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We show that an automaton group or semigroup is infinite if and only if
it admits an ω-word (i. e. a right-infinite word) with an infinite orbit, which
solves an open problem communicated to us by Ievgen V. Bondarenko. In
fact, we prove a generalization of this result, which can be applied to show that
finitely generated subgroups and subsemigroups as well as principal left ideals
of automaton semigroups are infinite if and only if there is an ω-word with
an infinite orbit under their action. The proof also shows some interesting
connections between the automaton semigroup and its dual. Finally, our
result is interesting from an algorithmic perspective as it allows for a re-
formulation of the finiteness problem for automaton groups and semigroups.
Keywords. Automaton Groups, Automaton Semigroups, Orbits, Schreier
Graphs, Orbital Graphs, self-similar

1 Introduction

Automaton groups and self-similar groups became very popular after the introduction
of the famous Grigorchuk group. It was the first example of a group with intermediate
growth (i.e. faster than polynomial but slower than exponential), and it also has many
other interesting properties. For example, it is infinite and finitely generated but each
of its elements has finite order. It was also the first example of an amenable but not
elementary amenable group. Soon after its introduction, it started to become clear that
the most natural way to study this kind of groups is by their action on an infinite
regular rooted tree, an approach which has given rise to an entirely new direction of
research focusing on finitely generated groups acting by automorphisms on rooted trees

∗The first author was supported by the Austrian Science Fund project FWF P29355-N35.
†The second author was supported by a Doc.Mobility grant from the Swiss National Science Founda-

tion as well as the "@raction" grant ANR-14-ACHN-0018-01 during a visit at the École Normale
Supérieure in Paris.
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and described by finite automata. Although this research revealed many interesting
– and sometimes surprising – results about this class of so called automaton groups,
the overall knowledge about them from an algebraic, algorithmic or dynamical point of
view still remains limited. The dynamical view here primarily means the study of how
automaton groups, which are always countable because they are finitely generated, act
on the uncountable set of right infinite words, which is homeomorphic to the Cantor set.
Further details can be found, for example, in [2, 8, 12, 14, 15, 16]. Since right infinite
words can be seen as infinite paths starting at the root of an infinite regular rooted tree,
this set is also often referred to as the boundary of this tree. The action of automaton
groups on the boundary seems to be very rich and best described by the structure of
the corresponding Schreier graphs. In the generalized setting of semigroups instead of
groups, the concept of Schreier graphs can naturally be extended into orbital graphs.
One of the most natural questions in this frame is how the algebraic structure of an
automaton semigroup or group influences its dynamical properties. For example, is there
an infinite automaton group having only finite Schreier graphs in the boundary?

The main result of this paper is to show that this question (communicated to us by
Ievgen V. Bondarenko) has a negative answer; we do this in Section 3. In fact, our result
is stronger: if one takes a subset of an automaton semigroup given by a suffix-closed
language in the generators, then this subset is infinite if and only if there is an ω-word
with an infinite orbit under its action1. This is a stronger result because, firstly, it holds
in the more general setting of automaton semigroups instead of groups and, secondly, it
makes a statement about certain subsets instead of only the whole automaton semigroup.
These subsets include the automaton semigroup or group itself, but also finitely generated
subsemigroups and subgroups – which do not need to be automaton semigroups or groups
themselves – as well as principal left (semigroup) ideals. On the other hand, we see that
we cannot generalize the result to self-similar semigroups or groups (i. e. those generated
by automata with possibly infinitely many states) in Section 4.

On the algorithmic side, we immediately obtain that asking whether a given automa-
ton group or semigroup is infinite – the so called finiteness problem – is equivalent to
asking whether there is an ω-word with an infinite orbit under the action of the automa-
ton. While Gillibert showed that the finiteness problem for automaton semigroups is
undecidable [10] (see also [6, Theorem 4.7] for a strengthened result), the corresponding
problem for automaton groups remains an important open problem in the area [13, 7.2
b)] and, by the just mentioned connection, our result allows to consider this problem
from a new perspective.

The proof of our main result is heavily based on using the so-called dual automaton.
We show that there is a connection between the size of certain subgraphs of Schreier
graphs of an automaton group and the size of the corresponding Schreier graphs in the
dual. Again, we actually show this in the more general setting of automaton semigroups
(by generalizing the notion of Schreier graphs). An interesting special case are Schreier
graphs for the stabilizer of a single ω-word. The connection also allows to elegantly
re-prove and generalize the known result that an element of an automaton group has
infinite order if and only if its orbit under the action of the dual is infinite.

1Unfortunately, our proof is purely existential and does not give many information about the structure
of words with infinite orbits. Some basic results towards this direction can be found in [7].
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2 Preliminaries

Fundamentals and Words. We assume the reader to be familiar with basic notions
from semigroup and group theory such as finite generation and inverses (in the group
sense). We say an element s of a semigroup S has torsion if there are i, j ≥ 1 with i 6= j
but si = sj ; if an element does not have torsion, it is torsion-free. This is connected
to the order of a group element g: it is the smallest number i ≥ 1 such that gi is the
neutral element of the group; if there is no such i, then the element has infinite order.
Obviously, an element of a group is of infinite order if and only if it is torsion-free.

To denote the disjoint union of two sets A and B, we write A⊔B. For a partial function
from A to B, we write A →p B. If the function is total, we omit the index p.

