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Abstract
Probabilistic forecasting of power consumption in a middle-term horizon (few 
months to a year) is a main challenge in the energy sector. It plays a key role in 
planning future generation plants and transmission grid. This paper proposes a novel 
model that (i) incorporates seasonality and autoregressive features in a traditional 
time-series analysis and (ii) includes weather conditions in a parsimonious machine 
learning approach, known as Gaussian Process. Applying to a daily power consump-
tion dataset in North East England, provided by one of the largest energy suppliers, 
we obtain promising results in Out-of-Sample density forecasts up to one year, even 
using a small dataset, with only a two-year calibration set. For the evaluation of the 
achieved probabilistic forecasts, we consider the pinball loss—a metric common in 
the energy sector—and we assess the coverage—a procedure standard in the bank-
ing sector after the introduction of Basel II Accords—also running the conditional 
and unconditional tests for probability intervals. Results show that the proposed 
model outperforms benchmarks in terms of both accuracy and reliability.
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Notation and abbreviations

Notation
Symbol  Meaning
Yt  Log-scaled power consumption time-series
yt  Realized OS log-scaled power consumption time-series
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t  Cardinality of the observation
Tt  Trend
St  Seasonality
Rt  Residual at time t, tth component of the vector (R,R∗)

R  Vector of IS residuals ∈ ℝ
n

R∗  Vector of OS residuals ∈ ℝ
n∗

{�}i=0,…,5;�  GLM parameters
DSat(t)  Dummy variable for Saturdays
DSun(t)  Dummy variable for Sundays
n  IS time-series length
n∗  OS time-series length
N(⋅, ⋅)  Gaussian multivariate distribution
�, �f , �l  Parameters of GP kernel
R(x)  Residual of Gaussian process
k(x, x̃)  Kernel (or correlation function) of GP
�i j  Kronecker delta, which is one iff i = j and zero otherwise
H(X, X)  Covariance matrix ∈ ℝ

n×n equal to K(X,X) + �2 I

K(⋅, ⋅)  Covariance matrix ℝn×n built through k(x, x̃)
I  Identity matrix in ℝn×n

x  Generic weather conditions’ vector
‖ ⋅ ‖  Standardized Euclidean distance

Abbreviations
AR  Auto regressive model
ARX  Auto Regressive eXogenous model
GLM  General linear model
GP  Gaussian process
GPX  Gaussian process eXogenous model: the proposed model
iff  If and only if
IS  In-sample
LR  Likelihood ratio
ML  Machine learning
OLS  Ordinary least squares
OS  Out-of-sample
SED  Standardized Euclidean distance
w.r.t.  With respect to
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1 Introduction

Power consumption forecast has received significant attention from both academics 
and practitioners in recent years. In particular, middle-term forecast, i.e. in a time-
horizon between a few months and a year,1 plays a key role in the planning of power 
systems both for network reliability and for investment strategies in future genera-
tion plants and transmission (see, e.g., [10]).

Through a probabilistic forecast, one obtains the full probability distribution of 
future consumption. It is the latest frontier of current research: it is more helpful 
for utilities and grid operators than point consumption forecast. In fact, it does not 
provide only the expected value of the forecast but also information in terms of the 
dispersion of the forecast: a piece of information that is relevant for generating reli-
able scenarios.

The number of studies in the literature on density forecast for power consump-
tion is rather limited. This technique gained momentum in the energy sector after 
the Global Energy Forecasting competition 2014 (GEFCom) on a USA dataset, that 
includes a 7-year time-series with hourly power consumption and temperatures (dry 
and wet bulb) as explanatory variables (see, e.g. [11]). Some techniques have been 
developed focusing mainly on the short-term probabilistic forecasting of power con-
sumption (see, e.g., [10], and references therein). One interesting probabilistic fore-
cast has been considered by Liu et al. [16] with GEFCom time-series.2 The authors 
apply a quantile regression average (QRA) technique to create 24 h ahead forecasts 
on a rolling basis. The authors show that the QRA is able to perform, depending on 
the chosen metrics, 10–20% better forecasts than comparable benchmarks based on 
the Tao model [12]. Other recent applications of probabilistic forecast to the energy 
sector can be found in [26, 30].

In particular, it is important to select the relevant drivers in the forecast and their 
relationship with power consumption; this allows to understand and to hedge the 
risks. We are interested in the impact of weather conditions because they play the 
most relevant role in middle-term forecasts compared to economic and demographic 
drivers that play a role in longer forecasts [13, 14]. We focus on a region in the UK 
with relatively homogeneous weather conditions and on the power consumption of 
one main operator on the household energy market. We aim to model the depend-
ency of power consumption from a multi-meteorological information; the most nat-
ural technique, now standard in power consumption forecasting, is known as ex-post 
forecasting. It has been applied to middle-term probabilistic forecasting of power 
consumption on the French distribution network [9], on the National Electricity 

1 In the power consumption literature, short-term consumption forecasting is the prediction of the con-
sumption (either of one operator or of the whole system) over an interval ranging from one day to a few 
weeks, while long-term consumption forecasting focuses on time-horizons longer than 1 year.
2 Six years of this dataset have been studied, dividing it into a 3-year training set, a 2-year validation set 
and a 1-year test set for model evaluation. Nowadays, it is standard in load forecasting, due to the rel-
evant yearly seasonality, to divide training/validation/test sets into integer multiples of 1 year.
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Market of Australia [14] and on one of the largest ensembles of power distribution 
cooperatives in North Carolina, USA [13].

