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Abstract. Nowadays, owners and developers of deep learning models
must consider stringent privacy-preservation rules of their training data,
usually crowd-sourced and retaining sensitive information. The most
widely adopted method to enforce privacy guarantees of a deep learning
model nowadays relies on optimization techniques enforcing differential
privacy. According to the literature, this approach has proven to be a
successful defence against several models’ privacy attacks, but its down-
side is a substantial degradation of the models’ performance. In this
work, we compare the effectiveness of the differentially-private stochas-
tic gradient descent (DP-SGD) algorithm against standard optimization
practices with regularization techniques. We analyze the resulting mod-
els’ utility, training performance, and the effectiveness of membership
inference and model inversion attacks against the learned models. Fi-
nally, we discuss differential privacy’s flaws and limits and empirically
demonstrate the often superior privacy-preserving properties of dropout
and l2-regularization.

Keywords: differential privacy, regularization, membership inference,
model inversion.

1 Introduction

In recent times, the number and variety of machine learning applications have
noticeably grown thanks to the computational progress and to the availability of
large amounts of data. In fact, given the proportionality between the performance
of machine learning models and the amount of data fed into them, more and more
data has been and is going to be collected to get reliable and accurate results.
This data is usually crowd-sourced and may contain private information. Thus,
it is necessary to guarantee high privacy levels for data owners, concerning both
the sharing of their information and the machine learning models trained over
it.

In fact, malicious agents can target deep learning models to exploit the infor-
mation that remains within them after training is complete, even in black-box
scenarios. Among the most famous and dangerous attacks, membership infer-
ence [23] and model inversion [9] techniques represent the main threat for ma-
chine learning models. The former aims at guessing the presence of an instance
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inside the training data of the attacked model, while the second has the goal of
reconstructing the input data from the accessible or leaked information.

To reduce the effectiveness of these attacks against artificial neural networks,
a widely spread countermeasure taken by model owners is applying differential
privacy [5] in the models’ training procedure. The main advantage of this solution
is the guarantee that the privacy leakage at the end of models’ training is limited
and measurable. The main downside of this approach relies in the noise injected
in the models during their training to achieve the desired privacy budget level.
In fact, noise addition significantly impacts over models’ training performance
in terms of time and utility.

In this work, we investigate the topic of privacy preservation in deep learn-
ing. We test the effectiveness of the most known implementation of differential
privacy training for deep learning models, the differentially private stochastic
gradient descent (DP-SGD) [1], as a defense mechanism. We evaluate the valid-
ity of this method in terms of protection against model inversion and membership
inference attacks. We also measure the impact that DP-SGD has on the model
under attack, analyzing both the level of accuracy achieved and the training
time required in white-box and black-box scenarios.

We perform the same analysis considering two regularization techniques, i.e.,
dropout and the l2-regularizer. Their effect on improving model’s generaliza-
tion capability is widely known, and previous works have confirmed an exist-
ing connection between privacy attacks’ effectiveness and overfitting in the tar-
get model [22]. Our work empirically demonstrates how l2 regularization and
dropout achieve similar or even better privacy-preserving performance with re-
spect to DP-SGD training while preserving models utility and training time
efficiency. To the best of our knowledge, this is the first work to systematically
analyze the impact of different levels of differential privacy and regularization
techniques in terms of models’ accuracy, training time, and resistance to mem-
bership inference and model inversion attacks.

2 Privacy threats

Privacy in machine learning is a much-debated topic in the literature. If, on
the one hand, deep learning algorithms efficiently learn from data how to solve
complex tasks, on the other hand, it has been demonstrated how these models
exhibit vulnerabilities to malicious attacks despite their complexity [7, 24, 13].
The targets of these attacks are various and characterized by different risk levels
from a user perspective.

We differentiate the scenarios in which an attack occurs depending on the
extent of the adversarial knowledge, that is, the ensemble of information concern-
ing the model and the data under attack at the disposal of the attacker. From
this point of view, we distinguish the threat scenarios into two types: black-box
and white-box. In a black-box scenario, the adversary knows only the target
model elements available to the public, such as prediction vectors, but has no
access to the model structure or information about the training dataset outside
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its format. In a white-box scenario, the adversary has complete knowledge of the
target model and knows the data distribution of the training samples. Among
the most famous and dangerous attacks, we focus our attention on membership
inference and model inversion attack families [2].

