplication and

division, respectively. Usually those rules are iterated until the
relative improvement of the objective function L between two
consecutive iterations goes below a threshold 𝛼 .
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3.3 NMTF for Embeddings Generation
Once we have presented the NMTF method for multipartite graph,
we can exploit it to generate knowledge-based embeddings of ele-
ments of a set 𝐷 (e.g., genes) that are connected to side data from 𝑁

sets 𝑆1, 𝑆2, . . . , 𝑆𝑁 (e.g., terms in a curated vocabulary or ontology
such as GO and KEGG).

Figure 2: Multipartite graph for knowledge-based embed-
dings. Each node of the set 𝐷 is enriched with connection to
side data from 3 different datasets, 𝑆1, 𝑆2, and 𝑆3.

The first step is to represent the information as a multipartite
graph with the topology shown in Figure 2; the entities of interest
𝐷 are connected to the 𝑁 side dataset. No further connection are
present (i.e., intra-set or between side datasets). Then, the graph
is encoded as the corresponding set of 𝑁 association matrices
𝑋𝐷,𝑆1, 𝑋𝐷,𝑆2, . . . , 𝑋𝐷,𝑆𝑁 . Those matrices are jointly factorized by
NMTF. For each 𝑋𝐷,𝑆𝑖 we obtain three matrices 𝑈𝐷 , 𝑆𝐷,𝑆𝑖 , and 𝑉𝑆𝑖 .
Note that all the factorizations of the 𝑁 association matrices share
the same left matrix𝑈𝐷 due to the constraints introduced in Section
3.2. The 𝑈𝐷 matrix, which has a dimension of |𝐷 | × 𝑘𝐷 , represents
the embeddings of the 𝐷 elements in the vector space R𝑘𝐷 .

3.4 Two-Tower Architecture
With reference to Figure 1, suppose our goal is to predict novel
association between elements in 𝐿 and elements in 𝑅. To this end,
we implemented a classification system based on a two-tower ar-
chitecture, as depicted in Figure 3.

As mentioned in the Introduction a two-tower method is a ma-
chine learning model composed of two towers connected by a clas-
sifier. It is especially useful for tasks that involve predicting the
interaction between two different types of entities. Each tower
learns a feature representation of the entities it is responsible for.
The two representations are then merged together (typically by
simply concatenating them) and fed into a classifier.

In our proposal, we use NMTF to learn vectorial dense represen-
tations of the entities in each tower, namely the embeddings. Then,
(s sub set of) the cross product of these two sets of embeddings

Figure 3: Two-tower architecture. The following steps com-
pose the pipeline: (a1, a2) NMTF is applied independently to
the two entities; (b) the vectorial embeddings are produced;
(c) the embeddings are concatenated; (d) finally, a classifier
is applied.

is then used as input to a classifier. The fact that only a subset of
the cross product is needed for the classifier is significant. This
implies that the latent encoding can be learned on a very large set
of entities, even larger than the set of entities for which we want
to infer novel associations.

We have experimented with three different classifiers: logistic
regression, random forest, and multi-layer perceptron.

4 APPLICATION TO PARKINSON’S DISEASE
We applied our proposed method to the task of drug repurposing,
specifically predicting novel potential targets for approved drugs.
In this scenario, the two towers learn representations for drugs and
genes, respectively.

We then produce a cross-product of the two sets of embeddings
and concatenate the two vectors. This new set is used to train a
classifier, which is then exploited to predict novel interactions.

In order to evaluate our approach in qualitative as well as quan-
titative terms, we used a dataset that is restricted to genes involved
in the Parkinson’s Disease.

4.1 Data extraction and integration
We first built two primary networks, namely drug network and gene
network. Thereafter, to assess our method we compared it with the
traditional NMTF, and thus we combined the two networks in a
multipartite network. A detailed description of how the networks
were built is given below.

