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Abstract

In this paper, we propose a unified and high order accurate fully-discrete one-step ADER Discontin-
uous Galerkin method for the simulation of linear seismic waves in the sea bottom that are generated
by the propagation of free surface water waves. In particular, a hyperbolic reformulation of the Serre-
Green-Naghdi model for nonlinear dispersive free surface flows is coupled with a first order velocity-stress
formulation for linear elastic wave propagation in the sea bottom. To this end, Cartesian non-conforming
meshes are defined in the solid and fluid domains and the coupling is achieved by an appropriate time-
dependent pressure boundary condition in the three-dimensional domain for the elastic wave propagation,
where the pressure is a combination of hydrostatic and non-hydrostatic pressure in the water column above
the sea bottom. The use of a first order hyperbolic reformulation of the nonlinear dispersive free surface
flow model leads to a straightforward coupling with the linear seismic wave equations, which are also
written in first order hyperbolic form. It furthermore allows the use of explicit time integrators with a
rather generous CFL-type time step restriction associated with the dispersive water waves, compared to
numerical schemes applied to classical dispersive models that contain higher order derivatives and typi-
cally require implicit solvers. Since the two systems that describe the seismic waves and the free surface
water waves are written in the same form of a first order hyperbolic system they can also be efficiently
solved in a unique numerical framework. In this paper we choose the family of arbitrary high order
accurate discontinuous Galerkin finite element schemes, which have already shown to be suitable for the
numerical simulation of wave propagation problems. The developed methodology is carefully assessed by
first considering several benchmarks for each system separately, i.e. in the framework of linear elasticity
and non-hydrostatic free surface flows, showing a good agreement with exact and numerical reference
solutions. Finally, also coupled test cases are addressed. Throughout this paper we assume the elastic
deformations in the solid to be sufficiently small so that their influence on the free surface water waves
can be neglected.

Keywords: hyperbolic equations, ADER schemes, discontinuous Galerkin finite element methods, hy-
perbolic reformulation of the Serre-Green-Naghdi model, linear elastic wave equations in velocity-stress
formulation, coupling of nonlinear dispersive water waves with linear elastic waves

1 Introduction

The physical phenomenon we are interested in is the generation of seismic waves in the sea bottom due
to the propagation of free surface water waves on the sea surface in near coastal regions. In view of the
physical characteristics of the two materials involved, the wave speeds in the solid medium and the free
surface wavespeed in the fluid can differ by up to two orders of magnitude. To simulate such a complex
situation, we propose the use of a high order accurate fully-discrete one-step ADER-DG scheme on non
conforming meshes, which solve a coupled set of two first order hyperbolic systems. The first model is a
hyperbolic reformulation [54] of the Serre-Green-Naghdi model for the description of non-hydrostatic free-
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surface flows, while the second model consists in a classical first order hyperbolic model of linear elasticity
in velocity-stress formulation for the description of linear seismic waves propagation [111, 7, 75].

The most straightforward way to model water wave propagation could be to consider a fully three-
dimensional free surface flow model, like for example those developed in a series of papers by Casulli et
al. [21, 25, 15, 22, 24, 23], where an efficient semi-implicit method for fully three-dimensional hydrostatic
and non-hydrostatic free surface flows has been proposed. Since, however, we are interested in the
propagation of free surface sea waves near the coast, where the typical horizontal length scales are far
larger than the typical vertical length scales, also simplified shallow water-type equations (SWE) may be a
suitable alternative, substantially reducing computational complexity and increasing the efficiency of the
final methodology compared to fully three-dimensional models. A wide variety of phenomena associated
to the propagation of water waves can be successfully described employing the classical shallow water
equations [35]. Nevertheless, the SWE are unable to reproduce non-hydrostatic effects and propagation of
solitary and dispersive waves. For this reason, we need to go beyond the classical shallow water equations,
looking for more sophisticated dispersive systems. Starting from the pioneering work [11], in which a
first 1D Boussinesq-type model is derived under the assumptions of weak dispersion, weak non-linearity
and flat bottom topography, different dispersive systems have been proposed in the literature. Among
them we recall the Peregrine system, [88], where the model in [11] is extended to two dimensions and to
non flat bottom topography (still maintaining the weak nonlinearity hypothesis), the Serre model, [95],
where a 1D fully non-linear approach is presented for flat bottom topography (still keeping the weak
dispersion assumption), the Serre-Green-Naghdi (SGN) model, [65, 94], where an extension of [95] to two
dimensions for arbitrary bottom is provided and [28], where a derivation of the model in [65] is built,
using asymptotic expansion and irrotationality. Notice that, in addition to the models just mentioned,
more advanced models with improved dispersion characteristics (see [79, 80, 85, 77, 78]) and models which
include additional physical phenomena with respect to the classical formulation for inviscid flows (see the
review [71]) have been also proposed in the literature.

An important distinguishing feature of dispersive models is that they contain higher order space and
space-time derivatives. Consequently, their numerical discretization becomes particularly difficult and
a severe time step restriction arises when explicit time integration schemes are employed. A possible
solution to this major drawback is the introduction of augmented first order systems, such as in [14, 59].
Also in this case, however, the hyperbolicity of the SW equations is lost, thus leading to the necessity of
solving an elliptic equation for the dispersive part at each time-step. A completely different approach is
instead adopted in [54], where a hyperbolic approximation of the non-hydrostatic system in [14] and of
the SGN model with mild bottom approximation are proposed. The hyperbolic approximation proves to
have a dispersion relation which is very similar to the dispersion relations associated to the original non-
hyperbolic models and allows to obtain very accurate numerical results. At the same time hyperbolicity
allows to easily implement the model in the context of high-order finite volume (FV) and discontinuous
Galerkin (DG) schemes and to realize efficient numerical simulations also in multiple space dimensions.
Due to these evident advantages, we have decided to employ this approach for the water waves part in
our coupled simulations. Notice that the introduction of hyperbolic reformulations is not a novelty and
comes from the pioneering work by Cattaneo [26], where the second order terms in the heat equation are
rewritten as relaxation terms, while a hyperbolic approximation has been proposed for the first time in
the context of dispersive systems in [58] (precisely for the Serre model [95]). Further developments of
[54] are presented in [5], where an hyperbolic reformulation of SGN model for arbitrary bathymetry in
introduced. Moreover, in [53], an even more general formulation has been proposed, including further
dispersive Boussinesq-type systems, as the models of Yamazaki et al., [112], and Peregrine, [88, 79],
which are built neglecting some convective terms in the equation for the averaged vertical velocity and
in an auxiliary equation accounting for the spatial variation of the mean horizontal velocity. For further
first order hyperbolic reformulations of dispersive and dissipative systems, see also [37] and [89, 48].
Concerning the propagation of seismic waves, we put ourselves in the context of linear elasticity and
we adopt a first order velocity-stress formulation, which has the advantage of being hyperbolic, see e.g.
[75, 69].

A key idea of the present paper is the mathematical description of both wave propagation problems,
i.e. the linear seismic waves as well as the nonlinear dispersive water waves, at the aid of first order
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hyperbolic systems. For this reason, we can easily couple both models with each other and solve them
numerically in the time domain by employing high order accurate discontinuous Galerkin (DG) finite
element methods in a straightforward manner. We decide, in particular, to use an explicit high order
ADER-DG scheme [69], for which the usual CFL condition holds, i.e. with ∆t proportional to ∆x, thus
avoiding higher powers of ∆x that would be typical for explicit time discretizations of Boussinesq-type
equations with higher order spatial and temporal derivatives.