2.1 Membership inference attacks

Membership inference attacks take as input a sample and try to determine if
it belongs or not to the training dataset of the model under attack. The most
common design paradigm involves the use of shadow models and meta-models,
also known as attack models [23]. The basic idea behind this white-box approach
is to train several shadow models that imitate the behavior of the target on
surrogate or shadow datasets. Shadow datasets must contain samples with the
same format and similar distribution to the training data of the target model.
After the training of shadow models is complete, their outputs and the known
labels from the shadow datasets form the attack dataset. This dataset is used
to train a meta-model which learns to make membership inference based on the
shadow models’ results.

The main limitation of this approach is represented by the mimic capabilities
of the shadow models with respect to the target model and the strong assump-
tions related to the adversarial knowledge of both the target model structure
and the training data distribution. To overcome these issues, Salem et al. [22]
proposed three different attacks considering scenarios with more relaxed assump-
tions on the adversarial knowledge. The first two approaches maintain the idea of
shadow models, while the third proposal abandons the shadow model paradigm
in favor of a threshold-based attack. In this approach, the attacking model is
a simple binary classifier that takes the highest posterior from the prediction
vector of the target model and compares it against a given threshold. If its value
is greater than the threshold, the input sample obtained from that output is
considered a member of the training dataset. The advantages of this approach
concern the complete independence from the target model and its training data
and the elimination of the overhead costs due to the design of shadow models and
the creation of suitable shadow datasets. Besides, it requires no training of the
attack model. A novel type of membership inference attack, named BlindMI, has
recently been proposed by Hui et al. [14] to probe the target model and extract
membership semantics via differential comparison and data generation.

2.2 Model inversion attacks

Model inversion attacks try to reconstruct training samples of the attacked model
starting from environmental elements known by the attacker. The first designs
of reconstruction attacks assumed a white-box scenario in which the adversary
knows the output label, the prior distribution of features for a given sample,
and has complete access to the model. With these assumptions, the attacker
estimates the sensitive attributes’ values that maximize the probability of ob-
serving the known model parameters. These first forms of attacks are referred
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to as Maximum a-posteriori (MAP) attacks [10]. However, they were soon aban-
doned because their performance degrades as the feature space to reconstruct
grows. To overcome this limitation, Frederikson et al. [9] proposed to formulate
the attack as an optimization problem where the objective function depends on
the target model output. Starting from assumptions similar to those considered
in MAP attacks, the attacker reconstructs the input sample through gradient
descent in the input space. This attack can be performed in white and black
box scenarios, depending on whether the attacker has access to the intermediate
maps of the target model or its prediction vector respectively.

Yang et al. [28] proposed a black-box attack where the adversarial does not
know any detail about the model and its training data. Instead, it knows the
generic training data distribution and the output format of the model, i.e., the
prediction vector. Zhang et al. [30] designed a novel solution that involves the
use of a generative adversarial network (GAN) [12] to learn the training data
representation, exploiting the properties of this kind of network to increase the
feasibility of the attack. Zhao et al. [31] exploited information provided by ar-
tificial intelligence explainability tools to achieve high fidelity reconstruction of
the target model input data. The authors focus on understanding which expla-
nations are more useful for the attacker, measuring which of them leaks higher
information amounts about target data.

Lim and Chan [17] exploited a privacy-breaking algorithm in a federated
learning scenario to reconstruct users’ input data from their leaked gradients.
The idea is to generate dummy gradients from a randomly initialized dummy
input and compute the loss between these and the true ones. The loss is used to
update the dummy input to reduce the distance with respect to real input data
according to Geiping et al. [11]. Finally, Yin et al. [29] designed GradInversion,
an algorithm able to recover with great precision single images from deep net-
works gradients trained with large batch sizes. The first step of this approach is
to convert the input reconstruction problem into an optimization task, where,
starting from random noise, synthesized images are exploited to minimize the
distance between the gradients of these and the real gradients provided by the
environment. Then, the core of the algorithm lies in a batch-wise label restora-
tion method, together with the use of auxiliary losses that aim to ensure fidelity
and group consistency regularization to the final result.