We use a Machine Learning (ML) technique. In the literature, after the seminal 
paper of Park et  al. [25] these techniques have been shown to provide interesting 
results in short-term point consumption forecast (see, e.g., [7, 19, 28]) furthermore, 
the main successes of ML have been shown with big-data analytics (see, e.g., [18, 
20]). Although forecasting by nature is a stochastic problem, many studies are still 
using point forecasts instead of probabilistic forecasts for load, whereas probabilistic 
forecasting is becoming more common for pricing (see, e.g., [23], for a review). In 
this paper, we apply a ML technique also to a middle-term consumption forecast up 
to one-year; moreover, we consider a density forecast instead of a point forecast.

Among ML techniques, Gaussian processes (GP) are a natural modeling tool for 
density forecasting (see, e.g., [27], for a review on GP). Mori and Ohmi [22] and Yu 
et al. [31] have applied GP in short-time load forecasts of power consumption. In 
their seminal work, Mori and Ohmi [22] applied GP for one-day ahead daily maxi-
mum load forecasting on a 4-year daily load time-series of a Japanese power com-
pany. The maximum load problem allowed them to focus on the weekdays during 
the summer period (June–September), neglecting seasonality effects. More recently, 
Yu et al. [31] studied the intervention estimation problem for demand side manage-
ment, analyzing a dataset obtained from a USA corporation (the Pacific Gas and 
Electric Company) over a 1 year and half timespan. They focused on the forecasting 
performance at an individual customer level, showing a mean absolute percentage 
error (MAPE) always above 30% even considering short time forecasts (few weeks).

Both studies have had the merit to show that GP is an attractive technique in 
probabilistic load forecasting with short time-series, thanks to GP parsimony. Man-
aging short time-series is a common exigence in the industrial sector: it is quite hard 
to obtain, within a middle-to-large operator, homogeneous long time-series. This 
fact is due both to the rapid changes that are observed in this energy market and 
to mergers and acquisitions, corporate transactions that have become frequent after 
the liberalization of the sector. These power market features change significantly the 
composition of clients’ portfolio over time and then the characteristics of the dataset.

The real challenge is to use these techniques with short time-series for middle-
term forecasting: we consider the extreme case where we analyze a 2-year In-Sample 
dataset to forecast a 1-year power consumption time-series. Our goal is to introduce 
a new hybrid linear-GP model that extends the existing literature on GP (short-term) 
load forecasting in the following directions.

First, both Mori and Ohmi [22] and Yu et al. [31] take into account only margin-
ally seasonal effects in their GP model: unfortunately, yearly seasonality cannot be 
neglected in middle-term forecasting, because the average consumption in one sea-
son can be even three times larger than the consumption in a different one. A hybrid 
linear-GP model allows us, first, to deseasonalize and to remove the daily autocor-
relation term with a linear model, and then, to forecast the residuals with a GP.

Second, in both studies, the authors model directly the load with a GP: thus, the 
forecast distribution presents even negative power consumption—with finite prob-
ability—over several days. In middle-term forecasts, we forecast consumption up to 
365 days after the last load data in the training set. This forecasting technique uses 
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previous days’ forecast after the training set; thus, negative values can propagate 
unrealistic loads to the whole yearly forecast. In this study, we model the logarithm 
of the load; thus, not only we reduce the impact of seasonality (see, e.g., [10]), but 
also we eliminate the possibility of such unrealistic values for power consumption.

Third, both Mori and Ohmi [22] and Yu et  al. [31] focus only on temperature 
as explanatory variable, whereas we consider a larger set of explanatory variables 
based on multi-meteorological data, a piece of information particularly relevant with 
small time-series.

Finally, both studies evaluate performances—comparing GP with the benchmarks 
in the test set—with a point forecast measure for the mean of the forecast (such as 
MAPE).3 It is true that MAPE is still a widely used error statistics in load forecast-
ing; however, let us point out that it is very important the evaluation of the distri-
butional features in the probabilistic forecast, when comparing the proposed model 
with the benchmarks. In this study, we check that not only the proposed linear-GP 
model performs well with point forecast measures (e.g. with a MAPE below 5% 
over 1 year), but also we verify the quality of the forecast from a probabilistic per-
spective. In this study, we consider the most important method to check the effec-
tiveness of the probabilistic prediction: we apply a backtesting technique, standard 
in the banking sector after the introduction of Basel II BCoBS [1], that verifies the 
probabilistic features of the realized values—in terms of frequency and clustering of 
the events—outside the predicted confidence interval at a given nominal level. We 
also measure the pinball loss, a sharpness measure that is now popular in the energy 
sector, after GEFCom, where it was used as the scoring function in the probabilistic 
forecast competition [11].

The main contributions of the paper are threefold. First, we introduce a hybrid 
model that joints the advantages of linear time-series analysis and simple ML tech-
niques. In particular, via a Gaussian process we incorporate the dependency from 
weather conditions in power consumption density forecast and we deduce density 
characteristics for the hybrid model. Second, we show that a hybrid linear-GP tech-
nique relying on a small dataset can achieve promising results in middle-term fore-
casts of power consumption. Third, we value the density forecast via both reliability 
and sharpness measures, pointing out the quality of the achieved results.

The rest of the paper is organized as follows. In Sect. 2, we summarize the key 
characteristics of the dataset. In Sect. 3, we outline the proposed model and how the 
weather conditions are introduced via a Gaussian process. In Sect. 4, we present the 
methodology; in particular, we describe (i) the forecasting technique, (ii) the bench-
mark models and (iii) the evaluation methods. Section 5 shows the main numerical 
results and Sect. 6 concludes. In a dedicated appendix, we report the notation and 
abbreviations used in the paper.

3 It is interesting to observe that, after having calibrated the model in the training set, they compare 
model performance only in the test set, without a model selection stage in a validation set: this difference 
with standard ML techniques (cf. e.g. [8], and references therein) is due to the absence of true hyper-
parameters within GP and it is crucial with short time-series.
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2  Dataset description

North East England is one of the nine regions of England and the eighth most popu-
lous conurbation in the United Kingdom. The dataset we analyse contains both the 
time-series of daily power consumption values and seven daily average weather con-
ditions. It is three years long, from April 2014 to March 2017.

