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Abstract

A major challenge in the computational fluid dynamics modeling of the heart

function is the simulation of isovolumetric phases when the hemodynamics

problem is driven by a prescribed boundary displacement. During such phases,

both atrioventricular and semilunar valves are closed: consequently, the ven-

tricular pressure may not be uniquely defined, and spurious oscillations may

arise in numerical simulations. These oscillations can strongly affect valve

dynamics models driven by the blood flow, making unlikely to recovering

physiological dynamics. Hence, prescribed opening and closing times are usu-

ally employed, or the isovolumetric phases are neglected altogether. In this

article, we propose a suitable modification of the Resistive Immersed Implicit

Surface (RIIS) method (Fedele et al., Biomech Model Mechanobiol 2017,

16, 1779–1803) by introducing a reaction term to correctly capture the pressure

transients during isovolumetric phases. The method, that we call Augmented

RIIS (ARIIS) method, extends the previously proposed ARIS method (This

et al., Int J Numer Methods Biomed Eng 2020, 36, e3223) to the case of a mesh

which is not body-fitted to the valves. We test the proposed method on two dif-

ferent benchmark problems, including a new simplified problem that retains

all the characteristics of a heart cycle. We apply the ARIIS method to a fluid

dynamics simulation of a realistic left heart geometry, and we show that ARIIS

allows to correctly simulate isovolumetric phases, differently from standard

RIIS method. Finally, we demonstrate that by the new method the cardiac val-

ves can open and close without prescribing any opening/closing times.
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1 | INTRODUCTION

During the heart cycle, there are two phases in which all cardiac valves are closed and the action of the ventricular dis-
placement affects blood pressure without a net flow. In the left ventricle (the same applies for the right part of the
heart), during the isovolumetric contraction, the intraventricular pressure raises up to the point in which the aortic valve
opens for the systolic ejection, while in the isovolumetric relaxation the ventricular pressure decreases until reaching the
atrial one, thus leading to the opening of the mitral valve.1,2 Cardiac valve dynamics is mainly driven by transvalvular
pressure drop.3 Hence, an accurate modeling of the isovolumetric phases in which the intraventricular pressure
undergoes rapid changes is an essential prerequisite to capture valve opening and closing, and to properly model their
effect on the flow.

The behavior of blood pressure in the heart chambers is determined by the contraction and relaxation of the myo-
cardium. With this in mind, Fluid–Structure Interaction (FSI) models coupling the blood flow with the heart mechanics
have been proposed in the literature,4–9 or even more realistic electrophysiology-mechanics-hemodynamics models as
in, for example, References 10–14. However, these coupled models typically entail a high computational cost, and they
require a challenging calibration of a huge number of physical parameters, especially in pathological conditions.
Because of this, uncoupled (or one-way coupled) approaches have been proposed, to address the sole Computational
Fluid Dynamics (CFD) component of the system, with the ventricular displacement prescribed as data coming from
analytical functions,15–20 clinical measurements,21–27 or from electromechanical simulations.28–33 Such models mainly
differ in the treatment of the valve geometry and dynamics. Mesh-conforming approaches are based on a classical Arbi-
trary Lagrangian–Eulerian formulation of the flow equations,34–38 and they include the Resistive Immersed Surface
(RIS) method.39,40 These methods sharply track the valve surfaces, but they entail possible issues regarding large mesh
deformations and topological changes at valve closure.41 To avoid the need of a complete remeshing of the computa-
tional domain, while maintaining a sharp description of the valve surface, different XFEM/cutFEM methods have been
proposed,42–48 but their use to simulate cardiac flows at the organ scale has been limited by their relatively high compu-
tational cost. On the other hand, fully Eulerian approaches, such as the immersed boundary method,49–57 the fictitious
domain method58–64 or the Resistive Immersed Implicit Surface (RIIS) method,21,65 hinge upon an implicit representa-
tion of the leaflets and do not require mesh conformity between the fluid domain and the valves. This allows to track
the fluid-valve interface, possibly moving in time, without requiring the fluid mesh to follow the valve. For further
details and comparisons among different valve models, we refer the reader to References 66–68.

In most of the abovementioned simulations, however, the isovolumetric phases of the heartbeat are neglected due
to the non-unique definition of pressure in the ventricle when all valves are closed.29,30,69–71 This shortcoming is related
to the absence of a stress condition on the fluid domain, that would otherwise ensure a correct description of the pres-
sure during isovolumetric phases. This is observed for instance in References 5,8–10,13, where fully-coupled FSI models
are used. Modeling accurately these phases is crucial to simulate the entire cardiac cycle, but also for opening and clos-
ing cardiac valves in a way that is driven by the blood flow. Indeed, if the pressure is not correctly simulated in these
phases, but is instead subject to large and spurious oscillations, it cannot be used as a driver to open and close cardiac
valves.

Some studies have circumvented this issue by introducing a slight compressibility of blood—see, for example,
References 9,72,73. However, this assumption may affect the simulation results also in the ejection and filling phases,
and the assumption of blood incompressibility is quite established in the cardiovascular modeling community.71,74–76 A
way to overcome pressure non-determination, while preserving incompressibility, is provided by the Augmented Resis-
tive Immersed Surface (ARIS) proposed in Reference 29: when both the mitral and the aortic valves are closed, the RIS
method is augmented with a source term concentrated on the valves, to impose a prescribed value for the pressure.

In this work, we introduce an Augmented Resistive Immersed Implicit Surface (ARIIS) method that extends the ARIS
capability of treating isovolumetric phases to the framework of the RIIS method, thus supporting valves whose mesh is
independent of the background fluid mesh and that can move independently of it (cf. Table 1). To quantitatively assess

TABLE 1 Features characterizing the RIS, RIIS, ARIS, and ARIIS methods.

Conforming mesh Non-conforming mesh

No isovolumetric phases RIS40 RIIS65

Isovolumetric phases ARIS29 ARIIS
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the results of the method, we propose a simulation setting in a simplified geometry that retains all the characteristics of
the heart cycle and may be employed as a benchmark for cardiac hemodynamic solvers. Moreover, we discuss the appli-
cation of our method to a realistic geometry of the left heart, with a prescribed displacement coming from electrome-
chanical simulations.

The structure of the article is the following. In Section 2, we recall the RIIS method and derive the ARIIS method to
prescribe the intraventricular pressure. Then, in Section 3, we assess our new method in different scenarios: first, in
Section 3.1, we analyze the idealized case discussed in Reference 29; then, in Section 3.2, we propose a simplified
benchmark setting entailing ventricular contraction; a cardiac case in a realistic geometry is considered in Section 3.3.
Finally, in Section 3.4, we show that the novel method allows to open and close the valves according to the blood flow
conditions, without prescribing opening and closing times a priori.

2 | MATHEMATICAL MODEL

In this section, we describe the cardiac hemodynamic model and we introduce a new augmented version of the RIIS
method. Specifically, Section 2.1 is devoted to the Navier–Stokes equations in ALE framework with RIIS modeling of
valves, and Section 2.2 to the derivation of the ARIIS method.

2.1 | The RIIS method for Navier–Stokes equations in ALE form

In heart chambers, blood can be considered as an incompressible, viscous, and Newtonian fluid.1 Let u :Ω� 0,Tð Þ!ℝ3

and p :Ω� 0,Tð Þ!ℝ be the fluid velocity and pressure, respectively, where T is the final computational time, and Ω
the domain in current configuration at time t, with t � 0,Tð Þ. The domain at any time t is defined in terms of a displace-
ment field d :Ω0� 0,Tð Þ!ℝ3 as follows:

Ω¼ x�ℝ3 : x¼ x0þd x0, tð Þ,x0 �Ω0
� �

:

Notice that Ω is a time-dependent domain, but we omit the subscript t to keep the notation simpler, and Ω0 is the
domain in its reference configuration. Furthermore, we denote by uALE :Ω� 0,Tð Þ!ℝ3 the ALE velocity77,78 and we
compute it by deriving d with respect to time. The domain displacement is the solution of the following harmonic
extension problem:

�r� ψrdð Þ¼ 0 inΩ0� 0,Tð Þ, að Þ
d¼d∂Ω x, tð Þ on ∂Ω0� 0,Tð Þ, bð Þ

�
ð1Þ

where d∂Ω : ∂Ω0� 0,Tð Þ!ℝ3 is the boundary displacement (which is prescribed), and ψ x, tð Þ :Ω0� 0,Tð Þ!ℝ is a spa-
tially varying stiffening factor used to avoid mesh element distortion. The definition of ψ is given in Section 3
depending on the test cases considered.