A non-empty, finite set A is called an alphabet. A finite word is a finite sequence
w = a1 . . . an of elements a1, . . . , an ∈ A; its length is |w| = n and its reverse is the
mirror word2 ∂w = an . . . a1. We denote the empty word by ε, write A∗ for the set of
finite words over A and write A+ = A∗\{ε}. For single symbols, we also use the notation
a∗ instead of {a}∗ for the set {ai | i = 0, 1, . . . }. A language L is a subset of A∗ and its
reverse is ∂L = {∂w | w ∈ L}.

In addition to finite words, we will also consider right-infinite sequences over A. Such a
sequence α = a1a2 . . . with a1, a2, · · · ∈ A is called an ω-word over A. The set of ω-words
over A is denoted by Aω. The term word refers to both finite and ω-words. Finally, we
will also consider (the somewhat less standard) left-infinite sequences over A. However,
we do not use the term word for them. Such left-infinite sequences will usually arise as
the reverse . . . a2a1 = ∂α of some ω-word α = a1a2 . . . with a1, a2, · · · ∈ A.

A word u is called a suffix of another word w if there is some finite word x with
w = xu. Symmetrically, u is a prefix of w if there is a word x with w = ux. A language
L is suffix-closed if w ∈ L implies that every suffix of w is in L as well; similarly, it is
prefix-closed if w ∈ L implies u ∈ L for all suffixes u of w. We use Preα as the set of
finite prefixes of some ω-word α. Similarly, we set Suf ∂α = ∂ Preα; the idea here is that
Suf ∂α is the set of suffixes of the left-infinite sequence ∂α.

Automata. An S-automaton is a partial, finite-state, letter-to-letter transducer (with-
out initial or final states). More formally, an S-automaton3 is a triple T = (Q,Σ, δ)
where Q is an alphabet whose elements we call states, Σ is an alphabet as well and
δ ⊆ Q×Σ×Σ×Q is a set of transitions such that for every pair p ∈ Q and a ∈ Σ the set
{p qa/b ∈ δ | b ∈ Σ, q ∈ Q} contains at most one element (i. e. we require the automa-
ton to be deterministic). Here, we have used the more graphical notation q pa/b in-
stead of (q, a, b, p) ∈ Q×Σ×Σ×Q for transitions. If the set {p qa/b ∈ δ | b ∈ Σ, q ∈ Q}
contains at least (and, thus, exactly) one element for every pair p ∈ Q and a ∈ Σ, then
T is complete. Note that we do not require an S-automaton to be complete in general.

When depicting an automaton graphically, we use the standard notation

2At first, the notation ∂u for the reverse of u might seem strange but it will make more sense after we
have defined the dual of an automaton below.

3The name S-automaton comes from the fact that these automata generate semigroups as we will see
shortly.
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p q
a/b

to indicate that it contains a transition p qa/b . In addition, we also use cross di-
agrams4 to indicate transitions of automata. A transition p qa/b ∈ δ of some S-
automaton T = (Q,Σ, δ) is represented by the cross diagram

a

p q

b .

Multiple transitions can be combined into a single cross diagram. For example, the cross
diagram

a0,1 . . . a0,m
q1,0 q1,1 . . . q1,m−1 q1,m

a1,1 a1,m...
...

...
...

an−1,1 an−1,m

qn,0 qn,1 . . . qn,m−1 qn,m
an,1 . . . an,m

states that the automaton contains all transitions qi,j−1 qi,j
ai−1,j/ai,j for 1 ≤ i ≤ n

and 1 ≤ j ≤ m. Often, we will omit unneeded names for intermediate states or letters in
cross diagrams. Since cross diagrams tend to be quite spacious, we introduce a shorthand
notation. Omitting the inner states and letters, we abbreviate the above cross diagram
by

u = a0,1 . . . a0,m
qn,0 . . . q1,0 = q p = qn,m . . . q1,m

v = an,1 . . . an,m
.

An important point to notice here is the order in which we write the states: qn,0 comes
last but is written on the left while q1,0 comes first but is written on the right. Later on,
it will become clearer why this is the case5.

Automaton Semigroups. Let T = (Q,Σ, δ) be an S-automaton. It is easy to see that
for every p ∈ Q+ and every u ∈ Σ+ there is at most one cross diagram

u

p q

v .

4They were originally introduced in [1] – where they are attributed to the square diagrams of [11] –
but seem to become more and more widespread lately.

5Anticipating the definition below, this is because we let automaton semigroup act on the left.
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If we have such a cross-diagram, we write p◦u = v and p ·u = q and extend the notation
by setting p ◦ ε = ε, p · ε = p, ε ◦ u = u and ε · u = ε. Notice that, in general, we have
p ◦ u1u2 = (p ◦ u1)((p · u1) ◦ u2) for u1, u2 ∈ Σ∗ (if there is a cross-diagram with p on
the left and u1u2 at the top) and p2 ◦ (p1 ◦ u) = p2p1 ◦ u for p1,p2 ∈ Q∗ (if there is a
cross-diagram with p2p1 on the left and u at the top).

