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DESIGN OF A FLEXIBLE OPTIMAL TRAJECTORY DEFINITION
TOOL FOR A MULTI-PAYLOAD MULTI-ORBIT INJECTION

MISSION

Iñigo Alforja Ruiz*, and Michèle Lavagna†,

This paper proposes a two-step trajectory optimization tool for the multi-rendez-
vous problem, applied to the multi-payload multi-orbit capabilities of an upper
stage. First, a bi-objective bi-level algorithm optimizes the sequence of orbit vis-
itation and computes a first order impulsive solution to the transfers. Then, a
multi-phase multi-shooting optimization algorithm uses the previous output as an
initial guess to obtain a more accurate finite-thrust optimal trajectory. The re-
sult is a flexible tool which allows to obtain the optimal trajectories for a great
range of multi-orbit injection problems, enabling sensitivity analyses and multi-
disciplinary design of the upper stage for the mission definition.

INTRODUCTION

The irruption of new players in the space sector, and in particular private companies, has led
into a dramatic increase in the demand for space access. This is partly due to the development
of smaller and cheaper satellites, which has democratized the space medium in favor of small-to-
medium institutions. However, it has also been pushed by the growing interest of constellation
missions, with satellite numbers from the order of tens to thousands, such as OneWeb* or StarLink.
While this situation can be understood as a great feat in technology development towards the use
of space, current trends in demand of launching show a tendency beyond the growth capabilities
of the logistics related to space transport systems. In fact, the number of planned small satellite
launches is expected to increase this decade at a rate up to four times that of the previous one,1

with an exponential evolution in the case of nano-satellites.2 This situation has put in the spotlight
the challenging position that the space access infrastructure must face not only in terms of logistic
arrangements to accommodate all launches, but also in ecological terms due to the corresponding
increase in material and fuel usage. Therefore, there is an obvious need for innovative and efficient
space transport strategies.

There are no simple solutions in the upcoming space access bottleneck, although the most re-
current one is to deliver several satellites at once with a single vehicle, reducing the number of
launches. Historically, this strategy has already been envisioned in the form of piggyback trips, in
which secondary payloads are launched with a primary one, and delivered around the operational
orbit of the latter. Achievable orbits are limited to the neighborhood of the primary one, transferring
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the maneuvering responsibilities (and cost) to the secondary payloads to reach their desired orbital
position. This practice might discourage new projects, especially coming from small institutions or
the the private sector.

The new space transport strategies should then focus on the capability of injection of the dif-
ferent payloads into their operational orbits, keeping the cost of maneuvering within the delivery
vehicle. Such a concept has been already tested through the usage of kick-stages, which act as an
intermediate stage moving from the primary orbit to the secondary ones. Among these, one can find
the SL-OMV by MOOG or SHERPA by Andrews Space, both of which have flown with several
payloads. In Europe, the ASTRIS kick-stage aims to enable this direct injection of satellites in geo-
stationary orbits *. Multi-payload multi-orbit delivery vehicles present themselves to be strategic to
the sustainable planning and performance of future launches.

While promising from the conceptual point of view, especially in terms of the increased flexibility
and reduced overall cost, this type of mission requires the definition of a series of orbital maneuvers
among consecutive target orbits which is not easy to determine. Establishing a multi-orbit visitation
trajectory requires defining both the order of orbits to be followed as well as transfers among these.3

This multi-rendezvous problem is normally cataloged as a dynamic variant of the Traveling Sales-
man Problem (TSP), which is a classic problem in the domain of optimization.4 Solving it is crucial
to determine the trajectory that must be followed by the spacecraft to deliver all the necessary satel-
lites into their respective orbits. The application of the TSP in in space can be found in other types
of missions, in particular those devoted to Active Debris Removal (ADR) and On-Orbit Servicing
(OOS). Most of the literature is in fact related to these mission types, as it is observed in the follow-
ing analysis of current solution strategies. Generally, these studies show a trend of separating the
visitation and the transfer problems, and solving them separately in an effort to reduce the complex-
ity and reach the optimal trajectory. The connection among these two problems, however, must be
kept, which is conventionally done by attributing the cost of a set of transfers related to a specific
orbital order, after fixing the latter. This information is then fed-back to contribute in the search for
the optimal order of visitation, maintaining the coupling. This way, the problem is divided into two
(the visitation sequence and the transfers definition) for whose solution several methods have been
proposed.

