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We introduce a new method to efficiently solve a variant of the Pitman-Le two-phase depth-
integrated system of equations, for the simulation of a fast landslide consolidation process. In 
particular, in order to cope with the loss of hyperbolicity typical of this system, we generalize 
Pelanti’s proposition for the Pitman-Le model to the case of a non-null excess pore water 
pressure configuration. The variant of the Pitman-Le model is numerically solved by relying on 
the approach the authors set to discretize the corresponding single-phase model, jointly with a 
fictitious inter-phase drag force which avoids arising the spurious numerical oscillations induced 
by the loss of hyperbolicity. To verify the reliability of the proposed simulation tool, we first assess 
the accuracy and efficiency of the new method in ideal scenarios. In particular, we investigate the 
well-balancing property and provide some relevant scaling results for the parallel implementation 
of the method. Successively, we challenge the procedure on real configurations from the available 
literature.

1. Introduction

In the field of landslide propagation forecasting, a number of continuum mathematical models have been developed during the 
years. While the comparison of the horizontal propagation length scale of the landslide with the vertical one suggests the use of depth-
integrated models, the different behavior of various types of landslide, such as debris flows and mudflows, entails the need to define 
more detailed mathematical models. Among the simplest ones in the literature, single-phase viscous models consider the landslide 
as a single material having proper mechanical and rheological properties. These models can be used for the description of mudflows 
since they consist of roughly homogeneous mixtures of fine soil particles and water. Even if single-phase models can provide accurate 
results for such types of land movement, they do not represent a viable option for the description of debris flows propagation, since 
solid particles and water content can have considerably different velocities. In fact, a reliable mathematical model for debris flows 
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should include the velocities of both solid and liquid phases as well as the internal stresses. Among the most notable contributions 
in this direction, we mention the works by E.B. Pitman and L. Le [1] and by S.P. Pudasaini [2]. More recently, M. Pastor and co-
workers developed a mathematical model which somehow generalizes the Pitman-Le and the Pudasaini set of equations, see [3,4]. 
This generalized model takes into account the importance of the pore pressure, by adding a three-dimensional consolidation equation 
tracking the evolution of the excess pore water pressure inside the landslide to the mass and momentum balance laws. The effective 
role that pore water pressure plays is corroborated by practical experience. For instance, a possible mitigation strategy to slow down 
the landslide velocity comes from the use of basal grids where the pore pressure is made zero (see [5–7]). Furthermore, the two-phase 
consolidation model in [3,4] is consistent with the Pitman-Le set of equations when null excess pore water pressure is considered.

Several numerical methods have been developed to approximate both the single- and the two-phase landslide models. Among 
them, the TG2-PC method [8] has been employed for the approximation of the single-phase model, reaching good results in terms 
of parallel efficiency and accuracy. The TG2-PC scheme is able to combine the flexibility, robustness, ease of implementation and 
parallel efficiency characterizing the TG2 scheme [9–11] with the capability of the Path-Conservative (PC) strategy to deal with 
nonconservative products. Indeed, the PC method has been successfully used in the literature in combination with finite-volume 
(FV) and discontinuous Galerkin (DG) approximations [12–17] and proved to provide a well-balanced discretization of the shallow-
water equations, provided that an appropriate path is chosen (see [18]). Nevertheless, we mention the notable contributions to 
the approximation of the Pitman-Le equations with FV and DG schemes in combination with PC method in [19,20]. Furthermore, 
while the PC method offers an elegant way to construct well-balanced numerical schemes, other choices are possible. For instance, 
in [21,22], staggered semi-implicit hybrid FV/continuous finite-element schemes proved to be very effective in modeling the shallow 
water equations, by providing reliable results while relieving from severe restrictions on the time step selection. Concerning the 
approximation of Pastor’s extension of the Pitman-Le model, we mention the Smooth Particle Hydrodynamics (SPH) model developed 
in [23–26]. SPH model provides valuable results in terms of accuracy and capability to deal with large material deformations. 
However, it shows some limitations related to parallel efficiency and treatment of discontinuities in the input topography (i.e., the 
bed of the landslide). Indeed, in the presence of a non-smooth topography, the computation of the corresponding gradient may lack 
meaning. This requires a pre-processing of the input topography before serving it as an input to the SPH model in order to avoid 
possible instabilities. It is then clear that studies that imply the presence of urban areas where the presence of houses provides 
discontinuities in the topography profile become problematic for schemes such as the SPH model (we refer, e.g., to [27–29] for 
examples in the case of flood problems).

In this work, we propose a scalable numerical scheme for the solution of Pastor’s two-phase consolidation model by the TG2-PC 
scheme. The numerical scheme is implemented in a parallel MPI framework, where the domain discretization is performed with 
hierarchical quadtree meshes, following [11]. Furthermore, thanks to the PC formulation in a continuous finite element framework, 
the method allows dealing with arbitrary geometries, thus avoiding issues related to the direct computation of the gradient of the 
topography. When compared with the single-phase paradigm, the two-phase consolidation model suffers some drawbacks, such as the 
lack of an explicit expression for the eigenvalues of the corresponding quasilinear system and the loss of hyperbolicity, which leads 
to the rise of numerical oscillations. For this reason, we propose an extension to Pelanti’s proposition related to the eigenstructure of 
the Pitman-Le equations to the case where the excess pore water pressure cannot be neglected.

The paper is organized as follows. In Section 2 we describe the model equations. In Section 3 we introduce the proposed numerical 
scheme, while in Section 4 we perform numerical tests. Here, we first show results on ideal scenarios targeting both accuracy and 
parallel efficiency, then we consider a real case study to show that the method can be effectively used in real applications. Finally, 
in Section 5 we draw some conclusions and discuss some future developments.

2. Shallow two-phase consolidation equations

Consider a Cartesian domain Ω = (0, 𝐿𝑥) × (0, 𝐿𝑦) ⊂ ℝ2 characterized by a subdomain Ω𝑤(𝑡) ⊂ Ω which identifies the region of 
landslide material, whose extension varies in space and time. Region Ω𝑤(𝑡) is defined as the portion of Ω where the total depth, ℎ, 
of the mixture and the landslide height, ℎ𝑤, ℎ𝑠, of the fluid and solid phases are positive. In particular, we assume Ω𝑤(𝑡) ⊂Ω during 
the whole simulation time window, namely for 𝑡 ∈ (0, 𝑇 ], being 𝑇 the final time.

According to [3], the balance equations for mass and momentum consist of the set of coupled nonlinear depth-integrated partial 
differential equations in Ω𝑤 × (0, 𝑇 ],

⎧⎪⎨⎪⎩
𝜕𝑡ℎ𝛼 +∇ ⋅𝐔𝛼 = 𝑛𝛼𝑒𝑅,

𝜕𝑡𝐔𝛼 +∇ ⋅
(
𝐔𝛼 ⊗ 𝐯𝛼 + 𝑃𝛼ℎ𝕀

)
−

(
1
2
𝜌𝑤

𝜌𝛼
𝑔ℎ2 + ℎΔ𝑝

𝜌𝛼

)
∇𝑛𝛼 + 𝑔ℎ𝛼∇𝑍 = 1

𝜌𝛼
𝐒𝛼,

(1)

supplemented by suitable initial and boundary conditions, where the sub-index 𝛼 = 𝑤, 𝑠 denotes the fluid (𝑤) or solid (𝑠) phase. 
Here, ℎ𝛼 is the phase height; 𝐔𝛼 denotes the phase mass flux; 𝑛𝛼 is the phase porosity, with 𝑛𝑤 + 𝑛𝑠 = 1; 𝑒𝑅 is the erosion rate; 
𝐯𝛼 = (𝑣𝛼,𝑥, 𝑣𝛼,𝑦)𝑇 = 𝐔𝛼∕ℎ𝛼 denotes the phase velocity; 𝑃𝛼 represents the depth-averaged phase pressure per unit density; 𝕀 is the 
identity tensor; 𝜌𝛼 is the phase density; 𝑔 is the gravitational acceleration; Δ𝑝 denotes the depth-averaged excess pore water pressure 
(pwp); 𝑍 is the topography profile; 𝐒𝛼 indicates the source term.
Concerning the state variables, it turns out that ℎ𝛼 = ℎ𝑛𝛼 , 𝐔𝛼 = (𝑈𝛼,𝑥, 𝑈𝛼,𝑦)𝑇 , 𝐔 =𝐔𝑤 +𝐔𝑠, with 𝐔 the mixture mass flux, so that, the 
2

mixture velocity is defined by 𝐯 = (𝑣𝑥, 𝑣𝑦)𝑇 =𝐔∕ℎ = 𝑛𝑠𝐯𝑠 + 𝑛𝑤𝐯𝑤; the depth-averaged phase pressures
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𝑃𝑤 = 1
2
𝑔ℎ𝑤 + 𝑛𝑤

Δ𝑝
𝜌𝑤
, 𝑃 𝑠 =

1
2
𝑔ℎ𝑠 − 𝑛𝑤

Δ𝑝
𝜌𝑠

(2)

consist of two contributions, i.e., i) a hydrostatic term, which varies linearly vertically according to the classical hydrostatic law [30], 
and ii) a term depending on the excess pwp, that has to be computed from the consolidation equation (see below for more details); 
the erosion rate is modeled by the Hungr’s law [31], so that the total volume of material height increases according to a specific rate, 
namely

𝑒𝑅 =𝐸𝑠|𝐔|, (3)

with 𝐸𝑠 the entrainment coefficient computed starting from the initial and the final material volume and the traveled distance; the 
source term 𝐒𝛼 includes the contribution of the basal shear stress (𝝉 (𝛼)

𝐵
) and the interaction between solid and liquid phases (𝐑(𝛼)), 

being 𝐒𝛼 = 𝝉
(𝛼)
𝐵

+𝐑(𝛼)ℎ. In particular, concerning 𝝉(𝛼)
𝐵

= (𝜏(𝛼)
𝐵,𝑥
, 𝜏

(𝛼)
𝐵,𝑦

)𝑇 , we do not consider any bed friction contribution for the fluid 
(i.e., we set 𝝉 (𝑤)

𝐵
= 𝟎), and we adopt the Voellmy’s rheological law for the solid phase, namely we define

𝜏
(𝑠)
𝐵,𝑖

= −
[(
𝜌′
𝑑
𝑔ℎ−Δ𝑝𝑏

) 1|𝑣𝑖| tan(𝜙𝐵) + 𝜌𝑔 |𝑣𝑖|𝜉
]
𝑣𝑖 for 𝑖 = 𝑥, 𝑦, (4)

with 𝜌′
𝑑
= 𝑛𝑠(𝜌𝑠 − 𝜌𝑤) the effective density, Δ𝑝𝑏 the bed excess pwp, 𝜙𝐵 the basal friction angle, 𝜌 = 𝑛𝑠𝜌𝑠 + 𝑛𝑤𝜌𝑤 the mixture density 

and 𝜉 the turbulence coefficient. The Voellmy’s rheology is composed by two contributions, the first one derives from the Coulomb 
friction term [32] that vanishes in a fully liquefied state (i.e., Δ𝑝𝑏 = 𝜌′

𝑑
𝑔ℎ), the second contribution represents the energy loss due 

to the turbulence stress [33–35]. As far as the solid-liquid interaction is concerned, we set 𝐑(𝑤) = −𝐑, 𝐑(𝑠) =𝐑 with

𝐑 = 𝐶𝑑 (𝐯𝑤 − 𝐯𝑠), (5)

the interphase drag, where 𝐶𝑑 is the friction coefficient, modeled through the Anderson and Jackson law [36], as

𝐶𝑑 =
𝑛𝑤𝑛𝑠

𝑉𝑇 𝑛
𝑚
𝑤

(
𝜌𝑠 − 𝜌𝑤

)
𝑔, (6)

with 𝑉𝑇 the terminal velocity and 𝑚 an integer taking the value 1 or 2 according to the flow condition [36] (in the sequel, we take 
𝑚 = 1 if not otherwise stated). For further details on the source term, we refer to [3,37,38].