Power consumption is the aggregated household consumption of one of the main 
UK power suppliers. The weather dataset represents the daily average of hourly 
records of weather conditions in North East England. It includes seven different 
weather indicators:

• Temperature, in ◦C;
• Wind speed, in m/s;
• Precipitation amount, in mm;
• Chill,4 in ◦Cm∕s;
• Solar radiation, in KJ/m2;
• Relative humidity, in %;
• Cloud cover, on a scale 0 (clear) to 8 (completely cloudy).

Table 1 contains descriptive statistics about daily power consumption and weather 
data for the whole time window.

We notice a wide variety of units of measurement in weather conditions: it 
implies ranges of values that can differ by orders of magnitude. Due to the difference 
in units of measurement, in order to obtain a homogeneous dataset it is often useful 
to standardize each input variable. In the GP described in the next section, we use 
the standardized Euclidean distance: a simple tool that allows to consider the multi-
meteorological information in the dataset.

Table 1  Descriptive statistics for daily power consumption and average daily weather data in NE Eng-
land in the whole time window

Min Max Mean Median Standard deviation

Consumption [MWh] 248.364 1208.705 632.921 638.327 249.996
Temperature [ ◦C] −1.330 21.581 8.902 9.020 4.520
Wind speed [m/s] 0.667 10.219 3.400 3.000 1.624
Precipitations [mm] 0.000 1.471 0.086 0.015 0.162
Chill [ ◦C ⋅ m∕s] 0.440 140.509 30.995 23.823 24.515
Solar radiation [kJ/m2] 14.583 1212.917 397.424 327.083 296.357
Humidity [ %] 60.167 100.000 85.415 85.344 7.525
Cloud cover 2.071 8.000 5.741 5.771 1.221

4 Chill is obtained combining temperature and wind speed; it represents how cooler one feels depending 
on the strength of wind (see, e.g. [24]).
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The yearly and weekly seasonality of power consumption is rather evident in the 
dataset. Figure 1 represents the first two-year daily power consumption. It suggests 
a yearly seasonal behavior and slightly higher power consumption during weekends.

We observe that (i) power consumption is more than three times larger in winter 
w.r.t. summer time, (ii) consumption on weekdays is lower than on Sundays (and to 
a lesser extent on Saturdays) and (iii) volatility is larger in winter than in summer 
time. These are well known stylised facts common to most power consumption time-
series: for these reasons, and in particular due to the observed volatility behavior, it 
is now standard to model the logarithm of power consumption (see, e.g., [10], for a 
review). As already emphasized in the introduction, modeling the logarithm elimi-
nates the possibility of unrealistic negative consumption values for the forecast. In 
the next Section, we describe in detail the hybrid linear-GP model and in Sect. 4 the 
adopted methodology.

3  The model

The main goal of this study is forecasting future power consumption over the mid-
dle-term horizon, modeling both seasonal and weather-related features. Our model 
choice realizes a density forecast with a parsimonious description without the need 
to resort to extremely fine-tuned models.

We model log-scaled daily power consumption data. The characteristics of power 
demand that we model are: 

1. long-term trend;
2. yearly and weekly seasonal behavior;
3. daily autocorrelation;

Fig. 1  Power consumption (blue line) since April 2014 to March 2016. One can notice a yearly seasonal 
behavior and locally higher values on Sundays (marked with a black circle) (color figure online)
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4. the relation with weather conditions;
5. weather-based error correlation and variance clustering.

In the energy literature, it is quite common a two step hybrid model approach, which 
takes into account, first, trend, seasonality and AutoRegressive (AR) components, 
and then analyses separately the residuals (see, e.g., [2], and references therein). Our 
hybrid model is split into two parts: a linear model (cf. Sect.3.1) for the first three 
characteristics (trend, seasonality and autocorrelation) and a GP (cf. Sect.3.2) that 
takes care of the weather influence. We call this hybrid model GPX, because it is the 
natural extension of AR eXogenous models, known as ARX (see, e.g, [3, p. 534 et 
seq.]).

3.1  The linear model part

The relation between consumption and calendar variables is established through a 
general linear model (GLM). The model of the natural logarithm of power consump-
tion can be written as:

with

where calendar time is measured via the cardinality t of the observation, starting 
from 1 on the first date in the dataset; Tt is the trend term, St the seasonality both 
yearly and weekly, introduced via two dummy variables for Saturday and Sunday, 
� ∶= 2�∕365 , and Rt are the residuals; � and {�i}i=0,..,5 are the regression parameters.

The GLM considers both time effects and an AR term. In order to check the rele-
vance of the AR component when calibrating the model, we proceed following three 
steps that are standard in time-series econometrics (see, e.g., [6]).5 In Sect. 5, we 
show that an AR term should be included and that an AR(1) describes properly the 
time-series.

3.2  The GP part

It is well known that, after having detrended and deseasonalized the time-series, the 
impact on power consumption of weather conditions in general and of temperature 
in particular, is very important and cannot be neglected (see, e.g., [10]). As already 

(1)Yt = Tt + St + �Yt−1 + Rt,

{
Tt = �0 + �1t

St = �2 cos(�t) + �3 sin(�t) + �4DSat(t) + �5DSun(t)
,

5 First, the parameters related to the time effects are calibrated through an ordinary least squares, includ-
ing only the trend Tt and the (yearly and weekly) seasonality St . Second, we measure the autocorrelation 
and the partial autocorrelation of the residuals of this regression, verifying the necessity of an AR com-
ponent in the model. Finally, we refuse the null hypothesis of a unit root via an augmented Dickey-Fuller 
test.
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stated in the introduction, in this study we propose to incorporate weather conditions 
in the model via a GP, that provides a simple tool for density forecast. In this Sec-
tion, we briefly recall the main characteristics of GP, using a notation similar to [27].