The DG method has been introduced for the first time in [90], for the solution of a neutron transport
equation. It has been then extended to time-dependent, multidimensional and nonlinear hyperbolic prob-
lems in [27, 33, 30, 29, 31]. Besides, in [6, 32] the Local Discontinuous Galerkin (LDG method) has been
proposed in order to solve convection-diffusion equations. This approach involves rewriting the second
order equations as an augmented non-hyperbolic first order system and the subsequent discretization of
this augmented system with the DG method. The DG method has been applied for the first time to
equations containing higher order derivatives in [114], where the LDG method is used for the resolution
of linear dispersive Korteveg-de-Vries (KdV) equations, containing up to third order spatial derivatives.
Extensions to linear equations with derivatives up to fifth order and nonlinear dispersive equations are in-
stead presented in [113, 76]. Applications of the DG method to the solution of nonlinear Boussinesq-type
dispersive equations have been introduced in [56, 55, 52]. Notice that the severe time step restrictions
due to higher-order spatial derivatives are overcome in [42], where a fully implicit space-time DG method
is applied to both linear third order KdV equations and nonlinear Boussinesq-type systems.

High order of accuracy in space is straightforward to obtain in the DG framework, while attaining
high order in time is still a very active field of research. A successful approach consists in using the
already mentioned space-time DG methods, [92, 93, 109, 110, 97, 98, 72, 99, 18]. An alternative, that
will be followed in this work, are the ADER-DG schemes, first put forward in [41] in the context of FV
methods and generalized in [39] to the unified PNPM framework for arbitrary high order accurate one-
step FV and DG schemes. Classical ADER methods (Arbitrary high order DErivative Riemann problem)
have been proposed by Millington et al., [82], and Toro et al., [104], in the framework of finite volume
methods. The methodology is based on the resolution, at the cell interfaces, of a generalized Riemann
problem with piecewise polynomial initial conditions, built using a nonlinear reconstruction (e.g. ENO or
WENO methods) that circumvents Godunov’s theorem. Then, space-time integration on an appropriate
control volume is performed using a Taylor series expansion in time, where time derivatives are replaced
by spatial derivatives following the Cauchy-Kovalevskaya procedure. Further developments of classical
ADER schemes, including their extension to the DG framework, can be found in [106, 102, 47, 46, 63,
19, 17, 36, 9] and references therein. The main inconvenient of classical ADER methods is the need
of the cumbersome Cauchy-Kovalevskaya procedure. The novel ADER-DG methodology presented in
[41, 39] avoids that step by employing a new element-local space-time DG predictor, which leads to
more efficient algorithms. Since then, ADER-DG has been used to solve many different models, such as
compressible flows [38], hyperbolic systems in general relativity [44, 57, 43] or non conservative hyperbolic
systems for geophysical flows [40]. Moreover, the ADER-DG method has also proven to be well suited
for the simulation of seismic waves problems, see [69, 45, 70, 34, 46]. For other high order discontinuous
Galerkin finite element schemes applied to elastic wave equations, see e.g. [66, 2, 1, 3, 4]. Finally, in [54]
the ADER-DG method has also been successfully applied to the solution of hyperbolic reformulations of
dispersive models. Due to these considerations, the ADER-DG method appears to be a suitable choice
for the discretization of the coupled system proposed in the present work.

The paper is organized as follows. In Section 2, the mathematical models employed for the description
of both seismic and free surface water waves are recalled. Moreover, the boundary conditions to be set
on the interface between the fluid and solid domains are defined. Section 3 is devoted to the description
of the high order one-step ADER-DG scheme on Cartesian grids. In Section 4, the numerical method
is validated. First, some classical benchmarks are solved independently for each of the two systems of
equations. Then, two test cases of the coupled problem are presented. Finally, in Section 5, we draft
some conclusions and perspectives.
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2 Governing equations

As already mentioned within the introduction, we aim at simulating the effect of surface water waves
on the generation and propagation of seismic waves on the sea bottom. To this end, we couple the two
systems that are recalled in this section: a non-hydrostatic dispersive shallow water-type model for the
propagation of the free surface water waves and a linear elasticity model for the seismic waves propagating
in the solid domain below the sea floor.

2.1 Non-hydrostatic free surface flows

During the last decades many non-hydrostatic models aiming at characterising non-hydrostatic free sur-
face flows have been successfully developed. Taking into account the features of the flow to be modelled,
we will employ the Serre-Green-Naghdi (SGN), [64, 65] model, and a dispersive model recently proposed
by Sainte-Marie et al. (SM) in [14]. Both models are used in combination with the so-called mild bot-
tom approximation. It is important to remark that both systems can be rewritten in a one-parameter
dependent unified formulation, [54], as

∂h

∂t
+∇ · (hu) = 0, (1)

∂hu

∂t
+∇ · (hu⊗ u) +∇ ·

(
1

2
gh2I + hpI

)
+ (gh+ γp)∇zb = 0, (2)

∂hw

∂t
+∇ · (huw) = γp, (3)

w +
1

2
h∇ · u− u · ∇zb = 0, (4)

where we have denoted h the water depth, u = (ux, uy) the horizontal velocity vector of the fluid, w the
auxiliary variable of the averaged vertical flow velocity, p the depth-averaged non-hydrostatic correction
for the pressure, g = 9.81 the gravity acceleration and zb the vertical coordinate of the bottom bathymetry.
Moreover, the gradient and divergence operators considered refer to the horizontal plane, ∇ = (∂x, ∂y)

T
,

neglecting the vertical variable and I is the identity matrix of dimension two. Substituting γ = 3
2 , the

former system would provide the SGN model whereas setting γ = 2 leads to the SM model.
Following [54], the first order unified reformulation of the SGN and SM models reads

∂h

∂t
+∇ · (hu) = 0, (5)

∂hu

∂t
+∇ · (hu⊗ u) +∇ ·

(
1

2
gh2I + hpI

)
+ (gh+ γp)∇zb = 0, (6)

∂hw

∂t
+∇ · (huw) = γp, (7)

∂hp

∂t
+∇ · (hup) + c2 (2w + h∇ · u− 2u · ∇zb) = 0. (8)

with c the artificial sound speed, c = α
√
gH0, H0 the average still water depth and α > 0. The system

(5)-(8) represents the conservation of mass and momentum and is furthermore augmented by two PDEs
for the auxiliary variables p and w, with appropriate source terms, that allow the system to relax, for
c2 →∞, towards the original SGN or SM models, depending on the value of the parameter γ. Moreover,
assuming steady bathymetry, the system can be completed with the following equation:

∂tzb = 0. (9)

It is important to note that the above system is depth averaged and, thus, the vector of spatial coordinates
x ∈ Ωw ⊂ R2, where Ωw is the two-dimensional computational domain used for the simulation of the
water wave propagation (see Figure 1). The fact that the equations are depth averaged, jointly with the
use of a two-dimensional domain, makes this model particularly interesting concerning its computational
efficiency, compared to a more complete three-dimensional non-hydrostatic formulation.
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Figure 1: Two-dimensional computational domain for the simulation of the water wave
propagation. h denotes the water depth, H is the still water depth, A = h − H corre-
sponds to the surface elevation with respect to the still water depth, η is the total surface
elevation, and zb gives the bottom bathymetry.