To model the cardiac valves with the RIIS method, we consider a time-dependent surface Γk tð Þ immersed in Ω, with
k� I v (the set of immersed surfaces). We impose kinematic coupling between the surface and the fluid by penalizing
the mismatch between the relative fluid velocity u�uALE and the velocity of the immersed surface uΓk , that is, by
adding to the Navier–Stokes momentum equation the term

Rk

εk
δk φkð Þ u�uALE�uΓkð Þ: ð2Þ

For each surface, φk :Ω� 0,Tð Þ!ℝ denotes its signed distance function, such that, for all k� I v, jφk x, tð Þ j¼
dist x,Γk tð Þð Þ and Γk tð Þ¼ x�Ω :φk x, tð Þ¼ 0f g. Γk is characterized by a resistance coefficient Rk and a parameter εk rep-
resenting the half-thickness of the valve. The penalization is imposed in a narrow layer around Γk, represented by the
smoothed Dirac delta function δk, defined as

ZINGARO ET AL. 3 of 31
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δk φkð Þ¼
1þ cos πφk=εkð Þ

2εk
if jφk j ≤ εk,

0 if jφk j > εk,

8<:
with x�Ω and for all k� I v. If the ratio Rk=εk is sufficiently large, the term (2) weakly imposes the condition u�
uALE ¼uΓk over Γk.

The immersed surfaces Γk can move over time. Let us denote by Γ0
k a fixed reference configuration. The time-

dependent displacement of the immersed surface is obtained by summing the ALE displacement d to a known displace-
ment field dk :Γ0

k� 0,Tð Þ!ℝ3 that describes the surface's change of configuration (e.g., from the closed to the open
state for cardiac valves). We assume that dk x, tð Þ¼ ck tð Þedk xð Þ, and assume that edk is known, while the opening coeffi-
cient ck tð Þ can be either prescribed or computed according to a suitable model79 or flow-based rule.30 The time-
dependent configuration of the immersed surface is given by

Γk tð Þ¼ x¼ x0þd x0ð Þþdk x0, tð Þ, x0 �Γ0
k

� �
: ð3Þ

In some situations, it may be useful to have the surface appear and disappear to simulate the closing and opening of
a valve. In that setting, the coefficient ck varies instantaneously between 0 (closed configuration) and 1 (open configura-
tion), and the resistive term is turned off when ck ¼ 1. This is the strategy followed in the tests of Sections 3.1 and 3.2.
For additional details on the RIIS method, we refer the reader to References 21,65.

The incompressible Navier–Stokes equations in the ALE framework with RIIS modeling of cardiac valves read
as follows21:

ρ
∂u
∂t

þ u�uALEð Þ �rð Þu
� �

�r� μ ruþrTuð Þð Þþrpþ P
k � I v

Rk

εk
δk φkð Þ u�uALE�uΓkð Þ¼ 0 inΩ� 0,Tð Þ að Þ

r �u¼ 0 inΩ� 0,Tð Þ bð Þ
u¼ g on ΓD� 0,Tð Þ cð Þ
μ ruþrTuð Þn�pn¼h on ΓN � 0,Tð Þ dð Þ
u¼u0 in Ω� 0f g eð Þ,

8>>>>>>>><>>>>>>>>:
ð4Þ

where, ΓD and ΓN are Dirichlet and Neumann boundaries, respectively, and g, h and u0 are suitable initial and bound-
ary data. We denote the different terms appearing in (4a) as follows:

• inertial term: I uð Þ¼ ρ ∂u
∂t þ u�uALEð Þ �=ð Þu� �

;
• viscous term: D uð Þ¼= � μ =uþ=Tu

� �� �
;

• resistive term: ℛ uð Þ¼Pk � I v

Rk
εk
δk φkð Þ u�uALE�uΓkð Þ.

Let us introduce the following function spaces:

V ¼ v � H1 Ωð Þ	 
3
: v¼ g on ΓD

n o
,

V0 ¼ v � H1 Ωð Þ	 
3
: v¼ 0 on ΓD

n o
,

Q¼ L2 Ωð Þ:

Then, the weak formulation associated to the problem, derived with standard techniques,80 reads: find u tð Þ�V and
p�Q such that u 0ð Þ¼u0 and, for all v �V0 and q�Q, there holds

4 of 31 ZINGARO ET AL.
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ρ
∂u
∂t

þ u�uALEð Þ �=ð Þu
� �

,v
� �

þ μ =uþ=Tu
� �

,=v
� �� p,= �vð Þ

þ
X
k � I v

Rk

εk
δk φkð Þ u�uALE�uΓkð Þ,v

� �
þ q,= �uð Þ¼ h,vð ÞΓN

,

where � , �ð Þ denotes the L2 Ωð Þ inner product, and � , �ð ÞΓN
denotes the L2 ΓNð Þ inner product.

2.1.1 | Numerical discretization

We rely on the finite element method for the spatial discretization of the model equations (1) and (4). The domain Ω is
discretized using a tetrahedral mesh, and the immersed surfaces Γk are discretized using a triangular mesh. We use
piecewise linear finite elements for all variables (d, u and p). Navier–Stokes equations are endowed with either SUPG-
PSPG81 or VMS-LES16,82,83 stabilization, to allow using equal order elements for velocity and pressure (see Section 3).

We discretize in time using finite differences of the first order. Let Δt be the temporal discretization step, tn ¼nΔt
be the discrete times, and let us denote with the superscript n the approximation of time-dependent quantities at time
tn (e.g., un ≈u tnð Þ). The domain displacement, surface displacement and fluid equations are solved in a segregated way,
as described by Algorithm 1. The non-linearity induced by the advection term in (4a) is treated in a semi-implicit
way.80

We remark that, at any discrete time tn, the immersed surface Γn
k is computed by suitably displacing the nodes of

the associated mesh, and the signed distance function φn
k is subsequently recomputed. This is different from the strategy

adopted in References 21,65, where the signed distance function for a given valve configuration is obtained by suitably
interpolating the distance functions associated to the open and closed valve configurations. Moreover, we point out that
the surfaces can move independently of the background fluid mesh, since the two discretizations are not required to be
conforming. However, for the smoothed Dirac delta function to be represented correctly, and thus for the method to be
effective in imposing the kinematic condition, a sufficient number of fluid mesh elements should lie within distance ϵ
of the immersed surface. As empirically shown in Reference 65, a sufficient condition for this to hold is that ε≥ 1:5h,
where h is the mesh size in the vicinity of the surface.

2.2 | The ARIIS method

In this section, we derive the ARIIS method starting from the equations of the fluid model. To keep the notation light,
we drop henceforth the explicit dependence on time of the domain and its subsets.

Following the derivation of the original ARIS method,29 the left heart can be schematically outlined as a three-
chambers domain as sketched in Figure 1: the Left Atrium (LA) ΩLA, the Left Ventricle (LV) ΩLV and the Ascending

ALGORITHM 1 Solution scheme for the Navier–Stokes equations in ALE formulation with the RIIS
method for immersed surfaces

Given the solution up to time tn, to compute the solution at time tnþ1:

1: solve discretization of (1) to compute the domain displacement dnþ1 and the domain Ωnþ1

2: for each immersed surface k� Iv do

3: compute the opening coefficient cnþ1
k

4: update the position of the immersed surface Γnþ1
k according to (3) and compute the signed distance

function φnþ1
k

5: end for

6: solve discretized Navier–Stokes equations (4) to compute unþ1 and pnþ1

ZINGARO ET AL. 5 of 31
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Aorta (AA) ΩAA. These chambers are separated by two surfaces representing the Mitral Valve (MV) ΓMV and the Aortic
Valve (AV) ΓAV, thus I v ¼ MV,AVf g.

We denote by Ω the whole domain, such that Ω¼ΩLA[ΩLV[ΩAA. The domain boundary ∂Ω is partitioned into
the inlet section Σin, the outlet section Σout and the wall Σwall, as shown in Figure 1. We introduce the sets

Ωk ¼
�
x�Ω : dist x,Γkð Þ¼ min

y � Γk

k x�y k < εk

�
, k � MVf ,AVg, ð5Þ

where εk is the half thickness of Ωk (characterizing the RIIS method and already introduced in Section 2.1), banded in
Figure 1, for k� MV,AVf g. These regions have nontrivial intersections with the chambers defined above.

With reference to Figure 2, we introduce two geometric assumptions that will be used in the derivation of the aug-
mented method of Section 2.2.

Assumption 1. (Flat valve surfaces) For k� MV,AVf g, the normal vector nk to the valve surface Γk

(pointing outwards w.r.t. ΩLV) is constant over Γk.

Remark 1. If Assumption 1 is satisfied, we can define a constant vector field extending the definition of the
valve normal vector nk to the whole valve region Ωk. We denote such field with the same sym-
bol nk :Ωk !ℝ3,k � MV,AVf g.

