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Preface

This volume contains the postproceedings of AISoLA 2023, an AI-themed sibling of
ISoLA, the International Symposium on Leveraging Applications of Formal Methods.
AISoLA took place in Crete (Greece) on October 23–28, 2023. It was an in-person
event that provided an interdisciplinary forum for discussing the impact of the recent AI
developments on research, education, and society. Discussions ranged from philosophi-
cal issues that arise from technologies as powerful as indicated by today’s large language
models to technical issues and solutions for the responsible uses for AI-applications in
safety-critical domains. The program of AISoLA 2023 comprised five keynotes:

Technology and Democracy
by Moshe Vardi, Rice University, USA

Deep Neural Networks, Explanations and Rationality
by Edward Lee, UC Berkeley, USA

Human or Machine: Reflections on Turing-Inspired Testing for the Everyday
by David Harel, Weizmann Institute of Science, Israel

Education and AI – Current Status, Opportunities and Challenges
by Nele McElvany, TU Dortmund, Germany

Graph Neural Networks: Everything Is Connected
Matthias Fey, Kumo.ai, USA

Special Sessions

Technology and Democracy
organized by Jim Larus and Edward Lee

Beyond ChatGPT: The Impact of AI on Academic Research
organized by Viola Schiaffonati

Tracks

1. The Nature of AI-Based Systems
organized by Bernhard Steffen

2. Responsible and Trustworthy AI
organized by Kevin Baum, Torsten Helfer, Markus Langer, Eva Schmidt, Andreas
Sesing-Wagenpfeil, and Timo Speith

3. Democracy in the Digital Era
organized by George Metakides and Moshe Vardi

4. Digital Humanism
organized by Viola Schiaffonati and Hannes Werthner

5. Safety Verification of DNNs
organized by Taylor Johnson and Daniel Neider
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6. Verification Meets Learning and Statistics
organized by Jan Kretinski, Kim Larsen, Nils Jansen, and Bettina Könighofer

7. Health Care
organized by Martin Leucker

8. AI-Assisted Programming
organized by Wolfgang Ahrendt and Klaus Havelund

9. Safe AI in the Automotive Domain
organized by Falk Howar and Hardi Hungar

10. Digital Humanities
organized by Ciara Breathnach and Tiziana Margaria

11. R@ISE: Research at ISE
organized by Tiziana Margaria and Mike Hinchey

12. AI-Supported Publishing
organized by Jonas Spies

The 26 papers of this volume extend the presentation in the AISoLA 2023 on-site
proceedings. This means, in particular, that the corresponding track introductions still
apply. Only the Health Care and the Digital Humanities track have some dedicated
introductions in this volume.

I thank the track organizers, themembers of the program committee and their review-
ers for their effort in selecting the papers to be presented, the local Organization Chair,
Petros Stratis, and the EasyConferences team for their continuous precious support dur-
ing the entire period preceding the events, and Springer Nature for being, as usual, a
very reliable partner for the proceedings production. Finally, I am grateful to Nicolas
Stratis and Tim Tegeler for continuous support for the website and the program, and to
Steve Bosselmann for his help with the editorial system EquinOCS.

Special thanks are due to the Center for Trustworthy Data Science and Security and
the Lamarr Institute for their support in the organization of the event, and to the Technical
University of Dortmund, my home institution.

With over 150 international participants and very lively discussions, AISoLA was
a very successful event and I am looking forward to seeing many of you in Crete in
October for AISoLA 2024.

October 2024 Bernhard Steffen
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AI-Related Risk and Uncertainty

Giacomo Zanotti1(B), Daniele Chiffi2, and Viola Schiaffonati1

1 Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano,
Milan, Italy

giacomo.zanotti@polimi.it
2 Department of Architecture and Urban Studies (DAStU), Politecnico di Milano, Milan, Italy

Abstract. Discussions on the risks involved in the deployment of AI systems are
increasingly prominent in both public discourse and scientific debates. While talk
of risk plays a crucial role in framing ethical and societal problems related to AI,
we argue that it could profitably be associated with a clear analysis of uncertainty.
Starting from a multi-component approach to AI-related risk assessment and mit-
igation, this chapter discusses the way the deployment of AI systems often takes
place in contexts in which uncertainty is not meaningfully quantifiable.