Following [39,3,4], we complete model (1) with the three-dimensional consolidation equation

𝐷𝑧Δ𝑝
𝐷𝑡

+ 𝐯𝑠 ⋅∇Δ𝑝−𝐶𝑣𝜕𝑧𝑧Δ𝑝 = 𝜌′𝑑 𝑔 (1 − 𝜁) 𝑒𝑅 −𝐶1(𝐯𝑤 − 𝐯𝑠) ⋅∇ℎ𝑤 −𝐶1ℎ𝑤∇ ⋅ 𝐯𝑤 −𝐶2ℎ𝑠∇ ⋅ 𝐯𝑠, (7)

to be solved in Ω𝑤 × (0, ℎ) × (0, 𝑇 ], with 𝜁 = 𝑧∕ℎ and where

𝐷𝑧

𝐷𝑡
= 𝜕𝑡 + 𝑎𝑧𝜕𝑧 with 𝑎𝑧 = 𝑒𝑅 (1 − 𝜁) , (8)

denotes the material derivative associated with the vertically moving domain, with 𝑎𝑧 the relative vertical velocity with respect to 
a domain that moves at velocity 𝑒𝑅𝜁 (we refer to [4] for a derivation of (7)), Δ𝑝 is the three-dimensional excess pwp, 𝐶𝑣 is the 
consolidation coefficient, 𝐶1 and 𝐶2 are defined by

𝐶1 = 𝜌′𝑑 𝑔 (1 − 𝜁) −
𝐸𝑚

ℎ
, 𝐶2 = 𝜌′𝑑 𝑔 (1 − 𝜁) +

𝐸𝑚

𝑛𝑠

𝑛𝑤

ℎ
, (9)

with 𝐸𝑚 the odometric modulus. Note that Δ𝑝 = Δ𝑝(𝑥, 𝑦, 𝑧, 𝑡) is linked to Δ𝑝 in (1) through the depth-integration, namely

Δ𝑝 = 1
ℎ

ℎ

∫
0

Δ𝑝 𝑑𝑧, (10)

while Δ𝑝𝑏 in (4) coincides with the evaluation of the excess pwp at the bottom surface (i.e., Δ𝑝𝑏 =Δ𝑝(𝑥, 𝑦, 0, 𝑡)).
The presence of a diffusive contribution in (7) requires setting boundary conditions at both the endpoints of the vertical domain 
(0, ℎ). At the free surface we assume a null excess pwp since subject to the atmospheric pressure, while at the bottom we prescribe 
a basal excess pwp or we consider a zero boundary flux in case the material is flowing over an impermeable layer. In addition, a 
suitable initial condition has to be added to equation (7) as the consolidation problem is very sensitive to such a data. In this work, 
we assume that a region close to the bottom develops an excess pwp close to the liquefaction value 𝜌′

𝑑
𝑔ℎ.

As proved in [3], system (1) is completely consistent with the classical Pitman-Le set of equations in the case of null excess 
pwp. The eigenstructure of the quasilinear form of the Pitman-Le equations has been widely studied in the literature [1,40–42]. In 
particular, we propose here the generalization of an important result proved by M. Pelanti and collaborators in [40] to equations (1), 
namely to the case of the Pitman-Le model with a non-null excess pwp. To this aim, we focus on a one-dimensional setting, so that 
3

𝑣𝑤, 𝑣𝑠 denote the phase velocity components for the liquid and solid parts, respectively.
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Proposition 2.1. The Jacobian matrix associated with the transport operators in (1) has always at least two real eigenvalues, 𝜆1, 𝜆4, named 
external eigenvalues and two internal eigenvalues, 𝜆2 , 𝜆3, that can be complex, satisfying the inequalities,

𝑣min − 𝑐1 ≤ 𝜆1 ≤(𝜆2) ≤(𝜆3) ≤ 𝜆4 ≤ 𝑣max + 𝑐1, (11)

where (⋅) denotes the real part, 𝑣min = min(𝑣𝑤, 𝑣𝑠), 𝑣max = max(𝑣𝑤, 𝑣𝑠), 𝑐1 =
1

2
√
𝜌𝑤

√
𝐵 +

√
𝐶 , with

𝐵 = 4𝛽2Δ𝑝+ 2𝑎2𝜌𝑤(1 + 𝛽2),

𝐶 =𝐵2 − 16𝑎2𝛽2𝜌2
𝑤

(
𝑎2 + Δ𝑝

𝜌𝑤

)
, (12)

being 𝛽 =
√

1
2
𝑛𝑤(1 − 𝑟), with 𝑟 = 𝜌𝑤∕𝜌𝑠, and 𝑎 =

√
𝑔ℎ. Furthermore, if 𝑛𝑤 ≠ 0, a sufficient condition to guarantee the strict hyperbolicity 

of system (1) is

|𝑣𝑠 − 𝑣𝑤| ≤ 2𝑐2 or |𝑣𝑠 − 𝑣𝑤| ≥ 2𝑐1, (13)

for the velocity, with 𝑐2 =
1

2
√
𝜌𝑤

√
𝐵 −

√
𝐶 , and

−𝜌𝑤𝑎2 ≤Δ𝑝 ≤ 𝜌𝑤𝑎2 1 + 𝑟2
ℎ𝑠

ℎ𝑤
, (14)

for the mean excess pwp.

The proof of this result can be found in Appendix A. In [40], for the Pitman-Le equations, the authors use the Newton method to 
recover the full wave structure during the evolution of the simulation in order to exploit the approximate Riemann-Roe solver. Here, 
for the two-phase consolidation model, we rely on the fast Rusanov flux which is a single wave solver and requires just an estimation 
of the maximum simple wave speed in modulus.

Finally, we observe that the two-phase consolidation system of equations (1) and (7) admits a steady state solution which is 
similar to the ‘lake at rest’ configuration typical of the single-phase model, namely

ℎ+𝑍 = constant, 𝐔𝛼 = 𝟎, 𝑛𝛼 = constant, Δ𝑝 = 0. (15)

We refer to (15) as the well-balancing condition (or C-property). For the shallow water system, extensive research has been dedicated 
to design numerical methods consistent with (15) (see, e.g., [43–49,12,18,50]). We will numerically verify that the numerical scheme 
proposed in the next section satisfies the condition (15). Proposition 2.1 will play a crucial role in the setting and analysis of such an 
approach.

3. Numerical scheme

As a first step, we introduce the fully conservative wet-dry numerical strategy we adopt. We propose the two-phase extension of 
the procedure in [9,10,51] that has been successfully applied to the one-phase model in [11,8,22].
To this aim, we set the numerical thresholds, ℎ𝑠,min, ℎ𝑤,min, for the height of the solid and liquid, respectively. Below these values, 
we set null transport fluxes, and we neglect the bed friction contributions in order to avoid numerical instabilities in close to dry 
regions. Thus, the mass and momentum equations in (1) reduce to{

𝜕𝑡ℎ𝛼 = 0,
𝐔𝛼 = 𝟎 (16)

in dry regions, that is, for ℎ𝛼 < ℎ𝛼,min.
Moreover, to define the solid/liquid porosity, we set another threshold, ℎmin, on the material height below which we assign 

null porosity. Furthermore, below the threshold ℎmin, we assume null excess pwp and do not solve the consolidation equation. This 
expedient turns out to be particularly useful since it allows us to write the model (1) and (7) in the entire computational domain Ω
rather than in the wet region Ω𝑤 only.