2.2 Linear elastic wave propagation

Assuming the sea bottom to be a homogeneous isotropic elastic material under small deformations, it
can be modelled using the linear elasticity equations [67, 8, 7, 75]. The classical formulation of linear
elasticity is a second order vector wave equation, but it can be rewritten as a first order hyperbolic system
in velocity-stress formulation, which leads to an easier and more direct coupling with the model governing
the dispersive water waves shown in the previous section. Accordingly, the final hyperbolic system for
the linear elastic wave propagation reads

∂σ

∂t
− λ (∇ · v) I− µ

(
∇v +∇vT

)
= 0, (10)

∂ρv

∂t
−∇ · σ = 0, (11)

where the first equation, (10), is the Hooke law expressed in terms of the two Lamé constants λ and µ and
the second equation, (11), represents the conservation of momentum. Here, the time is again denoted by
t and the spatial coordinate is x ∈ Ωe ⊂ R3, with Ωe a 3D computational domain used for the simulation
of the seismic wave propagation. Furthermore, in the above system, σ = σT is the symmetric stress
tensor, σ̃ = ∂σ

∂t corresponds to the linearized part of the first Piola-Kirchhoff stress tensor, u is the vector
of the velocity field and ρ is the density.

2.3 Coupling of the models

To simulate the effect of free surface waves on the generation and propagation of seismic waves on the
sea bottom, the non-hydrostatic and the linear elastic wave models need to be coupled. Throughout this
paper we assume that the coupling is only done in a one-way manner, i.e. the free surface waves lead to a
time-dependent pressure on the sea floor, which generates low frequency and low amplitude linear elastic
waves in the solid medium below the sea bottom. Instead, we assume that the elastic deformations of the
solid are very small and therefore do not couple back to the surface water waves via a time-dependent
bottom geometry. The non-hydrostatic description of the free surface water waves propagation therefore
provides appropriate boundary conditions for the stress tensor on the upper boundary of the domain Ωe,
which will be denoted by ∂Ωe,u in the following. In particular, we assume zero shear stress and continuity
of the normal stress on ∂Ωe,u,

σxz = σyz = 0, σzz = ρgh. (12)

As already stated before, due to their very low amplitude, the linear elastic waves are not coupled
back to the non-hydrostatic shallow water solver, although one might imagine a fully coupled system
by considering, in (5)-(9), ∂tzb = v · nz, where nz is the unit normal vector in z direction and v is the
velocity of the solid.
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2.4 Unified writing of the models

To provide a unified description of the numerical scheme for the two models considered, we rewrite the
systems of equations to be solved in the general form

∂tQ +∇ · F(Q) + B(Q) · ∇Q = S (Q) , (13)

where Q = Q (x, t) is the vector of unknowns, F(Q) is the nonlinear flux tensor, B(Q) · ∇Q is a
genuinely non-conservative term, and S (Q) is an algebraic source term. Therefore, for the hyperbolic
non-hydrostatic model (5)-(9), we have

Q =



h

hu1

hu2

hw

hp

zb


, F(Q) =



hu1 hu2

hu2
1 + 1

2gh
2 + hp hu1u2

hu1u2 hu2
2 + 1

2gh
2 + hp

hwu1 hwu2

hu1

(
p+ c2

)
hu2

(
p+ c2

)
0 0


,

B(Q) · ∇Q =



0

(gh+ γp) ∂xzb

(gh+ γp) ∂yzb

0

c2 [−u1∂xh− u2∂yh− 2 (u1∂xzb + u2∂yzb)]

0


, S (Q) =



0

0

0

γp

−2c2w

0


. (14)

On the other hand, the definition of Q = (σxx, σyy, σzz, σxy, σyz, σxz, u1, u2, u3)
T

and

B(Q) · ∇Q =



−(λ+ 2µ)∂xu1 − λ∂yu2 − λ∂zu3

−λ∂xu1 − (λ+ 2µ)∂yu2 − λ∂zu3

−λ∂xu1 − λ∂yu2 − (λ+ 2µ)∂zu3

−µ∂xu2 − µ∂yu1

−µ∂yu3 − µ∂zu2

−µ∂xu3 − µ∂zu1

− 1
ρ (∂xσxx + ∂yσxy + ∂zσxz)

− 1
ρ (∂xσxy + ∂yσyy + ∂zσyz)

− 1
ρ (∂xσxz + ∂yσyz + ∂zσzz)



(15)

leads to the linear elasticity model (10)-(11).
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3 Numerical discretization

The high order accurate fully-discrete one-step ADER discontinuous Galerkin methodology (ADER-DG),
[39, 50], is used in order to discretize the two models considered, namely the hyperbolic reformulation of
the SGN equations (HSGN), presented in Section 2.1, and the linear elasticity system recalled in Section
2.2. ADER-DG methods fall into the framework of the general PNPM schemes proposed in [39], that
extend the local predictor ADER methodology presented in [41] for FV also to the DG framework. More
precisely, we focus on the pure DG case, where N = M , which has shown to be appropriate to solve
linear and non-linear hyperbolic conservation laws. In this section, we provide a brief summary of the
method on Cartesian grids. Further developments of this methodology, including the use of unstructured
mesh and Cartesian grids with adaptative mesh refinement (AMR) employed to solve a wide variety of
hyperbolic PDEs, in both the Eulerian and the Lagrangian framework, can be found, for instance, in
[38, 49, 50, 115, 51, 60, 44, 16] and references therein.

Before describing the numerical method to be employed, we define a discretization of the compu-
tational domain Ω using a Cartesian grid made of elements of the form Ωi =

[
xi − 1

2∆x, xi + 1
2∆x

]
×[

yi − 1
2∆y, yi + 1

2∆y
]
×
[
zi − 1

2∆z, zi + 1
2∆z

]
, with xi = (xi, yi, zi) the barycentre of cell Ωi and ∆x,

∆y, ∆z the cell size on each spatial coordinate direction. Next, following the classical DG approach, we
assume that the space of discrete solutions of (13) is generated by spatial basis functions φk constructed
as the tensor product of piecewise polynomials up to degree N . In particular, we consider the orthogonal
Lagrange interpolation polynomials passing through the Gauss-Legendre quadrature points of a N + 1
Gauss quadrature formula. Then, within each element Ωi the discrete solution of the system can be
written as

uh(x, tn) = φl(x) ûnl , x ∈ Ωi, (16)

where the classical Einstein summation convection is employed, ûnl denote the degrees of freedom of the
solution, and l is a multidimensional index referring to the one-dimensional basis functions, φlm , on a
reference element Ωref = [0, 1], to be used in the tensor product. The reference coordinates 0 ≤ ξ, η, ζ ≤ 1
are obtained via the transformations x = xi− 1

2∆x+ ξ∆x, y = yi− 1
2∆y+η∆y, and z = zi− 1

2∆z+ ζ∆z,
respectively. Since the chosen basis functions are not time dependent, the direct use of a classical DG
approach would result in a low order scheme in time. To attain high order of accuracy in time, we use
the ADER-DG methodology which can be divided into two main steps:

• Local space-time predictor computation. System (13) is solved “in the small” using a locally im-
plicit space-time discontinuous Galerkin scheme on each element, which neglects iterations between
neighbour cells.

• Explicit update of the solution using a one-step corrector. The space-time predictor is used into
the weak formulation of (13) which takes into account the fluxes between cells and provides the
solution of the system at the new time instant.

We come now to further detail each step.