Keywords: AI · Risk · Uncertainty · Philosophy of risk

1 Introduction

Recent advances in the field of Artificial Intelligence (AI) have resulted in a widespread
diffusion of AI systems to be applied for significantly heterogeneous purposes in a wide
range of situations. In many cases, these systems are delegated with complex tasks
that would typically require human intervention. What is more, they are increasingly
employed in delicate contexts in which their decisions, predictions and classifications
can have a significant impact on people’s life. Most notably, we can think about the
fields of medical AI and predictive justice, or systems employed for loan processing and
autonomous driving.

With things being this way, the growing prominence of the notion of risk in dis-
cussions on the ethical and social implications of AI does not come as a surprise. On
the one hand, a fair deal of literature and public discourse has been focusing on the so-
called existential risks related to the deployment of AI systems, often involving human
extinction or global catastrophes. On the other hand, usually in open contrast with the
talk on existential risk, increasing attention has been devoted to more mundane forms of
AI-related risk.1 This latter approach – which is also the one behind this contribution –
has led, among other things, to the recently approved European proposal for the first
comprehensive regulation on AI – the so-called AI Act2 – where systems are classified

1 https://www.nature.com/articles/d41586-023-02094-7, last accessed 2024/04/04.
2 More precisely, the Regulation of the European Parliament and of the Council on laying
down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending
certain Union legislative acts. (https://www.europarl.europa.eu/doceo/document/TA-9-2024-
0138_EN.html, last accessed 2024/04/04).

© The Author(s) 2025
B. Steffen (Ed.): AISoLA 2023, LNCS 14129, pp. 284–292, 2025.
https://doi.org/10.1007/978-3-031-73741-1_17
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in accordance to their level of risk (unacceptable, high, limited, minimal) and regulated
accordingly.

Notwithstanding its importance, the assessment of risk may have some limitations
when it comes to the outcomes and implications of AI systems. In fact, risk is understood
as a normative notion associated with potential negative consequences, and it is often
characterized by a distinct probabilistic component. More specifically, when referring to
the risk of an event x, we typically imply that we can meaningfully assign a probabilistic
value to the occurrence of x. This possibility is not always feasible when it comes
to AI systems and the potential effects of their use. This contribution contends that
talk of risk in AI should make room for the notion of uncertainty, both in quantifiable
and unquantifiable forms. While our analysis is distinctively philosophical in scope
and methodology, we believe it may be used as a theoretical ground for devising risk
assessment practices in AI.

In Sect. 2, the notion of risk is presented, paying particular attention to multi-
component approaches to risk and their quantifiable uncertainties, with a specific focus
onAI-related risk. Then, in Sect. 3, the notion of severe uncertainty is introduced as away
to better understand and assess those cases where uncertainty cannot be meaningfully
quantified. We will focus on the use of general-purpose AI systems as paradigmatic
examples of a context in which this dimension of severe uncertainty is particularly
relevant. Section 4 concludes the chapter by discussing possible future lines of research.

2 Risk and Its Components

Providing a univocal characterization of risk is not an easy task, for non-technical under-
standings of this notion come together with a number of technical definitions. Among
these, the one provided by the Royal Society in 1983 is often referred to as the “classic”
one, equating risk with “the probability that a particular adverse event occurs during
a stated period of time, or results from a particular challenge” (Royal Society, 1983).
Needless to say, it does not all come down to probability. As a matter of fact, assessing
risk typically involves some form of expectation inwhich the probability of the unwanted
event becomes the weight for the magnitude of its consequences: a higher magnitude
might counterbalance a lower probability of occurrence, and vice versa. Still, probability
is usually required in many definitions of risk.

Among other things, this way of understanding risk seems to be at the basis of
the AI Act, that explicitly defines risk as “the combination of the probability of an
occurrence of harm and the severity of that harm” (Art. 3, 2). However, it is not the
only way to approach risk, in particular when it comes to designing risk-mitigation
policies and interventions. Most notably, approaches adopted in the domain of disaster
risk mitigation understand risk as the result of the interaction between three different
components: hazard, exposure, and vulnerability (UNISDR, 2015).Hazard refers to the
source of potential harm, exposure to the people and resources that could be harmed,
and vulnerability has to do with how much what is exposed is susceptible to the impacts
of the hazard. As an example, consider seismic risk. In this case, the hazard component
refers to the earthquake itself, and its assessment involves estimates concerning both the
probability and the magnitude of the earthquake.When it comes to exposure, instead, we
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focus on what could be harmed by the earthquake, considering both people and material
assets (e.g., buildings and infrastructures) that are found in the seismic hazard zone.
Finally, one should take into account the circumstances and measures that could render
these individuals and assets more or less susceptible to the potential harm: in the case of
an earthquake, relevant elements could be the seismic safety standards of the potentially
affected buildings, the existence of response plans, and the availability of temporary
shelters.