3.1. Discretization of the mass and of the momentum equations

We rewrite equation (1) as a balance law with a non-conservative term, namely as

𝜕𝑡𝐪+∇ ⋅ 𝐅+𝐁∇𝐪 = 𝐒 in Ω× (0, 𝑇 ]. (17)
4

In particular, the vector of conserved variables is
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𝐪 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ𝑤

ℎ𝑠

𝐔𝑤
𝐔𝑠
𝑍

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (18)

the tensor 𝐅 of transport fluxes is defined by

𝐅(𝐪,Δ𝑝, 𝜃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑈𝑤,𝑥 𝑈𝑤,𝑦

𝑈𝑠,𝑥 𝑈𝑠,𝑦

𝑈2
𝑤,𝑥

ℎ𝑤
+ 1

2
𝑔ℎ2

𝑤
+ (1 − 𝜃)

ℎ𝑤Δ𝑝
𝜌𝑤

𝑈𝑤,𝑥𝑈𝑤,𝑦

ℎ𝑤

𝑈𝑤,𝑥𝑈𝑤,𝑦

ℎ𝑤

𝑈2
𝑤,𝑦

ℎ𝑤
+ 1

2
𝑔ℎ2

𝑤
+ (1 − 𝜃)

ℎ𝑤Δ𝑝
𝜌𝑤

𝑈2
𝑠,𝑥

ℎ𝑠
+ 1

2
𝑔ℎ2

𝑠
+ 1

2
𝑔(1 − 𝑟)ℎ𝑠ℎ𝑤 − (1 − 𝜃)

ℎ𝑤Δ𝑝
𝜌𝑠

𝑈𝑠,𝑥𝑈𝑠,𝑦

ℎ𝑠

𝑈𝑠,𝑥𝑈𝑠,𝑦

ℎ𝑠

𝑈2
𝑠,𝑦

ℎ𝑠
+ 1

2
𝑔ℎ2

𝑠
+ 1

2
𝑔(1 − 𝑟)ℎ𝑠ℎ𝑤 − (1 − 𝜃)

ℎ𝑤Δ𝑝
𝜌𝑠

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

with 𝜃 = 0, 1 an integer; the non-conservative contribution is cast via the multidimensional tensor 𝐁, such that 𝐁∇𝐪 =𝐁𝑥𝜕𝑥𝐪 +𝐁𝑦𝜕𝑦𝐪
with

𝐁𝑥(𝐪,Δ𝑝, 𝜃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(𝜃 − 𝑛𝑠)
Δ𝑝
𝜌𝑤

𝑔ℎ𝑤 + 𝑛𝑤
Δ𝑝
𝜌𝑤

0 0 0 0 𝑔ℎ𝑤

0 0 0 0 0 0 0

𝑟𝑔ℎ𝑠 − (𝜃 − 𝑛𝑠)
Δ𝑝
𝜌𝑠

−𝑛𝑤
Δ𝑝
𝜌𝑠

0 0 0 0 𝑔ℎ𝑠

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

𝐁𝑦(𝐪,Δ𝑝, 𝜃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(𝜃 − 𝑛𝑠)
Δ𝑝
𝜌𝑤

𝑔ℎ𝑤 + 𝑛𝑤
Δ𝑝
𝜌𝑤

0 0 0 0 𝑔ℎ𝑤

0 0 0 0 0 0 0

𝑟𝑔ℎ𝑠 − (𝜃 − 𝑛𝑠)
Δ𝑝
𝜌𝑠

−𝑛𝑤
Δ𝑝
𝜌𝑠

0 0 0 0 𝑔ℎ𝑠

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

(20)
5

the source term is
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𝐒(𝐪,∇Δ𝑝, 𝜃) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑛𝑤𝑒𝑅

𝑛𝑠𝑒𝑅

1
𝜌𝑤

𝐒𝑤 − 𝜃
ℎ𝑤

𝜌𝑤
∇Δ𝑝

1
𝜌𝑠

𝐒𝑠 + 𝜃
ℎ𝑤

𝜌𝑠
∇Δ𝑝

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

The numerical method we adapt to discretize the mass and the momentum equations consists of the second-order Taylor-Galerkin 
Path-Conservative (TG2-PC) scheme on quadtree adaptive meshes. The same approach has been used to solve the equations of the 
single-phase fast landslide model in [11,8].
The TG2-PC method is a two-step procedure that combines the Taylor-Galerkin (TG2) approach with a Path-Conservative (PC) 
finite-element integration scheme to compute the non-conservative product in (17).

The main novelty with respect to what done in [8], is represented by the presence of the source term. Following [52], we 
discretize in time 𝐒 by resorting to the Additive RK.2.A.2 scheme, which coincides with an IMplicit EXplicit (IMEX) Additive Runge-
Kutta (ARK) method [52]. This time integration scheme is A-stable and the associated stability region essentially coincides with the 
one characterizing the fully explicit RK scheme, thus implying no further restriction on the time step. Finally, to numerically deal 
with the non-linearities involved in 𝐒, we employ a semi-implicit discretization of the source term, to get rid of the intrinsic coupling 
between the mass and momentum sources. In particular, we solve both (1)1 and (1)2 with a semi-implicit scheme, which decouples 
the mass and the momentum equation, while discretizing the excess pwp equation with an ad-hoc technique detailed in Section 3.2.

Let us introduce a quadtree partition  of the computational domain Ω. We associate with  two discrete spaces, the space ℚ0
of the discontinuous piecewise constant basis functions and the space ℚ̃1 of the continuous bilinear finite-element functions, whose 
basis consists of the linear combinations of standard piecewise bilinear polynomials defined on quadrilateral structured grids at a 
different resolution in order to avoid extra degrees of freedom (dofs) in correspondence with the hanging nodes (see, e.g., [11,53]
for more details).
To apply the TG2-PC scheme to (17), we introduce the sets {𝜙(0)

𝑗
, 𝑗 = 1, … , 𝑀} and {𝜙̃(1)

𝑖
, 𝑖 = 1, … , 𝑁} of the basis functions associ-

ated with ℚ0 and ℚ̃1, respectively with 𝑀 the number of quadrilateral elements and 𝑁 the number of dofs in . Thus, the TG2-PC 
approximation of the balance law in (17) can be formulated for 𝑛 ≥ 0 as

(𝐐𝑛+ 1
2 , 𝜙

(0)
𝑗
) = (𝐐𝑛,𝜙

(0)
𝑗
) − Δ𝑡

2
(∇ ⋅ 𝐅𝑛0, 𝜙

(0)
𝑗
) − Δ𝑡

2
(𝐁𝑛0∇𝐐

𝑛,𝜙
(0)
𝑗
) + Δ𝑡

2
(𝐒
𝑛+ 1

2
0 , 𝜙

(0)
𝑗
),

(𝐐𝑛+1, 𝜙̃(1)
𝑖
) = (𝐐𝑛, 𝜙̃

(1)
𝑖
) + Δ𝑡 (𝐅∗,𝑛+ 1

2 ,∇𝜙̃(1)
𝑖
) − Δ𝑡 (𝐁

𝑛+ 1
2

1 ∇𝐐𝑛+ 1
2 , 𝜙̃

(1)
𝑖
) − Δ𝑡 ∫

𝜕Ω

𝐅∗,𝑛+ 1
2 𝐧 𝜙̃(1)

𝑖
𝑑Σ+ Δ𝑡

2
(𝐒𝑛1 + 𝐒𝑛+11 , 𝜙̃

(1)
𝑖
), (22)

with Δ𝑡 the time step, (⋅, ⋅) the 𝐿2(Ω)-scalar product, 𝐧 the unit outward normal vector to the boundary 𝜕Ω of Ω. In particular, 𝐐𝑛+𝑜

denotes the discrete counterpart in time of the conserved variable 𝐪 evaluated at time 𝑡𝑛+𝑜 = 𝑡𝑛 + 𝑜Δ𝑡, with 𝑜 = 0, 12 , 1; accordingly, 
we define

𝐁𝑛+𝑜
𝜃

= 𝐁(𝐐𝑛+𝑜,Δ𝑃
𝑛+𝑜
, 𝜃), 𝐅𝑛+𝑜

𝜃
= 𝐅(𝐐𝑛+𝑜,Δ𝑃

𝑛+ 1
2 +𝑜, 𝜃),

with Δ𝑃
𝑛+𝑜

the discrete temporal counterpart of the averaged excess pwp at time 𝑡𝑛+𝑜, being 𝑜 = 0, 12 , 1 and 𝜃 = 0, 1, and 𝐒𝑛+𝑜
𝜃

=

𝐒(𝐐∗,𝑛+𝑜, Δ𝑃
𝑛+𝑜
, 𝜃), where 𝐐∗,𝑛+𝑜 means that the source term is treated semi-implicitly in order to decouple the mass and momentum 

balance equations; the numerical flux is built following the flux correction limiting procedure (FCT), i.e., such that

𝐅∗,𝑛+ 1
2 = (𝐅

𝑛+ 1
2

1 − 𝛿𝐅𝑛) + 𝜙𝛿𝐅𝑛, (23)

with 𝛿𝐅𝑛 the anti-diffusive flux to be defined later, and 𝜙 the piecewise constant FCT coefficient defined according to the Zalesak’s 
procedure [54–56], specifically by following the quadtree version in [11].
We observe that the depth-averaged excess pwp contribution in the transport fluxes has been treated semi-implicitly following [57,
58]. Moreover, the boundary flux integrals are computed by imposing non-reflecting boundary conditions. Finally, we adopt a mass 
lumping technique to solve the equation (22)2 [11,8]. We point out that, to guarantee numerical stability for various choices of the 
terminal velocity 𝑉𝑇 that could be chosen considerably lower than 1, we replace the Cranck-Nicolson time integration in (22)2 with 
an implicit Euler scheme to guarantee L-stability. This is done just for the integration of the inter-phase drag force. Other choices 
could be investigated to maintain a stable discretization in case 𝑉𝑇 ≪ 1 and at the same time a second-order approximation of the 
inter-phase drag force. In particular, we mention the second-order L-stable scheme named Additive RK.2.L.1 method and described 
in [52]. However, the latter scheme could require a more restrictive choice for the time step through the CFL condition as one can 
evince from the absolute stability of the semi-discrete problem described in [52].

As confirmed by Proposition 2.1, the interphase drag plays a crucial role in stabilizing the model equations, the loss of hyper-
bolicity being a function of the relative phase velocity 𝐯𝑤 − 𝐯𝑠 [59,60]. Nevertheless, there are some flow conditions where the 
6

presence of the interphase drag force is not sufficient to prevent the appearance of unphysical numerical oscillations due to the rise 
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of complex eigenvalues. Following [59,60], to guarantee the hyperbolicity of system (1), we design an extra numerical interphase 
drag, which is added to the numerical model (22) through the following predictor-corrector strategy. We denote by 𝐐𝑛+1

p the output 
of the predictor step that we identify with the solution to the TG2-PC scheme (22). Then, the corrector step recovers the updated 
solution 𝐐𝑛+1 defined by

𝐐𝑛+1 =𝐐𝑛+1
p +Δ𝑡 𝐬(𝐐𝑛+1), (24)

where vector 𝐬 denotes the numerical interphase drag which, when referred to continuous variables, is defined by

𝐬(𝐪) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−𝐷ℎ(𝐯𝑤 − 𝐯𝑠)

𝑟𝐷ℎ(𝐯𝑤 − 𝐯𝑠)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (25)

with 𝐷 the drag coefficient. The discrete counterpart of coefficient 𝐷 denoted by 𝐷𝑛+1 is constructed by exploiting the sufficient 
condition for strict hyperbolicity stated in Proposition 2.1. Such a condition leads to the inequalities

𝐷𝑛+1 ≥max

⎛⎜⎜⎜⎜⎜⎝
0,

|Δ𝐯𝑛+1
𝑝𝑤,𝑠

|
2𝑐𝑛+12

− 1

Δ𝑡

(
1
𝑛𝑛+1𝑤

+ 𝑟

𝑛𝑛+1𝑠

)
⎞⎟⎟⎟⎟⎟⎠
, 𝐷𝑛+1 ≤min

⎛⎜⎜⎜⎜⎜⎝
0,

|Δ𝐯𝑛+1
𝑝𝑤,𝑠

|
2𝑐𝑛+11

− 1

Δ𝑡

(
1
𝑛𝑛+1𝑤

+ 𝑟

𝑛𝑛+1𝑠

)
⎞⎟⎟⎟⎟⎟⎠
, (26)

where Δ𝐯𝑛+1
𝑝𝑤,𝑠

= 𝐯𝑛+1
𝑝𝑤

− 𝐯𝑛+1
𝑝𝑠

, with 𝐯𝑛+1
𝑝𝑤
, 𝐯𝑛+1
𝑝𝑠

the predicted velocities, 𝑛𝑛+1
𝑤
, 𝑛𝑛+1
𝑠

the updated values of the porosity and 𝑐𝑛+11 , 𝑐𝑛+12 the 
updated values of the external and internal wave celerity, respectively with 𝑐1 and 𝑐2 defined as in Proposition 2.1. In particular, 
according to [60,59], the first condition in (26) keeps the momentum equations in the physical hyperbolic regime. On the contrary, 
the second condition is not relevant from a physical point of view, a negative inter-phase drag coefficient being not physical.