FIGURE 1 Sketch of the three-chambers domain Ω with its subsets and boundaries. In yellow ΩLV, in white ΩLA,ΩAA, in striped

pattern (partially overlapping ΩLV,ΩLA,ΩAA) the valve regions ΩMV,ΩAV. The latter are defined by the immersed surfaces ΓMV and ΓAV (in

red) and the half-thicknesses εk , with k � MV,AVf g.

FIGURE 2 Sketch of the immersed surface Γk (red) with the corresponding valve region Ωk (striped pattern) and its boundaries.

6 of 31 ZINGARO ET AL.
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Assumption 2. (Valves orthogonal to the wall) By denoting with n the normal vector of ∂Ω, nk �n¼ 0 on
Σwall
k , for k � MV,AVf g, where Σwall

k ¼Σwall\ ∂Ωk.

Remark 2. By introducing ∂Ω�
k ¼ ∂Ωk \ΩLV and ∂Ωþ

k ¼ ∂Ωk ∖ ∂Ω�
k [Σwall

k

� �
(cfr. Figure 2) we observe

that j ∂Ω�
k j¼j ∂Ωþ

k j¼jΓk j ,k � MV,AVf g.

Moreover, we make the following assumptions:

Assumption 3. (Constant pressure in the compartments) Pressure is constant in space within ΩLA, ΩLV

and ΩAA. We will denote the respective constant values with pLA tð Þ, pLV tð Þ and pAA tð Þ.

Assumption 4. (Negligible inertia and viscosity within valves) For k� MV,AVf g, inertial and viscous
terms in (4a) are negligible in Ωk: I uð Þ≈ 0 and D uð Þ≈ 0.

When MV and AV are closed, the intraventricular pressure is prone to spurious oscillations, due to the ventricle
being fully enclosed by boundaries on which a Dirichlet-type condition on the velocity is imposed (either strongly or
through the RIIS penalty term). Thus, as done in Reference 29, we augment Equation (4) with a reaction term to
impose pLV tð Þ¼ p� tð Þ, where p� : 0,Tð Þ!ℝ is a prescribed value of the ventricular pressure (constant in space by
Assumption 3). As for the ARIS method,29 the ARIIS method assumes that the desired ventricular pressure p� tð Þ is
known a priori. This information can be derived, for instance, from patient-specific experimental data. Alternatively, it
can be provided by another mathematical model, such as an electromechanics simulation, as done in Reference 29 and
in the present work.

We assume the perturbation term to be in the form29:

X
k � MV,AVf g

Ckδknk, ð6Þ

with Ck �ℝ, for k� MV,AVf g. This choice of the reaction term (6) is such that the augmented formulation acts on the
valves only and does not perturb the momentum equation outside Ωk.

The perturbation term represents the force that the blood exerts on the closed valves during isovolumetric phases.
We derive it to enforce that the ventricular pressure matches the reference one p�. Thus, following,29 we derive an esti-
mation of the ventricular pressure pLV tð Þ when both valves are closed. The estimate will be used to determine the cor-
rective term Ck in (6).

From (4a) and Assumption 4, we deduce29

rpþℛ uð Þ¼ 0 in Ωk ,

for all k � MV,AVf g. Multiplying by nk
29 and integrating over Ωk, we getZ

Ωk

=pþℛ uð Þð Þ �nk ¼ 0:

By Assumption 1, we can take nk out of the integral and integrate by parts the pressure term yielding

Z
∂Ωk

pnþ
Z
Ωk

ℛ uð Þ
� �

�nk ¼ 0,

Z
∂Ωk

pn �nkþ
Z
Ωk

ℛ uð Þ �nk ¼ 0:

Using Assumptions 1 and 2, we get

ZINGARO ET AL. 7 of 31
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pLV�pext,k
� � jΓk j �

Z
Ωk

ℛ uð Þ �nk ¼ 0, ð7Þ

where, pext,k ¼ pLA for k¼MV and pext,k ¼ pAA for k¼AV. Finally, summing (7) for both valves,29 we obtain:

pLV�pLAð Þ jΓMV j þ pLV�pAAð Þ jΓAV j �
X

k � MV,AVf g

Z
Ωk

ℛ uð Þ �nk ¼ 0, ð8Þ

from which we derive

pLV ¼
1

jΓMV j þ jΓAV j jΓMVjpLAþjΓAVjpAAþ
X

k � MV,AVf g

Z
Ωk

ℛ uð Þ �nk

0@ 1A: ð9Þ

Repeating these calculations including the perturbation term (6), (8) rewrites as

X
k � MV,AVf g

pLV�pext,k
� �jΓkj�

Z
Ωk

ℛ uð Þ �nk�Ck
Z
Ωk

δk

� �
¼ 0,

so that, if the perturbation satisfies

X
k � MV,AVf g

Z
Ωk

Ckδk ¼
X

k � MV,AVf g
p� �pext,k
� �jΓkj�

Z
Ωk

ℛ uð Þ �nk

� �
, ð10Þ

then our estimate for pLV becomes pLV ¼ p�.
Equation (10) admits infinitely many solutions for the perturbation terms CMV and CAV. In analogy with29, we

choose a solution such that the correction due to spuriouos flow through the immersed surfaces is distributed equally
between MV and AV. Observing that

R
Ωk
δk ¼jΓk j, the chosen corrective term reads:

Ck u,pð Þ¼ p� �pext,k�
1

jΓMV j þ jΓAV j
X

k � MV,AVf g

Z
Ωk

ℛ uð Þ �nk: ð11Þ

Thus, the ARIIS method consists in solving the following problem:

ρ
∂u
∂t

þ u�uALEðð Þ �=Þu
� �

�= � μ =uþ=Tu
� �� �þ=p

þ P
k � MV,AVf g

Rk

εk
δk φkð Þ u�uALE�uΓkð Þþ χiso tð ÞCk u, pð Þδknk

� �
¼ 0 in Ω� 0,Tð Þ, að Þ

= �u¼ 0 in Ω� 0,Tð Þ, bð Þ

8>>>>><>>>>>:
ð12Þ

endowed with suitable initial and boundary conditions. χiso tð Þ is a characteristic function equal to 1 during the iso-
volumetric phases, 0 otherwise: we activate the ARIIS correction term only when both valves are simultaneously closed.
χiso tð Þ can be prescribed a priori or be determined by pressure jump conditions (to determine the opening and closing
of valves).29

Remark 3. For the derivation of the ARIIS method, we follow a methodology analogous to the one intro-
duced for the derivation of the original ARIS method.29 In particular, our derivation differs from the ARIS29

one for the following aspects.

8 of 31 ZINGARO ET AL.
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• The ARIS method29 is derived starting from an interface stress jump condition on the immersed surface Γk. This is
not applicable in the case of RIIS65 (and ARIIS) method. Indeed, the valves are here distributed inside bulk layers
around the immersed surfaces. Thus, we carry out all the integrations in volumes (Ωk) instead of surfaces (Γk).

• We do not need the incompressibility constraint in the derivation.
• The geometrical assumptions 1 and 2 are not needed in the ARIS method29 since the integrals are defined on the

immersed surface.

Of the assumptions used in the derivation of ARIIS, Assumption 4 holds for R large enough, that is consistent
with R being the penalty coefficient for the kinematic condition on the valve, whereas the other three are instrumental
in simplifying the derivation of the augmenting term (6). In particular, the violation of Assumptions 1 and 2 would
require this corrective term to account for detailed geometric properties of the valve leaflet (e.g., its curvature distribu-
tion). Assumption 3 instead could be slightly relaxed without having to modify the derivation, by assuming that pres-
sure is homogeneous only on each ∂Ωþ

k and ∂Ω�
k , separately (and not within the chambers). This would require the

evaluation of pressure on surfaces not conforming to the mesh. Nonetheless, the numerical tests of Sections 3.2 and 3.3
will show that pressure is indeed substantially constant within each chamber (during the isovolumetric phases), and
that the proposed correction term can be used successfully also in cases in which some of the assumptions are not
exactly verified.

2.2.1 | Numerical approximation

Spatial discretization follows that used in the RIIS method (see Section 2.1.1). The temporal discretization scheme is
modified to compute the ARIIS correction term. At every time tnþ1, the correction term is computed in an explicit way,
that is, using the valve configuration and fluid velocity from the previous time step, as shown in Algorithm 2.

3 | NUMERICAL RESULTS

In this section, we present and discuss the results on the ARIIS method by carrying out numerical simulations of three
different problems. All three tests feature valves that open and close. In Section 3.1, we check the validity of our method
by considering the simple problem introduced in Reference 29 (Test A). In Section 3.2, we propose a new benchmark
problem consisting of the flow in a compliant pipe with ventricle-like shortening (Test B). Finally, in Section 3.3, we
apply our method to a cardiac case, that is, the flow in a realistic left heart geometry (Test C).