4.1.1 Drug network. The drug network (left part of Figure 4) was
populated with data retrieved from DrugBank [37]; we considered a
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set 𝐷 of 1,101 unique approved drugs. Each drug in 𝐷 is associated
with terms in the set 𝐴 from the fourth level of the Anatomical
Therapeutic Chemical (ATC) codes, a system that categorizes drugs
into different groups at five different levels according to the organ
or system on which they act and their therapeutic, pharmacological
and chemical properties. The set 𝐴 comprises 530 different ATC
codes. We also expanded the network with categories and classifi-
cation, which were retrieved from DrugBank database. Thus, the
drugs in 𝐷 are also associated with the 2,140 categories and with
the 232 classifications in the two sets 𝐶 and 𝐿, respectively.

Thus, the drug multiparite network, shown on the left of Figure 4,
can be encoded into the following three binary matrices:

• 𝑋𝐷𝐴 , such that 𝑋𝐷𝐴 [𝑑, 𝑎] = 1 iff the drug d is associated
with the ATC code a;
• 𝑋𝐷𝐶 , such that 𝑋𝐷𝐶 [𝑑, 𝑐] = 1 iff the drug d is belongs to the
category c;
• 𝑋𝐷𝐿 , such that 𝑋𝐷𝐿 [𝑑, 𝑙] = 1 iff the drug d is included the
drug classification l;

4.1.2 Gene network. The gene network was constructed by fo-
cusing on genes potentially associated with PD. We accomplished
this by using publicly available RNA-Seq data from human post-
mortem brain tissues of both PD and healthy control patients,
sourced from the Gene Expression Omnibus (GEO) repository. Fol-
lowing the application of standardized data processing, we first
conducted a differential expression analysis between the PD and
healthy control groups, resulting in the identification of 3,670 genes
with an adjusted p-value < 0.05. These genes intersected with Gene
Ontology (GO) annotations retrieved from Molecular Signature
Database (MSigDB) [16] formed the first matrix of this network.
We obtained a matrix of G = 3,049 unique genes and GO = 4,047
unique GO terms. Then, we expanded the network and we con-
sidered also the Curated gene sets from MSigDB, which includes
genes involved in the same pathways, curated from biomedical
literature: BioCarta [27], KEGG [13], PID [28], Reactome [7] and
WikiPathways [19] databases.

The gene multiparite graph, shown on the right of Figure 4, can
be encoded as the following two binary matrices:

• 𝑋𝐺𝐺𝑂 such that 𝑋𝐺𝐺𝑂 [𝑔, 𝑡] = 1 iff the gene g is annotated
to the GO term t;
• 𝑋𝐺𝐶 such that 𝑋𝐺𝐶 [𝑔, 𝑐] = 1 iff the gene g belongs to the
curated set c.

The dimensions of the resulting binary matrices both for drug
and gene networks are reported in Table 1. These matrices served as
the input data for the two towers of our architecture which creates
the embeddings, subsequently employed in the classification tasks.

To assess and compare our improved approach with the tradi-
tional NMTF method, we added the bipartite graph between the
drugs and the genes; according to the information retrieved from
DrugBank 1 we build the graph such that an edge exists between
a drug d and a gene g only if g is a target of d. Thus we finally
obtained the whole multipartite network depicted in Figure 4. In
DrugBank, a gene being a target of a drug means that the drug
interacts with or affects the gene’s protein product. This interaction

1https://go.drugbank.com

Table 1: Dimensions of the matrices that encode the multi-
partite graph used for testing the two-tower model against
NMTF

Two-tower NMTF
Matrix #Row #Columns #Rows #Columns
𝑋𝐷𝑇 464 309
𝑋𝐷𝐴 1,101 530 464 310
𝑋𝐷𝐶 1,101 2,140 464 1,528
𝑋𝐷𝐿 1,101 232 464 156
𝑋𝐺𝐺𝑂 3,049 4,047 309 1,299
𝑋𝐺𝐶 3,049 3,798 309 1,181

can involve direct binding, indirect regulation, or modulation of
gene expression.