The comparative of the sequential problem to the typical TSP has led to the proposal of typical
solution methods. Among these, the most classic one is the use of extensive search algorithms such
as the one used in Chen et al.5 or Daneshjou et al.6 The approach is to obtain the cost of the transfers
to all possible orbit sequences and compare them to reach a global optimum. However, this strategy
becomes unfeasible for larger number of orbits, as the number of possible sequence combinations
grows in a factorial fashion. As a solution to this issue, other authors have used pseudo-extensive
methods, such as tree-search algorithms in which the tours are built city by city by ”branching”
limiting or ”pruning” their growth if a certain threshold in the overall cost is reached. The most
popular of these methods is the Branch-and-Bound.7–10 However, other strategies such as the Series
Method are worth mentioning.11 While reducing the problem of the search-space size, the branching
limit must be carefully selected if it is desired to keep the feasibility of computational times while
being sufficiently broad to reach as many different tours as possible. In fact, the gradual building
method provokes a situation in which tours with lower initial cost are favored, although their global
cost could be more expensive. To overcome both the computing effort and the limitation in possible
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sequences it has been proposed to use heuristic algorithms that allow the evaluation of full paths at
lower computational times, trading them for sub-optimal results. Typical strategies include Genetic
Algorithms7, 12 , Simulated Annealing13, 14 , and Ant Colony Optimization.15–17 Special interest has
been shown in the latter algorithm due to its natural resemblance of the ant tour-building to the
combinatorial tree-shape structure.

As stated before, the multi-rendezvous entails also the sub-problem of defining the transfers
among the desired orbits. This part of the problem shows a much wider spectrum of approaches
in literature, ranging from the use of diverse complex optimization algorithms, to its complete over-
look. In fact, in some cases, the transfer legs are not even considered in the optimization process.4

However, most of the studies do consider them in different manners. A typical simplified way is
to generate a data storage of costs attributed to the individual transfers (generally in terms of ∆V )
which are pre-computed and assumed constant. The solver can then quickly access the matrix and
attribute them to a certain sequence. These costs can be assumed to be time-independent and equal
to a Hohmann-transfer ∆V , in order to make it as simple and closer to the baseline TSP as possi-
ble.9, 18 However, to make it more realistic, most studies which use the pre-computed cost approach
include the time-dependence by generating a time grid and computing all possible transfers between
two orbits at all possible discrete times.8, 10, 14 These cost arrays allow for fast correlation between
sequence and cost, trading it for the need of large data storage. To compensate this issue, Bang et
al.19 proposes a preliminary local optimization of each one of the individual transfers, such that
only local optima are kept as possible transfers for the global optimization while the rest of possible
maneuvers are filtered out.

These types of approaches do not ensure to provide a sufficiently good solution for the optimiza-
tion problem, as their results highly dependent on the design variables (such as the size of the step of
the time grid). For this reason, the transfers themselves are also desired to be optimized. These are
generally modeled as impulsive maneuvers, being Lambert targeting the most prominent approach
in literature. The optimization is usually performed by means of heuristic algorithms, given the
enormous size of the search space. Typical strategies include Genetic Algorithms12 or Evolutionary
Algorithms.7, 13 The usage of these requires the discretization of time, as for the data-storage ap-
proaches, limiting the range of possible transfers that can be computed. This can be overcome by
using algorithms which function in the continuous domain, such as the Particle Swarm Optimiza-
tion (PSO).5, 6, 20 It must be noted, however, that all the presented strategies optimize the transfers
in order according to the given sequence, one by one, instead of all at once. Thus, later transfers
are influenced by the decisions taken to optimize previous ones, limiting the overall search-space.
This approach could affect negatively the full sequence generation as solutions might stagnate in
sub-optimal tours.

While the full multi-rendezvous problem has been extensively studied, the main focus has always
remained within the generation of the optimal tour, using the transfers as a means for this end.
Transfers are greatly simplified to impulsive maneuvers (or simplified analytical low-thrust legs).7

Very rarely the transfer problem is considered as a continuous thrust problem to be solved by means
of Nonlinear Optimal Control (NOC) to get the thrust control vector for the full trajectory. In fact,
the only solutions found in this regard are provided for low-thrust simplified trajectories.21, 22 This
issue is also pointed out in Cerf,8 although left out as a future work. In the case of the upper
stage, the possibility of high thrust strategies should be envisaged which would allow not only to
study the correctness of approximating the finite thrust maneuvers by an impulsive one, but also
to evaluate the effect of other physical aspects such as disturbances, engine dynamics or thrust
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direction. These could potentially affect the results coming from the multi-rendezvous solution
given by the simplified model, as they could impact the feasibility of some transfers as well as the
transfer accuracy with respect to ideal cases.

The current paper focuses on the solution of the time and fuel mass constrained multi-payload
multi-orbit delivery mission, with the aim of visiting all orbits and minimizing both propellant
consumed and time of flight. For this purpose, an optimization tool has created that works in two
steps: a first step dealing with the simplified impulsive problem; and a second step which uses the
solution of the first as an initial guess for the full NOC problem. The objective of this study is
to close the gap in the generation of trajectories for the multi-rendezvous problem in the case of
high thrust which include the full dynamics and allows the study of different parameters in a more
realistic fashion. For this purpose, first the mission as well as the mathematical formulation will be
described. Then, it will be explained the approach followed for developing the tool. Following, two
different cases will be studied with the tool: one to verify it, and one to study its behavior with a
more complicated mission scenario. Finally, a summary of the paper and its main conclusions will
be presented.

PROBLEM STATEMENT

As stated before, the multi-payload multi-orbit is a complex optimization problem which inter-
twines in its trajectory definition the decision on the sequence to be followed and the transfers
between consecutive orbits. In this section, the complete mission and mathematical formulation are
presented as to first explain the requirements and constraints, and then present the full problem to
be solved.