A GP “is a collection of random variables, any finite number of which have a 
joint Gaussian distribution” (cf. [27, Def.2.1, p. 13]). It is completely specified by 
its mean function and covariance matrix. In the case of zero mean, the random vari-
ables represent the value of the function R(x) at “location" x ; in [27] they are indi-
cated as:

where h(x, x̃) is an arbitrary kernel (or covariance function) between the “locations" 
x and x̃ . In practice, this notation indicates that for any collection of n observations, 
the corresponding residuals are Gaussian random variables s.t.

where N(⋅, ⋅) is a multinomial Gaussian distribution with zero mean and a positive 
definite covariance matrix H ∈ ℝ

n×n , R ∈ ℝ
n and X ∈ ℝ

n×m , where m is the num-
ber of regressors. In this study, we consider 9 regressors: the 7 weather conditions 
in the dataset (cf. Sect.  2) and 2 other related to the calendar time t, in order to 
introduce a yearly calendar effect also in the correlation matrix. In particular, we 
consider cos(�t) and sin(�t) where � = 2�∕365 is defined as in the seasonality St in 
Eq. (1). In the following, we continue to refer to these 9 regressors as weather condi-
tions even if they contain these other two explanatory variables. The covariance Hij 
between the ith and jth residuals depends on the weather conditions X of the corre-
sponding dates ti and tj.

The kernel specifies the covariance between pairs of random variables, e.g. the 
pair R(xi) and R(xj),

An example of covariance function is h(xi, xj) = �2 �i j , where a positive scalar �2 
multiplies the Kronecker delta, which is one iff i = j and zero otherwise; in this case, 
the residuals correspond to Gaussian i.i.d. random variables with variance �2 as in 
the standard linear regression.

In this study, we consider a kernel such that

where

with ‖xi − xj‖ the Standardized Euclidean Distance (SED) between xi and xj and 
�f ≥ 0 , 𝜎l > 0 two additional parameters w.r.t. the standard linear regression (see, 

(2)R(x) ∼ GP (0, h(x, x̃)) ,

R ∼ N(0,H(X,X)),

h(xi, xj) ∶= cov
(
R(xi),R(xj)

)
.

(3)h(xi, xj) = k(xi, xj) + �2 �i j,

(4)k(xi, xj) = �2
f
exp

�
−
‖xi − xj‖

�l

�
,
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e.g., [17, 21]).6 The choice of SED compared to L2 norm allows the same contribu-
tion of each weather condition, independently from its unit of measure.

As standard in the statistical literature, the dataset is divided into in-sample (IS) 
for model calibration (training set X, with n observations) and out-of-sample (OS) 
for forecasting and for evaluating the quality of the results (test set X∗ , with a num-
ber of points equal to n∗ ), respectively 2-years (IS) and 1-year (OS). We compute 
pairwise, through the chosen kernel, the covariance matrix of a finite number of GP 
observations

which depends from the three parameters �f  , �l and � . The matrix I represents the 
identity in ℝn×n.

A GP presents a great advantage: it is immediate to infer the OS residuals and 
their distribution. The distribution of the points in the IS and the OS sets is (cf. [27, 
eq. (2.21), p. 16]):

where K(X,X∗) denotes the n × n∗ matrix of the covariances evaluated at all pairs of 
training and test points, and similarly for the other entries K(X∗,X∗) and K(X∗,X) . 
Hereinafter, in order to simplify the notation, we indicate with Rt the residual at 
time t both IS and OS, where Rt for t = 1,… , n are the IS values and Rt for 
t = n + 1,… , n + n∗ are the OS ones.

We can use the GP for the prediction of OS residuals. The OS residuals (R∗) 
given the IS residuals (R) and the weather conditions, both IS (X) and OS (X∗) , are 
(cf. [27, eq. (2.22), p. 16]):

where

Plugging the OS residuals into the hybrid model (1), we obtain an ex-post probabil-
istic forecasting of power consumption. Before describing in detail the ex-post den-
sity forecasting technique in the next section (cf. Sect. 4.1), we summarize the main 
characteristics of the GPX model in Sect. 3.3.

(5)H(X,X) = K(X,X) + �2I,

(6)
(
R

R∗

)
∼ N

(
0,

[
K(X,X) + �2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
,

R∗|X∗,X,R ∼ N(R∗, cov(R∗,R∗)),

(7)R∗ ∶= E[R∗|X∗,X,R] = K(X∗,X) [K(X,X) + �2I]−1 R ,

(8)cov(R∗,R∗) = K(X∗,X∗) − K(X∗,X) [K(X,X) + �2I]−1 K(X,X∗).

6 In the ML literature, a Gaussian process is classified within the so-called non-parametric methods. 
This name does not indicate the absence of parameters, but the fact that the hypothesis space depends 
mainly from the dimension of the training set. The Gaussian Process we consider in this study involves 
three parameters: �f  , �l and �.



1 3

Daily middle‑term probabilistic forecasting of power…

3.3  The hybrid model GPX

The GPX model is obtained by Eq. (1), where the residuals are modeled via a GP. An 
ex-post point forecasting is straightforward with GPX. Its main strength is that the 
whole OS (conditional) distribution can be easily obtained. OS log-consumption at day 
t = n + i , given IS consumption and weather conditions up to day t, is a Gaussian r.v. 
with conditional mean equal to

where residuals’ expected value Rn+1 is obtained in (7) and conditional variance is

where cov(Rn+i,Rn+i−j) is obtained in (8). Equation (10) is the most relevant mod-
eling result in this paper: it allows to obtain the ex-post density forecast (described 
in Sect. 4.1) for the proposed consumption model (1) and (2). It extends the known 
formula for autoregressive processes in presence of i.i.d. residuals (see, e.g., [3, 
Ch.3.2.3, p. 58]) to the case of interest. It can be proven via an induction method.