3.1 Local space-time predictor

To determine the local space-time predictor solution, qh(x, t), which will lead to a high order scheme in
space and time avoiding the cumbersome Cauchy-Kovalewskaya procedure used in the original ADER
methods [105, 107, 101, 108], we employ the weak formulation in space-time proposed in [41, 39]. Let us
consider the space-time test functions, θk = θk(x, t), built as the product of the already introduced nodal
spatial basis functions and an additional one dimensional basis function for the time dependency. with
the additional transformation for the reference time τ given by t = tn + τ∆t. Then, multiplying (13) by
θk and integrating over the space-time control volume, Ωi ×

[
tn, tn+1

]
, yields

tn+1∫
tn

∫
Ωi

θk ∂tqh dx dt+

tn+1∫
tn

∫
Ωi

θk∇ · F(qh) dx dt+

tn+1∫
tn

∫
Ω◦

i

θkB(qh) · ∇qh dx dt =

∫
Ωi

θkS(qh) dx dt. (17)

7



Within an implicit space-time DG method, [109, 110], the weak formulation (17) would be now integrated
by parts in space and time to provide the solution at the new step. However, we are just interested in
obtaining a local approximation of the predictor so we only integrate by parts in time, neglecting the
interaction between neighbours,

∫
Ωi

θk(x, tn+1)qh(x, tn+1) dx−
∫
Ωi

θk(x, tn)uh(x, tn) dx−
tn+1∫
tn

∫
Ωi

∂tθk qh dx dt+

tn+1∫
tn

∫
Ωi

θk∇ · F(qh) dx dt+

tn+1∫
tn

∫
Ω◦

i

θkB(qh) · ∇qh dx dt =

∫
Ωi

θkS(qh) dx dt. (18)

Moreover, in (18), we have taken into account that the predictor at time tn is given by the degrees of
freedom of the solution at the previous time step, uh(x, tn), thus respecting the causality principle. This
fact can be seen as the realization of an upwinding approximation in time. Therefore, the above nonlinear
system has as only unknown the degrees of freedom of the space-time expansion,

qh(x, t) = θk(x, t) q̂k (19)

and can be solved locally at each cell using a discrete Picard iteration procedure. Since the Picard
iteration matrix is nilpotent, it will converge in at most N + 1 iterations, as it has been proven in [68] for
homogeneous linear conservation laws. The convergence of the Picard iteration for nonlinear systems of
conservation laws was proven in [16]. The solution of (18) constitutes the only (element-local) implicit
step on the whole ADER-DG algorithm.

3.2 Fully discrete one-step ADER-DG schemes

The solution qh, obtained at the predictor step, does not account for the neighbouring flux contributions,
so it can not be used as the solution of the PDE system at time tn+1. To correct this issue we employ an
explicit one-step DG approach. We first multiply the governing PDE system (13), by the test functions
φk and we then integrate over a space-time control volume Ωi × [tn, tn+1], obtaining the following weak
problem

tn+1∫
tn

∫
Ωi

φk (∂tQ +∇ · F(Q) + B(Q) · ∇Q) dx dt =

tn+1∫
tn

∫
Ωi

φk S (Q) . (20)

Taking into account (16), integrating the flux divergence term by parts in space and the time derivative
by parts in time yields∫

Ωi

φkφl dx

(ûn+1
l − ûnl

)
+

tn+1∫
tn

∫
∂Ωi

φkG
(
q−h ,q

+
h

)
· n dS dt+

tn+1∫
tn

∫
∂Ωi

φkD
(
q−h ,q

+
h

)
· n dS dt

−
tn+1∫
tn

∫
Ωi

∇φk · F(qh) dx dt+

tn+1∫
tn

∫
Ω◦

i

φkB(qh) · ∇qh dx dt =

∫
Ωi

φkS(qh) dx dt, (21)

where n denotes the outward unit normal at the cell boundary, ∂Ωi, and qh = qh(x, t) is the local space-
time predictor already introduced in Section 3.1. Since we are using a discontinuous Galerkin scheme, the
basis functions are allowed to jump across cell interfaces. To account for the discontinuities arising in the
second term of (21), we make use of a Riemann solver at the element interfaces, see e.g. [103]. The initial
condition for the numerical flux function is then given by the right and left states q−h , q+

h computed at
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the predictor step which yields the order of accuracy sought. In particular, within this work, we consider
the Rusanov numerical flux function, hence

G
(
q−h ,q

+
h

)
· n =

1

2

(
F(q+

h ) + F(q−h )
)
· n− 1

2
smax

(
q+
h − q−h

)
. (22)

Furthermore, we also need to develop a proper discretization of the non conservative products at the
element boundaries. To this end, we consider the works [87, 20, 86, 84], based on the theory of Dal Maso,
Le Floch and Murat [81] on nonconservative hyperbolic PDE systems, and their extension to higher order
DG schemes in [91, 40]. Within this framework it is usual to build also so-called well-balanced schemes
[10, 62, 74]. Accordingly, the third term in (21) is approximated with a path integral in phase-space
between the two extrapolated values related to the face, q−h and q+

h ,

D
(
q−h ,q

+
h

)
· n =

1

2

 1∫
0

B
(
ψ(q−h ,q

+
h , s)

)
· n ds

 · (q+
h − q−h

)
, (23)

where we have used the linear segment path

ψ = ψ(q−h ,q
+
h , s) = q−h + s

(
q+
h − q−h

)
, s ∈ [0, 1]. (24)

As it can be seen in [83, 61], different paths could have been chosen to perform the former integral
attending to special features of non conservative and source terms. Nevertheless, for the systems addressed
in this work, the easiest straight line path already provides good results.

From the computational point of view, it is important to remark that, as a consequence of the
nodal tensor-product basis employed, the scheme can be written in a dimension by dimension fashion
and integral operators are decomposed as the product of one-dimensional operators [16]. The resulting
explicit one-step ADER-DG scheme is conditionally stable with stability condition

∆t <
CFLhmin

(2N + 1) |λmax|
, (25)

with CFL < 1/d, where |λmax| is the maximum eigenvalue of the system, hmin denotes the minimum
characteristic mesh size and d is the number of space dimensions. The final time step for the coupled
problem is the lowest one between the timesteps associated to the two considered models.

3.3 Boundary conditions

A major challenge concerning the coupling of the two models is the large discrepancy, in the spatial
length scales, between the elastic waves, with a typical propagation speed of about 3000−4000m/s and the
short free surface water waves, whose propagation speed is between 10m/s and 30m/s. The corresponding
difference in the expected wave lengths is huge, with wave lengths of the order of kilometres in solid media
and well below 102 m in water. To address this problem, we employ two non-conforming meshes with
different spatial resolutions. An initial 3D mesh made of rectangular bricks is first designed to cover Ωe.
Then, on Ωw, a much finer grid is built as a refinement of the 2D mesh made up by the faces of the mesh
designed in Ωe, lying on the boundary ∂Ωe,w (see Figure 2). Interpolation of the discrete solution from
Ωw onto the boundary ∂Ωe,w is carried out using appropriate high order Gaussian quadrature formulas,
[96], so that the boundary condition (12) can be imposed on the solid domain.

Further boundary conditions for the solid media include periodic and free surface boundaries. Re-
garding the last ones, the exact Riemann solver of Godunov can be employed, [69, 45, 100]. Accordingly,
the opposite value for the incoming normal stress to the boundary is set. Finally, on the fluid domain we
consider either periodic or Dirichlet boundary conditions.

4 Numerical test problems

This section is devoted to the assessment of the developed methodology. Initially, we address the two
mathematical models independently, analysing the solution obtained for classical benchmarks of linear

9



Figure 2: Sketch of the nonconforming mesh at the interface, ∂Ωe,w. The 2D cells (grey)
filling the fluid domain, Ωw, are built as a subgrid of the faces of the 3D elements dis-
cretizing the solid domain, Ωe.

elasticity and non-hydrostatic flows. Once the numerical method is validated, we present two showcases
of the coupled problem, reporting the seismic wave propagation generated by a soliton and by a sinusoidal
wave train on the water surface.