The physical parameters for blood are density ρ¼ 1:06�103kg=m3 and dynamic viscosity μ¼ 3:5�10�3kg= msð Þ. In
all the numerical experiments considered, we apply a null velocity initial condition. Furthermore, similarly to

ALGORITHM 2 Solution scheme for the Navier–Stokes equations in ALE formulation with the
ARIIS method

Given the solution up to time tn, to compute the solution at time tnþ1:

1: solve discretization of (1) to compute the domain displacement dnþ1 and the domain Ωnþ1

2: for k� Iv do

3: if χisoðtnþ1Þ¼1 then

4: compute Cnþ1
k ¼Ckðun,pnÞ

5: end if

6: compute cnþ1
k

7: update Γnþ1
k

8: end for

9: solve discretized Navier–Stokes equations (4) to compute unþ1 and pnþ1

ZINGARO ET AL. 9 of 31
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References 21,30, we use a quasi-static approach by choosing uΓk ¼ 0, that is, we neglect the velocity with which valves
move when changing configuration.

We discretize (12) in space with piecewise linear Finite Elements (FE) for velocity and pressure (P1�P1) and in
time with the backward Euler method. We employ a semi-implicit treatment of the non-linear term. In Sections 3.1 and
3.2, we use a SUPG-PSPG stabilization.81 Differently, in Section 3.3, we use the VMS-LES method acting as both a stabi-
lization method and a turbulence model to account for the transition-to-turbulence flow regime typically occurring in
cardiac flows.16,82,83

The lifting problem (1) is discretized with linear FEs. Moreover, in the first two test cases, we set ψ ¼ 1 for all
x�Ω0, so Equation (1) becomes a simple Laplacian problem. Differently, in Test C, to avoid mesh elements distortion,
we use the boundary-based stiffening approach proposed in Reference 84. In this method, we define ψ as84

ψ xð Þ¼ max d xð Þ,αð Þ�β in Ω0,

where d is the distance from the boundary, α and β are two parameters that we set equal to α¼ 0 and β¼ 1.
We carry out our numerical simulations in lifex,85,86* a high-performance C++ FE library developed within the

iHEART project,** mainly focused on cardiac simulations and based on the deal.II finite element core.87–89 The
source code of the lifex module for hemodynamics simulations, referred to as lifex-cfd, has been recently
released.90,91

3.1 | Test A: a simple benchmark problem

In this section, following,29 we consider a benchmark problem that was originally introduced to test the ARIS method
in a simplified setting.

The domain is a cylinder of radius Rc ¼ 0:01 m and length Lc ¼ 0:1 m. It is divided into three cylindrical compart-
ments, representing, in an idealized context, the LA, LV and AA, of lengths LLA ¼ 0:02 m, LLV ¼ 0:06 m and
LAA ¼ 0:02 m, respectively. Two planar surfaces represent the MV and AV. We solve in the time interval 0,T½ �,
with T¼ 0:2 s.

The domain is discretized with a tetrahedral mesh of 75,933 elements, for a total of 56,684 degrees of freedom. The
mesh is finer near to the immersed surfaces, to better capture their presence, with a minimum element diameter
hmin ¼ 1 mm and a maximum diameter hmax ¼ 4:6 mm (see Figure 3). Simulations ran in parallel using 4 cores of a
local workstation, each with an Intel Core i5-9600K@3.70GHz processor.

Following Reference 29, we impose a homogeneous and constant pressure of pin ¼ 0 mmHg at the inlet section, and
a homogeneous and constant pressure of pout ¼ 75 mm Hg at the outlet section. The displacement d∂Ω of the lateral
boundary is prescribed analytically and mimics the contraction-relaxation cycle of a human ventricle. For a given point
x¼ x1,x2,x3ð ÞT and time t, it is defined as

FIGURE 3 Test A. Domain for the cylinder test cases, with highlighted immersed and boundary surfaces (A); tetrahedral mesh for the

cylinder test cases.

10 of 31 ZINGARO ET AL.
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d∂Ω x, tð Þ¼ wA tð Þer xð Þ exp � x3� Lc
2

�� ��2
2σ2

 !
if x3 � LLA,LLAþLLV½ Þ,

0 otherwise,

8><>:
with

er xð Þ¼ x1,x2,0ð ÞTffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þx22

p :

A tð Þ is the piecewise linear function depicted in Figure 4A. We set σ¼ 0:015 and w¼ 4:6�10�4 m, to have the same
time evolution of volume as in 29 (see Figure 4B).

We simulate the opening of a valve by instantaneously removing the corresponding surface from the domain. This
choice is consistent with the setting proposed in Reference 29. Valves are opened and closed at prescribed times, follow-
ing the evolution of the volume of the ventricular compartment: when the volume is increasing, the MV is open and
the AV is closed; when it is decreasing, the MV is open and the AV is closed; when the volume is constant, both valves
are closed. The MV is closed when the simulation starts, while the AV is open. Closing and opening times are reported
in Figure 4B.

In this setting, we carry out a comparison of the results obtained with the RIIS method against those obtained with
the ARIIS method, using as reference pressure p� tð Þ a piecewise linear function. The evolution of ventricular pressure
for both cases, computed with resistance R¼ 104 kg= m sð Þ and ε¼ 0:002 m, is reported in Figure 5. The plots show how
the ARIIS method allows the ventricular pressure to accurately follow the provided reference pressure. Differently, the
pressure computed by the RIIS method is nonphysical: it remains constant for the overall duration of the isovolumetric
phases—instead of decreasing or increasing—and it is equal to the average pressure between the upwind and the down-
wind chambers. The same trend is also observed in the original ARIS method.29 We believe that this behavior can be
explained by the simplified setting characterizing this specific benchmark problem: the domain is symmetric and, dur-
ing the isovolumetric phases, the prescribed displacement is null. Furthermore, the observed peaks are associated to
the simplified and instantaneous way in which valves are opened and closed and to the explicit computation of the cor-
rective term (6).

Moreover, we carry out a sensitivity analysis by varying the resistance coefficient R in the ARIIS method, to under-
stand how the quality of the results is influenced by it. Results are reported in Figure 6. Although the resistance coeffi-
cient varies by several orders of magnitude, no difference is observed on the accuracy of the ventricular pressure. This
is evident in particular in Figure 6B, reporting the relative pressure error

FIGURE 4 Test A. (A) Plot of the function A tð Þ that defines the time evolution of the boundary displacement in the cylindrical toy

problem. (B) The corresponding volume of the ventricular compartment with valve opening and closing times.

ZINGARO ET AL. 11 of 31
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max t � Tiso j pLV�p� j
max t � Tiso j p� j

, ð13Þ

where, T iso ¼ t � 0,Tð Þ : χiso tð Þ¼ 1f g is the set of times at which both valves are closed. The error is approximately equal
to 8 � 10�3 regardless of the value of R. The ARIIS method, therefore, yields reliable pressure results also with high

FIGURE 5 Test A. Ventricular and reference pressures for the cylindrical toy problem, with RIIS and ARIIS methods, using resistance

R¼ 104 kg= m sð Þ and ε¼ 0:002 m.

FIGURE 6 Test A. (A) Evolution of pressure with the ARIIS method with varying values of the resistance. (B) Relative error between

the computed pressure during isovolumic phases and the reference pressure p�.

12 of 31 ZINGARO ET AL.
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values of R, that ensure negligible spurious flow through the resistive surfaces. We found that, above the threshold
ε≥ 1:5h (see Section 2.1.1), the results are substantially independent of ε.

We can assess the effectiveness of the ARIIS method also in terms of spurious flow through the closed valve. In
Figure 6C, we plot the relative flowrate error through the MV, evaluated as

max t � Tiso jQMV j
max t � 0,Tð Þ jQMV j

:

We can observe that, as R!∞, the spurious flow tends to zero with order 1, confirming the effectiveness of the
penalization.

Overall, the obtained results indicate that the ARIIS method is successful in its aim of producing a ventricular pres-
sure that closely follows the prescribed reference evolution.