4  Methodology

This Section delineates the adopted methodology and it is organized as follows: after 
presenting the ex-post forecasting technique in Sects. 4.1, 4.2 describes the benchmark 
models and Sect. 4.3 the evaluation methods.

4.1  The ex‑post forecasting technique and the flow diagram

The forecast of middle-term daily density power consumption is obtained via an ex-
post forecasting: a technique, introduced by [14] in the power consumption sector, now 
commonly used in middle to long term power consumption forecasts (see, e.g. [9]). As 
shown in the flow diagram of Fig. 2, the method is divided into three stages (see, e.g., 
[14, p. 1144]): calibration, forecasting and evaluation.

In the first stage, the GPX model (in its two components GLM and GP) is calibrated 
with the IS training set, with both power and meteorological data. GLM is calibrated 
through ordinary least squares (OLS), while the calibration of GP parameters �f  , �l and 
� is obtained maximizing the log-likelihood

(9)
{

Yn+1 = Tn+1 + Sn+1 + �Yn + Rn+1 1 = 1 ,

Yn+i = Tn+i + Sn+i + �Yn+i−1 + Rn+i 2 ≤ i ≤ n∗

(10)

�
var(Yn+1) = var(Rn+1) i = 1 ,

var(Yn+i) = var(Rn+i) + �2 var(Yn+i−1) + 2
∑i−1

j=1
� jcov(Rn+i,Rn+i−j) 2 ≤ i ≤ n∗,

(11)max
𝜎f ,𝜎l,𝜎

[
−
1

2
R

⊤H(X,X)−1R −
1

2
ln det H(X,X) −

n

2
log 2𝜋

]
,
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where H(X, X) is defined in (5). The log-likelihood is maximised through a gradient 
descent iterative procedure with an adaptive step length (see, e.g., [27], and refer-
ences therein).

In the second stage, the density forecasting is obtained via an ex-post forecast. 
This forecast uses the weather conditions in the OS set in order to forecast the power 
consumption; as well explained by Goude et al. [9, p. 443] “assuming that the reali-
sation of the meteorological covariates is known in advance (...) allows us to quan-
tify the performances of our model without embedding the meteorological forecast-
ing errors”. The idea is that, in order to focus on the ability of the model to describe 
a strong and reliable relation between daily weather conditions and power consump-
tion, one supposes to know perfectly the weather conditions in the OS period.

Finally, in the third stage, the quality of model forecast is evaluated comparing 
it with the last year of realized OS consumption data. Model evaluation is realized 
both in terms of point consumption forecast and of reliability and sharpness of the 
predicted densities. These evaluation methods are portraited in Sect. 4.3, after hav-
ing described the benchmark models.

Fig. 2  Flow-diagram of the three stages of the method: calibration, forecasting and evaluation on the pro-
posed model
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4.2  Benchmark models

We consider three linear benchmark models in the power industry for a comparative 
assessment of GPX. As already emphasized in the Introduction, due to the charac-
teristics of the dataset, with only 2-year IS daily data and 1-year OS, benchmark 
models should be simple and (possibly) parsimonious.

The first one is the Tao benchmark, that was introduced by Hong et al. [12], as 
part of the process to start up the planning department in a fast growing US utility 
firm. It has been used as benchmark model for log-consumption in several studies 
on probabilistic forecast, and it is often refereed as Tao’s Vanilla benchmark [10, 13, 
16]. In this paper, we consider its daily version.

It is well known that there are two seasonal blocks in daily load time-series: week 
and year. The Tao benchmark, besides a linear trend, considers two classification 
variables (day-of-the-week and month-of-the-year) with 7 and 12 classes, respec-
tively7; it includes as meteorological variable the temperature with a polynomial of 
order three, and an interaction effect between month and temperature. We observe 
that the model is a genuine ex-post probabilistic forecast, that relies only on tem-
perature as seasonal driver for power consumption; it does not include any AR term. 
Unfortunately, the model is not parsimonious relying on 54 explanatory variables.

The second one is GLM. The model has been described is Sect. 3.1 and it is the 
simplest and most parsimonious ex-ante forecast in this field, because it does not 
include any meteorological variable; it is equivalent to a GP with a diagonal covari-
ance matrix ( �f = 0 ). This model could clarify whether an autoregressive compo-
nent can be more relevant than temperature when forecasting daily load time-series.

Finally, we consider an AR eXogenous model (ARX), which is a linear model 
that includes multi-meteorological features as exogenous variables (see, e.g, [3, 
p.534 et seq.]). It is the simplest (and most parsimonious) extension of GLM that 
considers, on top of GLM 6 regressors, also the 7 weather regressors described in 
Table 1, as additional explanatory variables in an ex-post forecast.

For the model evaluation, GPX model is compared to these three benchmarks, not 
only with the standard evaluation methods for point consumption forecasts, but also 
with the two most relevant ones for density forecasts. The next Section describes 
them in detail.

4.3  Evaluation methods

Besides the standard measures of point consumption forecasts as root mean 
squared error (RMSE) and mean absolute percentage error (MAPE), we pro-
vide two evaluation methods of density forecasting. It is more difficult to evalu-
ate a density forecast rather than a point forecast, because we cannot observe the 

7 For example, the classification variable (or dummy variable) day-of-the-week can be represented as 
follows by 6 indicator variables (to avoid collinearity): Wt,1 = 1 if the day is Sunday, Wt,1 = 0 otherwise; 
Wt,2 = 1 if the day is Monday, Wt,2 = 0 otherwise; ( … ) and Wt,6 = 1 if the day is Friday, Wt,6 = 0 other-
wise.
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realized distribution of the underlying process. Therefore, we cannot compare the 
predicted distribution to the true one, as we only have one realisation for each 
distribution. The evaluation is based on two main measures: the reliability that 
attests distribution’s statistical significance and the sharpness that verifies that 
the forecast is as tight as possible around the expected value. We summarize their 
main characteristics below.