We note that the presence of non-conservative products in (17) does not add any further significant complication to the numerical 
setting developed for the single-phase problem. The main issue is the computation of these products at the second step of the TG2-PC 
method (22)2 since the gradient is not defined on the space ℚ0. To overcome such a problem, we adopt the same approach used 
to deal with the slope contribution, i.e., the PC method, in particular the finite element version proposed in [8]. To this aim, we 
consider the linear path

𝚿 =𝚿(𝐖
𝑛+ 1

2− ,𝐖
𝑛+ 1

2
+ , 𝑠) =𝐖

𝑛+ 1
2− + 𝑠(𝐖

𝑛+ 1
2

+ −𝐖
𝑛+ 1

2− ), (27)

parametrized by the real parameter 𝑠 ∈ [0, 1], which connects two adjacent states, 𝐖
𝑛+ 1

2− = (𝐐
𝑛+ 1

2− , Δ𝑃
𝑛+ 1

2
− ), 𝐖

𝑛+ 1
2

+ = (𝐐
𝑛+ 1

2
+ , Δ𝑃

𝑛+ 1
2

+ ), 
associated with the mesh elements sharing the generic edge 𝑒, with barycenter located at 𝐱− and 𝐱+, respectively. Then, the PC finite 
element formulation for the integral of the non-conservative products in (22)2 is

(𝐁
𝑛+ 1

2
1 ∇𝐐𝑛+ 1

2 , 𝜙̃
(1)
𝑖
) =

∑
𝑒∈𝑖

(
𝐐
𝑛+ 1

2
+ −𝐐

𝑛+ 1
2−

)
∫
𝑒

𝜙̃
(1)
𝑖
𝑑𝑙

1

∫
0

𝐁1
(
𝚿(𝐖

𝑛+ 1
2− ,𝐖

𝑛+ 1
2

+ , 𝑠)
)
𝐧𝑒 𝑑𝑠, (28)

where 𝐁1
(
𝚿(𝐖

𝑛+ 1
2− , 𝐖

𝑛+ 1
2

+ , 𝑠)
)
= 𝐁(𝐐𝑛+ 1

2 , Δ𝑃
𝑛+ 1

2 , 1), 𝑖 denotes the set of all the elements sharing the node 𝑖, 𝐧𝑒 is the unit outward 
normal vector to the edge 𝑒, such that 𝐧𝑒 ⋅ (𝐱+ − 𝐱−) > 0. In practice, since the orientation of normal 𝐧𝑒 can be along the 𝑥- or the 
𝑦-direction only, the product in the last integral results in evaluating just the matrix 𝐁𝑥 or 𝐁𝑦 in (20) along the path 𝚿.
However, the absence of a diffusive flux in (17) requires a notable modification of the well-balanced Rusanov flux introduced in [8]. 
To this aim, following [61] and with reference to a single mesh element, say 𝑗, with extension Δ𝑥𝑗 and Δ𝑦𝑗 along the 𝑥- and 
𝑦-direction, respectively, we propose the new well-balanced modification of the Rusanov numerical flux,

𝛿𝐅𝑛
𝑗
= min( Δ𝑥𝑗

Δ𝑡 ,
Δ𝑦𝑗
Δ𝑡

) 1
2Δ𝑡

(∇𝐕𝑛,𝜙(0)
𝑗
), (29)

where vector 𝐕𝑛 is the time-discrete counterpart of the vector 𝐯, which is linked to the vector 𝐪 of the conserved variables through 
7

the relation 𝐯 =𝐔𝐪, with 𝐔 the transformation matrix given by
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𝐔 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 𝛾𝑛𝑤𝑢

0 1 0 0 0 0 𝛾𝑛𝑠𝑢

0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (30)

Here, 𝑢 = 𝑢(ℎ − ℎmin) denotes the Heaviside step function, while the coefficient 𝛾 depends on the flow condition through the mixture 
Froude number Fr, being 𝛾 = 1∕(1 − Fr2). In the simulations of Section 4, we employ the maximum Froude number in the domain Ω
at the given simulation time to compute the coefficient 𝛾 . Moreover, in the computation of the anti-diffusive Rusanov numerical flux 
(29), quantities Δ𝑥𝑗∕Δ𝑡, Δ𝑦𝑗∕Δ𝑡 are upper bounded, thanks to the CFL condition, by the maximum simple wave speed in both the 
directions that are estimated through Proposition 2.1.
Equation (29) offers a generalization of the well-balanced flux limiting procedure in [8], since the two formulas do coincide in the 
case of a low Froude number. In particular, when the coefficient 𝛾 is set equal to one, we recover the well-balanced Rusanov flux 
proposed in [8], by adding the fluid with the solid mass balance equations.
Finally, we underline that in the absence of a physical diffusive flux, the modification in (29) is essential to guarantee good stability 
conditions to the overall numerical scheme (22) in order to prevent the time step going to zero.

3.2. Discretization of the consolidation equation

To discretize equation (7), we propose a second order space-time scheme that combines the TG2-PC method, used to discretize the 
problem in the horizontal domain Ω, with a semi-Lagrangian finite difference scheme, adopted to approximate the vertical material 
derivative along the particle trajectory. However, in contrast to a standard semi-Lagrangian integration where the domain is fixed in 
time, the consolidation equation (7) considers a domain varying in time, since it follows the free surface dynamics that delimits the 
vertical domain extension. As a consequence, the vertical material derivative is discretized in a moving domain so that we will refer 
to such a discretization as to a Semi-Arbitrary-Lagrangian-Eulerian (SALE) scheme.

For any mesh node 𝑧 ∈ [0, ℎ] along the vertical direction, we consider the non-dimensional coordinate 𝜁 = 𝑧∕ℎ, with 𝜁 ∈ [0, 1] as 
defined in Section 2. Then, the characteristic curve 𝜁 = 𝜁(𝑡) is the solution to the backward Cauchy problem

⎧⎪⎨⎪⎩
𝑑𝜁

𝑑𝑡
= 𝑎𝑧(𝐪, 𝜁(𝑡)) in [𝑡𝑛, 𝑡𝑛+𝑜),

𝜁(𝑡𝑛+𝑜) = 𝜁,
(31)

with 𝑜 = 1
2 , 1, 𝑎𝑧 = 𝑎𝑧(𝐪, 𝜁(𝑡)) the vertical relative velocity defined as in (8), and 𝜁 represents the final condition. According to [62,63], 

to preserve the second order accuracy of the space-time scheme, we integrate problem (31) with the explicit second order midpoint 
rule, namely we compute

𝜁0 = 𝜁,

𝜁1 = 𝜁0 −
Δ𝑡
2
𝐴𝑛
𝑧
(𝜁0),

𝜁2 = 𝜁0 − Δ𝑡𝐴
𝑛+ 1

2
𝑧 (𝜁1), (32)

where 𝐴𝑛
𝑧
(𝜁) and 𝐴

𝑛+ 1
2

𝑧 (𝜁) denote the time discrete counterpart of 𝑎𝑧 evaluated at 𝐐𝑛 and 𝐐𝑛+ 1
2 , respectively at the generic vertical 

non-dimensional coordinate 𝜁 .
We now introduce the operator 𝑜

𝜎
, with 𝜎 = 0, 1, 2 and 𝑜 = 1

2 , 1, such that, when applied, e.g., to Δ𝑃 𝑛, denotes the evaluation of 
the quantity discrete in time Δ𝑃 𝑛 at the vertical adimensional coordinate 𝜁𝜎 starting from the point 𝜁 = 𝜁(𝑡𝑛+𝑜) and moving along 
the characteristic curve 𝜁 = 𝜁(𝑡). Thus, by considering the same discrete spaces as in the previous section and denoting with 𝑆 the 
right-hand side in (7), we can formulate the two-step second order horizontally discrete weak formulation, which leads us to look 
for Δ𝑃 𝑛+1 = Δ𝑃 𝑛+1(𝑧) in ℚ̃1 such that

(Δ𝑃 𝑛+
1
2 , 𝜙

(0)
𝑗
) = ( 1

2
1 (Δ𝑃 𝑛), 𝜙(0)

𝑗
) − Δ𝑡

2
(𝐕𝑛

𝑠
⋅∇ 1

2
1 (Δ𝑃 𝑛), 𝜙(0)

𝑗
) + Δ𝑡

2
( 1

2
1 (𝑆𝑛), 𝜙(0)

𝑗
),

(Δ𝑃 𝑛+1, 𝜙̃(1)
𝑖
) = (1

2 (Δ𝑃
𝑛), 𝜙̃(1)

𝑖
) − Δ𝑡(𝐕

𝑛+ 1
2

𝑠 ⋅∇1
1 (Δ𝑃

𝑛+ 1
2 ), 𝜙̃(1)

𝑖
) + Δ𝑡(𝐶𝑣1

𝑚
(𝜕𝑧𝑧Δ𝑃𝑚), 𝜙̃

(1)
𝑖
) + Δ𝑡(1

1 (𝑆
𝑛+ 1

2 ), 𝜙̃(1)
𝑖
), (33)

with 𝑚 and 𝑚 integers to be properly defined, and 𝐕𝑛+𝑜
𝑠

the time discrete solid velocity at time 𝑡𝑛+𝑜. In particular, the horizontal 
transport contribution and the source terms are integrated with the variant of the PC method for a finite element discretization, 
analogously to as in (28). To recover the fully discrete formulation of the consolidation model, we employ the central finite difference 
scheme along the vertical direction. To this aim, we discretize the interval [0, ℎ] with 11 equally spaced nodes. Indices 𝑚 and 𝑚 in 
(33) are strictly related to the treatment (implicit or explicit) of the diffusive term, depending on the CFL condition at a given node 
8

of the mesh discretizing domain Ω. In more detail, we treat explicitly the diffusion term if the time step, Δ𝑡, needed to discretize the 
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mass and the momentum balance is lower than the time step required by the vertical diffusion contribution. In formulas, if Δ𝑧𝑛,𝑖 is 
the mesh spacing along the vertical direction at time 𝑡𝑛 and at the mesh node 𝑖, we have

𝑚 =
⎧⎪⎨⎪⎩
𝑛 if Δ𝑡 ≤ Δ𝑧2

𝑛,𝑖

2𝐶𝑣
(1 − 𝜇2)

𝑛+ 1 otherwise,

𝑚 =

{
2 if 𝑚 = 𝑛,
0 otherwise,

(34)

with 𝜇 the CFL number related to the transport term of the consolidation equation. In Appendix B, we justify the derivation of the 
above time step restriction.