This way, every p ∈ Q+ induces a partial function Σ∗ →p Σ
∗ mapping u to p ◦ u. All

these partial functions are length-preserving and prefix-compatible. Therefore, we can
extend them into partial functions Σ∗ ∪Σω →p Σ

∗ ∪ Σω.
By definition, the composition of the partial function induced by some p2 ∈ Q+ with

the partial function induced by some p1 ∈ Q+ is the partial function induced by p2p1.
Therefore, the closure of the partial functions induced by the states in Q under compo-
sition is exactly the set of the partial functions induces by all p ∈ Q+. This set forms
a semigroup (with composition as operation), which we call the semigroup generated by
T and denote by S (T ). A semigroup is an automaton semigroup if it is generated by
some S-automaton.

Remark 2.1. If the S-automaton T is complete, then all induced partial functions are
total. In fact, in the literature, automaton semigroups are often defined using complete
automata only. We will, however, consider the more general case where the automata
are allowed to be non-complete as all our results hold in this setting as well. Please note
that we usually state our results in the stronger of the two ways.

For a discussion of how automaton semigroups generated by (partial) automata relate
to automaton semigroups generated by complete automata, we refer the reader to [5].

Dual Automaton. Let T = (Q,Σ, δ) be an S-automaton. We define the dual of T as
the S-automaton ∂T = (Σ, Q, ∂δ) with the transitions

∂δ = {a bq/p | q pa/b ∈ δ}.

In other words, we exchange the roles of letters and states. The reader may verify that
∂T is indeed an S-automaton and that ∂T is complete if and only if T is.

By construction, we obtain that T admits the cross diagram

a1 . . . am
p1 . . . q1
...

...
...

...
pn . . . qn

b1 . . . bm

or, in shorthand notation,

u

p q

v

for p = pn . . . p1 and q = qn . . . q1 as well as u = a1 . . . am and v = b1 . . . bm if and only if
∂T admits the cross diagram

p1 . . . pn
a1 . . . b1
...

...
...

...
am . . . bm

q1 . . . qn

and

∂p

∂u ∂v

∂q

, respectively;

i. e. we have to mirror the diagram along the north west to south east diagonal when
passing to the dual.
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The dual automaton will play an important role in the following and we want to stress
a connection between T = (Q,Σ, δ) and ∂T : we have6 ∂u ◦∂ ∂p = ∂(p · u) (or both
undefined) for u ∈ Σ∗ and p ∈ Q∗ (where the meaning of ◦∂ is the same as ◦ with respect
to ∂T ).

Union and Composition of Automata. In addition to taking the dual, we need some
other automaton constructions. The first construction we need is the disjoint union
T ⊔ T ′ = (Q ⊔Q′,Σ ∪ Σ′, δ ∪ δ′) of two S-automata T = (Q,Σ, δ) and T ′ = (Q′,Σ′, δ′),
which is an S-automaton as well. Clearly, the disjoint union of two complete S-automata
over the same alphabet is complete itself.

The composition of two S-automata T1 = (Q1,Σ, δ1) and T2 = (Q2,Σ, δ2) with the
same alphabet Σ is the S-automaton T2T1 = (Q2Q1,Σ, δ2δ1) where Q2Q1 = {q2q1 | q1 ∈
Q1, q2 ∈ Q2} is the Cartesian product of Q2 and Q1 and the transitions are given by

δ2δ1 = {q2q1 p2p1
a/c | q1 p1

a/b ∈ δ1, q2 p2
b/c ∈ δ2, b ∈ Σ}.

The reader may verify that T2T1 is indeed an S-automaton. If both S-automata are
complete, then so is their composition.

From the construction, it is also easy to see that the partial function induced by the
state q2q1 is indeed the composition of the partial function induced by q2 with the one
induced by q1.

The most important application of composition of automata is to take the power of
some automaton. Let T k denote the k-fold composition of T = (Q,Σ, δ) with itself.
With the above remark, we can see that the partial function induced by p ∈ Q+ seen
as a sequence of states over Q is the same as the partial function induced by p seen
as a state of T |p|. A typical application of this is the following. Suppose we have an
S-automaton T = (Q,Σ, δ) generating the semigroup S (T ). Then, we can assume, for
any sequence q ∈ Q+ of states, that q is already a state in T : if this is not the case, then
we can replace T by T ⊔ T |q|, since it generates the same semigroup.

Inverse Automata and Automaton Groups. An S-automaton T = (Q,Σ, δ) is called
invertible if, for every pair p ∈ Q and b ∈ Σ, the set {p qa/b ∈ δ | a ∈ Σ, q ∈ Q}
contains at most one element. For an invertible S-automaton T = (Q,Σ, δ), it is possible
to define its inverse S-automation T −1 = (Q−1,Σ, δ−1) by

δ−1 = {p−1 q−1b/a | p qa/b ∈ δ}.

This way, the partial function induced by the state q−1 of T −1 is exactly the inverse (in
the sense of partial functions) of the partial function induced by the state q of T .

If T is invertible and complete, then all sets {p qa/b ∈ δ | a ∈ Σ, q ∈ Q} with
p ∈ Q and b ∈ Σ contain exactly one element and all functions induced by some p ∈ Q
are bijections (and, in particular, total). Therefore, T ⊔ T −1 generates a group in this

6To avoid parenthesis, we define ∂ to have higher precedence than ◦ and ·. For example, ∂p ◦ u is to
be understood as (∂p) ◦ u rather than as ∂(p ◦ u).
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case. We call this group the group generated by T and denote it by G (T ). To emphasize
this fact, we call a complete and invertible S-automaton a G-automaton. A group is an
automaton group if it is generated by some G-automaton.