4.1 Linear elastic wave problems

Linear elasticity is a well established research field, so many numerical tests can be found to validate
the proposed methodology. In what follows, we will first validate the numerical method using a p-s-wave
test, whose exact periodic solution is known. Then, we focus on a classical benchmark of seismic wave
propagation, the so-called Lamb problem, and on a stiff inclusion test, which accounts for large material
parameter variations. A final wave propagation test in three dimensions is also included.

4.1.1 Numerical convergence test

Following [69, 99], a p− and s−wave test case is employed to verify the accuracy of the ADER-DG
scheme. We consider the computational domain Ω = [−1.5, 1.5]× [−1.5, 1.5] ∈ R2 with periodic boundary
conditions in x and y directions and we define the initial condition

Q (x, 0) = αrp sin (2πn · x) + αrs sin (2πn · x) , (26)

with α = 0.1, n = (nx, ny) = (1, 1), rp, rs the eigenvectors associated to the p− and s−waves,

rp =
(
λ+ 2µn2

x, λ+ 2µn2
y, 2µnxny,−cpnx,−cpny

)
, rs =

(
−2µnxny, 2µnxny, µ

(
n2
x − n2

y

)
, csny,−csnx

)
,

(27)

cp =
√

(λ+ 2µ) /ρ the p−wave speed and cs =
√
µ/ρ the s−wave speed. Setting the material parameters

to λ = 2, µ = 1, ρ = 1, leads to propagation velocities, cp = 2 and cs = 1. The former initial condition
generates a sinusoidal p−wave travelling along the diagonal direction, n = (1, 1), and another sinusoidal
s−wave moving in the opposite direction. Taking tend = 3

√
2, the solution coincides with the initial datum

and a convergence analysis can be performed. Table 1 shows the L2 errors, εL2 , and the convergence
order, O, obtained for N ∈ {3, 4, 5, 6, 7}, M = N . The spatial grids were built using the same number of
elements in x and y directions, Ny = Nx, and the time step is computed at each iteration according to
the CFL condition. All variables attain the optimal order of convergence sought.

4.1.2 2D Lamb’s problem

The Lamb’s problem is a well known benchmark used to test numerical methods for linear elastic waves
and has first been put forward in [73]. In this paper we consider one of its variants, already analysed in
[69, 48], where a rectangular domain Ω = [−2000, 2000]× [−2000, 0] and a point source of the form

fv (x, t) = ρsa1

(
1

2
+ a2 (t− tD)

2

)
exp

(
a2 (t− tD)

2
)
δ (x− xs) ey (28)

10



N Nx εL2(u) εL2(v) εL2(σxx) εL2(σyy) εL2 (σxy) O(u) O(v) O(σxx) O(σyy) O(σxy) Teor.

3

10 1.18E−02 1.66E−02 2.70E−02 3.55E−02 1.07E−02 - - - - -

4

15 2.24E−03 3.29E−03 5.17E−03 6.57E−03 1.98E−03 4.10 3.99 4.08 4.16 4.16

20 7.02E−04 1.07E−03 1.63E−03 2.06E−03 6.18E−04 4.03 3.92 4.00 4.04 4.05

30 1.38E−04 2.15E−04 3.26E−04 4.07E−04 1.21E−04 4.02 3.95 3.98 4.00 4.02

40 4.34E−05 6.85E−05 1.05E−04 1.30E−04 3.81E−05 4.01 3.97 3.94 3.97 4.01

4

10 7.67E−04 1.15E−03 1.78E−03 2.20E−03 6.73E−04 - - - - -

5

15 1.09E−04 1.53E−04 2.54E−04 3.14E−04 9.52E−05 4.81 4.99 4.79 4.80 4.82

20 2.66E−05 3.61E−05 6.29E−05 7.74E−05 2.32E−05 4.90 5.01 4.85 4.87 4.90

30 3.58E−06 4.72E−06 8.74E−06 1.06E−05 3.12E−06 4.94 5.01 4.87 4.89 4.95

40 8.56E−07 1.12E−06 2.15E−06 2.60E−06 7.45E−07 4.98 5.01 4.87 4.90 4.98

5

10 4.61E−05 6.38E−05 1.09E−04 1.35E−04 4.14E−05 - - - - -

6

15 4.04E−06 6.00E−06 9.84E−06 1.21E−05 3.64E−06 6.00 5.83 5.92 5.94 5.99

20 7.16E−07 1.10E−06 1.81E−06 2.21E−06 6.46E−07 6.02 5.90 5.88 5.92 6.01

30 6.25E−08 9.84E−08 1.71E−07 2.04E−07 5.64E−08 6.01 5.95 5.82 5.88 6.01

40 1.11E−08 1.76E−08 3.25E−08 3.80E−08 1.00E−08 6.00 5.97 5.77 5.84 4.04

6

10 2.72E−06 4.10E−06 6.53E−06 8.01E−06 2.46E−06 - - - - -

7

15 1.67E−07 2.36E−07 4.18E−07 5.05E−07 1.50E−07 6.88 7.05 6.78 6.82 6.90

20 2.28E−08 3.11E−08 5.97E−08 7.11E−08 2.04E−08 6.93 7.04 6.77 6.82 6.94

30 1.36E−09 1.80E−09 3.87E−09 4.50E−09 1.21E−09 6.96 7.03 6.75 6.81 6.97

40 1.82E−10 2.38E−10 5.55E−10 6.35E−10 1.62E−10 6.99 7.03 6.75 6.81 6.99

7

5 3.31E−05 4.50E−05 7.76E−05 9.58E−05 3.07E−05 - - - - -

8

10 1.40E−07 1.96E−07 3.47E−07 4.23E−07 1.29E−07 7.88 7.84 7.80 7.82 7.90

15 5.42E−09 8.10E−09 1.45E−08 1.73E−08 5.01E−09 8.02 7.86 7.83 7.88 8.01

20 5.38E−10 8.28E−10 1.56E−09 1.82E−09 4.98E−10 8.03 7.92 7.75 7.82 8.03

25 9.02E−11 1.41E−10 2.81E−10 3.22E−10 8.34E−11 8.00 7.93 7.69 7.77 8.00

Table 1: Numerical convergence test for linear elasticity. L2 errors and convergence rates obtained for
N ∈ {3, 4, 5, 6, 7} at tend = 3

√
2.
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Figure 3: 2D Lamb’s problem. Vertical velocity contour plot at t = 0.6. Top: ADER-DG O4 run on a
mesh made of 200× 100 elements. Bottom: reference solution computed with a P4P4 ADER-DG scheme
on an unstructured mesh of Ni = 180276 triangles.

in the momentum equation, (11), are chosen. We locate the source near the free surface using the
Dirac delta distribution at xs = (0,−1) and we set the related parameters to ρs = 2200, a1 = −2000,

a2 = − (πfc)
2
, fc = 14.5, tD = 0.08. The considered homogeneous material has density ρ = 2200 and

Lamé constants λ = 7509672500, µ = 7509163750, so the propagation velocities are cp = 3200 and
cs = 1847.5. The domain is discretized using a Cartesian grid made of 200 × 100 elements and the
simulation is run for N = 3. The vertical velocity contour plot at time t = 0.6 is depicted in Figure
3. We observe a good agreement with the reference solution that has been computed by the SeisSol

community code2 using the P4P4 ADER-DG scheme, presented in [69, 45, 12, 13], on an unstructured
mesh made of Ni = 180276 triangles. In Figure 4 we observe an almost perfect agreement between the
two simulations in the seismogram obtained at a receiver located in x1 = (990, 0).