From a computational viewpoint, we observe that, in the case of an implicit scheme, we obtain a tridiagonal positive semi-definite 
linear system to be solved on the single mesh node of the computational domain Ω along the vertical direction. This does not affect 
the overall parallel implementation, since the independence among nodes 𝑖 does not involve any communication among processors.
Concerning the stability, the resulting scheme is stable under the same CFL condition required by the mass and momentum balance 
equations. Indeed, while the SALE method is unconditionally stable, the TG2-PC scheme in the horizontal plane Ω would require 
a CFL number 𝜇 due to the transport term that is always less restrictive than the CFL number needed to numerically stabilize 
equation (22). An additional advantage of this discretization relies on the treatment of the diffusion term. In close to dry regions 
Δ𝑧𝑛,𝑖 could be fine enough to consider the case 𝑚 = 𝑛 + 1 without modifying the order of accuracy with respect to the case 𝑚 = 𝑛. 
This is a considerable advantage over a fully explicit scheme that would require the use of a smaller time step to prevent the rise of 
spurious oscillations.
Moreover, we point out that, as for the mass and the momentum equations, we apply a FCT procedure compliant with the one in the 
previous section to prevent the rise of numerical spurious oscillations in the horizontal discretization of the pressure equation with 
the TG2-PC.

Another advantage of the discretization in (33) is that the diffusion contribution does not appear in the first step of the method, 
in line with the TG2 method for advection dominated problems (see e.g. [9,11]). This choice does not affect the overall space-
time second-order of accuracy of the method, under the hypothesis that the diffusion coefficient 𝐶𝑣 is almost of the same order of 
magnitude of the time step (𝐶𝑣 ∼(Δ𝑡)). This requirement is, in general, verified in the case of a horizontally advection-dominated 
regime (we refer again to Appendix B).

Finally, we need to enforce the hyperbolicity behavior on the mean excess pwp as stated in Proposition 2.1. We note that the 
stabilization procedure adopted for the mass/momentum equation stabilization is similar to a penalty method (see, e.g., [64,65]). 
Thus, we again follow a predictor/corrector strategy first by defining the predicted vertically varying excess pwp, Δ𝑃 𝑛+1

𝑝
, through 

(33) and then by updating such a value with the corrector step

Δ𝑃 𝑛+1 = Δ𝑃 𝑛+1
𝑝

− (𝜎2 + sf𝜎1), (35)

where sf is a safety factor set to 1.2 in numerical assessment, while 𝜎1, 𝜎2 are penalty parameters defined by

𝜎1 = min
(
Δ𝑃 𝑛+1

𝑝
+ 𝜌𝑤𝑔ℎ𝑛+1,0

)
, (36)

𝜎2 = max

(
Δ𝑃 𝑛+1

𝑝
− 𝜌𝑤𝑔ℎ𝑛+1

1 + 𝑟
2

ℎ𝑛+1
𝑠

ℎ𝑛+1𝑤

,0

)
, (37)

with 𝜁𝑛+1 the numerical approximation of 𝜁 at time 𝑡𝑛+1.
We mention that the integral means in the vertical direction are computed by means of the trapezoidal rule and that we consider a 
null vertical excess pwp profile for material height lower than the threshold ℎmin.

4. Numerical examples

In this section, we focus on both benchmark and realistic configurations in order to verify the capability of the proposed numerical 
scheme to deal with academic problems as well as with real scenarios.

In all simulations, if not otherwise stated, the initial porosity is computed by exploiting the relation 𝑛𝑤 = (𝜌 −𝜌𝑠)∕(𝜌𝑤−𝜌𝑠) linking 
the mixture to the phase density. Regarding the thresholds under which we assign a null velocity, if not otherwise stated, we set 
ℎ𝑤,min = 10−5 m, ℎ𝑠,min = 10−5 m, ℎmin = 10−5 m. We keep the CFL condition equal to 0.9 in all the simulations. Furthermore, in the 
tests where we resort to a mesh adaptation procedure, we set a tolerance on the solution accuracy equal to 10−5 m.

4.1. Reliability tests

With a first set of simulations we aim to numerically investigate some properties of the proposed TG2-PC scheme when applied 
to the two-phase consolidation model. In more detail, we test the well-balance and the loss of hyperbolicity properties on reference 
configurations in the literature, we carry out the classical dam-break test case and we perform a parallel efficiency test.
For all the tests, except for the one adopted in the parallel efficiency analysis, we run the program with four MPI ranks available on 
a laptop with an Intel i7 CPU, a 2.60 GHz clock frequency and a 16 GB RAM. The efficiency analysis is executed in double precision 
9

on the supercomputer CINECA GALILEO100, where we perform the compilation and linking steps with gcc-10 and OpenMPI 4.1.1.
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Table 1

Well-balancing tests. 𝐿∞(Ω)-norm of the error for both the smooth and the discontinuous topography.

𝐿∞(Ω)-norm of the error

ℎ 𝑛𝑤 𝑈𝑤,𝑥 𝑈𝑤,𝑦 𝑈𝑠,𝑥 𝑈𝑠,𝑦 Δ𝑝

𝑍1 1.77e-15 2.77e-17 8.01e-15 6.27e-15 2.40e-14 3.06e-14 5.99e-11
𝑍2 6.66e-15 1.25e-15 3.84e-14 3.41e-14 4.07e-14 4.21e-14 5.57e-11

Fig. 1. Loss of hyperbolicity tests. Initial conditions for mass, momentum laws (panels a) and b)); colorplot of the solid/fluid interface (panel c)). (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

4.1.1. Well-balancing tests
To numerically verify the well-balancing property of the TG2-PC scheme, we analyze two examples with a smooth and a discon-

tinuous topography, respectively. The tests are taken from [66] and have already been reproduced by the authors to investigate the 
well-balancing property of the same scheme in the case of the single-phase depth-integrated landslide model [8]. We consider a final 
time 𝑇 = 0.5 s and a square domain with horizontal and vertical dimension 𝐿𝑥 =𝐿𝑦 = 10 m; the smooth topography is described by

𝑍(𝐱) =𝑍1(𝐱) = 5𝑒−
2
5 (𝑥−5)

2
, (38)

while the discontinuous bottom is characterized by the function

𝑍(𝐱) =𝑍2(𝐱) =
{

4 if 4 ≤ 𝑥 ≤ 8,
0 otherwise.

(39)

Concerning the initial data, we assume a null initial excess pwp and phases at rest condition, with a total free surface height equal to 
10 m and densities 𝜌 = 2350 kg/m3, 𝜌𝑠 = 2700 kg/m3, 𝜌𝑤 = 1000 kg/m3. The domain is discretized with a structured mesh consisting 
of 214 elements.
Table 1 provides the 𝐿∞(Ω)-norm of the error associated with the material height, the liquid porosity, the components of the liquid 
and solid mass fluxes and the mean excess pwp, for both the considered topographies. All the errors are close to the roundoff 
unit, independently of the selected bed profile. This confirms the well-balancing property of the proposed TG2-PC method for the 
two-phase consolidation model equations.

4.1.2. Loss of hyperbolicity tests
This test is proposed in [59] to assess the capability of the predictor/corrector strategy to recover the system hyperbolicity when 

applied to the two-layer shallow water system. The same configuration has been also considered to test the performance of the 
Non-Oscillatory Central (NOC) scheme when solving the Pitman-Le set of equations [60].
In the following we consider two tests, without and with excess pwp. In particular, in the latter case, we set an initial excess pwp 
profile which varies linearly from a liquefied value at the bottom to a null excess pwp at the free surface. We do not consider any 
roughness or erosion in the mass and momentum balance law. We set a final time 𝑇 = 1 s, and consider a domain with an extension 
along the 𝑥- and 𝑦-direction equal to 𝐿𝑥 =𝐿𝑦 = 2 m, respectively. The domain is discretized with a structured mesh consisting of 214
cells, corresponding to a resolution along the 𝑥-direction of roughly Δ𝑥 ≈ 0.01 m. We set 𝑟 = 0.99. Finally, the initial condition for 
the mass and the momentum equations coincides with

𝐪(𝐱,0) =
{

(0.4,0.6,0.08,0,−0.18,0,0)𝑇 if 0.5 < 𝑥 < 1.5,
(0.5,0.5,0.10,0,−0.15,0,0)𝑇 otherwise.

(40)

Fig. 1 graphically represents the initial conditions. In particular, panel a) shows the isolines associated with Δ𝑝 together with the 
profile of the free surface, the solid/fluid interface, and the bottom topography. Panel b) shows the phase velocities. Panel c) provides 
10

the colorplot of the solid/fluid interface, while the black line identifies the section along which we analyze the solution trend.
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Fig. 2. Loss of hyperbolicity tests (null excess pwp). Trend of the free surface and of the phase interface evolution (top), and of the phase velocities (bottom) at the 
final time 𝑇 provided by the TG2-PC scheme without (left) and with (right) the predictor/corrector step.