Remark 2.2. We will mostly work with automaton semigroups in this paper. However, the
reader should not be fooled into thinking that our results are not relevant for automaton
groups. As every automaton group is in particular an automaton semigroup, we only
state our results in the more general setting.

Orbital and Schreier Graphs. Let T = (Q,Σ, δ) be an S-automaton and let K ⊆ Q∗

be a set of state sequences. We define

K ◦ u = {q ◦ u | q ∈ K, q ◦ u defined}

as the K-orbit of a word u over Σ. The most important special case of this is Q∗ ◦ u,
which we simply call the orbit of u (under the action defined by T ).

For a language L ⊆ Σ∗, we define the relation ≡L ⊆ Q∗ ×Q∗ by

p ≡L q ⇐⇒ ∀u ∈ L : p ◦ u = q ◦ u or both undefined.

This relation is an equivalence and we write [p]L for the class of p under ≡L. We define
K/L = {[q]L | q ∈ K} as the set of equivalence classes of K. This set has a natural
graph structure: we define the set of edges

{

[q]L [pq]L
p

| q ∈ K, p ∈ Q such that pq ∈ K
}

.

The resulting graph, thus, has out-degree bounded by |Q|. For simplicity, we do not
distinguish between K/L as a set and K/L as a graph.

To understand the graph K/L, it helps to look at some important special cases. For
L = Σ∗, we have p ≡L q if and only if p = q in S (T ). Therefore, the graph Q+/Σ∗ is
(isomorphic to) the left Cayley graph of S (T ). For a subset P ⊆ Q, P+/Σ∗ is the left
Cayley graph of the subsemigroup generated by P .

For the next special case, we define

Stab(u) = {q ∈ Q+ | u = q ◦ u and q ◦ u defined}

as the set of state sequences stabilizing the word u ∈ Σ∗ ∪ Σω. The image of Stab(u)
in S (T ) is the stabilizer of u. If S (T ) = G is a group, then the image of Stab(u) in
G is a subgroup H of G and we can consider the co-sets G/H. It is easy to see that
p Stab(u) =G q Stab(u) if and only if p ≡u q and that, thus, Q∗/{u} is the (left) Schreier
graph of G with respect to the stabilizer H of u.

Finally, let α ∈ Σω. If T is complete, we have p ≡Preα q if and only if p◦α = q ◦α. A
consequence, in this case, is that the set K/Preα is in one-to-one correspondence with
K ◦ α and, similarly, that Q∗/Preα is (isomorphic to) the left orbital graph of α as a
graph.

If the automaton is non-complete, we may have p 6≡Preα q although the actions of q
and p are both undefined on α. However, we still have an important connection between
the two graphs: one is infinite if and only if the other one is (under certain conditions).
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Lemma 2.3. Let T = (Q,Σ, δ) be an S-automaton and let K ⊆ Q∗ be suffix-closed.
Furthermore, let L ⊆ Σ∗ be a language and define

~L = {α ∈ Σω | infinitely many prefixes of α are in L}.

If K/L is infinite, there is some π = p1p2 · · · ∈ Qω with p1, p2, · · · ∈ Q such that all
[pi . . . p1]L with i ≥ 0 are pairwise distinct and

∀α ∈ ~L : ∂ Preπ ◦ α ⊆ K ◦ α.

Proof. Assume that the graph K/L is infinite. Since K is suffix-closed, every node
[qn . . . q1]L with qn . . . q1 ∈ K can be reached via a path from [ε]Σ∗ whose label is
q1 . . . qn ∈ ∂K. Therefore, infinitely many nodes are reachable from [ε]L and we find
an infinite simple path in K/L starting in [ε]L (because the out-degree is bounded by
|Q|). Let π = p1p2 . . . with p1, p2, · · · ∈ Q be the label of this path. Note that, in general,
we do not have that every pi . . . p1 with 0 ≤ i is in K! However, we have that for every
i, there is some qi ∈ K such that [pi . . . p1]L = [qi]L. This implies that, for all i ≥ 0 and
all u ∈ L, we have pi . . . p1 ◦ u = qi ◦ u ∈ K ◦ u. Fix some α ∈ ~L and let uℓ denote the
prefix of α of length ℓ. We are done if we show pi . . . p1 ◦ uℓ = qi ◦ uℓ for all ℓ. However,
this is the case because, for every ℓ, there is some ℓ′ ≥ ℓ with uℓ′ ∈ L since α is in ~L.

Proposition 2.4. Let T = (Q,Σ, δ) be an S-automaton and let K ⊆ Q∗ be suffix-closed.
For all α ∈ Σω, we have

|K/Preα| = ∞ ⇐⇒ |K ◦ α| = ∞.

Proof. If K ◦α is infinite, there are infinitely many q0, q1, · · · ∈ K such that all qi ◦α are
pairwise different. In particular, they must be defined on all prefixes of α and, for every
i, j ≥ 0 with i 6= j, there must be some finite prefix u of α such that qi ◦ u is different to
pj ◦ u. This shows that K/Preα is infinite.