Starting from this network we pruned it in order to make it ideal
for NMTF; specifically, we only considered drugs that are linked
to at least one target gene in the set. This resulted in the creation
of the 𝑋𝐷𝑇 matrix, comprising 464 drugs connected to 309 genes.
On cascade, we also pruned the data from the side sets, both for
genes and drugs. The dimensions of the matrices incorporated in
this network and used to compare traditional NMTF with our novel
approach are reported in Table 1.

To keep the comparison fair, the 𝑋𝐷𝑇 matrix containing drugs
and genes was used to filter the embeddings used in the classifica-
tion tasks, allowing for a direct comparison of performance with
the traditional NMTF method.

All these matrices were considered to produce the outcomes
described in the following Section 4.2.

Figure 4: Graphical representation of the multipartite graph
used in our test. The edges between DRUGS and GENES are
present only for the experiments with NMTF; however its
information is used for training the classifier of the two-
tower model. The embedding are computed on the two sub-
graph starting from DRUGS and GENES, respectively.

4.2 Results
4.2.1 Embeddings generation viaNMTF anddrug-target pre-
diction. To derive embeddings for the drug and the gene networks,
we exploited the NMTF decomposition step and we generated two
factorized matrices, denoted as 𝑈𝑑𝑟𝑢𝑔𝑠 and 𝑈𝑔𝑒𝑛𝑒𝑠 . Moreover, to
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comprehensively explore potential variations arising from changes
in the embedding dimension, we executed NMTF considering differ-
ent factorization ranks, k = 10, 25 and 50. Then, we cross-matched
the factorized matrices, combining all rows of the 𝑈𝑑𝑟𝑢𝑔𝑠 matrix
with all rows of the𝑈𝑔𝑒𝑛𝑒𝑠 matrix, and subsequently we used the
final cross-matched matrix as input matrix for RF, LR and MLPC
across different values of k while employing two key techniques: K-
Fold Cross Validation with 5 folds and hyper-parameter tuning. We
evaluated the different predictors performances by calculating the
Area Under the Receiver Operating Characteristic (AUROC). This
approach led to interesting outcomes, underscoring its effective-
ness. For K-Fold Cross Validation with k = 10, our analysis yielded
intriguing findings. RF model demonstrated a solid AUROC of 0.87,
indicating its ability to make robust predictions. In contrast, LR
model achieved a lower AUROC of 0.64, suggesting a relatively
weaker performance compared to RF. On the other hand, MLP
model showcased impressive predictive power with an AUROC of
0.85, even under the constraint of a smaller k value. Moving on to
Hyperparameter Tuning with k = 10, RF and LR slightly improved
with an AUROC of 0.90 and 0.87 respectively, while LR maintained
an AUROC of 0.64.

For K-Fold Cross Validation with k = 25, we observed promising
results with RF achieving an AUROC of 0.88, while LR exhibited
an AUROC of 0.71. Impressively, MLP also achieved an AUROC
of 0.88. Moving on to Hyperparameter Tuning with k = 25, RF
displayed improved performance with an AUROC of 0.90, while LR
maintained an AUROC of 0.71, and MLP slightly decreased to an
AUROC of 0.87. An illustrative depiction of AUROC values for k=25
after Hyperparameter Tuning is presented in Figure 5 providing a
visual representation of the achieved predictive performances.

Expanding our investigation to K-Fold Cross Validation with a
larger k = 50, we continued to witness strong predictive capabilities,
with RF achieving an AUROC of 0.89, LR improving to an AUROC
of 0.74, and MLP maintaining its high AUROC of 0.88. Lastly, under
Hyperparameter Tuning with k = 50, RF once again outperformed
other models with an AUROC of 0.90, while LR matched its perfor-
mance with an AUROC of 0.74, and MLP retained its AUROC of
0.87. These results underscore the robustness of this method which
couples NMTF with predictors models to drug-target prediction.

