

DIPARTIMENTO DI MECCANICA ◼ POLITECNICO DI MILANO
via G. La Masa, 1 ◼ 20156 Milano ◼ EMAIL (PEC): pecmecc@cert.polimi.it
http://www.mecc.polimi.it
Rev. 0

Optimal budget allocation policy for tabu search in
stochastic simulation optimization

Yu, Cl; Lahrichi, N; Matta, A

This is a post-peer-review, pre-copyedit version of an article published in COMPUTERS &
OPERATIONS RESEARCH. The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.cor.2022.106046

This content is provided under CC BY-NC-ND 4.0 license

mailto:pecmecc@cert.polimi.it
http://www.mecc.polimi.it/
http://dx.doi.org/10.1016/j.cor.2022.106046
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

A Budget Allocation Policy for Tabu Search in Stochastic Simulation
Optimization

Chunlong Yua,∗, Nadia Lahrichib, Andrea Mattac

aSchool of Mechanical Engineering, Tongji University, Shanghai 201804, China
bDépartement de Mathématiques et Génie Industriel, École Polytechnique de Montréal, Montréal H3C 3A7,

Canada
cDepartment of Mechanical Engineering, Politecnico di Milano, Milan 20156, Italy

Abstract

Tabu search (TS) is a powerful method for solving combinatorial optimization problems. How-

ever, when TS is adopted for stochastic simulation optimization, the simulation noises may mislead

the search direction and prevent TS from converging to high-quality solutions. This issue can be

mitigated by increasing the number of simulation samples used for solution evaluation, however,

real-world applications are generally constrained by a finite computing budget. Therefore, it is

critical to reducing the noise effect by an efficient simulation budget allocation, i.e., splitting the

total number of samples on solutions. Studies on the budget allocation problem of TS are sparse.

Most of the works employ equal allocation or simple policies which are not optimal. Based on the

large deviations framework, we propose a new budget allocation policy to enhance the performance

of TS under stochastic settings. The proposed allocation policy, provided in closed-form formulas,

is asymptotically optimal for maximizing the probability that TS performs the correct move in a

single iteration. The efficiency of the proposed method is validated by solving different problems

from manufacturing and healthcare scenarios, including an inventory control problem, a throughput

maximization problem for the production line, and a physician scheduling problem for the radio-

therapy center. The numerical results show that, with the proposed method, TS can obtain better

results using the same amount of computational efforts.

Keywords: metaheuristics; simulation optimization; tabu search; optimal computing budget

allocation; ranking and selection.

∗Corresponding author
Email address: chunlong_yu@tongji.edu.cn (Chunlong Yu)

Preprint submitted to Journal of LATEX Templates September 9, 2022

1. Introduction

Originated from Glover (1986), Tabu search (TS) is a deterministic local search procedure for

global optimization. Distinguishing from a pure local search, firstly, TS can escape from a local

optimum by allowing moves to a neighborhood solution with increased cost; secondly, TS adopts

the tabus as adaptive memory to avoid cycling when moving away from local optima. The basic

framework of TS is rather simple. The search starts from an initial solution. At each iteration,

it moves to the best solution of the current neighborhood. The reversing move is recorded in

a tabu list, and is prevented for some future iterations unless the aspiration criteria is satisfied.

This procedure iterates until the termination condition is met. The efficiency of TS can be further

improved by coupling to the basic framework some additional search elements, such as intensification

and diversification, in a proper way. See Gendreau (2002) for some advances of the method.

Despite its simplicity, TS is among the most effective methods to tackle difficult combinatorial

optimization problems, and succeeds to provide quasi-optimal solutions in problems emerging from

a variety of domains such as manufacturing (Costa et al., 2015), transportation (Qiu et al., 2018),

healthcare (Ferland et al., 2001), among others. In most of the studies, TS is applied to tackle de-

terministic optimization problems. However, in many real-world cases, the existence of randomness

drives the use of stochastic models for a better representation of the real system (Juan et al., 2015).

There is a trend of solving stochastic optimization problems with TS. Gendreau et al. (1996) con-

sidered a vehicle routing problem with stochastic customer locations and demands, and developed

an efficient TS which produces the optimal solution in most of the testing cases. Tsai and Gem-

mill (1998) proposed a TS to provide good solutions to a resource-constrained project scheduling

problem with stochastic activity durations. Lutz et al. (1998) used TS to solve the buffer allocation

problem in production lines with stochastic processing times. TS has also been adopted to find

the optimal number of kanbans in a Just-In-Time system (Dengiz and Alabas, 2000), to tackle

stochastic knapsack problem (Konak and Kulturel-Konak, 2005) and physician scheduling problem

(Niroumandrad and Lahrichi, 2018).