3 Privacy defences

With the spread of machine learning as a service, the attack surface for the world
of machine learning has undergone rapid growth. Nowadays, machine learning
threats and defences are involving disparate scenarios and techniques [20]. Differ-
ential privacy [5] represents the most proposed technique to guarantee protection
and ensure data owners’ privacy.

Differential privacy is devised as an effective privacy guarantee for algorithms
that work with aggregated data. It was initially proposed in the domain of
database queries, defining the concept of adjacent databases as two sets that
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differ in a single entry. More formally, a randomized mechanism M: D → R with
domain D and range R satisfies ε-differential privacy if for any two adjacent
inputs d, d’ ∈ D and for any subset of outputs S ⊆ R it holds that:

Pr[M(d) ∈ S ] ≤ eεPr[M(d’) ∈ S ]. (1)

The parameter ε is called privacy budget because it represents how much in-
formation leakage can be afforded in a system. The lower the ε value, the stricter
the privacy guarantee. Differential privacy represents a significant development
in the field of privacy-preserving techniques because it guarantees three proper-
ties that are very useful, namely: composability, group privacy, and robustness
to auxiliary information.

– Composability concerns the possibility of having a composite mechanism
so that, if each of its components is differentially private, then is also the
overall mechanism itself. This property stays true for sequential and parallel
compositions.

– Group privacy assures that if the dataset contains correlated data, like the
ones provided by the same individual, the privacy guarantee degrades grace-
fully and not abruptly.

– Robustness to auxiliary information guarantees that the privacy level assured
by the theory stands regardless of the knowledge available to the adversary.

The main theoretical issue related to this definition of differential privacy
relies in its rigor. In fact, in order to make it exploitable for real uses it is nec-
essary to relax its constraints. There exists many formulations that generalize
the privacy-budget ε and provide its relaxation, for instance the f-differential
privacy [4] or the concentrated differential privacy [6]. Among them, the most
applied formulations are the (ε, δ)-differential privacy [1] and the Rényi differ-
ential privacy [19].

(ε, δ)-differential privacy is defined via a randomized mechanism M: D → R
with domain D and range R that satisfies its constraints if for any two adjacent
inputs d, d’ ∈ D and for any subset of outputs S ⊆ R it holds that:

Pr[ M(d) ∈ S ] ≤ eεPr[ M(d’) ∈ S ] + δ, (2)

where the additive factor δ represents the probability that plain ε-DP is broken.
In the case of several mechanism, the composition property still holds, even if in a
more complex version that keeps track of the privacy loss accumulated during the
execution of each component. Starting from this composability property, Abadi
et al. [1] designed an new function called moments accountant, that computes the
privacy cost needed for each access to the data and uses this information to define
the overall privacy loss of the mechanism. Then, in the same work, Abadi et al.
defined the so called differentially-private stochastic gradient descent (DP-SGD)
that is actually one of the most adopted optimizers to implement differential
privacy.

The Rényi Differential Privacy is instead another form of relaxation of dif-
ferential privacy based on the concept of Rényi divergence. Given that for two
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probability distributions P and Q defined over R, the Rényi divergence of order
α > 1 defined as:

Dα(P ∥ Q) ≜
1

α− 1
logEx∼Q

(
P(x)

Q(x)

)α

. (3)

The relationship between the differential privacy formulation and the Rényi di-
vergence can be defined by a randomized mechanism M: D → R that is ε-
differentially private if and only if its distribution over any pair of adjacent
inputs d, d′ ∈ D satisfies:

D∞(M(d) ∥ M(d’)) ≤ ε. (4)

Putting all together, it is possible to define the (α, ε)-Rényi differential pri-
vacy as a randomized mechanism M: D → R is said to have ε-Rényi differential
privacy of order α if for any adjacent d, d′ ∈ D it holds that:

Dα(M(d) ∥ M(d’)) ≤ ε. (5)

It is demonstrated that the three properties of composability, robustness to aux-
iliary information, and group privacy are still valid for (α, ε)-Rényi differential
privacy.