3.2 | Test B: a benchmark problem including ventricular shortening

As an intermediate step towards cardiac simulations, we introduce a novel test case in a cylindrical domain that mimics
the ventricular shortening during contraction. We use the same domain as in Section 3.1, but change the boundary dis-
placement as follows:

d∂Ω x, tð Þ¼
0 if x3 � 0,LLA½ Þ,

dr
∂Ω x, tð Þþdz

∂Ω x, tð Þ if x3 � LLA,LLAþLLV½ Þ,
0, 0, L�LV tð Þ�LLV
� �T

if x3 � LLAþLLV,L½ Þ,

8><>: ð14Þ

with

dr
∂Ω x, tð Þ¼ Rcþ c tð Þsin π x3�LLAð Þ

LLV

� �� �
r xð Þ�x, ð15Þ

dz
∂Ω x, tð Þ¼ x3�LLA

LLV
L�
LV tð Þ�LLV

� �
, ð16Þ

and

c tð Þ¼ 4Rc

π
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16R2

c L
�
LV tð Þ2�2πL�LV tð Þ πL�LV tð ÞR2

c �V�
LV tð Þ� �q

πL�LV tð Þ : ð17Þ

In the above, L�LV tð Þ and V�
LV tð Þ are prescribed time dependent functions for the ventricular length and volume,

respectively. The displacement is such that, at any time t, the ventricular length and volume in the deformed configura-
tion match the prescribed ones. We take ψ ¼ 1 in (1). Valve positions change over time following the domain displace-
ment. Their opening and closing times, determined a priori following the same rule as in Section 3.1, are reported in
Figure 7. The MV starts open, and the AV starts closed. Moreover, we set inlet and outlet boundary conditions to pin ¼
0 mmHg and pout ¼ 80 mmHg, to replicate the typical range that characterizes the heart function. We remark that the
assumptions of the ARIIS derivation are not exactly satisfied by this test case: therefore, the test verifies the robustness
of the method with respect to the violation of its assumptions.

Numerical simulations are run in parallel on the GALILEO100 supercomputer† at the CINECA supercomputing
center, using 48 cores.

Figures 8 and 9 report snapshots of pressure and velocity in the solution, computed using RIIS and ARIIS. We can
observe that the two methods yield equivalent results outside the isovolumetric phases. Differently, when both valves
are closed, a considerably different pressure can be observed. Similar conclusions can be drawn from the plots reported

ZINGARO ET AL. 13 of 31
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in Figure 10, representing the average ventricular pressure over time for Test B, using RIIS and ARIIS, setting R¼
104 kg= m sð Þ and ε¼ 0:002 m. The ARIIS simulation yields a pressure that closely follows the provided reference pres-
sure p� during isovolumetric phases. Conversely, outside the isovolumetric phases, the two methods correctly produce

FIGURE 7 Test B. Prescribed ventricular volume V �
LV tð Þ (left axis) and length L�

LV tð Þ (right axis).

ARIISRIIS

(A) = 0.02 s

= 0.08 s

= 0.12 s

= 0.17 s

(B)

(C)

(D)

FIGURE 8 Test B. Snapshots of the pressure over one longitudinal slice of the domain, simulated using the RIIS (left) and ARIIS (right)

method. The snapshots are taken at the midpoint of isovolumetric contraction (A), ejection (B), isovolumetric relaxation (C), and filling (D).

The domain is warped according to the displacement d defined in (14).

14 of 31 ZINGARO ET AL.
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the same result. Figure 11 highlights the solution on one of the valves during the isovolumetric relaxation phase: with
both the RIIS and ARIIS methods, the spurious flow across the valve is negligible (the peak velocity is three orders of
magnitude smaller than the peak velocity throughout the simulation), and the resistive term results in a pressure gradi-
ent across the valve.

We carry out numerical simulations with the ARIIS method by varying the resistance coefficient R over several
orders of magnitude and computing the relative pressure error (13) during isovolumetric phases. We report the results
in Figure 12. As before, we observe that the reference pressure is matched accurately during isovolumetric phases,
regardless of the value of R.

3.3 | Test C: application to a cardiac test case

In this section, we apply the ARIIS method to a realistic cardiac case. We use the CFD model of a healthy left heart
developed in Reference 30. It consists of the 3D fluid dynamics model (12) coupled to the surrounding circulation
(described by a 0D closed-loop model92–94) and driven by a cardiac electromechanical model.94

ARIISRIIS

(A) = 0.02 s

= 0.08 s(B)

= 0.12 s(C)

= 0.17 s(D)

FIGURE 9 Test B. Snapshots of the velocity magnitude over one longitudinal slice of the domain, simulated using the RIIS (left) and

ARIIS (right) methods. The snapshots are taken at the midpoint of isovolumetric contraction (A), ejection (B), isovolumetric relaxation (C),

and filling (D). The domain is warped by the displacement d defined in (14), and the velocity magnitude is superimposed with the

streamlines of the flow field.
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We consider a realistic left heart geometry provided by Zygote,95 representing an accurate 3D model of the heart
obtained with CT scan data. We report the domain in Figure 13A: its boundary is split as ∂Ω¼Σin[Σout[Σwall

t , where
Σin is the set of pulmonary veins inlet sections, Σout the outlet section of the ascending aorta and Σwall

t the wall (endocar-
dium). In addition, we display the immersed surfaces ΓMV and ΓAV in their closed configurations. As observed for Test
B in Section 3.2, the assumptions of the ARIIS method are not exactly satisfied in this case, and the test verifies how the
method behaves when assumptions are violated.

We set Neumann boundary conditions on the inlet and outlet sections of the domain by prescribing the pressure
coming from the coupling between the 3D and the 0D circulation model, as explained in Reference 16. To prescribe the
displacement field on the endocardium of the LV, we carry out an electromechanical simulation with the ventricular
model proposed in Reference 94, consisting of a 3D electromechanical model fully-coupled to the external 0D circula-
tion. In the electromechanical simulation, the AV and MV are modeled as non-ideal diodes that change their state
instantaneously.

We report the complete setup of the electromechanical model in Appendix A. Moreover, since the focus of the arti-
cle is the correct estimation of the ventricular pressure only, we neglect the motion of the remaining part of the domain
by setting homogeneous Dirichlet boundary conditions on the wall of the left atrium and the ascending aorta.

FIGURE 10 Test B. Ventricular and reference pressures, with RIIS and ARIIS methods, using resistance R¼ 104 kg= m sð Þ
and ε¼ 0:002 m.

FIGURE 11 Test B. Longitudinal clip of the solution of within the MV, with the ARIIS and RIIS methods, at time t¼ 0:12 s (i.e., during

the isovolumetric relaxation phase). Left: pressure, right: magnitude of the relative velocity u�uALE.
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We generate the tetrahedral mesh of the left heart displayed in Figure 13B with vmtk96 using the methods and tools
discussed in References 30,97. Mesh details are summarized in Table 2. We use as time-step size Δt¼ 2:5�10�4 s. Since
the electromechanical simulation has a much larger timestep than the CFD one, we use smoothing splines98 to approxi-
mate the electromechanical displacement field in time.

The values of Rk and εk of the RIIS method are provided in Table 3. These values of εk and Rk prevent flow through
the closed immersed surfaces.65 Moreover, following,65 we choose εk to guarantee that εk ≥ 1:5hmin , where hmin is the

FIGURE 12 Relative error between the computed pressure during isovolumetric phases and the reference pressure p�, with varying

resistance R, ε¼ 0:002 m and minimum mesh size hmin ¼ 0:001 m.

FIGURE 13 Test C. Left heart CFD domain highlighting boundary portions and immersed surfaces in their closed configurations (A);

tetrahedral mesh generated for the CFD simulation (B).

TABLE 2 Test C. Mesh details for the left heart CFD simulations.

h (mm)

Cells (�)

DOFs (P1�P1) (�)

Min Avg Max u p Total

0.44 1.44 6.40 645,699 333,243 111,081 444,324

ZINGARO ET AL. 17 of 31
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minimum mesh size in the valves region. Since the condition number of the linear system associated to the FE
discretization of (12) increases as the ratio Rk=εk increases, we choose the minimum value of Rk that guarantees imper-
vious valves, as in Reference 30. In Table 3, we also report the areas of the valve sections needed for the ARIIS method.
Moreover, as reference pressure p� tð Þ, we use the one computed in the 3D-0D electromechanical ventricular model.94

Numerical simulations are run in parallel using 48 cores from the GALILEO100 supercomputer at the CINECA
supercomputing center.

3.3.1 | Comparison of RIIS and ARIIS methods

We carry out numerical simulations with the RIIS and the ARIIS methods. We simulate a single heartbeat of period
T¼ 0:8 s. In Figure 14, we display the LV volume with the four heartbeat phases, along with the times corresponding
to the begin and end of isovolumetric phases. Consistently with the electromechanical simulation, the valves open and
close instantaneously (i.e., they switch between the open and closed configurations over a single time step), according
to the evolution of ventricular volume, following the same criterion as in Section 3.1. The opening and closing times
are reported in Figure 14 and Table 3. As reference pressure (p�) for the ARIIS method, we use the LV pressure coming
from the 3D cardiac electromechanical simulation coupled to the 0D cardiocirculatory model.94

We display the ventricular pressure with the RIIS and ARIIS methods in Figure 15. We compute it by space-
averaging the pressure in a control volume downstream of the MV. The RIIS method is not able to correctly capture the
left ventricular pressure, yielding arbitrary pressure values during the isovolumetric phases, with unphysical oscilla-
tions. Differently, with the correction term introduced by the ARIIS method, the ventricular pressure follows the
expected trend given by p�. In addition, out of the isovolumetric phases, the pressure fields are almost identical between

TABLE 3 Test C. Parameters of the RIIS and ARIIS methods in the left heart CFD simulations.

k Rk (kg/(ms)) εk (mm) jΓk j (cm2) Clos. time (s) Open. time (s)

MV 1�104 1.0 12.11 0.04725 0.49350

AV 1�104 1.0 5.41 0.38850 0.10600

FIGURE 14 Test C. Volume of left ventricle, with opening and closing times for valves, and valve states.
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RIIS and ARIIS methods. Indeed, the correction term is active in the isovolumetric phases only, and it does not
influence the remaining phases of the heart cycle, yielding a maximum discrepancy of 0:23 mmHg.