Reliability is the most important evaluation method for probabilistic forecasting. 
It refers to the statistical consistency between the probabilistic forecasts and the real-
ized observations OS in the test set. In practice, it determines the fraction of obser-
vations that fall outside the confidence interval (CI) with a given nominal level q; 
e.g., if the fraction of the realized daily power consumptions, that falls within the 
90% CI, is close to 90% then this CI is said to be reliable.

More in detail. Let L̂t and Ût be, respectively, the lower and upper bounds for a 
given (central) q CI, where q is the CI nominal level, and yt the actual consumption 
at time t, the indicator It takes two values: 1 if the actual consumption falls within 
the forecasted CI and zero otherwise, i.e.

The empirical coverage is the OS mean of the indicator. Qualitatively, the closer is 
the empirical coverage to the nominal level, the better it is. In Sect. 5, we show both 
the nominal level and the empirical coverage for several values of q.

In order to verify that the two sets are close enough even from a quantitative point 
of view, it has become standard in the banking industry to run two statistical tests. 
The first one is named unconditional coverage: it tests the zero hypothesis that the 
empirical coverage (i.e. the backtested q CI) equals the nominal level q, and then 
that ℙ(yt ∈ [L̂t, Ût]) = q [15]. Let n0 and n1 be respectively the number of zeros and 
ones of the indicator It , the test is carried out in the likelihood ratio (LR) framework

where � = n1∕(n0 + n1) is the empirical coverage. LRUC is distributed asymptoti-
cally for large n∗ as a �2(1) [15].

The second one is named conditional coverage and it tests the alternative hypoth-
esis that the ones and the zeros are clustered together in the indicator It time-series. 
In the alternative model, the time-series is modeled as a first-order Markov chain. 
Let nij be the number of observations with the value i for the indicator It followed by 
j for It+1 and �ij ∶= nij∕(ni0 + ni1) , the LR statistics is

This LR statistics is distributed asymptotically as a �2(2) [4].
Sharpness is measured via the pinball loss function, an error measure for prob-

abilistic forecast that has become popular in the energy sector after GEFCom 

It =

{
1 if yt ∈ [L̂t, Ût] “hit"

0 if yt ∉ [L̂t, Ût] “violation"
.

LRUC ∶= −2 ln
(1 − q)n0 qn1

(1 − �)n0 �n1

LRCC ∶= −2 ln
(1 − q)n00+n10 qn01+n11

(1 − �01)
n00 �

n01
01

(1 − �11)
n10 �

n11
11

.
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competition. Let Ŷt,q be the consumption forecast at the qth quantile, then the pinball 
loss function can be written as:

where

Regarding the pinball loss as a function of the quantile q, not only its value provides 
a useful information, but also its shape: an asymmetric pinball loss indicates that the 
density forecast does not reproduce with the same accuracy right and left tails of the 
true consumption density, whereas a symmetric pinball loss suggests that the shape 
of the actual distribution is described adequately by the corresponding forecast. We 
remind that in power consumption both higher consumptions (right tail) and lower 
ones (left tail) matter, because the latter can lead to negative electricity prices.

In the following section, we summarize the main results in the three stages 
described in Fig. 2: calibration, forecasting and evaluation.

5  Results

We compare the GPX model with the three benchmarks (Tao, GLM and ARX 
model). As discussed in previous section (see Fig. 2), the analysis is divided in three 
stages: calibration, forecasting and evaluation. The four models are calibrated in-
sample (2 y data from the 1st of April 2014 to the 31st of March 2016) and the fore-
casts are evaluated in the out-of-sample set (1 y data from the 1st of April 2016 to 
the 31st of March 2017).

The calibration of the GPX model is implemented considering first its GLM part 
and then the GP, after a data pre-processing phase.

The data pre-processing consists in the treatment of leap years and outliers. We 
remove from the dataset February the 29th in leap years. Outliers may influence sea-
sonality analysis. For this reason, they have been removed following the same tech-
nique described in Benth et al. [2]. Following that technique, only one outlier has 
been detected corresponding to the 25th of July 2015. This outlier has been removed 
and the GLM is calibrated IS. After calibrating the GLM, the outlier has been rein-
serted into the time-series.

The GLM presents both seasonality and autoregressive parts. In order to 
include the AR component in the model, we verify the three steps described in 
Sect. 4 (cf. Footnote 5). First, only the parameters related Tt and St in Eq. (1) are 
calibrated through OLS. Second, we measure the autocorrelation and the partial 
autocorrelation of regression residuals: Fig.  3 highlights the need of a one day 

Pinball (q) ∶=
1

n∗

n+n∗∑

t=n+1

P
(
Ŷt,q, q;yt

)
,

P
(
Ŷt,q, q;yt

)
∶=

{
(1 − q) (Ŷt,q − yt), if yt < Ŷt,q
q (yt − Ŷt,q), if yt ≥ Ŷt,q

.
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AR component. Third, the augmented Dickey–Fuller test refuses the null hypoth-
esis of a unit root.8

Fig. 3  Autocorrelation function and partial autocorrelation function of seasonally adjusted consumption 
timeseries. We observe that an AR(1) well explains the observed autocorrelation in the time-series. The 
horizontal lines indicate the 95% CI

Table 2  GLM parameters 
calibrated IS with their standard 
deviation (SE)

With *** we indicate statistical significance of the parameters at 1% 
significance level

Estimate (SE)

Intercept �
0

1.17*** (0.14)
Trend �

1
− 4.36e−05*** (1.1e−05)

Saturdays �
2

0.022*** (0.005)
Sundays �

3
0.047*** (0.005)

Cos �
4

0.035*** (0.006)
Sin �

5
−0.103*** (0.012)

AR � 0.819*** (0.021)

8 An AR(1) model minimizes both BIC and AIC criteria. Moreover, the model is robust to the inclusion 
of local and national UK holidays.