Distinguishing between the different components we have just seen allows us to
intervene on several fronts to reduce risk. Now, reducing the hazard is not always possi-
ble, especially in the case of some natural risks: we simply cannot prevent an earthquake
from occurring. However, there are many cases, especially those in which the hazard is
related to human action, in which there is much we can do (e.g., we might relocate pol-
luting factories away from population centers, or withdraw from the market a potentially
dangerous technology). At the same time, we can intervene on the exposure. In the case
of seismic risk, the most straightforward way to do this involves limiting the number of
people and assets in the areas that are more likely to be affected by earthquakes. Finally,
efforts can be made to reduce the vulnerability of such people and assets by intervening
on buildings to improve their safety, designing evacuation plans, and so on.

While the domain of natural risk offers intuitive examples of how different risks can
be better analyzed andmanaged by distinguishing their components, nothing prevents us
from applying the same kind of analysis to technological risks – that is, risks stemming
from the use of technological artifacts.3 AI systems make no exception. On the contrary,
thinking of AI-related risk through the conceptual and methodological lens of multi-
component analyses of risk allows us to understand how and why significantly different
kinds of AI systems involve non-negligible levels of risk.4

In some cases, AI systems strike us as involving considerable levels of risk as a result
of the hazard’s magnitude. Let us take a look at the AI Act’s Annex III, listing (some
of) the systems that are considered as “high-risk” within the scope of the Act, and are
therefore subject to stricter regulation. Among these, we can find AI systems that serve
as “safety components in the management and operation of critical digital infrastructure,
road traffic and the supply of water, gas, heating and electricity”, or systems used by law
enforcement. It is fairly straightforward that malfunctions in such systems directly result
in potentially harming events. The failure of an AI system used to manage road traffic
can result in life-threatening accidents, and a system used to predict recidivism in courts
can be affected by biases that may ultimately result in unfair judgments and unjustified
detention (Angwin et al., 2016). In these cases, regardless of the levels of exposure and
vulnerability, the fact that these systems involve high levels of hazard seems to be enough
for labeling them as “high-risk”.

The reasoning is diametrically oppositewhen it comes to those systems that qualify as
highly risky due to their affecting and/or being used by a considerable number of people.
In this regard, recommender systems are the most prominent example, especially those

3 Note that the dichotomy between natural and technological risks is not meant to be always
completely exhaustive (Hansson, 2016).

4 For a detailed analysis of a multi-component approach to AI-related risk, see (Zanotti, Chiffi,
Schiaffonati, 2024).
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implemented in the so-called very large online platforms (VLOPs).5 In these cases, the
potentially low levels of hazard and vulnerability are negatively counterbalanced by
significantly high levels of exposure.

Finally, some systems might qualify as high-risk as a result of the vulnerability of
their users. Examples abound. For instance, AI-systems – including intelligent robotic
systems – are increasingly used in the context of education and elderly care (Miyagawa
et al., 2019; Tanaka et al., 2015). In these cases, even assuming low levels of hazard and
exposure, the vulnerability of the people using or being affected by AI systems compels
us to guard against potential unwanted outcomes and accordingly treat the involved
technologies as high-risk ones.

We have now seen how adopting a specific approach to risk, namely a multi-
component analysis, can help us better understand AI-related risk. The two general
features of risk that have been partially anticipated, however, remain valid. First of all,
risk refers to the possible occurrence of an unwanted event, of something that is nega-
tively valued. This is immediately evident in the classic definition of risk, that explicitly
refers to adverse events, and it is clear in multi-component analyses of risk, that under-
stand hazard as the source of harm. Accordingly, when referring to AI-related risk, we
always focus on the negative potential consequences of AI systems’ deployment. The
second feature that typically characterizes conceptions of risk is that they involve the
possibility of a meaningful probabilistic evaluation of the unwanted events in question.6