Furthermore, as shown in Figure 16, the largest discrepancies between pLV and p� in the ARIIS case are attained at
the end of the isovolumetric phases. These discrepancies are related to the fact that the isovolumetric phases in realistic
cardiac simulations are not exactly volume preserving. This happens due to, on the one hand, the projection of the dis-
placement from the electromechanics (or imaging data) onto the fluid dynamics mesh and, on the other hand, the
lifting problem in (1) that does not guarantee, a priori, any kind of volume conservation in the LV subdomain. More-
over, the displacement is characterized by small oscillations in time—introduced by the smoothing splines—that yield
oscillations in the ventricular volume as well. Nonetheless, differently from the standard RIIS method, the proposed

FIGURE 15 Test C. Ventricular and reference pressures for the left heart test case, with RIIS and ARIIS methods. pLV is computed

space-averaging the fluid pressure in the black control volume in the left ventricle.

FIGURE 16 Test C. Ventricular volume and pressures (obtained through the ARIIS method), with zoom on the isovolumetric phases.
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augmented approach allows to simulate the isovolumetric phases, with a pressure evolution that is much more similar
to the heart physiology.

In Figure 17, we show the pressure field (in mm Hg) on a clip in the LV apico-basal direction during the iso-
volumetric phases. The RIIS and ARIIS methods are characterized by different pressures, confirming our previous
results. Moreover, we investigate the difference among the two solutions also in terms of velocity field, by showing a
surface line integral convolution (LIC) representation on a slice in the LV apico-basal direction colored with velocity
magnitude. Consistently with the findings of Reference 29, we notice that the augmented approach does not impact the
velocity field and both solutions reproduce the same flow patterns. More quantitatively, we compute the velocity magni-
tude in a control volume in the LV. When the augmented formulation is active, we compute a maximum discrepancy
between the RIIS and the ARIIS velocities equal to 2.21 � 10�4 m/s, corresponding to a relative error (divided by the
maximum RIIS velocity magnitude) equal to 0.29%.

3.4 | Test D: opening and closing the valves according to flow conditions

In this section, we show how the ARIIS method allows to simulate the whole heart cycle by opening and closing the
valve in a way that is driven by the blood flow. Since the ventricular pressure is not well defined during isovolumetric
phases, the standard RIIS method would enforce us to open and close the valve at prescribed times.31 On the contrary,
we instantaneously (i.e., in a single time step) open and close the valves according to the following rules29,30:

• a valve in closed configuration opens when the pressure jump across it becomes positive; we evaluate the pressure jump
by averaging the pressure over spherical control volumes upstream and downstream of each valve (see Figure 18);

• a valve in open configuration closes when the flowrate through it changes sign; the flow rate is evaluated by comput-
ing the time derivative of the ventricular volume.

FIGURE 17 Test C. Comparison between RIIS and ARIIS methods during isovolumetric phases: pressure on a clip in the LV apico-

basal direction and a section colored according to velocity magnitude with a surface LIC representation.
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We remark that this is a proof-of-concept test: a more physically sound model would result from combining the
ARIIS method with more sophisticated valve displacement laws such as the models proposed in References 79,99. In
the following, we consider both the case of the benchmark problem featuring ventricular contraction introduced in Test
B (Section 3.2) and the cardiac case of Test C (Section 3.3).

3.4.1 | Benchmark problem including ventricular contraction

We carry out a simulation in the same setting of Section 3.2, except that the opening and closing times of valves are
determined according to the aforementioned rules, rather than being prescribed. The results are reported in Figure 19.
We obtain results that are consistent with those of Section 3.2, without the need to choose a priori the times at which
valves open and close. As in Test B, very short oscillations can be observed due to the instantaneous closing of the val-
ves, which however do not affect the overall flow and valve dynamics.

3.4.2 | Cardiac test case

We consider the cardiac test case introduced in Section 3.3 and we carry out the ARIIS simulation, opening and closing
the valves according to blood flow conditions. We report the results of this simulation in Figure 20. Differently from
RIIS, since the ARIIS method produces physiological ventricular pressure and close to the reference pressure p�, we
can successfully open both the mitral and the aortic valve when the downstream pressure reaches the upstream one.

4 | CONCLUSIONS, DISCUSSION AND LIMITATIONS

In this article, we proposed an augmented version of the Resistive Immersed Implicit Surface (RIIS) method65 to cor-
rectly simulate the heart hemodynamics during isovolumetric phases. This Augmented RIIS (ARIIS) method extends
the previously proposed Augmented Resistive Immersed Surface (ARIS) method29 to the case of meshes that are non-
conforming to cardiac valves.

FIGURE 18 Control volumes used to evaluate the average pressure jump across cardiac valves. A valve open when the pressure jump

becomes positive.
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FIGURE 19 Test D, cylinder benchmark, valves opening and closing according to flow conditions with the ARIIS method. Top: space-

averaged pressures in control volumes in the three compartments of the cylinder. Middle: time derivative of the volume of the middle

compartment. Bottom: computed (not prescribed) valve states versus time.

FIGURE 20 Test D, cardiac application: valves opening and closing according to flow conditions with the ARIIS method. Top: space-

averaged pressures in control volumes located in LA, LV, AA (see Figure 18) and reference ventricular pressure versus time. Middle: time

derivative of the LV volume. Bottom: computed (not prescribed) valve states versus time.
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Starting from the RIIS method, and following analogous steps of the original ARIS method,29 we derived the correc-
tion term required to simulate the intracardiac hemodynamics when both valves are closed. Specifically, as done in
Reference 29, we introduced an additional term to the momentum balance of the Navier–Stokes equations that only
acts on the valves and is only active during the isovolumetric phases. From the ARIIS derivation, and analogously with
the original formulation of Reference 29, we found that the corrective term depends on the external pressure, the valve
areas, the resistive term itself, and a prescribed (reference) pressure representing the intraventricular pressure transient
when both valves are closed. The reference pressure can be imposed, for instance, from electromechanical simulations
or from patient-specific data.

We applied the ARIIS method to three different problems: the same cylindrical toy problem introduced in 29 for the
sake of validation of the proposed method, a novel benchmark problem retaining characteristics of a heart cycle, and
the flow in a realistic human left heart geometry (with endocardium displacement obtained from electromechanical
simulations).

All tests showed that the ARIIS method yields a ventricular pressure that closely follows the prescribed reference
evolution. Moreover, we found that the accuracy of the results is not affected by resistance coefficient values. Since the
ARIIS method produces physiological pressure transients during isovolumetric phases, we also showed that our method
allows to open and close the valves in a way that is completely driven by the blood flow (i.e., according to pressure jump
and reverse flow conditions). We believe this represents one of the main achievements of our work, since it avoids the
need to prescribe opening and closing valve times.

The ARIIS method is very sensitive to small volume variations and oscillations during isovolumetric phases. Thus,
further investigations are advisable for the employment of a better interpolant or approximant (in time) of the input dis-
placement field. Moreover, we observed some mismatch between the fluid pressure and the electromechanical one,
yielding an unphysical jump from the isovolumetric contraction to the ejection phase. This mismatch suggests a deeper
investigation of the similarities and differences between electromechanics and CFD models, which will be the subject
of future work. Additionally, a better reproduction of physiological data may be attained by relying on in-vivo pressure
measurements in the definition of the reference pressure p�: this represents an important direction of further
investigation.

To conclude, the standard RIIS method yielded a ventricular pressure with large oscillations in time and inconsis-
tent with physiology. Thus, these phases are often neglected in CFD cardiac simulations or, if included, valve opening
and closing valve must be prescribed a priori. On the contrary, the perturbation term introduced by the proposed ARIIS
method provided a valid approach to produce a far more physiological ventricular pressure. This allowed us to correctly
simulate the isovolumetric phases, and hence to open and close the valves in a way that is completely driven by the
blood flow, making the overall CFD model more physiologically sound. A further development in this direction will be
the combination of the ARIIS method with more sophisticated valve displacement models based on the fluid stress
exerted on the leaflets.79,99
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ENDNOTES
* https://lifex.gitlab.io/.
** iHEART—An Integrated Heart model for the simulation of the cardiac function, European Research Council (ERC) grant agreement
No. 740132, P.I. Prof. A. Quarteroni, 2017–2022.