Mission Definition

To develop the tool, it is first necessary to establish a baseline mission. Consider an upper stage
or kick stage which is used to inject a set of N payloads into N differentiated orbits. The desired
orbital parameters, as well as the physical properties of the payloads are known beforehand, and
specified towards the design of the trajectory. The motion of the vehicle is considered to start after
the release of the first satellite, meaning that the initial launch leg is not taken into account in the
overall cost of the mission. The selection of this first orbit, however, is still a decision variable for
the optimization tool. It is assumed that the overall cost to reach any of these orbital regions from the
ground will be similar, and carried out by other elements of the launcher. The course finishes once
the vehicle delivers the last satellite and performs a final transfer towards a pre-defined disposal
orbit, as to comply with the space debris mitigation guidelines.23 The selection of this disposal
orbit is arbitrary, as its definition or optimization are both outside the scope of this study. Thus, the
overall mission is summarized as:

1. The spacecraft, after deploying the first satellite, performs a two-burn transfer towards the
next orbit, where the second payload is released.

2. This sequence is repeated N-1 times, until all satellites are released. Then, it performs an Nth

maneuver towards the disposal orbit. At this point the mission is considered to be finished.

3. As the activity, generally, does not require the satellite to be at any specific position within
the final orbit, all points are equally valid and considered for the transfer final position.
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4. Considering a hypothetical industrial point of view (in which customers require they payloads
to be operational as soon and as cheaply as possible) both the fuel consumption and mission
time are to be minimized.

5. Considering the classic upper stage propulsion system type, the engine is assumed to be high-
thrust, and approximated as impulsive shots if necessary.

It is important to note that in the case under consideration, it is the fuel mass that is used as a
measure cost of the transfers, and not the associated ∆V as it is typically done in literature. This is
related to the fact that the overall mass is expected to evolve in a discrete manner, as payloads are
being released. In addition, this discrete drop in total mass is not equal in all orbits, as every satellite
to be injected might have a different weight. Therefore, the correlation between ∆V and fuel mass
consumed is not direct, and highly depends on the satellites’ masses that have been delivered or are
yet to be injected. Thus, for a correct evaluation of the cost, it is the propellant mass that needs to
be evaluated.

Mathematical Formulation

The multi-rendezvous mission above defined falls into the category of TSP-related problems in
optimization.4 In this type of problems, a pre-defined set of nodes must be visited sequentially, only
once, while minimizing the cost to move among them. The problem is defined as a graph problem
G = (V,A), in which V = {1, ..., N} is the set of nodes to be visited, and A = {(i, j) : i, j ∈
V, i ̸= j} is the set of arcs among the nodes, each of these corresponding to a certain cost. Within
the graph problem, the set of satellites to be injected is defined as S = {1, ..., N}, with the set
of orbits equal to this set plus the final disposal orbit V = {1, 2, ..., N,N + 1} = S ∪ {N + 1}.
However, the current mission optimization problem has two main differences with respect to the
classic TSP. First, the route is not closed, as the initial and final orbits are not the same. This
affects the sequence generation, as the final disposal orbit must be included in the tour and different
strategies might be looked for by the optimizer which might differ from a closed loop scenario.
Second, and more importantly, the arcs are highly time-dependent due to the non-linearity of the
orbital dynamics involved in the vehicle’s motion. There is an infinite number of possible arcs
between two orbits depending on vehicle’s initial and final positions and its duration, making the
search space infinite. This is summarized in Figure 1, where the different possible connections
between the nodes are schematized. Properly implementing time is therefore crucial for the correct
generation of the optimal trajectory.

Taking into consideration the already defined graph problem, it is now necessary to establish the
different optimization objectives and constraints that dominate it. The optimization problem can be
established as the minimization of

min

{
N+1∑
i=1

mf,i, ttot

}
(1)

with mf,i being the propellant mass needed for each transfer i, and with ttot being the total mission
time. Each one of the arcs is subject to the dynamic equations of motion:24

r̈ =
µ

r3
r +

T

M
eT δ + fdist (2)
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Figure 1. Schematic of the time-dependent TSP

Ṁ = − T

Ispg0
δ (3)

where r is the distance of the spacecraft with respect to the main gravitational body (the Earth in
this case) and µ the gravitational parameter of this same body. The second term of the right-hand
side is related to the thrust acceleration: T is the thrust magnitude, eT the thrust vector, M the
vehicle’s mass (including remaining fuel), δ the relay on-off function of the propulsion system. The
last term fdist entails the acceleration provoked by disturbance effects, mainly the components of
the Earth’s spherical harmonics gravitational model, third-body gravitation, solar radiation pressure,
etc. Equation 3 is Tsiolkovski’s rocket equation, and determines the vehicle’s mass change based on
the engine’s performance, in particular the specific impulse Isp, and on the gravitational acceleration
at the surface of Earth g0. The solution of these equations of motion is in addition subjected to the
boundary conditions of departure and arrival of the vehicle in terms of orbital elements:

xk(t0,k) = x0,k; xk(tf,k) = xf,k (4)

with
xi = KEi = [a, e, i, Ω, ω]k

with the Kepler elements being the semi-major axis, eccentricity, inclination, right-ascension of
ascending node and argument of perigee, respectively in the order of apparition in the above expres-
sion, for any k transfer. Note how the anomaly is not included, as any point in the orbit can be used
for the transfers and it is not fixed.