In a first analysis, we neglect the excess pwp equation so that we recover the Pitman-Le system of equations. In particular, for 
𝑟 ≈ 1, the behavior of the Pitman-Le system is similar to the one of the two-layer shallow water equations according to [59]. Note 
that the initial data in (40) does not fit with the hyperbolic regime. Indeed, referring to Proposition 2.1, we recover the Pelanti’s 
conditions|𝑣𝑤,𝑥 − 𝑣𝑠,𝑥| = 0.5 < 2

√
𝑔ℎ ≈ 6.26,

|𝑣𝑤,𝑥 − 𝑣𝑠,𝑥| = 0.5 > 2
√
𝑔ℎ

√
1
2
𝑛𝑤(1 − 𝑟) ≈

{
0.28 if 𝑛𝑤 = 0.4
0.31 otherwise,

(41)

for the case of null excess pwp. The system looses hyperbolicity at the beginning of the simulation at each point of the domain, since 
2𝑎𝛽 < |𝑣𝑤,𝑥 − 𝑣𝑠,𝑥| < 2𝑎.
Fig. 2 shows the results of this case study at the final time 𝑇 . In particular, we display the free surface and the phase interface 
evolution (top panels) together with the phase velocities trend (bottom panels). The results provided by the TG2-PC method without 
and with the predictor/corrector strategy are displayed in the left and in the right column, respectively. It is evident how the 
predictor/correct step is able to suppress any spurious numerical oscillation due to the loss of hyperbolicity.

In a second analysis, we consider the presence of the excess pwp. We aim at numerically verify that Proposition 2.1 provides a 
sufficient condition to guarantee the hyperbolicity constraint in the case of a non-null excess pwp. For the excess pwp equation, we 
consider 𝐶𝑣 = 0.1 m2/s, 𝐸𝑚 = 0 Pa and we assume an impermeable bottom so to prescribe a null flux at the bottom topography. 
Referring to Proposition 2.1, we observe that, also for this configuration, the hyperbolicity constraint is initially violated. Indeed, the 
initial value of the mean excess pwp and the initial flow conditions are such that 𝑐2 ≈ 𝑎𝛽 and 𝑐1 ≈ 𝑎, thus resulting in an initial loss of 
hyperbolicity as 2𝑐2 < |𝑣𝑤,𝑥 − 𝑣𝑠,𝑥| < 2𝑐1. In Fig. 3 we provide the trend of the free surface, the phase interface, the phase velocities 
and the isolines of the excess pwp at final time 𝑇 . As for the previous setting, we compare the results yielded by the TG2-PC method 
when equipped, or not, with the predictor/corrector strategy used to enforce the hyperbolic regime. Analogously as in Fig. 2, we 
appreciate the capability of the predictor/corrector correction in removing spurious numerical oscillations due to the presence of 
complex eigenvalues.

4.1.3. Dam break over a flat plane

The first case study we reproduce was proposed in [40], where the authors employ a second-order total variation diminishing 
(TVD) FV scheme, and then reproduced successfully dealing with different numerical schemes [20,60]. Here, to assess the numerical 
performance of the proposed method, we build a reference solution following [20]. In particular, using a digitizer software [67], we 
extract data from a second-order space-time accurate TVD FV solution proposed in [40].
11

We consider a standard one-dimensional frictionless Riemann problem with infinite permeability, i.e. we assign 𝑉𝑇 = 1010 m/s. We 
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Fig. 3. Loss of hyperbolicity tests (non null excess pwp). Trend of the free surface, the phase interface and of the isolines of the excess pwp (top), and of the phase 
velocities (bottom) at final time 𝑇 provided by the TG2-PC scheme without (left) and with (right) the predictor/corrector step. (For interpretation of the colors in the 
figure(s), the reader is referred to the web version of this article.)

take a flat square domain with edge length 𝐿𝑥 = 𝐿𝑦 = 10 m, a null excess pwp, a fluid at rest along the 𝑦-direction, a density ratio 
𝑟 = 0.5, and we neglect any erosion phenomenon. The initial conditions consist of two constant states, separated by an interface 
located at 𝑥 =𝐿𝑥∕2, i.e.,

𝐪(𝐱,0) =
⎧⎪⎨⎪⎩
(0.9,2.1,0.27,0,−2.94,0,0)𝑇 if 𝑥 < 𝐿𝑥∕2,

(1.2,0.8,−0.12,0,−0.72,0,0)𝑇 otherwise.
(42)

Fig. 4 collects some results at time 𝑇 = 0.5 s when performing the discretization on a fixed and on an adaptive grid. We provide the 
trend of the physical quantities ℎ, ℎ𝑤, ℎ𝑠 (panel a)); the phase velocities 𝑣𝑠,𝑥, 𝑣𝑤,𝑥 along the 𝑥-direction (panel b)); the solid volume 
fraction 𝑛𝑠 (panel c)); the isolines of 𝑈𝑠,𝑥 for the adaptive mesh case and the horizontal section used to extract the one-dimensional 
solutions in panels a)-c) (panel d)). In particular, the dashed lines and the lines with circles correspond to two different resolutions 
along the 𝑥-direction, namely a uniform spatial discretization Δ𝑥 ≈ 0.16 m (or, likewise, 212 elements) for the dashed lines, and an 
adaptive discretization with a minimum resolution Δ𝑥 ≈ 0.01 m for the lines with circles. The mesh adaptation procedure is carried 
out at each time step of the simulation and is constrained by a minimum step length equal to the uniform mesh size adopted in [40].
The TG2-PC method, thanks to the PC strategy, is able to detect all the four waves generated by the Riemann problem. Moreover it 
is evident the excellent matching between reference and TG2-PC solution when resorting to the adapted mesh.

In a second test, we consider a wet-dry dam-break setting over a flat squared domain with extension along the two directions equal 
to 𝐿 = 𝐿𝑥 = 𝐿𝑦 = 100 m and with densities 𝜌 = 2260 kg/m3, 𝜌𝑤 = 1000 kg/m3, 𝜌𝑠 = 2800 kg/m3, thus resulting in an initial liquid 
porosity 𝑛𝑤 = 0.3. We consider a material initially at rest, and we set an initial material profile ℎ equal to 10 m for |𝑥 −𝐿∕2| ≤𝐿∕10
and for |𝑦 −𝐿∕2| ≤ 𝐿∕10 and equal to 0 m otherwise. Concerning the bed friction, we do not consider any turbulence coefficient 𝜉, 
while we set a friction angle 𝜙𝐵 = 21.8◦. Then, we select a final time velocity 𝑉𝑇 = 10−3 m/s for the inter-phase drag force.
The spatial discretization is carried out by introducing a quadtree domain partition with a minimum mesh size equal to 1 m in the 
wet region and to 0.5 m along the wet-dry interface. Then, a mesh adaptation procedure is applied each 10−3 s.
We present the results obtained both by including and neglecting the excess pwp. Regarding the consolidation equation, we do not 
consider any odometric coefficient, namely 𝐸𝑚 = 0 Pa, and we assign a consolidation coefficient 𝐶𝑣 = 0.01 m2/s. The final time is set 
to 𝑇 = 2.5 s. Moreover, the initial condition varies linearly from the liquefied value at the bottom to the zero value at the top.
Fig. 5 displays some results of such an analysis. Panel a) shows the isolines of the mixture height ℎ overlapped to the quadtree mesh 
at time 𝑡 = 1 s, together with the white-highlighted horizontal line along which we extract the solution at the final time in case of a 
non-null (see panel b)) and a null (see panel c)) excess pwp. We observe that the presence of the excess pwp implies a larger runout. 
12

This is in accordance with the expectation, since, as already stated in the introduction, a possible mitigation strategy to slow down 
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Fig. 4. Dam break problem over a flat bottom. Standard one-dimensional Riemann problem: trend of the total depth and of the fluid and solid landslide heights 
(panel a)); of the phase velocities along the 𝑥-direction (panel b)); of the solid volume fraction (panel c)) for two different spatial resolutions: one structured with 
Δ𝑥 ≈ 0.16 m, dashed lines; and one adaptive with finest resolution Δ𝑥 ≈ 0.01 m, lines with circles. Panel d) shows the isolines of 𝑈𝑠,𝑥 for the adaptive mesh case 
together with the line over which we extract the one-dimensional solution displayed in the previous panels. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

the landslide motion is the adoption of basal grids where the pore pressure is made zero. Moreover, panel b) shows that the isolines 
of the excess pwp relative to the liquefied state Δ𝑝𝑟𝑒𝑙 =

Δ𝑝
𝜌′
𝑑
𝑔ℎ

at the final time, such that Δ𝑝𝑟𝑒𝑙 = 1 in the liquefied state.

As a third test we consider a one-dimensional wet-dry dam-break problem over a flat bottom having extension 𝐿 = 𝐿𝑥 = 𝐿𝑦 =
100 m, with densities 𝜌 = 2260 kg/m3, 𝜌𝑤 = 1000 kg/m3, 𝜌𝑠 = 2800 kg/m3, thus resulting in an initial liquid porosity 𝑛𝑤 = 0.3. 
The material is initially at rest, and we set an initial material profile ℎ equal to 10 m for 𝑥 ≤ 10 m and equal to 0 m otherwise. 
We consider a mild permeable condition, i.e., we assign 𝑉𝑇 = 10−3 m/s and a null excess pwp. Further, we neglect any erosion 
phenomenon. Concerning the bed friction, we do not consider any turbulence coefficient 𝜉, while we assign a null bed friction angle 
for a first set of simulations and a value 𝜙𝐵 = 21.8◦ for a second bunch of tests. For both the friction and frictionless case, we consider 
four different thresholds on the material and phase heights, i.e., 10−5 m, 10−4 m, 10−3 m, 10−2 m. Finally, we choose 𝑇 = 5 s.
The domain is discretized with a structured grid having a resolution equal to Δ𝑥 ≈ 0.4 m. Fig. 6 gathers the results of such an 
analysis by considering the solution trend along the line 𝑦 =𝐿∕2. In particular, panel a) shows the evolution of the solid front, i.e., 
max𝑥∈[0,𝐿] ℎ𝑠 > 10−3, during the simulation time for the friction and frictionless cases and for the different thresholds. Panel b) shows 
a particular of the profile of the material height ℎ close to the wet-dry interface. The arrows are associated with a reduction of the 
thresholds. We notice that a coarsening of the material threshold implies a lower simulated runout distance. In both the panels, it is 
evident a convergent trend of the solution for smaller and smaller values of the threshold.