Now assume that K/Preα is infinite. Let π = p1p2 · · · ∈ Qω with p1, p2, · · · ∈ Q
denote the one from Lemma 2.3 (for L = Preα). Thus, we have ∂ Preπ ◦ α ⊆ K ◦ α
and we only need to show that the former is infinite. If there is some i0 ≥ 0 such that
pi0 . . . p1 ◦ α is not defined, then there is some shortest finite prefix u of α for which
pi0 . . . p1 ◦ u is not defined. Notice that no pj . . . p1 ◦ u with j ≥ i0 can be defined. This
implies that the infinitely many pj . . . p1 with j ≥ i0 must all act pairwise differently on
those prefixes of α that are shorter than u. This, however, is not possible since there are
only finitely many possible (partial) actions. Therefore, all pi . . . p1 ◦ α with i ≥ 0 must
be defined but they are all pairwise different (since there must be a difference on some
prefix of α as we have [pi . . . p1]Preα 6= [pj . . . p1]Preα for all i 6= j).

An important special case of Proposition 2.4, which we will be using a few times below,
is if K belongs to a single ω-word.

Corollary 2.5. Let T = (Q,Σ, δ) be an S-automaton and let π ∈ Qω and α ∈ Σω.
Then, we have:

|∂ Preπ/Preα| = ∞ ⇐⇒ |∂ Preπ ◦ α| = ∞

8



Dual Orbits. Let T = (Q,Σ, δ) be an S-automaton. We can also see L ⊆ Σ∗ as a set of
state sequences and K ⊆ Q∗ as a language over the alphabet of the dual automaton ∂T .
Under this view, we obtain a well-defined meaning of L/K from the definition above. So,
L/K is to be understood with respect to the dual ∂T of T while K/L is to be understood
with respect to T .

Similarly, we can also consider L ◦∂ p the L-orbit of some word p over Q under the
action of ∂T . If p is a finite word, then we have a one-to-one correspondence between
L ◦∂ p and

∂p · ∂L = {∂p · ∂u | u ∈ L, ∂p · ∂u defined}

where the bijection is given by taking the reverse. With this in mind, we can naturally
extend the notation p · u and p · L to left-infinite sequences over Q: ∂π · u is the reverse
of ∂u ◦∂ π for π ∈ Qω and ∂π · L is the set of all ∂π · u for u ∈ L.

3 Infinite Automaton Semigroups Have Infinite Orbits

In this section, we are going to show that an automaton semigroup S (T ) generated by
an S-automaton T = (Q,Σ, δ) is infinite if and only if there is some ω-word α ∈ Σω with
an infinite orbit Q∗ ◦ α. In fact, we are going to show a more general result, which we
apply also for finitely generated infinite subsemigroups of S (T ) and for principal left
ideals.

For our discussion, fix some arbitrary S-automaton T = (Q,Σ, δ) for this section.
It is well-known that T generates an infinite semigroup if and only if ∂T generates an
infinite semigroup as well (see e. g. [1, Proposition 10] or [3, Corollary 1]). We will see
that this connection between the semigroup and its dual is only a special case of a more
fundamental one:

Proposition 3.1. Let K ⊆ Q∗ be suffix-closed and let L ⊆ Σ∗ be prefix-closed. Then,
we have:

|K/L| = ∞ ⇐⇒ |∂L/∂K| = ∞

Proof. Due to duality, we only have to show one direction, which we do by contraposition.
Assume that K/L = {[p]L | p ∈ K} is of finite size C. Clearly, the size of K ◦u for some
u ∈ L is bounded by the number C of different classes. For u ∈ L and p ∈ K, we have
the following equivalence of cross diagrams:

u

p q

v

in T

∈ L

K ∋

∈ K ◦ u

⇐⇒

∂p

∂u ∂v

∂q

in ∂T

∈ ∂K

∈ ∂(K ◦ u)

It follows that the action of ∂u ∈ ∂L on a (dual) word ∂p ∈ ∂K is described by an
S-automaton7 with state set ∂(K ◦ u). There are only finitely many (non-isomorphic)

7In fact, the S-automaton is basically the part of (∂T )|∂u| reachable from ∂u by input words from ∂K.
From the cross diagram on the right, we know that all such reachable states are from ∂(K ◦ u).
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S-automata of size |∂(K ◦ u)| = |K ◦ u| ≤ C. If we have [∂u]∂K 6= [∂u′]∂K , then the
automaton belonging to ∂u must be different to the one belonging to ∂u′. Therefore, we
obtain that there are only finitely many different classes or, in other words, that ∂L/∂K
is finite.

Our main result follows from Proposition 3.1. However, Proposition 3.1 is also inter-
esting on its own! To demonstate this, we will present some further applications at the
end of this section. First, however, we show our main result and its most interesting
corollaries.

Theorem 3.2. Let K ⊆ Q∗ be suffix-closed. The image of K in S (T ) is infinite if and
only if there is some ω-word α whose K-orbit K ◦ α is infinite.

Proof. If the image of K in S (T ) is finite, then K ◦ α is clearly bounded by that finite
size for all α ∈ Σω.

Therefore, assume that K is infinite in S (T ). Since ≡Σ∗ is the equality in S (T ), we
have that the graph K/Σ∗ is infinite. From Lemma 2.3, we obtain that there is some
π = p1p2 . . . with p1, p2, · · · ∈ Q with ∂ Preπ ◦α ⊆ K ◦α for all α ∈ Σω. Thus, it suffices
to show that there is some α ∈ Σω with |∂ Preπ ◦ α| = ∞.