† 528 computing nodes each 2 � CPU Intel CascadeLake 8260, with 24 cores each, 2.4 GHz, 384 GB RAM. See https://wiki.u-gov.it/
confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide for technical specifications.

REFERENCES
1. Quarteroni A, Dede' L, Manzoni A, et al. Mathematical Modelling of the Human Cardiovascular System: Data, Numerical Approxima-

tion, Clinical Applications. Cambridge University Press; 2019.
2. Katz AM. Physiology of the Heart. Lippincott Williams & Wilkins; 2010.
3. Formaggia L, Lamponi D, Tuveri M, Veneziani A. Numerical modeling of 1D arterial networks coupled with a lumped parameters

description of the heart. Comput Methods Biomech Biomed Eng. 2006;9(5):273-288.
4. Brenneisen J, Daub A, Gerach T, et al. Sequential coupling shows minor effects of fluid dynamics on myocardial deformation in a real-

istic whole-heart model. Front Cardiovasc Med. 2021;8(December):1-13.
5. Bucelli M, Dede' L, Quarteroni A, Vergara C. Partitioned and monolithic FSI schemes for the numerical simulation of the heart.

Commun Comput Phys. 2022;32:1217-1256.
6. Cheng Y, Oertel H, Schenkel T. Fluid-structure coupled CFD simulation of the left ventricular flow during filling phase. Ann Biomed

Eng. 2005;33(5):567-576.
7. Khodaei S, Henstock A, Sadeghi R, et al. Personalized intervention cardiology with transcatheter aortic valve replacement made possi-

ble with a non-invasive monitoring and diagnostic framework. Sci Rep. 2021;11(1):1-28.
8. Nordsletten D, McCormick M, Kilner PJ, Hunter P, Kay D, Smith NP. Fluid–solid coupling for the investigation of diastolic and systolic

human left ventricular function. Int J Numer Methods Biomed Eng. 2011;27(7):1017-1039.
9. Zhang Q, Hisada T. Analysis of fluid–structure interaction problems with structural buckling and large domain changes by ALE finite

element method. Comput Methods Appl Mech Eng. 2001;190(48):6341-6357.
10. Bucelli M, Zingaro A, Africa PC, Fumagalli I, Dede' L, Quarteroni AM. A mathematical model that integrates cardiac electrophysiology,

mechanics and fluid dynamics: application to the human left heart. Int J Numer Methods Biomed Eng. 2022;39:e3678.
11. Santiago A, Aguado-Sierra J, Zavala-Aké M, et al. Fully coupled fluid-electro-mechanical model of the human heart for supercom-

puters. Int J Numer Methods Biomed Eng. 2018;34(12):e3140.
12. Watanabe H, Hisada T, Sugiura S, Okada J, Fukunari H. Computer simulation of blood flow, left ventricular wall motion and their

interrelationship by fluid-structure interaction finite element method. JSME Int J Ser C Mech Syst Mach Elem Manuf. 2002;45(4):1003-
1012.

13. Viola F, Meschini V, Verzicco R. Fluid–structure-electrophysiology interaction (FSE) in the leftheart: a multi-way coupled computa-
tional model. Eur J Mech-B/Fluids. 2020;79:212-232.

14. Choi YJ, Constantino J, Vedula V, Trayanova N, Mittal R. A new MRI-based model of heart function with coupled hemodynamics and
application to normal and diseased canine left ventricles. Front Bioeng Biotechnol. 2015;3:140.

15. Tagliabue A, Dede' L, Quarteroni A. Fluid dynamics of an idealized left ventricle: the extended Nitsche's method for the treatment of
heart valves as mixed time varying boundary conditions. Int J Numer Methods Fluids. 2017;85(3):135-164.

16. Zingaro A, Dede' L, Menghini F, Quarteroni A. Hemodynamics of the heart's left atrium based on a variational multiscale-LES numeri-
cal method. Eur J Mech-B/Fluids. 2021;89:380-400.

17. Domenichini F, Pedrizzetti G, Baccani B. Three-dimensional filling flow into a model left ventricle. J Fluid Mech. 2005;539:179-198.
18. Baccani B, Domenichini F, Pedrizzetti G. Vortex dynamics in a model left ventricle during filling. Eur J Mech-B/Fluids. 2002;21(5):

527-543.
19. Mittal R, Seo Jung H, Vedula V, et al. Computational modeling of cardiac hemodynamics: current status and future outlook. J Comput

Phys. 2016;305:1065-1082.
20. Corti M, Zingaro A, Dede' L, Quarteroni A. Impact of atrial fibrillation on left atrium haemodynamics: a computational fluid dynamics

study. Comput Biol Med. 2022;150:106143.
21. Fumagalli I, Fedele M, Vergara C, et al. An image-based computational hemodynamics study of the systolic anterior motion of the

mitral valve. Comput Biol Med. 2020;123:103922.
22. This A, Morales Hern�an G, Bonnefous O, Fern�andez Miguel A, Gerbeau J-F. A pipeline for image based intracardiac CFD modeling

and application to the evaluation of the PISA method. Comput Methods Appl Mech Eng. 2020;358:112627.
23. Chnafa C, Mendez S, Nicoud F. Image-based large-eddy simulation in a realistic left heart. Comput Fluids. 2014;94:173-187.
24. Masci A, Alessandrini M, Forti D, et al. A proof of concept for computational fluid dynamic analysis of the left atrium in atrial fibrilla-

tion on a patient-specific basis. J Biomech Eng. 2020;142(1):011002.
25. Bennati L, Vergara C, Giambruno V, et al. An image-based computational fluid dynamics study of mitral regurgitation in presence of

prolapse. Cardiovasc Eng Technol. 2023;14:457-475.
26. Bennati L, Giambruno V, Renzi F, et al. Turbulence and blood washout in presence of mitral regurgitation: a computational fluid-

dynamics study in the complete left heart. bioRxiv; 2023;2023-03.

24 of 31 ZINGARO ET AL.

 20407947, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3767 by PO
L

IT
E

C
N

IC
O

 D
I M

IL
A

N
O

, W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://lifex.gitlab.io/
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A%2BGALILEO100%2BUserGuide
https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A%2BGALILEO100%2BUserGuide


27. Karabelas E, Longobardi S, Fuchsberger J, et al. Global sensitivity analysis of four chamber heart hemodynamics using surrogate
models. IEEE Trans Biomed Eng. 2022;69(10):3216-3223.

28. Augustin Christoph M, Crozier A, Neic A, et al. Patient-specific modeling of left ventricular electromechanics as a driver for
haemodynamic analysis. EP Europace. 2016;18(suppl_4):iv121-iv129.

29. This A, Boilevin-Kayl L, Fern�andez Miguel A, Gerbeau J-F. Augmented resistive immersed surfaces valve model for the simulation of
cardiac hemodynamics with isovolumetric phases. Int J Numer Methods Biomed Eng. 2020;36(3):e3223.

30. Zingaro A, Fumagalli I, Dede' L, et al. A geometric multiscale model for the numerical simulation of blood flow in the human left
heart. Discr Contin Dynam Syst S. 2022;15(8):2391-2427.

31. Zingaro A, Bucelli M, Piersanti R, Regazzoni F, Dede' L, Quarteroni A. An electromechanics-driven fluid dynamics model for the simu-
lation of the whole human heart. arXiv Preprint arXiv:2301.02148; 2023.

32. Zingaro A, Vergara C, Dede' L, Regazzoni F, Quarteroni A. A comprehensive mathematical model for cardiac perfusion. arXiv Preprint
arXiv:2303.13914; 2023.

33. Fedele M, Piersanti R, Regazzoni F, et al. A comprehensive and biophysically detailed computational model of the whole human heart
electromechanics. Comput Methods Appl Mech Eng. 2023;410:115983.

34. Cheng R, Lai Yong G, Chandran Krishnan B. Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart
valve flow dynamics. Ann Biomed Eng. 2004;32(11):1471-1483.