4.1.4. Efficiency test with discontinuous topography

To test the parallel efficiency of the proposed numerical scheme, we perform a strong scaling analysis. Further, we show how 
such a scheme can handle the presence of discontinuities along the material path thanks to the adoption of the PC strategy.
To this aim, we choose a domain Ω with an extension along the 𝑥- and the 𝑦-direction equal to 𝐿𝑥 =𝐿𝑦 = 200 m and a material with 
densities 𝜌 = 2260 kg/m3, 𝜌𝑤 = 1000 kg/m3, 𝜌𝑠 = 2800 kg/m3. No erosion effect is taken into account. Moreover, we consider no 
friction term (𝝉 (𝑠)

𝐵
= 𝟎), a terminal velocity 𝑉𝑇 = 10−3 m/s, a consolidation coefficient 𝐶𝑣 = 0.01 m2/s and a null odometric coefficient 
13

(𝐸𝑚 = 0 Pa). We assume both phases initially at rest and an topography profile with a discontinuity, being
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Fig. 5. Dam break problem over a flat bottom. Wet-dry dam-break problem: isolines of the mixture height ℎ together with the quadtree mesh at 𝑡 = 1 s (panel a)); 
trend of the fluid ℎ𝑤 and solid ℎ𝑠 landslide heights and of the horizontal fluid 𝑈𝑤,𝑥 and solid 𝑈𝑠,𝑥 mass fluxes for a non-null (panel b)) and a null (panel c)) excess 
pwp along the horizontal line white-highlighted in panel a). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. Dam break problem over a flat bottom. One-dimensional wet-dry dam-break problem: time evolution of the solid front position (panel a)); trend of the material 
height ℎ for a confined subset of the 𝑥 coordinate (panel b)). Both the friction and frictionless scenarios are considered for different values of the thresholds (the 
arrows highlight the decreasing values of such quantities). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

𝑍(𝐱) =

⎧⎪⎪⎨⎪
95 if 𝑥 ≤ 5,
−𝑥+ 100 if 5 < 𝑥 < 50,
80 if 60 < 𝑥 < 100 and 80 < 𝑦 < 120,

(43)
14

⎪⎩50 otherwise.
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Fig. 7. Efficiency test. Scaling analysis (panel a)); isolines of the topography overlapped to the spatial discretization of the domain (panel b)); distribution of the 
relative mean excess pwp with respect to the mean liquefied value (panel c)).

The material height is initially set to 10 m, for 𝑥 ≤ 10 m, while the initial condition for the pressure is linearly varying from the 
liquefied value at the bottom to the null value at the free surface. Finally, the domain is discretized with a fixed uniform mesh 
characterized by a spatial resolution approximately equal to 0.2 m in both the directions, corresponding to a number of mesh 
elements equal to 220.

We carry out a strong scaling analysis, from 16 to 512 MPI ranks, and up to one second. Panel a) in Fig. 7 shows the speedup trend 
as a function of the number of ranks in a log10-log10 scale. A parallel efficiency of roughly 70% is reached, with an increment 
close to the ideal one.

The same simulation has been replicated up to five seconds, and by resorting to a mesh adaptation procedure each 0.001 s. We 
set a minimum spatial resolution equal to 1 m in the wet region and to 0.5 m along the wet-dry interface. In particular, we show 
how the proposed method can handle discontinuities along the flow path, such as, for instance, in presence of houses.
In panel b) of Fig. 7 we supply the isolines of the topography discretized at time 2.5 s. Notice that the topography is properly refined 
as the landslide propagates. The distribution of the relative mean excess pwp with respect to the mean liquefied value, Δ𝑝𝑟𝑒𝑙 , is 
shown in panel c) at the final time 𝑡 = 5 s. The wake behind the parallelepipedal obstacle is characterized by a negative mean excess 
pwp, thus resulting in a low pressure area. This is in accordance with the expectation, the parallelepiped being a bluff obstacle. 
Moreover, even if the mean excess pwp is negative in the correspondence of the wake, the predictor/corrector penalization method 
allows keeping values in the hyperbolic range thus avoiding the rise of complex roots in the computation of the stabilization term 
for the momentum balance equation.

4.2. Sham Tseng San Tsuen debris flow

We focus on a real debris flow case study which has been already analyzed in the literature by using a Smoothed-Particle 
Hydrodynamics Finite-Difference (SPH-FD) scheme [3]. The event is a small sized debris flow which took place in Hong Kong on 
August 23, 1999. From geological surveys, it turns out that the landslide reached the village and destroyed a house, while it was 
estimated a material height ranging from 1 m to 1.5 m all over the village area (we refer to [3] for a detailed explanation of the 
study area).
The input topography is a Digital Terrain Model (DTM) with a resolution of 2 m in both the 𝑥- and the 𝑦-directions. We show the 
15

DTM isolines in Fig. 8, by highlighting the destroyed with a red dot.
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Fig. 8. Sham Tseng San Tsuen debris flow. DTM isolines with the destroyed house (red dot). (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Regarding the parameters, we follow [3] and we choose: the bed friction angle 𝜙𝐵 such that tan𝜙𝐵 = 0.75; the turbulence 
coefficient 𝜉 = 500 m/𝑠2; the mixture and phase densities 𝜌 = 2000 kg/m3, 𝜌𝑤 = 1000 kg/m3, 𝜌𝑠 = 2400 kg/m3; the coefficients for the 
interphase drag law 𝑉𝑇 = 10−4 m/s, 𝑚 = 1; the consolidation coefficient 𝐶𝑣 such that we have a consolidation time 𝑇𝑐 = ℎ20∕𝐶𝑣 = 78 s 
for ℎ0 = 1.5 m; the odometric coefficient 𝐸𝑚 = 104 Pa; the mixture material and phases height thresholds equal to 10−3 m.

We present results both with and without the consolidation equation, as in [3]. In particular, Fig. 9 shows the isolines of the 
material height from a minimum value of 10 cm superimposed to the DTM isolines at six different times (𝑡 = 0 s, 10 s, 20 s, 30 s, 
45 s) for the case of a null excess pwp, while Fig. 10 provides the same results when including the excess pwp equation. We observe 
that the runout distance is considerably larger when including the excess pwp so that, in such a case, the landslide reaches the house 
that was destroyed during the real event. This is compliant with what obtained in [3]. Another similarity with respect to the SPH-FD 
code is the discrepancy between the case with and without excess pwp in terms of material height. By neglecting the excess pwp 
material height, deposit on the track is over 2 m. On the contrary, when including the excess pwp, we have material heights, ranging 
between 1 m and 1.2 m (i.e., in the range given by geological surveys), in the village area close to the destroyed house.

We experienced that the TG2-PC scheme predicts a lower front propagation runout when compared with the SPH-FD method. 
In more detail, we estimate a runout distance of about 233 m and 160 m for the case with and without excess pwp, respectively in 
contrast to approximately 270 m and 170 m for the SPH-FD code. This different behavior can be ascribed to the fact that the SPH 
discretization is, in general, overdiffusive, especially in advection dominated problems.

5. Conclusions

We have proposed a parallel efficient well-balanced numerical method to solve a two-phase depth-integrated consolidation math-
ematical model that has been originally proposed by M. Pastor in [3,24,25,4]. Such a model offers an extension of the Pitman-Le 
equations, to study the runout phase of fast landslides. In particular, we have proposed an extension of the Pelanti’s proposition to 
consider the presence of non-null excess pwp.

The new scheme is second-order accurate in space and time and is subject to a stability restriction, which depends only on 
the horizontal CFL condition deriving from the mass and momentum equations. To this aim, a particular care has been taken to 
discretize the three-dimensional consolidation equation, by combining a semi-Lagrangian finite-difference approximation along the 
vertical direction, to model the free-surface varying a time, with a TG2-PC discretization in the horizontal domain.

We have tested the proposed numerical discretization on idealized as well as on realistic DTM scenarios. In particular, we have 
numerically verified the well-balancing property, the parallel efficiency and the capability to deal with discontinuous topographies. 
These positive checks candidate the proposed scheme as a valid alternative to other discretizations available in the literature, such 
as the SPH method. For instance, this latter could suffer from well-balancing issues and from an excessive dissipation when dealing 
with discontinuous topographies, such as in the presence of houses along the runout path.

Possible future developments include exploiting the parallel efficiency of the new method to apply an uncertainty quantification 
analysis to real case studies, for instance, by means of Monte Carlo sampling or polynomial chaos expansion [68–70].

CRediT authorship contribution statement

Federico Gatti: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualiza-
tion, Writing – original draft, Writing – review & editing. Carlo de Falco: Supervision, Writing – original draft, Writing – review & 
editing. Simona Perotto: Writing – original draft, Writing – review & editing. Luca Formaggia: Funding acquisition, Supervision.
16

Manuel Pastor: Supervision.



Journal of Computational Physics 501 (2024) 112798F. Gatti, C. de Falco, S. Perotto et al.

Fig. 9. Sham Tseng San Tsuen debris flow (null excess pwp). Isolines of the material height overlapped to the DTM isolines at time 𝑡 = 0 s, 10 s, 20 s, 30 s, 45 s (from 
a) to f) panels). The red dot highlights the destroyed house. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Fig. 10. Sham Tseng San Tsuen debris flow (non null excess pwp). Isolines of the material height overlapped to the DTM isolines at time 𝑡 = 0 s, 10 s, 20 s, 30s, 45 s 
(from a) to f) panels). The red dot highlights the destroyed house. Isolines of the material height over the isolines of the DTM. The red dot is the house destroyed 
during the event. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
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Appendix A. Proof of Proposition 2.1

We generalize the proof in [41, Proposition 4.1] to the case of a non-null excess pwp.
We consider the one-dimensional and homogeneous counterpart of the mass and momentum equations in (17), which simplifies to 
18

the semilinear equation
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𝜕𝑡𝐪+𝐀𝜕𝑥𝐪 = 𝟎, (A.1)

with 𝐪 = (ℎ𝑠, 𝑈𝑠, ℎ𝑤, 𝑈𝑤)𝑇 and 𝐀 =𝐀(𝐪) defined by

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−
𝑛𝑤Δ𝑝
𝜌𝑠

+ 1
2
𝑔(1 − 𝑟)ℎ𝑤 + 𝑔ℎ𝑠 − 𝑣2𝑠 2𝑣𝑠

1
2
𝑔(1 + 𝑟)ℎ𝑠 −

𝑛𝑤Δ𝑝
𝜌𝑠

0

0 0 0 1
𝑛𝑤Δ𝑝
𝜌𝑤

+ 𝑔ℎ𝑤 0
𝑛𝑤Δ𝑝
𝜌𝑤

+ 𝑔ℎ𝑤 − 𝑣2
𝑤

2𝑣𝑤

⎤⎥⎥⎥⎥⎥⎥⎦
. (A.2)

To simplify the notation, we neglect the subscript 𝑥 for the mass fluxes, 𝑈𝑤, 𝑈𝑠, and the corresponding velocities, 𝑣𝑤 = 𝑈𝑤∕ℎ𝑤, 
𝑣𝑠 = 𝑈𝑠∕ℎ𝑠. Moreover, we refer to an topography which does not vary in time, i.e., such that 𝜕𝑡𝑍 = 0. This choice allows us to 
decrease by one the order of the system balance in (17).