4.1.3 Stiff inclusion

To study the behaviour of the method under large jumps of material parameters, we consider the stiff
inclusion benchmark, [75, 69]. The computational domain, Ω = [−1, 1] × [−0.5, 0.5], is divided into two
regions with different materials. The outer material properties are λout = 2, µout = 1 and ρout = 1,
whereas the inner material, placed in Ωin = [−0.5, 0.5]× [−0.1, 0.1], has λin = 200, µin = 100 and ρin = 1.

2www.seissol.org
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Figure 4: 2D Lamb’s problem. Seismogram at receiver x1 = (990, 0) obtained using ADER-DG O4 on a
mesh made of 200 × 100 elements and reference solution, computed with a P4P4 ADER-DG scheme on
an unstructured mesh of Ni = 180276 triangles.

The initial field is characterized by a p-wave of the form

Q (x, 0) = rp exp

[
− 1

2σ2
(n · (x− x0))

2

]
, (29)

with x0 = (−0.08, 0) the initial wave location, n = (1, 0) and, σ = 0.01 the standard deviation. Free
surface boundary conditions are considered, so that the normal and shear stresses vanish at the boundary.
Consequently, surface waves will develop from the beginning of the simulation. At time t = 0.15 the planar
wave reaches the stiffer material, where elastic waves propagate ten times faster that in the outer media.
Then, the reflection of waves inside the inclusion yield to its vibration, which results in small amplitude
waves propagating into the outer domain. The σxx pattern generated at time t = 0.3 is plotted in Figure 5
for two different simulations. The solution obtained for the O4 ADER-DG scheme on a mesh made of
400× 100 elements agrees well with the one obtained using the O7 ADER-DG scheme on a much coarser
mesh, 100 × 50 elements. To compare the results with data available in the bibliography one may refer
to [75] as well as to [69]. Overall, one can note a very good qualitative agreement of the wavefield with
the numerical reference solutions available in the literature.

4.1.4 3D wave propagation

The third test to be analysed corresponds to a 3D wave propagation problem. We consider the com-
putational domain Ω = [−5000, 5000]× [−5000, 5000]× [−5000, 5000] and a homogeneous material with
propagation velocities cp = 3200, cs = 1847.5 and density ρ = 2200. Following [99], the initial condition
for the vertical velocity is given by the Gaussian profile

v3 = −0.1 exp

(
−r2

2R2

)
, (30)
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Figure 5: Stiff inclusion. Component σxx of the wavefield at time t = 0.3. Top: ADER-DG O4 on a
mesh made of 400× 100 elements. Bottom ADER-DG O7 on a mesh made of 100× 50 elements.
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Figure 6: 3D wave propagation. Vertical velocity contour plot at t = 2 obtained on a mesh made of
30× 30× 30 elements using the fourth order ADER-DG scheme.

where R = 500 denotes the initial impulse size and r is the distance with respect to the centre of the
impulse, x0 = (0, 0, 0). The remaining variables are set to zero. The simulation has been run on a
Cartesian grid made of 30 × 30 × 30 elements, using the fourth order scheme. In Figure 6, the vertical
velocity contours obtained at t = 2 are plotted. To study the wave propagation three receivers have
been placed at xr1 = (1000, 1000, 1000), xr2 = (3000,−3000, 5000), and xr3 = (0, 2000, 5000). The time
evolution for the main variables involved is depicted in Figures 7, 8, and 9, respectively. As expected,
due to the location of receiver r1, the values obtained in xr1 for σxx, σxz, and u coincide with σyy, σyz,
and v, respectively. Similarly, at xr2 , σxx matches σyy whereas u and v take opposite values. Finally,
since r3 is located on the x = 0 plane, we should get zero horizontal velocity. The solution obtained with
a finer mesh of 60× 60× 60 elements is also included to demonstrate that mesh convergence is attained.
Moreover, the obtained results are compared against a reference solution obtained with the unstructured
ADER-DG code SeisSol using a P3P3 scheme on a mesh made of 195301 tetrahedra. Again, we can
note an excellent agreement between our solution and the numerical reference solution obtained with a
community code.

4.2 HSGN numerical results

In the HSGN framework, we employ a solitary wave over a flat bottom test to assess the methodology.
Next, a step-shaped bathymetry is considered and the obtained propagation of a soliton wave is compared
against the experimental data and the numerical results obtained for the original SGN system. Further
analysis on the employed ADER-DG method applied to non-hydrostatic free surface models can be found
in [5].

4.2.1 Solitary wave over a flat bottom

To assess the accuracy of the method, we study a solitary wave propagating over a flat bottom, [54, 5].
The computational domain is taken to be Ω = [−50, 50]× [−1, 1]. As initial condition, we define a soliton
of amplitude A = 0.2 centred at the origin (x, y) = (0, 0), an artificial sound velocity c = 20 and a still
water depth H = 1. Periodic boundary conditions are considered at all boundaries. Let us remark that,
for the original non-hyperbolic formulation of the SGN model, an analytical solution is available, see e.g.
[14]. However, this solution does not exactly verify the hyperbolic formulation, thus it should not be
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Figure 7: 3D wave propagation. Seismogram at receiver x1 = (1000, 1000, 1000) obtained using ADER-
DG O4 on two different meshes, M1 made of 30×30×30 (red long dashed line) and M2 using 60×60×60
elements (navy short dashed line), and reference solution computed with a P3P3 ADER-DG scheme on
an unstructured grid of 195301 tetrahedra (black line).
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Figure 8: 3D wave propagation. Seismogram at receiver xr2 = (3000,−3000, 5000) obtained using ADER-
DG O4 on two different meshes, M1 made of 30×30×30 (red long dashed line) and M2 using 60×60×60
elements (navy short dashed line), and reference solution computed with a P3P3 ADER-DG scheme on
an unstructured grid of 195301 tetrahedra (black line).
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Figure 9: 3D wave propagation. Seismogram at receiver xr3 = (0, 2000, 5000) obtained using ADER-DG
O4 on two different meshes, M1 made of 30× 30× 30 (red long dashed line) and M2 using 60× 60× 60
elements (navy short dashed line), and reference solution computed with a P3P3 ADER-DG scheme on
an unstructured grid of 195301 tetrahedra (black line).
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employed in a convergence study. Instead, we consider a 1D self-similar solution of the hyperbolic system
(5)-(8) of the form

Q (x, t) = Q (ζ) , ζ = x− V t, (31)

V the velocity of the solitary wave, obtained by solving the corresponding nonlinear ODE,

Q′ = (A (Q)− V I)
−1

S (Q) , A (Q) =
∂F

∂Q
+ B (Q) , (32)

with initial condition Q (ζ0) = (H0, 0, 0, 0, ε), ε = 10−8, H0 = H. The former ODE is solved using a
tenth order discontinuous Galerkin scheme, see [38]. The solution is used both for the initialization of
the soliton and to compute the L2 errors at tend = 2. The errors and convergence rates obtained for
the density, horizontal velocity, and pressure, using polynomial degrees N ∈ {3, 4, 5, 6, 7} are depicted in
Table 2. Overall, the sought order of convergence is achieved but for some particular cases, in which a
suboptimal order can be observed on some of the variables. Besides, Figure 10 shows the 1D profiles of
water depth, horizontal velocity, averaged vertical velocity and pressure obtained after a one complete
revolution of the soliton, t = 29.15. We observe that the results, computed on a mesh made of 100 × 2
elements using N = 5, perfectly match the initial condition.

4.2.2 Solitary wave over a step

As second test case, we consider the solitary wave propagating over a step benchmark, introduced in
[94]. We define the computational domain Ω = [−16, 16] × [−1, 1] and a step shaped obstacle of height
Hobs = 0.1 at x = 0:

zb = 0.05 (erf(8x) + 1) . (33)

As initial conditions, we set a soliton of amplitude A = 0.0365 centered at (x, y) = (−3, 0) and a still
water depth H = 0.2. Periodic boundary conditions are imposed in x and y directions.