Sometimes, probabilistic risk assessment is assumed and conducted by using point-
like probabilistic values, since we trust such probabilities. This can be a good choice
when the uncertainty and complexity of the risk are not particularly noteworthy. This is
what typically happens in textbook cases and idealized scenarios: if we bet on dice games
and the dice is a fair one, we know exactly which our risk of losing is. However, more
commonly some quantifiable forms of uncertainty are acknowledgedwithin risk, and this
is why risks may be quantified and evaluated bymeans of probabilistic intervals, second-
order probabilities, imprecise probabilities, belief-functions, possibility theories, and
fuzzy logic, just tomention someof thesemethods (Hansson, 2018;Denœux et al.,2020a,
2020b). AI makes no exception. On the contrary, providing point-like probabilities may
be hard in the case of AI systems’ deployment, for such systems are often used in
complex contexts in which unanticipated circumstances might influence the course of
events, and their being often relatively new technologies may result in a paucity of data
concerning their use and its possible negative outcomes.

3 AI-Related Risks and Severe Uncertainty

Taking stock, we have seen how the notion of risk is associated with the possibility of
making probabilistic estimates about unwanted events and their outcomes. True, some
components of uncertainty are typically involved in real-world scenarios, for it is often
hard to assess risk bymeans of point-like probabilistic values, andAImakes no exception.
Still, the uncertainty in question can be quantified. However, this is not always the case:

5 According to the European Digital Services Act, a platform qualifies as a VLOP if it has more
than 45 million users per month in the EU (DSA, 2022).

6 In the literature, these situations are understood as “known unknowns” (Hansson, 2009).
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several types of uncertainty exist, and not all of them can be meaningfully quantified
(Hansson, 2022). In this section, we analyze how non-quantifiable uncertainty may play
a role in the assessment of AI-related risk. Note that, while we focus on the way risk (and
quantifiable forms of uncertainty) differ from non-quantifiable forms of uncertainty with
respect to our probabilistic knowledge of possible scenarios, other differences exist.Most
notably, we have seen how risk is a normative and evaluative concept with a negative
connotation. This does not always happen with uncertainty. On the contrary, some forms
of uncertainty are usually assumed to be possible triggers for technological innovation
(Chiffi, Moroni, Zanetti, 2022).

Based onwhat we have seen in the previous section, risk assessment seems to depend
on our evaluation of the potential unwanted events in question, their consequences and
contexts of occurrence. For instance, in the case of seismic risk, assessing exposure
requires to possess reliable knowledge about the location and extension of the potentially
affected area as well as the number of people, buildings and infrastructures therein.
In addition, up-to-date information concerning (among other things) the existence of
evacuation plans and buildings’ safety standards is needed to evaluate the vulnerability
of exposed people and assets. All of this applies to the case of AI. Suppose you want
to estimate the risk associated with the deployment of a certain AI system. First, you
need to identify possible inaccuracies, malfunctions, misuses, and more generally all
unintended and unwanted consequences resulting from the deployment of the system,
and possibly associate themwith a probability. Then, youmust have a sufficiently precise
idea of the people and assets exposed to such consequences. Finally, you should be able
to assess their vulnerability by considering all those factors and circumstances that make
them more or less prone to be harmed by the potential events in question.

While this might be doable for some AI systems and in some contexts (e.g., AI
systems based on symbolic techniques to be used in controlled environments), it is
not always possible. In some cases, it might be hard to make predictions on the possible
inaccuracies andmalfunctions of AI systems, often due to their complexity and working
opacity. In addition to this, we might not be able to anticipate their possible uses, and
therefore their misuses, and identify who could be affected by their negative outcomes.
As we will see in a moment, such difficulties might be due to the fact that some kinds
of AI systems can be adapted to a wide variety of uses and applications. On top of that,
we should keep in mind that, in many cases, the technologies we are referring to are
relatively recent, and we largely lack data on their real-world use that could inform our
predictions.

In the literature, analogous situations are captured through the notion of severe uncer-
tainty. Severe uncertainty is typically conceived in open contraposition to probabilistic
conceptualizations of risk such as the Royal Society’s one we have seen in Sect. 2.
Consider the (fair) dice game example. In this case, we have exhaustive and reliable
knowledge of both (i) the possible outcomes of the roll of the dice and (ii) the probability
associated with each outcome.