As for the Pitman-Le equations, we recover a closed expression of the eigenvalues associated with the matrix 𝐀 when imposing 
equal solid and liquid phase velocities (𝑣𝑤 = 𝑣𝑠). This allows us to identify the external (𝑐1) and the internal (𝑐2) wave celerities, and 
to introduce the quartic polynomials

𝑝𝑤(𝜆) = (𝜆− (𝑣𝑠 − 𝑐2))(𝜆− (𝑣𝑠 + 𝑐2))(𝜆− (𝑣𝑤 − 𝑐1))(𝜆− (𝑣𝑤 + 𝑐1)),

𝑝𝑠(𝜆) = (𝜆− (𝑣𝑠 − 𝑐1))(𝜆− (𝑣𝑠 + 𝑐1))(𝜆− (𝑣𝑤 − 𝑐2))(𝜆− (𝑣𝑤 + 𝑐2)). (A.3)

Note that the eigenvalues of 𝑝𝑤(𝜆), 𝑝𝑠(𝜆) are real numbers if and only if the following conditions hold,

⎧⎪⎨⎪⎩
𝐶 ≥ 0,
𝐵 ≥ 0,
𝐵2 ≥ 𝐶,

(A.4)

𝐵 and 𝐶 being defined as in (12), which imply that

⎧⎪⎪⎨⎪⎪⎩
𝐶 ≥ 0,

Δ𝑝 ≥ −𝜌𝑤𝑎2
(
1 + 𝛽2

2𝛽2

)
,

Δ𝑝 ≥ −𝜌𝑤𝑎2.

(A.5)

Since the third condition is more restrictive than the second one and 𝐶 = 𝐵2 ≥ 0 in case Δ𝑝 = −𝜌𝑤𝑎2, we can conclude that the 
necessary and sufficient condition such that the eigenvalues of 𝑝𝑤(𝜆), 𝑝𝑠(𝜆) are real is

Δ𝑝 ≥ −𝜌𝑤𝑎2, (A.6)

namely the left inequality in (14). Now, after denoting by 𝑃 = 𝑃 (𝜆) the characteristic polynomial associated with the matrix 𝐀, we 
can define the differences

𝑃 (𝜆) − 𝑝𝑤(𝜆) =
1

2𝜌𝑤
(𝐷 −

√
𝐶)(𝑣𝑠 − 𝑣𝑤)(𝜆− 𝑣), (A.7)

𝑃 (𝜆) − 𝑝𝑠(𝜆) =
1

2𝜌𝑤
(𝐷 +

√
𝐶)(𝑣𝑠 − 𝑣𝑤)(𝜆− 𝑣), (A.8)

with 𝑣 = (𝑣𝑠 + 𝑣𝑤)∕2 and

𝐷 = 2𝑛𝑤Δ𝑝(1 + 𝑟) + 𝑎2𝜌𝑤((3 + 𝑟)𝑛𝑤 − 2). (A.9)

Thus, it follows that the value taken by the characteristic polynomial 𝑃 at 𝜆 is always lower- and upper-bounded by the values taken 
by the quartic polynomials 𝑝𝑤, 𝑝𝑠 in (A.3), for any 𝜆 ∈ℝ, if 𝐷2 ≤ 𝐶 , which is equivalent to the two-side inequality

−𝜌𝑤𝑎2 ≤Δ𝑝 ≤ 𝜌𝑤𝑎2 1 + 𝑟2
ℎ𝑠

ℎ𝑤
. (A.10)

We recover condition (A.6) from the left inequality. The upper bound introduces a further constraint on the mean excess pwp, in 
particular on the allowed maximum value. Thus, result (A.10) proves the two-side inequality in (11).

Regarding the sufficient conditions for hyperbolicity, we have to ensure that point 𝑣 has to be included between the two inflection 
points, 𝜔1 and 𝜔2, of 𝑃 , which is equivalent to require that

2Δ𝑝(1 − 𝑟)𝑛𝑤
𝜌𝑤

+ 𝑎2((1 − 𝑟)𝑛𝑤 + 2) + (𝑣𝑤 − 𝑣𝑠)2 ≥ 0, (A.11)
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namely



Journal of Computational Physics 501 (2024) 112798F. Gatti, C. de Falco, S. Perotto et al.

(𝑣𝑤 − 𝑣𝑠)2 ≥ −
2Δ𝑝(1 − 𝑟)𝑛𝑤

𝜌𝑤
− 𝑎2((1 − 𝑟)𝑛𝑤 + 2). (A.12)

Such constraint is always satisfied since the right-hand side is always negative if (A.6) holds. The sufficient condition for hyperbolicity 
(i.e., 𝑃 (𝑣) ≥ 0) enforces inequality

4Δ𝑝(𝑟− 1)𝑛𝑤
(
2𝑎2 − Δ𝑣2

)
+
(
4𝑎2 − Δ𝑣2

)(
2𝑎2(𝑟− 1)𝑛𝑤 +Δ𝑣2

) ≤ 0, (A.13)

with Δ𝑣 = (𝑣𝑤 − 𝑣𝑠), which leads to (13) when solved in terms of Δ𝑣. This concludes the proof.

Appendix B. Stability and local truncation error analysis of the TG2 scheme with explicit treatment of the diffusion term

For simplicity, we consider the one-dimensional linear problem

𝜕𝑡𝑞 + 𝑎𝜕𝑥𝑞 − 𝜖𝜕𝑥𝑥𝑞 = 0 (B.1)

for the generic scalar variable 𝑞. We apply the TG2 method to discretize (B.1). This leads to

𝑞𝑛+1
𝑖

= 𝑞𝑛
𝑖
− 𝑎 Δ𝑡

2Δ𝑥
(
𝑞𝑛
𝑖+1 − 𝑞

𝑛
𝑖−1
)
+ 𝑎2 Δ𝑡2

2Δ𝑥2
(
𝑞𝑛
𝑖+1 − 2𝑞𝑛

𝑖
+ 𝑞𝑛

𝑖−1
)
+ 𝜖 Δ𝑡

Δ𝑥2
(
𝑞𝑛
𝑖+1 − 2𝑞𝑛

𝑖
+ 𝑞𝑛

𝑖−1
)
, (B.2)

for each (spatial) node 𝑖 and time 𝑡𝑛.
By introducing the adimensional coefficients 𝜇 = 𝑎 Δ𝑡

Δ𝑥 and Φ = 𝜖 Δ𝑡
Δ𝑥2 and after applying the von Neumann analysis to (B.2), we obtain 

the amplification factor

𝐺 = (1 − 𝜇2 − 2Φ) + (𝜇2 + 2Φ)cos𝜗− 𝑗𝜇 sin𝜗,

with 𝑗 the imaginary unit and 𝜗 an angle in [0, 𝜋]. The stability condition |𝐺|2 ≤ 1 for the most restrictive choice of 𝜗, i.e., 𝜗 = 𝜋, 
leads to inequality

𝜇2 + 2Φ ≤ 1,

namely to Φ ≤ 1
2 . The explicit definitions of 𝜇 and Φ imply that

Δ𝑡 ≤ Δ𝑥2
2𝜖

(1 − 𝜇2),

which coincides with result (34).
To prove the second order of convergence of the scheme (B.2), we compute the associated local truncation error moving from the 

Taylor series expansions

𝑞𝑛+1
𝑖

= 𝑞𝑛
𝑖
+Δ𝑡𝜕𝑡𝑞𝑛𝑖 +

Δ𝑡2
2
𝜕𝑡𝑡𝑞

𝑛
𝑖
+(Δ𝑡3),

𝑞𝑛
𝑖+1 = 𝑞

𝑛
𝑖
+Δ𝑥𝜕𝑥𝑞𝑛𝑖 +

Δ𝑥2
2
𝜕𝑥𝑥𝑞

𝑛
𝑖
+ Δ𝑥3

6
𝜕𝑥𝑥𝑥𝑞

𝑛
𝑖
+(Δ𝑥4),

𝑞𝑛
𝑖−1 = 𝑞

𝑛
𝑖
−Δ𝑥𝜕𝑥𝑞𝑛𝑖 +

Δ𝑥2
2
𝜕𝑥𝑥𝑞

𝑛
𝑖
− Δ𝑥3

6
𝜕𝑥𝑥𝑥𝑞

𝑛
𝑖
+(Δ𝑥4),

after assuming enough regularity for 𝑞. Replacing such expansions in (B.2) yields

𝜕𝑡𝑞
𝑛
𝑖
+ Δ𝑡

2
𝜕𝑡𝑡𝑞

𝑛
𝑖
+(Δ𝑡2) = −𝑎𝜕𝑥𝑞𝑛𝑖 + 𝑎

2 Δ𝑡
2
𝜕𝑥𝑥𝑞

𝑛
𝑖
+ 𝜖𝜕𝑥𝑥𝑞𝑛𝑖 +(Δ𝑥2).

Since we have 𝜕𝑡𝑞𝑛𝑖 + 𝑎𝜕𝑥𝑞
𝑛
𝑖
− 𝜖𝜕𝑥𝑥𝑞𝑛𝑖 = 0 and 𝜕𝑡𝑡𝑞𝑛𝑖 = 𝑎

2𝜕𝑥𝑥𝑞
𝑛
𝑖
− 2𝑎𝜖𝜕𝑥𝑥𝑥𝑞𝑛𝑖 + 𝜖

2𝜕𝑥𝑥𝑥𝑥𝑞
𝑛
𝑖
, it turns out that the local truncation error 𝜏

for (B.2) is given by

𝜏 = Δ𝑡
2
(
−2𝑎𝜖𝜕𝑥𝑥𝑥𝑞𝑛𝑖 + 𝜖

2𝜕𝑥𝑥𝑥𝑥𝑞
𝑛
𝑖

)
+(Δ𝑡2 + Δ𝑥2).

Thus, method (B.2) is second order accurate when the diffusion coefficient is at most equal to the time step size, i.e. for 𝜖 ∼ (Δ𝑡). 
This is, for instance, normally verified by advection dominated problems.
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