The simulation is run using the HSGN model on a mesh made of 2000×2 elements. Figure 12 depicts
a 1D free-surface cut at t ∈ {0, 2.148, 4.296, 6.444, 8.592, 10.74}. Due to the presence of the step, the
amplitude of the soliton starts growing until it splits into two transmitted waves. Moreover, a reflected
wave starts to propagate in the opposite direction with respect to the soliton, followed by a train of small
dispersive waves. Notice that small spurious oscillations appear in correspondence to obstacle location
xobs = 0. As already pointed out in [5], this is due to the fact that the model HSGN is rigorously valid
only in the presence of a slowly varying bottom in space, which could create some problems when a
strongly varying bottom topography is considered (as in the present test). To compare the numerical
results obtained with the experimental data provided in [94], we compute the ratio between the wave
amplitude and the still water depth,

A

H
=
h−H
H

, (34)

at seven different locations x ∈ {−9,−6,−3, 0, 3, 6, 9}. In Figure 11, we observe that the results obtained
match pretty well the experimental data, improving the numerical results already presented in [94]. In
the first three plots, we can observe a good agreement of the amplitude and location of the reflected
waves, even if the already mentioned spurious oscillations at the obstacle location can be detected. Also
transmitted waves are properly captured, including a third transmitted wave that is missing in the
numerical results in [94].

4.3 Coupled model tests

The last numerical tests aim at showing the behaviour of the proposed methodology for the simulation
of the coupled problem. Two different initial water wave profiles are considered: a solitary wave and a
train of sinusoidal waves.
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N Nx εL2 (h) εL2 (u) εL2 (p) OL2 (h) OL2 (u) OL2 (p) Teor.

3

80 1.05E − 03 8.64E − 04 8.33E − 03 - - -

4

100 3.83E − 04 2.84E − 04 3.47E − 03 4.52 4.99 3.93

120 1.60E − 04 9.95E − 05 1.57E − 03 4.81 5.74 4.33

140 7.75E − 05 4.02E − 05 7.60E − 04 4.69 5.88 4.72

160 4.32E − 05 1.84E − 05 4.40E − 04 4.37 5.86 4.09

4

60 3.36E − 04 2.55E − 04 3.39E − 03 - - -

5

80 6.49E − 05 4.08E − 05 7.88E − 04 5.72 6.38 5.07

100 1.95E − 05 1.04E − 05 2.56E − 04 5.38 6.12 5.03

120 8.22E − 06 3.55E − 06 1.06E − 04 4.75 5.89 4.86

140 4.10E − 06 1.49E − 06 5.21E − 05 4.51 5.61 4.58

5

20 9.48E − 03 1.55E − 02 8.55E − 02 - - -

6

40 3.84E − 04 1.86E − 04 3.06E − 03 4.63 6.39 4.80

60 4.51E − 05 1.99E − 05 3.70E − 04 5.28 5.51 5.22

80 8.41E − 06 3.86E − 06 6.26E − 05 5.84 5.71 6.17

100 2.26E − 06 9.46E − 07 1.74E − 05 5.89 6.30 5.72

6

30 3.59E − 04 3.15E − 04 3.17E − 03 - - -

7

40 6.43E − 05 5.21E − 05 5.83E − 04 5.98 6.25 5.89

50 1.46E − 05 7.03E − 06 1.29E − 04 6.65 8.98 6.75

60 2.75E − 06 1.65E − 06 2.93E − 05 9.17 7.95 8.15

70 7.71E − 07 5.32E − 07 9.39E − 06 8.24 7.34 7.37

7

10 3.10E − 02 5.16E − 02 1.65E − 01 - - -

8

20 8.84E − 04 1.30E − 03 1.03E − 02 5.13 5.31 4.00

30 7.54E − 05 5.88E − 05 6.56E − 04 6.07 7.64 6.80

40 8.60E − 06 4.36E − 06 8.29E − 05 7.55 9.05 7.19

50 8.27E − 07 6.61E − 07 1.12E − 05 10.50 8.45 8.98

Table 2: Solitary wave over a flat bottom. L2 errors and convergence rates obtained for N ∈ {3, 4, 5, 6, 7}
at tend = 2.
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Figure 10: Solitary wave over a flat bottom. 1D profile obtained after a complete revolution of the
soliton (red dashed line) and initial solution (black line). From left top to right bottom: water depth, h,
horizontal velocity, u, averaged vertical velocity, w, pressure, p.
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Figure 11: Solitary wave over a step. Comparison of the time evolution of numerical results obtained using
ADER-DG against the numerical and experimental data given in [94] at locations x ∈ {−9,−3, 0, 3, 6, 9}
(from left top to right bottom).
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Figure 12: Solitary wave over a step. 1D cut along y = 0 of the free surface and the bottom bathymetry
at times t ∈ {0, 2.148, 4.296, 6.444, 8.592, 10.74} (from left top to right bottom).
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4.3.1 Solitary wave

We first study the seismic waves generated in the solid domain by the propagation of a soliton on
the water surface. We consider the computational domains Ωw = [−50, 50] × [−2, 2] for the fluid and
Ωe = [−50, 50] × [−2, 2] × [−100, 0] for the solid. As initial condition for the HSGN model we employ
the planar solitary wave over a flat bottom already analysed in Section 4.2.1. The linear elasticity model
is initiated with zero values. The simulation is run using a mesh of 50 × 2 × 100 elements on Ωe and
100× 4 on Ωw, (M1). Periodic boundary conditions are set in x and y directions whereas a free surface
boundary condition is defined on the bottom of Ωe. The simulation is run up to time tend = 70, which
corresponds to 2.4 revolutions of the soliton. Note that the simulation can also be seen as a train of
solitons, which do not interact among them thanks to the great length of the domain. The solution
obtained at t = 58.3 is depicted in Figure 13. The first plot of the figure shows a good correspondence
between the position of the water surface wave and the seismic wave propagating on the sea bottom, which
validates the coupling methodology. To better analyse the results obtained, we place three receivers at
xr1 = (0, 0,−5), xr2 = (40, 0,−5), and xr3 = (0, 0,−20). Figure 14 shows the time evolution of the main
stress variables until the final simulation time, tend = 70. The spurious oscillations generated at the
beginning of the simulation, due to the homogeneous initial condition used, quickly disappear, leading to
the smooth wave profile arising in response to the soliton. As expected, we observe that the magnitude of
the stress tensor decreases as we get far from the sea bottom surface, while the wave front is reached at the
same time instants. On the other hand, comparison of the seismograms obtained at xr1 and xr2 proves
the conservation of the stress magnitude, as the seismic wave advances in the horizontal direction. We
also include the results obtained with a finer grid (M2), made of 70× 4× 140 elements on Ωe and 140× 8
on Ωw. Finally, in Figure 15 we show the time evolution of the main variables of the non-hydrostatic
model.