35. Espino Daniel M, Shepherd Duncan ET, Hukins David WL. Evaluation of a transient, simultaneous, arbitrary Lagrange–Euler based
multi-physics method for simulating the mitral heart valve. Comput Methods Biomech Biomed Eng. 2014;17(4):450-458.
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APPENDIX A

A.1 | THE ELECTROMECHANICAL MODEL
In this section, we briefly describe the electromechanical model used to provide the boundary displacement in
Section 3.3. We refer to Reference 94 for additional details on the models and on the methods used for their solution.
Let bΩ be the domain occupied by the ventricular walls, in reference (undeformed and stress-free) configuration. The
unknowns of the model are the following variables:

v : bΩ� 0,Tð Þ!ℝ transmembrane potential,

w : bΩ� 0,Tð Þ!ℝN ion ionic state variables,

s : bΩ� 0,Tð Þ!ℝNact activation state variables,

d : bΩ� 0,Tð Þ!ℝ3 solid displacement,

c : 0,Tð Þ!ℝNcirc circulation state variables:
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The evolution of the ionic variables is regulated by the model by 10 Tusscher and Panfilov,100 which can be
expressed as the following system of ODEs:

∂w
∂t

¼Fion w,vð Þ in bΩ� 0,Tð Þ,
w¼w0 incΩ� 0f g:

8<:
We refer to Reference 100 for the definition of Fion w,vð Þ. One of the entries of w is the intracellular calcium concen-

tration, denoted by Ca2þ
	 


i. The evolution of the transmembrane potential is described by the monodomain equation
with mechano-electrical feedbacks101,102:

Jvt�= � JF�1DmF�T=v
� �þ JI ion v,wð Þ¼ JIapp incΩ� 0,Tð Þ,

JF�1DmF�T=v �n¼ 0 on ∂bΩ� 0,Tð Þ,
v¼ v0 incΩ� 0f g:

8>><>>: ðA1Þ

In the above, F ¼ Iþ=d, J ¼ detF, and Dm is a conductivity tensor, defined as

Dm ¼ σlm
Ff0�Ff 0
kFf 0k2 þσtm

Fs0�Fs0
kFs0k2 þσnm

Fn0�Fn0

kFn0k2 ,

where, f 0,s0,n0f g is an orthonormal triplet that, at every point in bΩ, describes the local orientation of muscular fibers,
sheets of fibers and fiber normal direction. In (A1), Iapp is an applied current providing the initial stimulus, and I ion is
defined by the ionic model.100

The state of contraction, described by the vector s, evolves according to the RDQ20-MF model,103 which can be
expressed as a system of ODEs:

∂s
∂t

¼Fact s, Ca2þ
	 


i,d,dt
� �

in bΩ� 0,Tð Þ,
s¼ s0 in bΩ� 0f g:

8<:
The model defines an active stress tensor as

Pact d,sð Þ¼Tact sð ÞFf 0�f 0
kFf 0 k :

We refer to Reference 103 for the definition of the functions Fact and Tact.
The evolution of the displacement d is regulated by the elastodynamics equation

ρs
∂2d
∂t2

�= �P d,sð Þ¼ 0 in bΩ� 0,Tð Þ,

d¼ 0 on bΓbase� 0,Tð Þ,
P d,sð Þn¼� n�nð Þ Kepi

⊥ dþCepi
⊥ dt

� �
� I�n�nð Þ Kepi

k dþCepi
k dt

� �
on bΓepi� 0,Tð Þ,

P d,sð Þn¼�JF�TpLV on bΓendo� 0,Tð Þ,bd¼ bd0 in bΩ� 0f g,
∂d
∂t

¼ 0 incΩ� 0f g:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ðA2Þ

In the above, ρs is the solid density, and P d,sð Þ is the stress tensor, defined as
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P d,sð Þ¼Ppas dð ÞþPact d,sð Þ:

The passive contribution Ppas dð Þ is defined according to the Guccione constitutive law, as reported in Reference
104. bΓbase

, bΓepi
and bΓendo

are the portions of ∂bΩ corresponding to the ventricular base, epicardium and endocardium
respectively. The coefficients Kepi

⊥ , Kepi
k , Cepi

⊥ and Cepi
k account for the interaction of the ventricle with the pericardial sac

and the surrounding organs. The pressure pLV is one of the entries of the circulation state vector c.
The evolution of the latter is described by a system of ODEs whose unknowns are pressures and blood flows in sev-

eral compartments of the circulatory system:

∂c
∂t

¼Fcirc c, tð Þ in 0,Tð Þ,
c 0ð Þ¼ c0:

8<:
We refer to Reference 94 for the definition of Fcirc. The circulation model is bidirectionally coupled to the mechanics

equations (A2), through the boundary condition on bΓendo
and by imposing that the volume of the ventricular chamber

as computed by the circulation model is the same as that obtained in the mechanics model.
The coupled electromechanical model is solved by means of the segregated-intergrid-staggered scheme introduced

in Reference 94. After the simulation, the endocardial displacement djbΓendo is extracted, extended to zero on the bound-

aries of atrium and ascending aorta, and used as input for the CFD simulation of Test C (Section 3.3).

The values of the parameters of the monodomain, force generation and mechanics models are reported in Table A1,
whereas Tables A2 and A3 report those for the circulation model. The values of parameters for the ionic model are the
same as in the original paper.100

TABLE A1 Parameters used in the electromechanical model: electrophysiology (EP), active force generation (AFG), and solid

mechanics (M).

Physics Parameter Value

EP Conductivities σlm 2:00�10�4 m2=s

σtm 1:05�10�4 m2=s

σnm 0:55�10�4 m2=s

Stimulus Aapp 25.71 V=s

σapp 5�10�3 m

Tapp 3�10�3 s

AFG γ 30

kd 0.36

αkd �0.2083

Koff 8 1/s

Kbasic 4 1/s

μ0fp 32.255 1/s

μ1fp 0.768 1/s

aXB 20�108 Pa

(Continues)
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TABLE A1 (Continued)

Physics Parameter Value

M Guccione ρs 1000 kg=m2

c 8:8�102 Pa

aff 8

ass 6

ann 3

afs 12

afn 3

asn 3

κ 5�104 Pa

Kepi
⊥ 2�105 Pa=m

Boundary conditions Kepi
k 2�104 Pa=m

Cepi
⊥ 2�104 Pa s=m

Cepi
k 2�103 Pa s=m

In. conditions p0 1333.2 Pa

Note: For the force generation model, we only report parameters that are different from the original setting described in Reference 103.

TABLE A2 Parameters of the circulation model for the ventricular electromechanical simulation: external circulation.

Parameter Value

Systemic arteries RSYS
AR 0.3750 mm Hg s=mL

CSYS
AR

2.048 mm=mm Hg

LSYS
AR 2.7e�3 mm Hg s2=mL

RSYS
upstream 0.05 mm Hg s=mL

pSYSAR 0ð Þ 80.0 Pa

QSYS
AR 0ð Þ 0.0 mL=s

Systemic veins RSYS
VEN 0.26 mm Hg s=mL

CSYS
VEN 60.0 mL=mm Hg

LSYS
VEN 5e�4 mm Hg s2=mL

pSYSVEN 0ð Þ 30.9 Pa

QSYS
VEN 0ð Þ 0.0

Pulmonary arteries RPUL
AR 0.05 mm Hg s=mL

CPUL
AR 10.0 mL=mm Hg

LPUL
AR 5e�4 mm Hg s2=mL

pPUL
AR 0ð Þ 29.34 Pa

QPUL
AR 0ð Þ 0.0 mL=s

Pulmonary veins RPUL
VEN 0.025 mm Hg s=mL

CPUL
VEN 38.4 mL=mm Hg

LPUL
VEN 2.083e�4 mm Hg s2=mL

pPUL
VEN 0ð Þ 13.58 Pa

QPUL
VEN 0ð Þ 0.0 mL=s

Note: The same parameters are employed for the 3D-0D CFD simulation.
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TABLE A3 Parameters of the circulation model for the ventricular electromechanical simulation: cardiac circulation.

Parameter Value

Left atrium EA 0.07 mm Hg=mL

EB 0.09 mm Hg=mL

tC 0.80

TC 0.17

TR 0.17

VLA 0ð Þ 79.5 mL

Right atrium EA 0.06 mm Hg=mL

EB 0.07 mm Hg=mL

tC 0.80

TC 0.17

TR 0.17

VLA 0ð Þ 64.17 mL

Right ventricle EA 0.55 mm Hg=mL

EB 0.05 mm Hg=mL

tC 0.0

TC 0.34

TR 0.15

VLA 0ð Þ 148.9 mL

Mitral valve Rmin 0.0164 mm Hg s=mL

Rmax 75,006.2 mm Hg s=mL

Aortic valve Rmin 0.0355 mm Hg s=mL

Rmax 75,006.2 mm Hg s=mL

Tricuspid valve Rmin 0.0075 mm Hg s=mL

Rmax 75,006.2 mm Hg s=mL

Pulmonary valve Rmin 0.0075 mm Hg s=mL

Rmax 75,006.2 mm Hg s=mL

Note: Initial time of contraction tc, contraction duration TC and relaxation duration TR are relative to the heartbeat period. For the right atrium, right ventricle,
tricuspid and pulmonary valves, the same parameters are employed for the 3D-0D CFD simulation.
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