We have that ∂ Preπ/Σ∗ is infinite since it contains the infinite simple path starting
in [ε]Σ∗ whose label is π. By Proposition 3.1, we obtain that Σ∗/Pre π is infinite as
well and, thus, contains an infinite simple path starting in [ε]Pre π. Let α ∈ Σω be
the label of this path. Obviously, this infinite simple path exists also in the subgraph
∂ Preα/Pre π, which shows that this graph is also infinite. By applying Proposition 3.1
again, we obtain that ∂ Preπ/Preα is infinite. It then follows from Corollary 2.5 that
∂ Preπ ◦ α is infinite.

Corollaries. The formulation of Theorem 3.2 is quite general and allows us to derive
a few natural corollaries. The first one is the special case of Theorem 3.2 where we set
L = Q∗.

Corollary 3.3. The semigroup S (T ) generated by some S-automaton T = (Q,Σ, δ) is
infinite if and only if there is some ω-word α ∈ Σω with an infinite orbit Q∗ ◦ α.

Using Gillbert’s result on the undecidability of the finiteness problem for automaton
semigroup [10], we immediately also obtain the following consequence.

Corollary 3.4. The problem

Input: an S-automaton T = (Q,Σ, δ)
Question: is there an ω-word α ∈ Σω with |Q∗ ◦ α| = ∞?

is undecidable.

Since every automaton group is, in particular, an automaton semigroup, we immedi-
ately have Corollary 3.3 also for automaton groups, which negatively answers an open
question communicated to us by Ievgen V. Bondarenko (see also [6, Open Problem 4.3]):
is there an infinite automaton group having only finite Schreier graphs in the boundary?
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Corollary 3.5. Let T = (Q,Σ, δ) be a G-automaton.
Then, G (T ) is infinite if and only if there is an ω-word α ∈ Σω such that Q∗ ◦ α ⊆

Q±1∗ ◦ α is infinite

This result is also interesting algorithmically as it allows for a re-formulation of the
finiteness problem for automaton groups.

Corollary 3.6. The finiteness problem for automaton groups

Input: a G-automaton T
Question: is G (T ) infinite?

is equivalent to the problem

Input: a G-automaton T = (Q,Σ, δ)
Question: is there an ω-word α ∈ Σω with |Q∗ ◦ α| = ∞?

Next, we can extend our result to finitely generated subsemigroups: a finitely generated
subsemigroup of an automaton semigroup is infinite if and only if it admits an ω-word
which has an infinite orbit under its action. This is even true if the subsemigroup itself
is not an automaton semigroup!

Corollary 3.7. Let T = (Q,Σ, δ) be an S-automaton. A subsemigroup of S (T ) gener-
ated by a finite set P ⊆ Q+ is infinite if and only if there is an ω-word α ∈ Σω whose
orbit P ∗ ◦ α under the action of the subsemigroup is infinite.

Proof. By replacing T by the union of T with appropriate powers of itself, we may
assume that all p ∈ P are actually states in T . Then, P ∗ is a suffix-closed language over
the states of T and the result follows from Theorem 3.2.

An interesting direct application of Corollary 3.7 is that an element of an automaton
semigroup is torsion-free if and only if there is a single ω-word on which all powers of
the element act differently.

Corollary 3.8. Let T = (Q,Σ, δ) be an S-automaton and let q ∈ Q+ be some state
sequence. Then, q is torsion-free in S (T ) if and only if there is some ω-word α ∈ Σω

such that qi ◦ α 6= qj ◦ α for all i 6= j.
If T is a G-automaton, then q has infinite order in G (T ) if and only if there is some

ω-word α ∈ Σω such that qi ◦ α 6= α for all i > 0.

We also get an analogous result for principal left ideals of automaton semigroups. A
subset I of some semigroup S is a left ideal if SI ⊆ I holds. A principal left ideal is a
left ideal of the form S1s for an s ∈ S where S1 is the monoid generated by S. We get
that a principal left ideal of an automaton semigroup is infinite if and only if it admits
an ω-word with an infinite orbit. In this context, (principal) left ideals are interesting
since they are not finitely generated in general (although they are always subsemigroups).
Therefore, this result does not immediately follow from Corollary 3.7.

Corollary 3.9. Let T = (Q,Σ, δ) be an S-automaton and let p ∈ Q+. Then, the
principal left ideal Q∗p = {qp | q ∈ Q∗} in S (T ) is infinite if and only if there is an
ω-word α ∈ Σω whose orbit Q∗p ◦ α under the action of the left ideal is infinite.

11



bi abi−1 . . . ai−1b ai
q q q q

p, q

Figure 1: Orbital graph of bi with id-self-loops omitted for clarity.

Proof. Again, we can consider p as a state in T |p| and replace T by T ∪ T |p| without
changing the semigroup. This turns Q∗p∪{ε} into a suffix-closed language and the result
follows from Theorem 3.2.