4.2.2 Traditional NMTF. To validate the effectiveness of our
proposed approach, we conducted a comparative analysis with the
traditional NMTF method. Specifically, we applied NMTF to the in-
tegrated network shown in Figure 4B and validated through a mask
validation strategy: we defined a mask M of the same dimension of
the input matrix, which randomly hides, i.e., set to 0 regardless of
their real values, the 20% of the entire elements of the 𝑋𝐷𝑇 . Thus,
we applied the NMTF decomposition substituting 𝑋𝐷𝑇 with the
masked matrix and we evaluated how well it could reconstruct the
real matrix my measuring the AUROC. The same procedure was
repeated 25 times, every time changing the mask. As explained in
section 4.2.1, we tested different configurations with k = 25 and 50.

First, we applied NMTF to the solely input association matrix
𝑋𝐷𝑇 obtaining an AUROC of 0.6756 for k = 25 and 0.6803 for k
= 50. We subsequently expanded the network by adding first the
additional information related to genes (i.e., 𝑋𝐺𝐺𝑂 , 𝑋𝐺𝐶 ) and then
to drugs (i.e., 𝑋𝐷𝐴 , 𝑋𝐷𝐶 , 𝑋𝐷𝐿). The inclusion of solely gene-related

Figure 5: AUROC representation of the implementedmethod
for drug-target prediction with RF, LR and MLP after hyper-
parameter tuning for k = 25

information had a negligible impact on the performance, with AU-
ROC values of 0.6801 for k = 25 and 0.6788 for k = 50. The most
significant improvement was observed when we introduced solely
drug-related information, resulting in AUROC values of 0.7381 for k
= 25 and 0.758 for k = 50. However, as expected, the integration of all
information into the network, comprising the principal association
matrix 𝑋𝐷𝑇 along with both drug and gene information, did not
lead to better predictive performance, as shown in Figure 6. This is
proved by a decrease of almost the 12% in the value of the AUROC
metric, from 0.6756 to 0.5526 for k = 25 and from 0.6803 to 0.557 for
k = 50. This suggests that our implemented method, which incorpo-
rates all available information, succeeded in enhancing the model’s
predictive capabilities, unlike the standalone NMTF method.

4.2.3 Newly identified drug-target predictions. Given the re-
markable performances demonstrated by RF and MLP models, we
have expanded our investigation to evaluate the novel predictions
generated by the classifiers with regard to potential treatments for
PD. Among these predictions, we have identified several promising
compounds: Rutin, Fingolimod, Bexarotene, Statins (Pravastatin and
Atorvastatin), and Capsaicin. These already approved compounds
were evaluated for their interesting mechanism of action and po-
tential neuroprotective effects. Newly identified drugs, along with
their associated targets, are reported in Table 2.

Rutin, a natural compound, has demonstrated potential in pro-
tecting the brain from neurodegenerative conditions by reducing
neuroinflammation, enhancing antioxidant activity, and influencing
gene expression related to PD [6]. Fingolimod, currently used in the
treatment of Multiple Sclerosis, has shown neuroprotective effects
in various animal models of neurodegenerative diseases, improving
disease-related symptoms such as cognition and motor abilities,
along with reduction of neuroinflammatory markers [3]. Bexarotene,
originally used to treat cutaneous T-cell lymphoma, has displayed
promise in the treatment of Alzheimer’s disease (AD), since it has
exerted different protective mechanisms, including inhibiting beta
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Figure 6: AUROC representation of traditional NMTF drug-
target prediction performances using a random mask on the
solely association input matrix of 𝑋𝐷𝑇 and on the integrated
network for k = 25.

Table 2: New drug-target predictions made by our proposed
approach

DrugBank ID Drug Name Target

DB01698 Rutin ALB
DB08868 Fingolimod SLC12A5
DB00307 Bexarotene MAP3K3
DB00175 Pravastatin CAMK2G
DB01076 Atorvastatin CS
DB06774 Capsaicin ALB

amyloid production and aggregation, regulating neuroinflamma-
tion, and improving cognitive functions [17]. Pravastatin and Ator-
vastatin have demonstrated neuroprotective effects in an in vitro
induced model of neuroinflammation and neurodegeneration [20].
Lastly, Capsaicin, studied in relation to AD, has shown potential
in preventing the aggregation of beta amyloid [35]. Notably, while
these drugs rank highly in our new predictions, their traditional
NMTF scores are significantly low, making their identification un-
likely without our enhanced approach.