Table 3  GP parameters 
calibrated IS with their standard 
deviation (SE)

With *** we indicate statistical significance of the parameters at 1% 
significance level. Standard errors are obtained by means of para-
metric bootstrapping technique with 103 samples

Estimate (SE)

� 3.025e−02*** (6.5e−05)
�f 0.240*** (3.8e−03)
�l 87.8*** (3.5)
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Then, we perform an IS calibration of all GLM parameters via OLS, reported 
in Table 2.

The GP part of GPX, described in Sect.  4, is calibrated IS on GLM residu-
als, maximizing the log-likelihood (11). GP parameters are reported in Table 3; 
standard errors are obtained via a parametric bootstrapping technique (see, e.g., 
[5]). All calibrated parameters are statistically significant at 1% significance level.

The ex-post forecasting is straightforward with GPX: each density forecast at 
time t = n + 1,… , t = n + n∗ is Gaussian with conditional mean (9) and condi-
tional variance (10). In Fig. 4, we show the OS power consumption forecasting 
of GPX: the continuous pink line indicates the point forecast whereas the trans-
parent bright red indicates the 95% confidence interval; we also show with a dot 

Fig. 4  Realized (dot dashed green line) and expected (continuous pink line) power consumption in MWh 
between April 2016 to March 2017 with predicted Confidence Intervals at 95% (transparent bright red) 
(color figure online)

Table 4  RMSE and MAPE for 
the four models considered

Bold values obtained for the proposed model, compared to the val-
ues of the benchmark models
We observe that GPX not only presents a MAPE lower than 5% , i.e. 
it is considered a good forecast by practitioners, but also the lower 
RMSE indicates a more precise point forecasting in winter times, i.e. 
when forecasting is more relevant

Tao GLM ARX GPX

RMSE 102.95 79.24 46.92 33.84
MAPE (%) 14.93 9.94 5.90 4.59
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dashed green line the realized OS power consumption. Results look impressive: 
the point forecast tracks closely the realized consumption and even the spikes in 
winter time are tracked very closely. The densities reproduce the observed behav-
ior of periods of low volatility in summer time followed by periods of high vola-
tility in winter time.

Let us underline that the last power consumption considered in model calibration 
is the 31st of March 2016, whereas the forecast goes up to one year later (31st of 
March 2017). The quality of this forecast is the main result of the paper.

In the remaining part of this section we provide some quantitative criteria that 
show the goodness of both point and density forecasting.

The evaluation on the model compares GPX with the three benchmark models. 
We first consider accuracy measures for the point forecasting and then we show the 
results for the reliability and the sharpness of the density forecasting: these evalua-
tion techniques have been described in Sect. 4.

Fig. 5  Empirical coverage. We observe that the backtested q CI for GPX (continuous violet line) are very 
close to nominal levels q 

Table 5  Likelihood ratios tests at 90% level of 99% CI

Bold values obtained for the proposed model, compared to the values of the benchmark models
The �2 test statistic represents the threshold over which one should reject the null hypothesis

Tao GLM ARX GPX �2 statistic

Unconditional coverage 175.25 32.651 39.638 1.280 2.706
Conditional coverage 229.38 88.478 114.738 1.494 4.605
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First, we value root mean squared error (RMSE) and mean absolute percentage 
error (MAPE).

In Table 4, we compare RMSE and MAPE of the four models in the OS set. We 
observe that GPX and ARX are better than both Tao and GLM, in terms of RMSE 
and MAPE, being GPX the best one. It is remarkable that the daily version of the 
Tao model—based only on temperature as weather variable—performs poorly; the 
other benchmarks suggest that, for a middle-term forecast and a short daily time-
series, the AR component is very relevant (cf. GLM) and a multi-meteorological 
analysis is important (cf. ARX).

In particular, let us emphasize that for GPX the MAPE is lower than 5% , the 
threshold that limits—for practitioners—a good forecast in daily power consump-
tion. Moreover, a lower RMSE (almost one third lower than ARX) indicates that 
the GPX reduces significantly the error also in winter times, when the forecast 
is more relevant due to the higher consumption in absolute terms and the higher 
volatility: a behavior observed in Fig. 4.

Second, the analysis of reliability is presented. Figure  5 provides the back-
tested confidence intervals. The qualitative results of this evaluation method in 
terms of reliability of the proposed density forecasting look very good: we notice 

Fig. 6  Pinball loss functions for the four models for the 1st to the 99th percentiles. We observe that not 
only GPX (continuous violet line) presents the lowest score for all percentiles (i.e. it is sharper and more 
accurate), but also that the pinball loss is more symmetric for GPX than for all benchmark models
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that GPX backtested q CI are much closer to nominal ones for any choice of nom-
inal level q w.r.t. all benchmarks.

The reliability of our model can be also tested from a quantitative point of 
view through the two likelihood ratio (LR) tests, presented in Sect. 4 (the uncon-
ditional and the conditional coverage), as shown in Table  5. We underline that 
only GPX passes the tests, whereas they are rejected by all benchmark models.

Figure 5 together with Table 5 are the strongest results of our evaluation analysis: 
the GPX model is able to provide reliable confidence intervals over one-year time 
horizon for daily power consumption. In fact, on the one hand, we have a MAPE 
lower than 5% over the whole time-horizon, and, on the other hand, the nominal 
level and the empirical coverage appear very close for all values of q shown in 
Fig.  5. The reliability is confirmed by the LR tests; the conditional coverage has 
shown also that the “violations" are not clustered in a particular period of the year, 
as it is revealed also by a direct inspection in Fig. 4. The results imply that GPX 
model is able to catch a very accurate relation between weather conditions and 
power consumption distribution.