In addition, since orbits need to be visited only once, the following constraints are imposed:
N+1∑
i=0

si,j = 1;

N+1∑
j=0

si,j = 1 (5)

Finally, having a maximum amount of fuel available in the spacecraft, and establishing a limit in
the mission time, the constraints related to maxima in the values of the cost are formalized as:

N+1∑
k=1

mf,k ≤ mf,max;
N+1∑
k=1

tk ≤ tmax (6)
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The mathematical formulation of the multi-rendezvous mission allows for a fast identification
of the two differentiated parts already discussed. On the one hand, the combinatorial problem
related to the selection of the visitation sequence is established by Equations (5), such that all orbits
are visited only once. This type of problem falls into the category of integer programming (IP),
as it deals only with integer numbers. On the other hand, the dynamic nature of the transfers is
highlighted with Equation (2) and Equation (3). This type of problem falls into the category of
nonlinear continuous programming (NLP). Being both tightly coupled, as the cost of the arcs of
the elements of the IP are themselves an NLP problem, the full formulation is categorized as a
mixed integer nonlinear programming (MINLP) problem. The optimal trajectory is then found only
after solving this complex MINLP formulation, for which an algorithm that can deal with both
sub-queries has to be developed.

THE OPTIMIZATION TOOL

As stated above, the problem is cataloged as MINLP optimization problem (NP-hard type) and
thus cannot be solved deterministically without needing computational times growing factorially
with the number of orbits to visit. Therefore, multiple strategies have been proposed in literature
making use of heuristic algorithms that need multiple simplifications to solve the problem in feasible
times. However, for in-depth analysis from the point of view of both trajectory definition and
Guidance, Navigation and Control system design, a more realistic analysis is needed, including
modeled disturbances and spacecraft’s dynamics.

To solve this problem, the current study proposes a two step optimization algorithm that solves:
1) the sequential problem with a solution on the optimized simplified transfers among the orbits;
and 2) a NOC problem related to a selected sequence which uses the results of the previous step for
a more refined and realistic optimal trajectory, as well as for a control law. This is summarized in
Figure 2. Each one of the two steps are explained in the following lines.

First Step

In the first step, the MINLP problem is first solved by a 2-level algorithm, each one dealing with
one of the sub-queries, namely the sequential problem and the transfer problem, separately. The

STEP 2STEP 1

Transfers
ComputationINPUTS OUTPUT NOC

Population-Based Ant Colony Optimization
(Outer Loop)

Particle Swarm Optimization
(Inner Loop)

Figure 2. Schematic of the 2-Step Algorithm
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process is then divided into: 1) an outer level solving the orbit sequence of visitation; and 2) an
inner level optimizing the transfers among a certain sequence of orbits. These two activities are
not independent, and need each other to reach the optimal solution. On the one hand, the internal
part requires a specific orbit sequence, forwarded by the outer level, for which the transfers are
optimized. On the other hand, the cost of this optimized set of transfers is used by the outer level
as the quality measure attributed to that specific sequence in the search of the optimal order or
visitation. Both levels are then nested and in constant interaction, as shown in Figure 3.

Keeping the connection is, however, complicated as the optimization is bi-objective. Attributing
a Pareto front of costs coming from the inner algorithm to a single sequence of visitation is not
useful, and thus a single point among these is selected. The tool allows this selection to be done
according to different criteria, such as minimum fuel, minimum time, random or by means of a
weighted function. An extended explanation on the functional principles of this first step is provided
in previous works of the author.25, 26

Outer Layer To solve the combinatorial problem, an heuristic algorithm that could exploit the
natural tree-shape of this type of problems was studied, among which ACO-related algorithms are
the most prominent in literature. A Population-based ACO (P-ACO)27 with a multi-objective ex-
pansion28 was implemented for this purpose. Such an algorithm has already been proven useful in
similar multi-rendezvous studies.29

ACO algorithms solve sequential problems by the use of ants, which traverse a certain path (or
sequence) leaving a trail of pheromones behind (τ ). The probability of an ant of a subsequent
generation to take a certain path is proportional to the amount of pheromones left by previous
ants. However, this node connection is also influenced by a measure of desirability, given by a
certain problem-related heuristic (η). In the multi-orbit visitation, this measure is related to the
theoretical ∆V needed to change the individual Kepler elements among two orbits.30 Both factors
are weighted to account for their relative importance by means of design exponential factors, such
that the probability for an ant to move from node i to node j, in a set S of still unvisited nodes is:

p(i, j) =
τ(i, j)αη(i, j)β∑
z∈S τ(i, z)αη(i, z)β

(7)

The particularity of this algorithm with respect to a classic ACO is that pheromones are only

Initialize
Ants

Sequences
Generation

Initialize k
transfers'
variables

Computation of k
Transfers

(Delta V, fuel
mass, TOF)

Select
leaders
(pareto)

Function for
single cost

output

Yes

No

All gens?