In situations of severe uncertainty, things are less clear. For a specific set of events,
we might be able to anticipate the possible outcomes while ignoring their probability
distribution. Many of the recent and most impactful AI technologies seem to be used in
and give rise to contexts of severe uncertainty. The examplewe propose to consider is that
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of so-called general-purpose AI systems (GPAIs). This expression, that for the purpose
of this chapter we take to be largely overlapping with the one of foundation models
(Bommasani et al., 2022), refers to any AI system that can “accomplish or be adapted to
accomplish a range of distinct tasks, including some for which it was not intentionally
and specifically trained” (Gutierrez et al., 2023). The class of GPAIs includes different
models and systems, from those designed for computer vision to those for multimodal
processing. Among these, however, Large Language Models (LLMs) are increasingly
widespread, especially after OpenAI’s decision in November 2022 to implement their
model GPT3.5 in a freely available chatbot with a user-friendly interface. From that
moment on, different companies and developers rushed to offer easily accessible LLM-
based platforms at users’ fingertips.

When it comes to these systems, assessing risk is particularly difficult. First of
all, the identification of malfunctions, misuses, and unintended consequences might be
quite critical. As a matter of fact, their being general-purpose models, so capable of
tasks for which they have not been specifically designed and trained, makes it very
difficult to anticipate all the potential consequences of their use. Moreover, the fact that
these systems are most of the time running proprietary software (not an open source
one) further exacerbates the possibility to predict malfunctions. True, many possible
scenarios of malfunctions and abuses can be foreseen. For instance, once we know that
certain GPAIs can be used for code generation, we can easily anticipate that someone
may jailbreak them to write malware. However, it is not clear how we could associate a
probability to this scenario before the system’s large-scale deployment.

Analogous considerations can be made when it comes to estimating the exposure
component of the risks involved in the deployment of GPAIs. Many GPAIs are now
implemented in free and accessible platforms, and the number of people making use
of these systems in their daily life is increasing – again, their flexibility makes them
potentially applicable to significantly different tasks and in a wide range of situations.
Such an evolving scenario also makes it very difficult to have a sufficiently precise idea
of the people exposed to their consequences.

Finally, in light of this, it is not hard to see the difficulties involved in the attempt to
estimate the component of vulnerability associated with these systems’ risk. To do so, as
a matter of fact, we should be able to identify both the potential harmful uses of GPAIs
as well as those affected by their possible negative consequences. And again, this is not
an easy task.

Summing up, we could say that the extreme flexibility of some AI systems, GPAIs
in particular, plays a major role in giving rise to severe forms of uncertainties: as their
possible uses are wide and open, it is hard to anticipate and assess all of them and
thereby estimate the associated levels of hazard, exposure and vulnerability. These forms
of uncertainty are hardly quantifiable and represent a significant challenge in assessing
AI-related risk, but cannot be overlooked in a rigorous and complete discussion of AI
technologies and their societal implications.
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4 Conclusion

We discussed some possible difficulties in assessing the risks associated with the use of
AI systems. Starting from a focus on the components of risk, namely, hazard, exposure,
and vulnerability,we highlighted that traditional risk analysis often relies on probabilistic
information, which may not be always readily available or reliable for the outcomes of
AI systems’ deployment. We suggested that incorporating the concept of uncertainty
into AI-related risk analysis is beneficial not only when uncertainty is quantifiable but
also, and more importantly, when it is not quantifiable. This is particularly relevant in
cases of severe forms of uncertainties. We explored general-purpose AI systems as an
illustrative example of technology where severe uncertainty may play a pivotal role in
risk assessment. Among other things, this uncertainty arises due to the considerable
flexibility in these systems’ potential applications.

In future lines of research, wewill investigate the role ofmulti-risk analysis related to
AI,wherein various risksmay interactmutually, potentially producingdominoor cascade
effects7. To this end, we will draw upon the rich literature on engineering safety, risk
assessment and uncertainty (e.g., Burton, Mcdermid, Freng, 2023), in particular in the
context of AI (e.g., NIST, 2023).Wewill also explore the impact of unforeseeable events,
sometimes referred to as “unknown unknowns,” on AI-related risks. These events can be
challenging not only to quantify but also to predict accurately and are typically associated
with socio-technical systems, which may pose wicked problems to society – complex
issues often intertwined with policy and planning (Rittel & Webber, 1973; Nordström,
2022). Such problems are difficult to address and even analytically define. A rigorous
epistemological analysis of uncertainty in AI, however, will hopefully put us in a better
position to deal with them.
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