However, not every interesting subsemigroup of an automaton semigroup belongs to
a language of generators which is suffix-closed. One such example are principal right
ideals: a subset I of a semigroup S is a right ideal if IS ⊆ I holds; a principal right ideal
is a right ideal of the form sS1 for some s ∈ S. If I is both a left and a right ideal, it is
called a two-sided ideal. Principal two-sided ideals are two-sided ideals of the form S1sS1

for some s ∈ S. The analogous result to Corollary 3.9 for principal right and two-sided
ideals does not hold, as the next counter-example shows. Since all three types of ideals
are also subsemigroups, this shows as well that Corollary 3.7 cannot be generalized to
arbitrary (non-finitely generated) subsemigroups.

Counter-Example 3.10. A counter-example is given by the S-automaton

q id pa/a
b/a a/a

b/b
a/a

whose state set we denote by Q. For L = pQ∗, we then have that, for every α ∈ Σω,
either L ◦ α = ∅ or L ◦ α = {aω} contains only a single word. However, the principal
right ideal (and non-finitely generated subsemigroup) given by L = pQ∗ in S (T ) is
infinite: if we take pqi ∈ L and pqj ∈ L for i > j, then pqi ◦ bi = ai while pqj ◦ bi is
undefined (see the schematic depiction of the orbital graph of bi in Figure 1); thus, we
have found infinitely many elements in L that are pairwise distinct in S (T ). Finally, we
have the same situation for the principal two-sided ideal Q∗pQ∗ in S (T ) since we have
qp = id p = p in S (T ).

Corollaries of Proposition 3.1. We finally return to other applications of Proposition 3.1.
A particularly nice special case is the restriction to two single ω-words.

Corollary 3.11. Let π ∈ Qω and α ∈ Σω. Then, we have

|∂ Preπ ◦ α| = ∞ ⇐⇒ |∂ Preα ◦∂ π| = |∂π · Preα| = ∞

Proof. We only have to show one direction as the other one follows from duality. As-
sume that ∂ Preπ ◦ α is infinite. By Corollary 2.5, ∂ Preπ/Preα is infinite and, by
Proposition 3.1, we obtain that ∂ Preα/Pre π is infinite as well. This means that there
are infinitely many prefixes of α that (dually) act pairwise differently on π. Therefore,
∂ Preα ◦∂ π is infinite.

12



Additionally, we can recover a known connection between the order of a group element
and its orbit under the action of the dual (see [4, Theorem 3]). In fact, we can easily
generalize this connection to semigroups and ultimately periodic words.8

Theorem 3.12. Let T = (Q,Σ, δ) be an S-automaton and let q = q1q2 . . . qn be a non-
empty sequence of states q1, q2, . . . , qn ∈ Q. Then, the statements

1. ∂q has torsion in S (T ).

2. The orbit Σ∗ ◦∂ qω of qω under the action of the dual of T is finite.

3. The orbit Σ∗◦∂pq
ω of pqω under the action of the dual of T is finite for all p ∈ Q∗.

are equivalent.

Proof. The implication from 3. to 2. is trivial and, for the other direction, we observe
that we have Σ∗ ◦∂ pqω ⊆ Q|p|(Σ∗ ◦∂ qω) for all p ∈ Q∗.

The equivalence of 1. and 2. can be shown directly from the results above. We set
q′ = ∂q = qn . . . q1 ∈ Qn and consider it as a single state in T n. If we define ωq′ as the
left infinite sequence . . . q′q′ over Qn, we have

|Σ∗ ◦∂T qω| < ∞ ⇐⇒ |∂(qω) ·T Σ∗| < ∞ (definition of dual orbits)

⇐⇒ |ωq′ ·T n Σ∗| < ∞ (definition of power automata)

⇐⇒ |Σ∗ ◦∂(T n) (q
′)ω| < ∞ (definition of dual orbits)

⇐⇒ |Σ∗/Pre(q′)ω| < ∞ w. r. t. ∂(T n) (Proposition 2.4)

⇐⇒ |∂ Pre(q′)ω/Σ∗| < ∞ w. r. t. T n (Proposition 3.1)

⇐⇒ q′ has torsion in S (T n) (≡Σ∗ is equality in S (T n))

⇐⇒ ∂q has torsion in S (T ) (definition of power automata)

where we use index notation to indicate the automaton to which ◦ and · refer.

4 Self-Similar Semigroups

So far, we considered all automata to be finite, in the sense that both the state set and the
alphabet were finite. For this section, we are going to relax this constraint on the state
set. We will call semigroups generated by such infinite state S-automata self-similar.

It turns out that, in the setting of self-similar semigroups and groups, it is rather easy
to construct a counter example for the analogue of Corollary 3.3: the automaton given
in Figure 2 generates an infinite self-similar semigroup (and also an infinite self-similar
group), but all its orbits are finite.

However, in the example of Figure 2, the orbits are uniformly bounded; in fact, they
have size at most 2. It is thus natural to ask if, for a self-similar semigroup, either the

8The connection seems to be quite versatile. For example, it can also be generalized in different ways
(see, e. g. [9, Lemma 3.6]).
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· · · qi · · · q1 q0

id

2/2 2/2

0/0, 1/1

2/2 2/2

0/0, 1/1

0/1, 1/0, 2/2

0/0, 1/1, 2/2

Figure 2: An infinite state G-automaton generating an infinite semigroup (and group)
such that every orbit is finite.

orbits are uniformly bounded by a constant or there exists an infinite orbit. This turns
out to be false, as can be seen in the following example, suggested to us by Laurent
Bartholdi.