Thus, differential privacy turns out to be the most adopted privacy-preserving
technique for its guarantees and its quantification of the privacy-budget [18, 16,
26, 20]. However, Bagdasaryan et al. [3] argue its negative impact when applied
via DP-SGD in terms of performance loss, especially for low ε values. Due to
its implementation, more privacy guarantees from DP-SGD mean higher noise
injections during the training procedure as well as fewer training iterations for
the model. This is coherent with the results of Salem et al. [22] work, in which is
demonstrated the proportionality between deep learning models’ overfitting and
their vulnerability to membership inference attacks. This makes sense, on one
hand, concerning that DP-SGD noise addiction can be seen as a regularization
form, and on the other hand, recalling that differential privacy can be interpreted
also as a direct countermeasure to membership inference attacks.

Besides, other works have tried to mitigate these threats with different tech-
niques. For instance Jain et al. [15] discussed the dropout [25] differentially-
private properties and its protection against membership inference attacks. Er-
mis et al. [8] defined a form of differential privacy starting from the Bayesian
definition of Gaussian dropout. Differently, Nasr et al. [21] defined an adversarial
regularization to protect their models by changing the loss function, while Yang
et al. [27] implemented a procedure named prediction purification to protect
against both membership inference and model inversion again with adversarial
learning.

4 Method

This work aims to provide an exhaustive and detailed comparison between deep
learning models with and without privacy-preservation techniques. We tested
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Fig. 1. The neural network architecture of the target model.

Fig. 2. The schema of the proposed model inversion attack. In a white-box scenario
the attacker can reconstruct the target model input from an arbitrary activation map
(in the example, from the second layer’s one). In a black-box scenario, the attacker can
only exploit the output of the layer N to invert the target model.

the effectiveness of both DP-SGD and regularization techniques in defending the
target model, as well as their impacts over the accuracy and the training time
of the target model itself. To adopt the DP-SGD we relied on the TensorFlow
Privacy implementation based on Abadi et al. work [1] which corresponds to the
(ε, δ)-differential privacy version.

The target model always has the same architecture despite the training pro-
cedure and the regularization techniques adopted, as shown in Figure 1. For fair
comparisons and simplicity, we chose a straightforward convolutional neural net-
work with ReLU activation for hidden layers and a Softmax output activation.

To evaluate its resistance to membership inference attacks, we adopted again
a TensorFlow Privacy tool implementing two black-box attacks inspired by Salem
et al. work [22]. The first is a threshold-based attack, while the second involves
the training of a single shadow model and assumes no knowledge about the
data distribution. The attacking tool automatically selects the most effective
technique among the aforementioned two. We measured the Area Under Curve
(AUC) as a metric to evaluate the attacks’ effectiveness.

Concerning the model inversion attack, we have devised an approach that
exploits the activation maps of the target model to reconstruct its training data,
as shown in Figure 2. In detail, after having trained the target model, we select
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Fig. 3. The neural network architecture of the attacker model used for model inversion.

the target layer from which reconstruct the training input, that in a black-box
scenario corresponds to the output layer. We cut out the subsequent part of the
target network and free the weights. Finally, we use this target network fraction
as preprocessing layer for the attacker network to compute the model inversion
attack. A detailed overview of the architecture of the adversary model is shown
in Figure 3, in which the sequential layer represents the frozen fraction of the
target model. After some tuning, we selected mean squared error (MSE) as loss
function, SiLU as activation function for all the hidden layers and Adam as opti-
mizer with a learning rate of 10−3. The output of the network is a convolutional
layer with the same number of channels of the input data of the target and a
Sigmoid activation function. To measure the reconstruction quality of this model
inversion attack, we adopted the MSE as evaluation metric.

To recap, in order to introduce differential privacy in the training of the target
model is sufficient to substitute its optimizer with the DP-SGD, thus preserving
the same structure and number of parameters. To have a better comprehension of
the impact of privacy-preserving techniques, we selected three different privacy
budget levels, i.e., ε = 2, ε = 4, ε = 8 keeping the same privacy leak probability
among the experiments, i.e., δ = 10−5. We trained a distinct target model with
each of these privacy budget.