Move Particles

Yes

No

All ants?

No

Yes
All gens?

Next ant

Next generationMutation operator

INPUTS
Vehicle

Design, Target
Orbits

OUTPUT
Preliminary

Pareto Front

Population-Based Ant Colony Optimization
(Outer Loop)

Particle Swarm Optimization
(Inner Loop)

Figure 3. Schematic of the 2-Level First Step
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deposited by a subset of the ants’ generation, called the Population, composed by the best ants of
each iteration (the elite). In the bi-objective case, this elite is composed of the ants belonging to
the Pareto front of that generation, which enter the set in a FIFO-queue fashion. The implemented
algorithm is a modification of the open source code developed by L. Simões et al.,29 to which some
exploration-promoting strategies have been added.

Inner Layer Each time an ant travels a full tour, it requires of an internal optimization to obtain
the optimal transfers and thus the cost associated to such sequence. This is done through another
heuristic algorithm which, in this case, exploits the continuous nature of the transfer problem: the
Multi-Objective PSO (MOPSO) is selected.31 Such an algorithm works with the same principles
as the classic PSO in which the particles have their own motion across the search space with the
influence of their own best result and that of a leader particle. However, in this case, the leader is
not a single particle but the complete Pareto front, and in each iteration a random member of the
non-dominated set is picked as the leading reference. Daneshjou et al. have already proven the
usefulness of this algorithm for the multi-rendezvous problem.6 The implemented algorithm is a
modified version of the open-source code of V. Martı́nez-Cagigal.32

As stated in the previous section, transfers in the 2-level first step are modeled as two-burn Lam-
bert maneuvers for which the burn arcs are simplified to be impulsive ∆Vs. The Lambert maneuver
is calculated through a hybrid implementation of already developed solvers. On a first calculation,
a fast solution is obtained through D. Izzo’s formulation.33 However, this strategy is not extremely
robust, and in case of not finding a solution, the slower but more reliable algorithm proposed by
Gooding is called.34 This way, a solution is always found, and the slower solver is only called in
case of lack of convergence, speeding up the overall optimization process.35 For each transfer, both
the ∆V and time-of-flight (TOF) are calculated, after ensuring that the transfer is elliptical (such that
TOF is always greater than Barker’s time24) and that the transfer’s altitude is above Earth’s atmo-
sphere limit. The fuel consumption is approximated at each burn by means of Tsiolkovski’s rocket
equation (Equation 3). In addition, constraints are accounted for by means of penalty functions of
the form;

λ(f, L) = (max (0, f − L))2; f = f + F · λ(f, L) (8)

where f is the objective, L the constraint, and F a design weight factor.

At each one of the sequence transfers’ optimizations, the cost function is dynamically generated
according to the order of visitation. this reduces the need to know beforehand the specific set of
transfers that is to be solved, allowing for more flexibility of the tool. This dynamic cost function is
explained more deeply in a previous work.25 The output of the inner layer is a set of non-dominated
solutions for the transfer sequence given by the outer loop. Nevertheless, only one solution is picked
according to a certain design criteria specified beforehand, as stated above.

The output of this first 2-level step is a set of non-dominated tours with their respective costs and
optimized maneuvers. However, this is just a preliminary simplified trajectory, and it would be of
interest to obtain the full trajectory with the necessary control inputs to reach all orbits for injection.

Second Step

The second step consists on a NOC strategy which converts the results of the first step into a con-
tinuous set of control inputs to generate the full trajectory and refine on the cost of the full mission.
This way, different environmental disturbances, as well as vehicle dynamics can be implemented
and studied. For this purpose, a direct method was selected, due to the simpler implementation and
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Figure 4. Schematic of the basics of Direct Multiple Shooting Methods

ability to consider the different dynamics in full in a sort of ”black-box” fashion.36 In this manner,
the optimal control problem is discretized and transcribed into an NLP problem, for which different
techniques exist to solve it. In particular, given the nature of the problem at hand of multiple trans-
fers with, a multiple shooting transcription for the problem is selected. This allows to consider each
one of the transfers independently for their optimization, while keeping the continuity among them
as part of the constraints (defects), enabling a relatively fast but accurate result,36 as well as parallel
computing. A schematic of this approach is shown in Figure 4.

The idea behind the direct multiple shooting method is to divide the time into N − 1 intervals,
such that each one of these is considered independently for single shooting both in terms of state
propagation and control function.37 The initial states at each one of the sub-intervals (with the ex-
ception of the initial trajectory state) are unknown and considered as variables for the optimization.
However, these are accounted for in the form of the aforementioned defect constraints by matching
at each t(i) the initial state xi0 with the end state of the previous interval xi−1

f . In this manner, state
continuity is enforced. While this method does increase the total optimization vector (and thus the
complexity of the problem), the generated Jacobian matrix is sparse, which is easy to solve by most
numerical NLP solvers.36 The final states are accounted for in a similar manner by comparing the
propagated final state xNf with the desired one x∗f .