4.3.2 Sinusoidal wave

Finally, we propose a sinusoidal wave propagation test. We consider the computational domains Ωw =
[−5000, 5000]× [−2500, 2500] and Ωe = [−5000, 5000]× [−2500, 2500]× [−20000, 0]. The initial condition
for the HSGN model is computed taking into account the dispersion relation of the linearized system,

∂Q

∂t
+ A (Q)

∂Q

∂x
= S (Q) , A (Q) =

∂F

∂Q
+ B (Q) . (35)

That is, we first decompose the conservative variables into a stationary part plus the contribution of
small time dependent fluctuations, i.e. Q(x, t) = Q0(x) + Q′(x, t). Next, we assume Q′ = Q̂ei(kx−ωt),
where k denotes the wave number and ω is the angular frequency, obtaining the eigenvalue problem

[A (Q0) + iE (Q0)] Q′ = ωIQ′, E (Q0) =
∂S

∂Q
(Q0) . (36)

Once (36) is solved, we select one real non zero eigenvalue,

λ =

√
2c20γ + gH3

0k
2 + c20H

2
0k

2 +
√
g2H6

0k
4 + 2gc20H

5
0k

4 − 4gc20H
3
0γk

2 + c40H
4
0k

4 + 4c40H
2
0γk

2 + 4c40γ
2

√
2H0

,

(37)
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Figure 13: Solitary wave. Solution obtained at time t = 58.3. Left top: 3D extrusion of the water depth,
h, isosurfaces of σzz and contour plot of σzz at slice z = 0. From middle top to bottom right: contour
plots at plane y = 0 of w, σxz, σxx, σyy, and σzz, respectively.
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Figure 14: Solitary wave. Seismograms at receivers xr1 = (0, 0,−5) (M1: red dotted line, M2: orange
line), xr2 = (40, 0,−5) (M1: blue dashed line, M2: cyan line), and xr3 = (0, 0,−20) (M1: green long
dashed line; M2: light green line) obtained using ADER-DG O4. From left top to right bottom: σxx,
σyy, σzz, and σxz.
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Figure 15: Solitary wave. Time evolution of the main variables of the HSGN model at pick points
xp1 = (0, 0) (M1 red line) and xp2 = (40, 0) (M1 blue line) obtained using ADER-DG O4. From left top
to right bottom: h, u, w, and p.
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and its corresponding eigenvector, and we compute the real part of the associated Q∗,

rl =



1

λ

k

0

−H0λ(c20k
2 + gH0k

2 − λ2) tan(λt− kx)

2c20k
2

−H
2
0λ

2(c20k
2 + gH0k

2 − λ2)

2γc20k
2


. (38)

Thus, adding the corresponding lake at rest solution,

Q0 = (H0, 0, 0, 0, 0) (39)

to (38) multiplied by the sinusoidal function

f(x, y, 0) = 10−3 cos

(
2πx

s

)
, (40)

yields the initial condition

QHSGN (x, 0) = QHSGN
0 + f(x, y, 0)rl, (41)

with H0 = 100 the still water depth, s = 200 the wave length, k = 2π
s , g = 9.81 the gravity, and c =

√
gH0

the celerity. Zero homogeneous initial conditions are considered for the linear elasticity model. Likewise
in the previous test case, we define periodic boundary conditions on x and y directions and a free surface
boundary condition on the bottom of Ωe. The solid domain is meshed using 108 × 54 × 100 hexahedral
elements and the upper surface is refined with refinement factor 5 in each spatial direction to get the
two-dimensional grid on Ωw. The simulation is run until tend = 100 using a fourth order ADER-DG
scheme in both domains. The contour plots, on y = 0, of the main unknowns of the linear elasticity
model are reported in Figure 18 for t = 50. Moreover, Figure 17 shows the 3D isosurfaces of σzz. The
seismogram recorded at receivers xr1 = (0, 0, 0) and xr2 = (500, 500,−100) is depicted in Figure 18. We
observe the expected sinusoidal signal propagating in the solid domain. Like in the previous test case
the apparent misbehaviour observed at the beginning of the simulation is caused by transients due to
the initialization with zero of all the variables in the linear elastic wave propagation model. To check the
correct displacement of the waves we also include the time evolution of the water waves at xp1 = (0, 0)
and xp2 = (500, 500), see Figure 19.

5 Conclusions

In this work we have presented a high order explicit ADER-DG method for the resolution of a one-way
coupled system, describing seismic waves in the sea bottom generated by free surface water waves. Clas-
sical formulations of non-hydrostatic dispersive systems and linear elasticity equations involve high order
time and space derivatives, yielding to severe time step restrictions for explicit numerical schemes. To
overcome this issue, we propose the use of first order hyperbolic reformulations of the original systems,
which lead to classical CFL restrictions with ∆t ∝ ∆x. In particular, we have considered the hyperbolic
reformulation of the Serre-Green-Naghdi model for non-hydrostatic free surface flows and the first order
velocity-stress formulation of linear elasticity for seismic wave propagation. Moreover, the use of hyper-
bolic models allows an easier coupling of the equations and a unified discretization based on one and the
same method, i.e. employing the well known discontinuous Galerkin finite element method. High order
of accuracy in space and time has been achieved using the ADER-DG methodology based on performing
a local reconstruction of the data at each cell at the aid of a space-time predictor and the subsequent
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Figure 16: Sinusoidal wave. Solution obtained at time t = 50. From left top to bottom right: contour
plots at plane y = 0, z > −3000, of σxx, σyy, σzz, σxz, and w, respectively.
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Figure 17: Sinusoidal wave. Isosurfaces of σzz, σzz ∈
{
−9,−8,−7,−6,−5,−4,−3,−2,−1,−10−2, 10−2,

1, 2, 3, 4, 5, 6, 7, 8, 9}, at time t = 50.

correction of the obtained approximation by considering the intercell flux within a classical space DG
scheme. The use of a common methodology to solve both PDE systems eases the coupling between the
models, which has been done by imposing the normal stress on the upper boundary of the solid domain
taking into account the water column heigh computed using the HSGN model. The large discrepancy
between the wave lengths in the two media is addressed by considering non-conforming Cartesian grids
in the two domains. Firstly, a three-dimensional mesh for the solid domain is designed. Then, the face
mesh obtained on the upper boundary of the solid domain is refined to get a mesh for the fluid do-
main. A careful assessment of the developed methodology has been performed. Several benchmarks for
the linear elasticity equations and for non-hydrostatic dispersive free-surface flows are studied, showing
excellent agreement of the obtained results with available reference data. Finally, two new tests of the
coupled problem, considering solitary and sinusoidal free surface waves have been presented and allow to
successfully validate the proposed approach.

Within this work we have assumed to have a smooth bathymetry, so that the mild bottom approx-
imation, used for the derivation of the HSGN model, holds. However, practical applications might also
involve non mild bottom topographies. Therefore, future research would study the use of non-hydrostatic
free-surface models for arbitrary bottom that may enlarge the applicability of the developed methodology.
Besides, the simulation of non-hydrostatic flows is done using a dispersive shallow water type model, at-
tending to the reduced depth of the water in comparison with the horizontal dimensions of the considered
domain. An alternative approach that might be studied, when smaller differences between the spatial
dimensions are involved, is the coupling of the linear elasticity model with the fully three dimensional
free surface Navier-Stokes equations.
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Figure 18: Sinusoidal wave. Seismograms at receivers xr1 = (0, 0, 0) (red line) and xr2 = (500, 500,−100)
(blue line) obtained using ADER-DG O4. From left top to right bottom: σxx, σyy, σzz, σxz, u, v and w.
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Figure 19: Sinusoidal wave. Time evolution of the main variables of the HSGN model at pick points
xp1 = (0, 0) (red line) and xp2 = (500, 500) (blue line) obtained using ADER-DG O4. From left top to
right bottom: h, u, w, and p.
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[9] A. Bermúdez, S. Busto, M. Dumbser, J.L. Ferŕın, L. Saavedra, and M.E. Vázquez-Cendón. A
staggered semi-implicit hybrid fv/fe projection method for weakly compressible flows. Submitted,
2020.
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