In parallel, we also trained target models with regularization techniques. We
decided to inspect the impact of the most adopted mechanisms to avoid over-
fitting, i.e., dropout and weight decay or l2. In particular, we tested one target
model for each of the two techniques and one with both of them together. The
dropout is applied between every weighted layer, i.e., after each convolutional
layer and before and after the first dense layer of the target model. The l2 is
applied directly to the last dense layer, i.e., the prediction layer.

5 Experiments and results

All experiments described below have been carried out on a system equipped
with an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and an Nvidia GeForce
GTX TITAN X GPU. We performed our analysis on three image datasets, i.e.,
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Table 1. The accuracy scores of the target model over the test set (higher is better).

Dataset Baseline ε = 2 ε = 4 ε = 8 L2 Dropout L2+Dropout

CIFAR-10 0.664 0.518 0.538 0.536 0.649 0.692 0.648
MNIST 0.992 0.942 0.963 0.968 0.991 0.996 0.994

F-MNIST 0.900 0.820 0.823 0.829 0.896 0.890 0.879

CIFAR-10, MNIST and Fashion-MNIST, each of them pre-processed with a nor-
malization step.

In order to have comparable experiments, we fixed some hyperparameters
among the different target model configurations. The ε parameter is typically
computed a-posteriori, to evaluate the privacy budget achieved by a model with
a differentially-private optimizer. In the formulation provided by Abadi et al. [1],
ε is function of the number of data samples, the number of micro-batches, the
noise multiplier and the number of training epochs. In our setting, we have fed
the differentially-private target models with the same data as the other models,
with the same batch size = 200. In order to maximize the utility, we set the
number of micro-batches equal to the number of mini-batches. Finally, in order to
control a-priori the privacy budget, we fixed the number of training epochs to the
optimal value found for the target model without privacy-preserving techniques.
In this way, we could control the ε privacy budget by varying the noise multiplier
parameter. We did similar reasoning concerning the regularization techniques by
fixing batch size, the number of data samples, and the optimizer. After some
tuning, we also fixed the dropout rate to 20% and the l2-weight to 2x10−2. As
an optimizer to compare with the DP-SGD we chose the SGD. For both of them,
we tuned the learning rate that converged to the same optimal value of 10−1.

Table 1 shows the results of each target model over the test sets, which
confirms the thesis of Bagdasaryan et al. [3]. According to their results, we notice
a performance drop inversely proportional to the privacy budget ε. This behavior
is reasonable concerning that higher differential privacy levels correspond to
higher levels of noise injection during the training. However, in the most private
scenario with ε = 2, the target model left from 5% to 14.6% of accuracy, while
in the other differentially-private cases, the performance loss is slightly lower
but still consistent. Concerning the regularization techniques, the performance
is almost identical to the baseline for l2 regularization, while it is ever improved
with the dropout application, especially over CIFAR-10. Finally, the combination
of l2 and dropout brings to mildly pejorative performance. We argue that this
behavior is due to the probable excess of regularization.

Table 2 shows the time required by each target model configuration to com-
pute the same number of epochs on the proposed datasets. In this dimension,
all the models trained via DP-SGD completed their training in a largely greater
time amount than the one required by the other configurations. This behavior,
which for ε = 2 means an increment factor between 41 and 50, is related to
the implementation of the DP-SGD. In fact, to apply the differential privacy
definition and compute its budget, it is necessary to expand the dimension of
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Table 2. The training execution times of the target model, expressed in seconds (lower
is better).

Dataset Baseline ε = 2 ε = 4 ε = 8 L2 Dropout L2+Dropout

CIFAR-10 73.3 3029.8 2923.1 2897.1 69.1 67.4 70.4
MNIST 39.5 1886.2 1870.2 1859.8 31.2 29.5 29.6

F-MNIST 77.4 3876.7 3952.1 3967.1 78.2 83.0 78.5

Table 3. The AUC scores of the membership inference attack against the proposed
models over the test set (lower is better).