In the current problem, each transfer is considered a different phase, which allows also to imple-
ment their own different properties. This is especially interesting as the problem is characterized by
the discrete change of mass due to satellite injection in-between two consecutive transfers, which is
easily accounted for in this multi-phase approach. It also allows to ensure that the final state of each
one of the transfers in terms of the injection orbit Kepler elements is reached, by establishing inter-
mediate boundary conditions. Nevertheless, while the Kepler elements are intermediate boundary
conditions, the final state within the orbit is still free, and thus must be matched in terms of position
and velocity with the next transfer, in the way of multiple shooting.

In addition, due to the coast-burn-coast-burn sequence of each one of the transfers, these are
considered as four different phases. This allows to consider the different dynamics in the same
transfer shot. For instance, the lack of propulsion of the coast arcs allows for higher integration
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Figure 5. Schematic of the Multi-Phase Approach

steps and, since no control is required (as the engine is turned off), the variables related to the
thrust direction can be ignored.38 On the other hand, for the faster-changing burn phases a lower
integration step is needed, as well as the control of the engine direction and the acceleration due to
the thrust. The full direct multi-phase multiple shooting approach for the multi-orbit multi-injection
mission is summarized in Figure 5, where the divisions between transfers and between arcs within
a transfer are easily observed. It must be noted, however, that the total time both for the individual
transfers, as for the 4 transfer phases, are not fixed but part of the optimization variables. The overall
mission time is not minimized in this NOC step, as it is assumed the work performed by the previous
step is sufficient, although it is still considered a requirement and it is checked for infringement.

Taking into consideration the previous description of the transcription of the problem, the follow-
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ing NLP problem is reached (in terms of k transfers and 4 arc phases per transfer):

min
N∑
k=1

4∑
i=1

mf,k,i; k = 1, ..., N ; i = 1, 2, 3, 4

s.t. ẋk,i(t) = f(t,xk,i,uk,i); k = 1, ..., N ; i = 1, 2, 3, 4

x(t = 0) = x0

xf,k − x0,k+1 = 0; k = 1, ..., N

Ψ(xf,k)−Ψ(x∗
f,k) = KEf,k − KE∗

f,k = 0; k = 1, ..., N

tk,i ∈ [tLk,i, t
U
k,i], x0,k ∈ [xL

k ,x
U
k ], uk,i ∈ [uL

k,i,u
U
k,i]; k = 1, ..., N ; i = 1, 2, 3, 4

(9)

where the optimization variables are given for each transfer k as:

cT = (xT
k , tk,1, u

T
k,2, tk,2, tk,3, u

T
k,4, tk,3)

It must be noted how for the two coast arcs there are no related control input variables. In addition,
as the engine works at either maximum thrust or zero (non-throttling), the control inputs are given
in terms of the azimuth angle α and the cant angle β. For the present study, the NLP problem was
solved using MATLAB’s fmincon with Sequential Quadratic Programming (SQP) solver.39

The output of this second step is the full 3-dimensional trajectory with the necessary time-stamped
control inputs to achieve the complete set of payload injections and final disposal of the vehicle. The
solution trajectory is a refined optimization considering more realistic environments. In addition,
the direct multiple shooting formulation allows for an easy implementation of the dynamics of the
vehicle, allowing to perform analyses on sizing and systems’ design.

STUDY OF CASE SCENARIOS

The tool presented is now used to analyze a specific mission scenario in an effort to show its
flexibility and usefulness towards future studies, as well as the importance of the added second step.

Mission parameters

For the present study, a set of design parameters are considered, both in terms of mission and
delivery vehicle. All the related values are shown in Table 1. The propulsion system considered uses
a bi-propellant mixture of monomethyl hydrazine (MMH) and Mixed Oxides of Nitrogen (MON),
which is based on decades of heritage and research.40, 41

Verification of the tool

As a first step, the tool is verified by means of a simple set of transfers among co-planar circular
orbits with equal inclination. The satellites to be delivered are all equal in mass. The orbital elements
of the orbits to be visited are shown in Table 2, including those for the disposal orbit D.

The output of the first step is shown in Figure 6. It is to be noted how the possible sequences
range from very fast but expensive trajectories, towards slower but remarkably cheaper ones. For
most of these transfers, the foreseen sequence {5-4-3-2-1} is proposed by the algorithm. As the
cost to reach the fifth orbit first is not included in the cost, a sequential orbit altitude reduction from
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highest to lowest and then into disposal is the most logical output. However, other combinations are
proposed by the algorithm. This is an effect of the randomness on which heuristic algorithms rely.
While altitude-reduction behavior is obvious in this simple case, it might not be in more complex
cases, and so a refinement of these results is necessary. The second step is then applied to some
of these transfers to obtain the refined costs in terms of fuel mass and overall mission time. The
comparison of the output from step 1 and step 2 for a set of results is shown in Table 3. The trajectory
identification numbers are according to their order of appearance in the Pareto Front plot, from left
to right. It is observed how for all of these transfers the fuel consumption is reduced drastically,
in particular for the cases in which fuel consumption was higher. In fact, some solutions which a
priori were average in terms of cost, became better results after this second step. This is the case,
for instance, of Trajectory 5, which became the cheapest solution. This trajectory sequence is the
previously mentioned {5-4-3-2-1}, which would explain the fact of being the cheapest. On the other
hand, while there is a trend of decreasing the overall mission time, it is similar to the ones provided