Additionally, it is important to emphasize that some of the iden-
tified targets hold direct relevance to the disease or have previously
been associated with the predicted drugs. For instance, Rutin and
Capsaicin are predicted to interact with albumin (ALB), a protein
whose increased serum levels have been associated with improved
cognitive functions in PD [32]. Similarly, Fingolimod is predicted
to interact with SLC12A5, a gene belonging to the SLC transporter
family that plays a crucial role in the regulation of neurotransmis-
sion related to PD [8].

These findings further strenghten the validity of the proposed
method in making predictions, suggesting significant connections

between the predicted already approved drugs and the identified
targets, with potential therapeutic implications for the disease.

5 DISCUSSION AND CONCLUSIONS
In this study, we introduced an innovative enhancement to the
NMTF method to drive drug repurposing. Our approach involved
leveraging both data integration and machine learning techniques,
specifically the NMTF method and various machine learning pre-
dictors, to predict drug-target interactions. We designed a novel
architecture for building predictions, named two-tower architecture,
which employs the NMTF method in a new, unconventional way,
and demonstrated the effectiveness of our approach. We showed
that NMTF successfully extracted meaningful features and relation-
ships from the data, highlighting the potential for drug repurposing.

By combining NMTF embeddings with machine learning predic-
tors like random forest, logistic regression, and multi-layer percep-
tron, we achieved promising results. Our models exhibited strong
predictive capabilities with AUROC values ranging from 0.71 to
0.90, depending on the specific machine learning algorithm and the
choice of factorization rank k. We compared our approach to tradi-
tional NMTF method on the same network configuration. While
traditional NMTF achieved AUROC values between 0.5526 and
0.6803, our enhanced method consistently outperformed it.

Among the newly identified drug-target predictions, we uncov-
ered compounds that showed promise in protecting against neu-
rodegeneration, including Rutin, Fingolimod, Bexarotene, Pravas-
tatin, Atorvastatin and Capsaicin which exhibited the ability to
reduce neuroinflammation and influence mechanisms protecting
the brain [3, 6, 17, 20, 35]. A comment is required for statins since
they are widely used in cardiovascular diseases and our study em-
phasized the importance of considering individual statins for their
specific effects within the central nervous system in future studies.

Moreover, among the newly identified targets, particular interest
goes to albumin, which has been predicted to interact with Rutin and
Capsaicin. Indeed, higher levels of albumin have been associated
with improvement in cognitive functions and protective role in
motor impairments in PD patients [32]. Furthermore, recent studies
shed a light on the association between Rutin and albumin as they
showed that their interaction could improve Rutin efficacy [30, 31].
Nonetheless, it is essential to highlight that these results are based
on computational predictions and require comprehensive both pre-
clinical and clinical validation to confirm their efficacy in practice.

The primary drawbacks of our method involve handling incom-
plete and noisy data, which may adversely impact the generation
of embeddings, thus reducing their accuracy and reliability. This
may lead to potential misinterpretation or errors in downstream
analyses and difficulty in achieving the desired results.

In conclusion, our study presents a novel and powerful approach
to building predictions. This advancement unlocks numerous fu-
ture extensions, including the potential for triplet-based predictions
involving drug-protein-disease interactions or drug-disease-patient
profiles, which are paramount for precision medicine. Furthermore,
it allows the integration of complex data types that cannot be easily
represented as graphs, like amino acid sequences of target proteins.
In such cases, an embedding of the additional information may
be effectively computed by means of Recurrent or Convolutional
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Neural Network and then concatenated to the knowledge-based
embedding obtained by NMTF. In summary, our tower-based ar-
chitecture is a powerful and general concept, that adapts to many
application domains.
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