Dataset Baseline ε = 2 ε = 4 ε = 8 L2 Dropout L2+Dropout

CIFAR-10 0.689 0.527 0.545 0.536 0.619 0.571 0.551
MNIST 0.738 0.585 0.598 0.583 0.567 0.614 0.555

F-MNIST 0.642 0.541 0.564 0.549 0.564 0.552 0.575

the tensor fed in the network to include the micro-batch channel. The number of
micro-batches, constrained between one and the number of mini-batches, repre-
sents an essential trade-off between time and accuracy: increasing the number of
micro-batches slows the computation and increases the performance, and vice-
versa. Our configuration aimed to maximize the performance, which is already
translated into a noticeable accuracy drop. Target models with regularizers be-
have instead very similarly with respect to the baseline.

Table 3 show the results of the membership inference attack against the pro-
posed target models, expressed via the AUC metric. As a first observation, all
the models trained via DP-SGD achieved a score closer to the random guess-
ing attack, meaning privacy preservation is effectively guaranteed. In detail, for
ε = 2 there is an average AUC reduction for the attacker of 13.86%. The most in-
teresting aspect concerns the results from the target models with regularization.
In fact, all of them achieved better protection from the membership inference
attack with respect to the baseline. L2 works better where the DP-SGD is less ef-
fective, reaching even better performance than all the ε over the MNIST dataset,
and an average AUC reduction of 10.63%. Dropout also demonstrates compet-
itive privacy guarantees, almost like DP-SGD ones, achieving an AUC average
reduction of 11.07%. Combining the two regularization techniques improves the
average score, reaching an AUC reduction of 12.93%. From these results, we
argue that regularization techniques empirically demonstrate a protection level
comparable with the one obtained via differential privacy optimizers.

Figure 4 represents the results of the model inversion attacks against the
baseline target model. Each bar corresponds to a layer and represents the recon-
struction MSE averaged over all the datasets. This result shows that a model
inversion attack is more effective as it is made closer to the network’s input. It is
reasonable given the growing amount of transformations that the attacker model
would have to invert attacking from deeper layers. It is interesting to note how
the best case for an attacker in a white-box setting would be around four times
more effective than the same attack done in a black-box setting, i.e., from the
prediction layer.
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Fig. 4. The average reconstruction MSE against the baseline target model over the
test set. The scores are averaged over all the datasets (lower is better).

Table 4. The variation of model inversion reconstruction MSE starting from each layer
of the target model. The scores are expressed in percentages and are referred to the
baseline model’s score. The scores are averaged over all the datasets’ test sets (higher
is better).

Layer ε = 2 ε = 4 ε = 8 L2 Dropout L2+Dropout

Conv1 2.1 2.5 -1.4 -0.74 22.0 10.8
MaxPool1 3.1 0.6 1.7 -0.52 19.0 -0.2
Conv2 4.6 0.7 3.2 -2.99 18.2 1.6

MaxPool2 3.4 -0.5 -1.3 -3.28 28.2 4.2
Conv3 4.2 -9.3 -10.5 -7.13 11.4 2.7

MaxPool3 -14.6 -15.6 -17.2 -11.5 8.6 -3.6
Dense -21.7 -25.8 -25.2 17.1 17.3 21.3

Prediction -17.7 -18.2 -15.8 73.8 -1.8 64.2

Table 4 shows the percentage variations for each layer and each approach with
respect to the baseline. From these results, we notice an MSE reduction for all
the final layers of the target models trained via DP-SGD. A reconstruction error
reduction means an advantage for the attacker, which implies, at least in this
scenario, that differential privacy tends to improve the model inversion attack’s
quality rather than degrade it. Target models with regularization demonstrate
completely different behavior. We notice that l2 reduces the effects of model
inversion in the layer on which it is applied, with an average improvement of the
reconstruction error of 73.8%. Dropout has a similar effect on the target model,
improving the protection of the layers before its application. The main drawback
is that it is impossible to apply dropout after the prediction layer. By putting
together l2 and dropout techniques, the obtained result is an average between
the two, slightly improving the protection for hidden layers and increasing the
defence in the prediction layer.