Table 1. Properties of the baseline delivery spacecraft

Mission Parameters Parameter Description Value

Vehicle

M0 Vehicle dry mass without propulsion system 500 (kg)
Mprop Propulsion system mass 165 (kg)
Isp Specific Impulse 330 (s)
Tmax Maximum thrust 1 (kN)
g0 Gravitational acceleration at Earth’s surface 9.81 (m/s2)

Mission requirements

tserv Minimum time in-orbit to deliver a satellite 300 (s)
hmin Minimum orbital altitude allowed 120 (km)
tmax Maximum mission time 48 (hours)

mf,max Maximum fuel mass 1000 (kg)
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Figure 6. Output of the First Step for the Verification Case
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Table 2. Verification case orbital parameters and payloads

Orbit ID h (km) e i (rad) Ω rad ω (rad) Payload mass (kg)

1 400 0 1.71 0 0 10
2 450 0 1.71 0 0 10
3 500 0 1.71 0 0 10
4 550 0 1.71 0 0 10
5 600 0 1.71 0 0 10
D 300 0 1.71 0 0 -

Table 3. Comparison of steps in verification

First Step Second Step
Time (hours) Fuel mass (kg) Time (hours) Fuel mass (kg)

1 3.69 512.98 3.30 166.95
3 4.09 377.66 3.90 183.59
5 4.99 294.43 4.30 89.11
8 6.08 218.70 4.57 116.38

10 6.51 185.77 5.31 110.95
11 8.31 155.74 6.85 111.23

by the first step. In addition, the relative order in mission time among all the sequences is kept the
similar. The second optimization refinement shows itself as an interesting second step, as it seems
to provide better trajectories and in fact might even change the order of preference among the ones
proposed by the first step. This does not invalidate the previous results of step 1, but rather refines
the found best sequences, as the primary objective of the first step is to find suitable feasible orders
of visitation to then be further studied.

It is interesting to check now the trajectory of one of these optimized sequences to study the
performance of the optimizer. Trajectory 5 is picked, given the high decrease in fuel cost. The
transfers are shown in Figure 7. Looking at these plots, it is obvious the overall resemblance of the
transfers to Hohmann transfers, as one would expect, with the exception of the disposal maneuver
for which it waits a full revolution before performing the final burn. This behavior verifies that in
the simplest configuration, a set of chained Hohmann transfers is reached by the optimizer, which
behaves exactly as the minimal fuel consumption transfer theory states.24 Now that the optimization
tool has been verified, it can be used to solve a more complex multi-satellite delivery mission.

Multi-satellite Delivery Mission

A more complicated case is considered now, involving different payload masses and orbital incli-
nations. In this case, as before, 5 satellites are to be delivered before the vehicle disposes of itself.

Table 4. Multi-satellite Delivery Mission orbital parameters and payloads

Orbit ID h (km) e i (rad) Ω rad ω (rad) Payload mass (kg)

1 624.5 0.0014 1.7087 0 0 10
2 720.0 0 1.7153 0 0 10
3 638.5 0.0061 1.7061 0 0 12
4 716 8.5e-4 1.7172 0 0 10
5 505 0 1.7006 0 0 40
D 300 0 1.71 0 0 -
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Figure 7. Transfer maneuvers for Trajectory 5 of the Verification Case

The Kepler elements and payload masses are summarized in Table 2, where the same disposal or-
bit is considered. The selected target orbits were randomly picked from a database generated for
university-owned launched and planned satellites.26 Among these, a subset of near-polar orbits was
selected as not to include unfeasible inclination changes into the problem.

As before, the output of the first step is shown in Figure 8. Among the different possible combi-
nations, there is a preferred {2-4-3-1-5} order in which the vehicle balances decreasing in altitude
with the inclination change. This order appears up to 5 times in the set of non-dominated solutions.
Another cheap alternative is to deliver first the heaviest satellite, in an effort to reduce the necessary
fuel to achieve the same ∆V in the following transfers. However, the cheapest solution proposes
a sequence for which the altitude is the main driving factor, showing a {4-2-3-1-5} order. As it is
observed, when more complex cases are introduced, the variety of options depends on many factors
which are not easy to take into account a priori. Thus the second step is done to refine the decisions
of the bi-level algorithm. The newly computed costs are shown in Table 5. The trajectory identifica-
tion numbers are according to their order of appearance in the Pareto Front plot, from left to right.
In this case, while the fuel consumption can be greatly reduced, the changes within the order of the
non-dominated points is not that drastic, and is done in the intermediate points. On the other hand,
the cheapest and longest mission keeps its position, as does the most expensive and fastest one. The
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Figure 8. Output of the First Step for the Multi-satellite Delivery Mission

