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Plasmonics has been a flourishing field since the late ‘80s of the last century. Given

the number of outstanding developments even without resorting to metrics–it is

straightforward to address the 2 decades crossing the new millennium as the golden

era of Plasmonics. The unique capabilities of plasmonic nanostructures to collect,

direct and enhance light at length scales much below the operating wavelength

granted them the name “antennas for light”. These features were crucial for the vast

deployment of Plasmonics to a variety of tasks, spanning from light harvesting

(Atwater and Albert 2010) to molecular sensing (Homola 2008; Saha et al., 2012), bio-

imaging (Meola et al., 2018; Bocková et al., 2019; Wu et al., 2019) and plasmon-

enhanced spectroscopy (Zhang et al., 2013, Ding et al., 2016). Another recently

growing field is that of plasmon-enhanced catalysis, which could be of crucial

importance for hydrogen synthesis (Ezendam et al., 2022) with significant

consequences for sustainability. Despite its indisputable key role in basic and

applied research, the disruptive fallout of Plasmonics in life and society is still

mainly restricted to medical diagnostic tools, as demonstrated by the antigenic

lateral flow test employed to detect SARS-CoV-2, which is massively employed

during this last pandemic. The first clinical pilot study of a device for prostate

cancer treatment, carried out by Prof. Halas using photothermal ablation via gold

nanoshells (Rastinehad et al., 2019), represents another major landmark in

nanomedicine.

The main hindrances to technological application of classical metal-based

Plasmonics are the sizeable ohmic losses at visible wavelengths and the non-trivial

integration in semiconductor-based technology. With the aim of targeting a higher

technological readiness level, and thanks to the recent advancement in

nanofabrication, semiconductor-based Plasmonics has rapidly emerged (Taliercio

and Biagioni 2019). Indeed, heavily-doped semiconductors display a sizeable plasma

frequency, which can be tuned chemically, optically, or electrically over a broad

spectral range. These platforms are extremely appealing for their facile integration in

low-cost, mass-fabricated devices, but their operation is yet limited to the mid-

infrared range.

Yet, Plasmonics endures among the liveliest branches in the field of Photonics,

thanks to the extreme light confinement achievable and the ultrafast dynamics of

the underlying processes. A major technological task still remains, i.e., the

improvement of reliability and reproducibility in plasmonic-based devices and

techniques (i.e., plasmon-enhanced Raman spectroscopy, sensing). This will

require a major effort in nanofabrication in the coming years to control sub-
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nm features in metal nanostructures. In this way,

unprecedented localization of light will be achieved,

enabling the investigation a whole new physics, such as

Quantum Plasmonics, as pointed out in the previous Grand

Challenge by Prof. Giannini (Giannini 2020). Accessing the

quantum regime will be a crucial task in Plasmonics in the

coming years. In fact, by concurrently exploiting the ultrafast

relaxation dynamics of localized surface plasmons, which are

on the timescale of tens of femtoseconds, ultra-high-speed and

low-consumption logic operations may be within reach

(Rybka et al., 2016; Li et al., 2022) (see top-left panel in

Figure 1).

Although single molecule sensitivity has been already

reported using plasmonic sensors (Ament et al., 2012; Zijlstra

Paulo and Orrit 2012), such challenging task can be facilitated by

accessing the quantum regime and, hence, overcoming the

fundamental limits imposed by the shot noise (Lee et al.,

2021). In plasmonic sensing a crucial role can be also played

by the nonlinear optical effects efficiently generated in the

strongly localized hot spots of nanoantennas (Mesch et al.,

2016). Indeed, along with a nonlinear response of the sensor

one should expect a further boost in the sensitivity when

resorting to even order nonlinear effects, such as second

harmonic generation (Ghirardini et al., 2018), since in metals

they stem from the surface where also functional binding is

attained (see top-center panel in Figure 1).

As a matter of fact, plasmon-enhanced nonlinear optics

deserves a whole separate chapter. In fact, besides the

promising applications to sensing, plasmonic

metasurfaces still withstand the competition with all-

dielectric platforms (Kuznetsov et al., 2016) when coming

to nonlinear and active light management in meta-optics.

This is possible thanks to the intense light-matter

interaction and the facile wavefront control of the

generated harmonic signals, which can be shaped by

tuning the geometry of the individual plasmonic meta-

atoms (Li Zhang and Zentgraf 2017). This entails a whole

range of suggestive applications, spanning from nonlinear

image encoding and holography (Keren-Zur Avayu et al.,

2015; Walter et al., 2017) to frequency up- and down-

conversion. In particular, plasmonic metasurfaces were

the first to be successfully applied for the generation of

terahertz radiation by means of optical rectification (Keren-

Zur Tal et al., 2019). Exploiting the strong light confinement

in plasmonic nanogaps in hybrid molecular-plasmonic

systems, it was also recently demonstrated in a back-to-

FIGURE 1
Current and future developments in Plasmonics enabled by ultrafast pulsed excitation and sub-nm gaps. Top-left panel: controlled and ultrafast
single electron flux for ultrafast low-consumption logic operations. Top-center panel: enhanced nonlinear plasmonic sensing of single proteins and
molecules. Top-right panel: light up-conversion by molecular-plasmonic cavity hybrid effect for room-temperature infrared light detection and
generation.
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back publication by Chen et al. (Chen et al., 2021) and

Xomalis et al. (Xomalis et al., 2021) that infrared radiation

can be detected at room temperature by up-conversion in

the near-infrared, where classical detectors can be employed

(see top-right panel in Figure 1).

In light of these recent achievements and promising new

directions, it is clear that the field of Plasmonics is still subject to a

sturdy drive and will have a major role in the broader field of

Photonics in the coming years if not decades.
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