Figure 5 shows three examples of a complete model inversion attack for the
most significant target model configurations. The proposed images show how the
attacker network degrades its reconstructions as it starts to reconstruct the image
from deeper layers. In agreement with the numerical results, reconstructions from
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Fig. 5. Three examples of reconstructions from CIFAR-10 (top), MNIST (middle) and
Fashion-MNIST (down). For each sample, the bigger image represents the ground truth
to reconstruct. Each column j represents the model inversion reconstruction starting
from the layer j of the target model (from left to right, Convolution, MaxPooling,
Convolution, MaxPooling, Convolution, MaxPooling Flatten+Dense, Prediction). Each
row corresponds to a different target model (from top to down, the baseline model, the
(ε = 2)-DP model and the l2+dropout model).

DP-SGD target model tend to present a lower artifacts amount with respect to
the ones from the baseline or the combination of l2 and dropout regularization.

Finally, Figure 6 summarizes all the results obtained so far. The left image
shows the percentage variations of the black-box model inversion MSE function
of the accuracy variations. In the lower-left part are the worst results, in the
upper-right the best. Instead, the right image shows the percentage variations
of membership inference AUC function of the accuracy variations. In this case,
the best region is the upper-left, while the worst is the lower-right. The scatter
colors represent the clear difference between the training time with and without
DP-SGD optimizer.

Despite the undeniable benefits against membership inference attacks and
the privacy measurability property, we can conclude that differential privacy
techniques are not always a suitable option. In fact, in our scenario, this mecha-
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Fig. 6. The final comparison showing the performance of all the proposed models in
a black-box scenario, averaged over all the datasets. On the left, the x-axis represents
the percentage MSE variation for model inversion attacks with respect to the Baseline
model (higher is better), the y-axis represents the classification accuracy (higher is
better). On the right, the x-axis represents the percentage AUC variation for member-
ship inference attacks with respect to the Baseline model (lower is better), the y-axis
represents again the classification accuracy (higher is better).

nism demonstrated poor quality trade-offs between protection guarantees, utility
and training time. Instead, the analyzed regularization techniques demonstrated
promising performance. They are candidates for possible replacements in con-
ditions where the training times and the required performances are subject to
severe constraints.

6 Conclusion

This paper analyzed the benefits, drawbacks, and limitations of differentially-
private optimization. In particular, we empirically showed how a differentially-
private stochastic gradient descent optimizer could not always be considered a
general protection paradigm for deep learning models despite its privacy bud-
get guarantees. Despite its effectiveness in protecting them against membership
inference attacks, the mechanism degrades models’ utility, requires much longer
training times and increases model inversion attacks’ quality. We demonstrated
how the combination of l2 and dropout regularization techniques is a valid pro-
tection alternative that does not degrade utility, requires contained training
times, and provides a simultaneous resilience against membership inference and
model inversion attacks.
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11. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients-how
easy is it to break privacy in federated learning? Advances in Neural Information
Processing Systems 33, 16937–16947 (2020)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural infor-
mation processing systems 27 (2014)

13. Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P.S., Zhang, X.: Membership inference
attacks on machine learning: A survey. ACM Computing Surveys (CSUR) (2021)

14. Hui, B., Yang, Y., Yuan, H., Burlina, P., Gong, N.Z., Cao, Y.: Practical
blind membership inference attack via differential comparisons. arXiv preprint
arXiv:2101.01341 (2021)

15. Jain, P., Kulkarni, V., Thakurta, A., Williams, O.: To drop or not to drop: Ro-
bustness, consistency and differential privacy properties of dropout. arXiv preprint
arXiv:1503.02031 (2015)

16. Jordon, J., Yoon, J., Van Der Schaar, M.: Pate-gan: Generating synthetic data
with differential privacy guarantees. In: International conference on learning rep-
resentations (2018)

17. Lim, J.Q., Chan, C.S.: From gradient leakage to adversarial attacks in federated
learning. In: 2021 IEEE International Conference on Image Processing (ICIP). pp.
3602–3606. IEEE (2021)



Utility and protection of differential privacy and regularization techniques 15

18. Lomurno, E., Di Perna, L., Cazzella, L., Samele, S., Matteucci, M.: A gen-
erative federated learning framework for differential privacy. arXiv preprint
arXiv:2109.12062 (2021)
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