Table 5. Comparison of steps in verification

First Step Second Step
Time (hours) Fuel mass (kg) Time (hours) Fuel mass (kg)

1 4.19 585.36 3.32 341.72
3 4.56 459.61 3.99 201.34
8 6.39 337.98 5.32 211.32

10 6.83 310.75 5.46 204.27
12 7.58 305.16 6.15 229.57
14 9.15 283.85 7.35 184.06

most interesting case is for Trajectory 3, which becomes the second cheapest after being the second
most expensive one. Similarly to the verification case, the time distribution remains similar. Once
again, it is proven that the second step is necessary to further refine the solution and filter possible
solutions that otherwise might have been overlooked.

Finally, the cheapest solution’s trajectory (Trajectory 14) is now checked to observe the proposed
maneuvers. The transfers for this trajectory are shown in Figure 9. It is observed how, in general,
the tool suggests performing the maneuvers near the equatorial plane, which is where the orbits
intersect. Such behavior corresponds to the usual theory for inclination change maneuvers.24 How-
ever, longer times are expected in between the transfer arcs, a behavior attributed to the effect of the
first guess of the first step, as the algorithm tends to look around that solution for the optimal one.

With this multi-delivery case scenario, it has been shown the logic behind the decisions performed
by the 2-level first step in order to achieve the best sequence order, but also the necessity of the
second step to refine those solutions and obtain the true optimal trajectories.
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Figure 9. Transfer maneuvers for Trajectory 14 of the Multi-Delivery Mission

CONCLUSIONS

The study proposes a 2-step optimization tool which allows to solve the multi-payload multi-
orbit injection problem minimizing both the fuel consumed and the total time of mission. The tool
is composed of two steps, such that first it establishes the set of optimal delivery sequences and
then it refines the optimal trajectory using more realistic physics modeling. It is constructed of
two differentiated phases: 1) a bi-level heuristic optimizer that solves the MINLP providing the
sequences and approximated costs; and 2) a NOC algorithm which uses these as a first guess to
obtain the full controlled optimal trajectory associated to a sequence.

The first step is composed of a nested structure of two heuristic algorithms, so that the problem
is divided into its integer and continuous parts. The outer loop, a multi-objective P-ACO algorithm,
solves for the sequence order. The algorithm uses as cost function the output of the inner loop.
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This one is composed by a MOPSO algorithm which optimizes the impulsive Lambert maneuvers
needed to achieve the orbital sequence given by the outer loop. The algorithm does not require
of preliminary knowledge of the orbit sequences, as it can dynamically generate a cost function.
The output of this step is a set of non-dominated tours with their corresponding set of preliminary
optimized maneuvers. The second step uses this information to convert it into full controlled opti-
mal trajectories by means of a NOC strategy. The implemented algorithm is a direct multi-phase
multiple shooting transcription which allows easy implementation of the environmental and vehi-
cle dynamics, allowing for flexibility in the range of possible studies. This formulation allows to
convert the NOC into a series of NLP problems. The transfers are considered as different phases,
such that parallel computing can be performed and facilitating the discrete mass changes. At the
same time, each transfer is considered to have 4 phases, enabling a simple implementation of the
different dynamic and control regimes. The output of this second step is the full optimal trajectory
and associated control input necessary to reach all desired orbits.

The tool was first verified using a simple case of payload delivery in which only altitude changes
were necessary. It was shown that the second step could drastically change the cost of the differ-
ent sequences, highlighting some of them above the others. In fact, it could improve the internal
optimization done by the MOPSO algorithm after its first guess. In addition, the trajectory shown
by the cheapest solutions was similar to a set of Hohmann transfers, which is to be expected from
changes in altitude between co-planar circular orbits, thus verifying the tool. Then, it was used to
solve a more complex multi-delivery mission scenario, with changes in orbit shape and inclination.
Once again the second step proved itself useful both to rearrange different sequences among the set
of non-dominated solutions, and to refine the costs of the first guesses. The cheapest trajectory was
also studied in terms of trajectory, showing that most burn arcs were done around the equator, where
the orbits cross. Overall, it was shown that performing the second step is crucial to achieve more
realistic and refined optimal solutions.

The result of this paper is a flexible optimization tool which can provide full, accurate, optimal
trajectories and the associated control law to the multi-orbit delivery mission scenario. It requires no
previous knowledge apart from the orbital parameters of all payloads to be injected, and can easily
accommodate environment and vehicle dynamics for their analysis. Ultimately, the tool shows itself
to be of usefulness for the mission analysis and vehicle design, as well as for the GNC design, for
the multi-rendezvous type of mission. In fact, it is easily implementable in an iterative design
process of the upper stage, contributing to the multidisciplinary design approach. In addition, its
flexibility allows the tool’s usage in other multi-orbit targeting missions such as ADR and OOS, thus
contributing to the development tools for the design of these new and increasingly needed types of
missions.
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