Finally, we consider the analysis of sharpness: interesting results arise from the 
pinball loss. Figure 6 shows pinball loss for the 1st to the 99th percentiles of predic-
tions for GPX and benchmark models. We observe that the plot of the pinball loss 
provides useful information in terms of sharpness (GPX pinball loss is lower for all 
percentiles than all benchmark models) and symmetric shape. The proposed density 
forecasting of power consumption is reproducing with the same accuracy both right 
and left tails of the actual consumption density.9

6  Concluding remarks

This paper introduces the GPX (cf. Eqs. (1) and (2)), a new hybrid model for mid-
dle-term probabilistic forecast of power consumption. The model is very parsimoni-
ous—with only nine parameters—and can be easily calibrated thanks to its hybrid 
nature that allows to consider first seasonality and AR characteristics, and then 
residuals via a Gaussian Process. It has, what’s more, a relatively low computational 
cost compared to other ML techniques.

Several are the contributions of this study. First, GPX provides a daily load den-
sity forecast over a middle-term horizon, a forecast that is very important both for 
network reliability of power systems and for investment strategies in new plants and 
transmission facilities. In order to build a very parsimonious model, for middle-term 
forecast, in the calibration stage we have (i) detailed the construction of the linear 
part of the model, selecting regressors that are highly significant (cf. Table 2), and 
(ii) verified the statistical significance of the GP parameters via a parametric boot-
strap technique (cf. Table 3). The proposed hybrid modeling approach has improved 
existing applications of GP to (short-term) power consumption forecasts.

9 We have also performed the sharpness analysis in terms of the Winkler score [29], that confirms the 
results obtained with the pinball loss. These results are available upon request.
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Second, the comparison with 3 benchmark models indicates, even with sim-
ple metrics, some not-obvious results. Average point estimation is the attempt to 
provide the single best prediction: MAPE and RMSE are still widely used error 
statistics in business point forecasting. Even with these point forecasting meas-
ures, we have shown in Table  4 that a simple ex-ante model, with only an AR 
and a seasonal component (GLM), can have a greater forecasting power in daily 
time-series than an ex-post model, with temperature as the only weather explana-
tory variable (Tao). Moreover, the knowledge of multi-meteorological conditions 
improves the forecast and this improvement is more significant when weather var-
iables are included via a Gaussian Process (as in the GPX) rather than linearly (as 
in an ARX). The GPX produces very accurate forecasts in middle-term forecast-
ing, with a MAPE lower than 5% for daily forecasts over one year (cf. Table 4).

Third, we have shown the relevance of probabilistic forecast of load also in a 
middle-term time horizon. Load forecasting has become more complicated after 
the deregulation of the electricity market; thus, an average point prediction is not 
enough. It is important to understand the distribution of the predicted load; thus, 
we need to consider even some evaluation methods of the probabilistic uncer-
tainty. Backtesting confidence intervals appears to be the key method when com-
paring realized and forecast probabilistic consumption. Even a qualitative com-
parison between empirical coverage nominal levels (cf. Fig.  5) is a simple tool 
with a clear informational content: for linear benchmarks, the fraction of realized 
loads that falls within the q CI is much lower than the nominal level q, signaling 
an inadequate probabilistic description, whereas the GPX appears to track closely 
the theoretical level.

This study highlights backtesting measures as the main evaluation tool for proba-
bilistic load middle-term forecast also from a quantitative perspective through two 
tests: the unconditional and conditional coverage tests. Both of them are elemen-
tary to implement and simple to interpret: the unconditional coverage tests the zero 
hypothesis that the backtested q CI equals the nominal level q, while the conditional 
coverage verifies that the realizations outside the CI do not cluster. Table 5 shows 
that GPX passes both tests as opposed to the three benchmarks. In this study, we 
have improved the existing literature on probabilistic load forecasting, where back-
testing quantitative measures are considered rarely.

Finally, we have compared GPX with the benchmark models via the pinball loss, 
a sharpness measure popular in the energy sector. Results are interesting: Fig.  6 
shows, on the one hand, that GPX pinball loss is lower for all percentiles than all 
benchmarks and, on the other hand, the pinball loss has a symmetric shape for GPX. 
The latter signals that GPX reproduces with the same accuracy both tails of the dis-
tribution of realized power consumption.

This study may have useful applications to a wide range of energy companies. 
We have observed that a larger set of explanatory variables based on a multi-mete-
orological dataset is relevant in load forecasting; we have shown that models which 
take into account several weather information have a significantly better forecasting 
power, even with short time-series. Unfortunately, when developing in-house load 
forecasts within a firm, the data quality (especially for weather) may vary; this study 
can be used by the utility forecasting unit to determine whether or not to install their 
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own weather stations (to collect meteo data, at least on a daily basis) in some strate-
gic locations within their distribution network. In addition, two of the seven weather 
conditions considered in this study (cf. e.g. Table 1), wind speed and solar radiation, 
have a relevant impact also on the production side of renewables.

As for future research, two main promising directions appear evident. First, one 
key result of this study is that the marginal distribution for daily power consump-
tion is very well approximated by a Gaussian at a regional level. Future work of this 
paper is to verify whether a hybrid linear-GP model can be a competitive forecasting 
tool even with time-series longer than the 3-years considered in this paper. Longer 
time-series would make the comparison possible also with other ML techniques that 
use the Gaussian distributional property of forecasts, other than linear benchmarks.

Second, an advantage of GPX is that, due to its parsimony, its calibration is accu-
rate with short time-series; in other words, GPX responds quickly to sudden changes 
of loads. Future work is to implement GPX, in a scenario generation tool at firm 
level, extending the set of explanatory variables to those relevant during fast macro-
economic changes, such as recession or pandemic.
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