Counter-Example 4.1. Let Σ = {0, 1, 2} and Q = {id, qij | 0 < i, 1 ≤ j ≤ i2} and
define the map τ : Q× Σ → Σ×Q by τ(id, a) = (a, id) for all a ∈ Σ and

τ(qij , 0) =

{

(1, qi(j−1)) if j ≡ 1 mod i

(0, id) otherwise

τ(qij , 1) =

{

(0, qi(j−1)) if j ≡ 1 mod i

(1, id) otherwise

τ(qij , 2) =

{

(2, id) if j ≡ 1 mod i

(2, qi(j−1)) otherwise

(where we set qi0 = id). This induces a G-automaton T = (Q,Σ, δ) by

δ = {q pa/b | q, p ∈ Q, a, b ∈ Σ, τ(q, a) = (b, p)}

A part of the automaton is represented in Figure 3. It is easy to see that the semigroup
generated by T coincides with the group generated by T .

We claim that all its orbits are finite, but that they are not uniformly bounded. We
will first show the former. For this, consider some α ∈ Σω. If α contains at most one
letter from {0, 1}, then it is easy to see that the orbit of α has size at most 2 since all
semigroup elements fix every occurrence of the letter 2 in any word.

Otherwise, we can write α = ua2n−1bβ for some u ∈ Σ∗, a, b ∈ {0, 1}, n > 0 and
β ∈ Σω. Notice that, from the definition, we have qij · (a2

n−1b) = id for all 1 ≤ j ≤ i2

with i 6= n. Therefore, for all q ∈ Q+ and n > 0, we have

q · a2n−1b ∈ {id, qn1, qn2, . . . , qnn2}∗

and, thus, also
q · ua2n−1b ∈ {id, qn1, qn2, . . . , qnn2}∗.
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idq11

idq21q22q23q24

idq31q32q33q34

q35 q36 q37 q38 q39

...

1/0

0/1

2/2

1/0

0/1
2/2

1/0

0/1

2/22/2

1/0

0/1
2/2

2/2
1/0

0/1
2/2 2/2

1/0

0/1

Figure 3: A part of the automaton form Counter-Example 4.1. The state id appears
multiple times and arrows that go from any state to the state id by fixing a letter are
not drawn.

Since the semigroup generated by T is composed of finitary automorphisms of Σω, it
is locally finite (i.e. every finitely generated subsemigroup is finite). In particular, we
obtain that the subsemigroup generated by {an1, an2, . . . , ann2} in S (T ) is finite. As we
have q ◦ α = (q ◦ ua2n−1b)[(q · ua2n−1b) ◦ β], we obtain that the orbit of α is also finite.

To see that the orbits are unbounded, it suffices to note that the action is transitive
on all

Vi = {a1a2 . . . ai2 ∈ Σi2 | ak ∈ {0, 1} if k ≡ 1 mod i, ak = 2 otherwise}

with i > 0.

We have seen that the analogue of Corollary 3.3 – that every infinite automaton semi-
group admits a single ω-word with an infinite orbit – does not hold in the context of
self-similar semigroups. Next, we will see that neither does the generalization to finitely
generated subsemigroups given in Corollary 3.7.

For our discussion, let T = (Q,Σ, δ) be an infinite state S-automaton and consider a
finitely generated infinite subsemigroup of S (T ). By taking the union of appropriate
powers of T , we can, without loss of generality, assume that it is generated by a finite
subset P of Q. We still know that, for every n, there is a word whose orbit under the
action of P ∗ has size at least n. However, in this case, there is not necessarily a single
word with an infinite orbit.
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Proposition 4.2. Consider the self-similar group generated by the infinite state G-
automaton T = (Q,Σ, δ)

q0q1qi

p1pi

· · ·· · ·

· · ·· · · id

1/1

0/00/0

1/1

0/0

0/1, 1/01/0

0/1

1/0

1/1

0/0, 1/1

(and its inverse). Then, both, the subsemigroup as well as the subgroup generated by q0
(and possibly its inverse q−1

0 ) are infinite, but all orbits q∗0 ◦α ⊆ {q0, q
−1
0 }∗ ◦α are finite.

Proof. It is clear that q±1
0 fixes 0ω. Thus, let α be an ω-word different to 0ω and write it

as α = 0n1β′ with n ≥ 0. We further factorize β′ = vβ for |v| = n. From the definition
of the automaton, we see that

q±1
0 ◦ α = q±1

0 ◦ 0n1vβ = 0n1(p±1
n ◦ v)β

and
q±i
0 ◦ α = 0n1(p±i

n ◦ v)β.

Therefore, the orbit {q0, q
−1
0 }∗ ◦ α is bounded by |{0, 1}||v| = 2n and, thus, finite. On

the other hand, we can always choose n large enough so that the actions of qi0 and qj0
differ on 0n10n for i 6= j, showing that the subsemigroup and subgroup generated by q0
is infinite.

It is not surprising that there are infinitely many states reachable from the finite set
P = {q0} in the automaton in Proposition 4.2 because, otherwise, P would already be the
subset of some finite state S-automaton. This observation allows us to formulate a result
similar to Corollary 3.7: every infinite subsemigroup of a self-similar semigroup generated
by a finite subset P of states such that there are only finitely many states reachable from
P admits an ω-word with an infinite orbit under the action of the subsemigroup.
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