When solving stochastic optimization problems with TS, the quality of solutions is usually evalu-

ated by stochastic simulation models. Simulation is a common tool for modeling real-world systems

because they are complex and rarely satisfy the assumptions of analytical models. Optimization

via simulation model is known as simulation optimization (SO) (Xu et al., 2015, 2016). In this

case, the objective value of a solution is no longer deterministic, but a random variable subjected to

2

simulation noises. This introduces the risk that TS fails to pick the correct neighborhood solution

and performs wrong solution updates. As a consequence, TS encounters two difficulties impeding

its efficiency in finding the optimum: (1) The optimal solution is not visited due to the misled

search direction; (2) The optimal solution is visited, but without being recognized as the best.

In this paper we define the budget as the number of simulation samples available for solution

evaluation. Generally, simulation noises can be mitigated by increasing the budget allocated on

solutions. However, due to the cost or time of a simulation, the total budget of an optimization

procedure is limited. As a result, when coupled with a stochastic model, TS faces the following

dilemma: allocating budget for precise evaluations to recognize the best visited solutions (esti-

mation), or exploring more non-visited solutions to find the global optimum (exploration). This

dilemma remains a challenge for the SO literature. In the case of TS, the budget allocation problem

can be decomposed into two levels. The top level is the budget allocation along the search path,

i.e., to decide the budget assigned to each search iteration. The second level is to split the budget

to the neighborhood solutions. In this research, we focus on the latter problem. More specifically,

with a total budget for one TS iteration, we focus on developing a budget allocation policy to

minimize the probability of performing false moves due to simulation noises, and finally improve

the TS efficiency.

In summary, this article aims at enhancing the search performance of TS in SO by optimizing

the simulation budget allocation during the solution evaluation. The research contributions of this

article are twofold:

1. We propose an asymptotically optimal budget allocation policy for TS. In the literature, the

budget allocation of TS is generally performed by equal allocation or simple allocation rules

which are not optimal. To the best of our knowledge, this is the first research that seamlessly

integrates the concept of ranking and selection (R&S) into TS, and provides theoretical results

on the asymptotic optimality of the budget allocation.

2. Closed-form formulas are developed to allocate budget to solutions, aiming at maximizing the

probability that TS performs the correct move in an iteration. Thus, the developed algorithm

is easy to implement in practice. We also propose a sequential allocation procedure for better

using the information collected during the budget allocation procedure.

Although the policy is proposed for allocating budget in a single TS iteration, we validate

3

its efficiency in improving the final solution quality of TS with applications from the literature

and the real-world scenario. The proposed method is tested on three different problems. We use

equal allocation and the optimal computing budget allocation approach (Chen et al., 2000) as

two benchmarks. The comparisons are made in different cases in terms of simulation budget and

simulation noise level. Results show that the proposed budget allocation procedure can further

enhance the search performance of TS using the same amount of simulation budget.

This article is organized as follows. Section 2 reviews the literature. Section 3 provides the

preliminaries of TS and formulates the budget allocation problem. Section 4 derives the budget

allocation policy. Section 5 gives the numerical results. Section 6 concludes the paper.

2. Literature review

When TS is coupled with simulation, the search is guided by a sequence of decisions drawn

from noised observations. The problem of improving decision accuracy by sampling allocation is

closely related to the R&S problem. In this section, we first review the approaches proposed for the

R&S problem, then investigate the studies using R&S approaches to enhance the search efficiency

of metaheuristics, and finally, summarize the works on the budget allocation problem of TS.

R&S aims at identifying the best from a finite set of alternatives whose performance is estimated

by simulations or experiments. A well-researched paradigm to tackle this problem is the indifference

zone (IZ) formulation. It guarantees the probability of correct selection (PCS) whenever the best

alternative is better than the other alternatives by at least a user-defined indifference-zone. This

research stream started from the problem with basic features like normally and independently

distributed sampling outputs, known and equal variance (Bechhofer, 1954), to more general settings.

The followings are some typical methods. Rinott’s two-stage selection procedure was proposed for

alternative sets with unknown variances (Rinott, 1978). The fully sequential procedure developed

in Kim and Nelson (2001), known as KN, allows unknown variances and the use of common random

numbers that help to reduce variances in stochastic simulations. The KN++ procedure (Goldsman

et al., 2002), as an extension of KN, can be applied when observations are non-normal and dependent

within each alternative. Tackling a large alternative set is also an active research direction for

R&S. Nelson et al. (2001) used a first-stage subset selection to screen out alternatives that are not

competitive, whilst Luo et al. (2015) and Ni et al. (2017) take advantage of the parallel computing

to tackle large scale R&S problems. The research stream of IZ formulation was summarized in

4

Bechhofer (1995), then Kim and Nelson (2006) provides recent reviews. In the IZ formulation, the

primary task is to guarantee the PCS, whilst the efficiency of selecting the best is secondary. For

this reason, the IZ approaches tend to allocate more replications than necessary to guarantee a PCS

in the worst-case configuration. See Branke et al. (2007) for a comprehensive comparison between

the IZ approaches and other methods.

As a consequence, many recent works have focused on the simulation budget allocation proce-

dures with a primary goal to enhance the efficiency of selecting the best alternative. These studies

can be categorized into two frameworks, the frequentist and the Bayesian. In the frequentist frame-

work, the budget allocation is formulated as a static optimization problem to maximize the PCS with

the given simulation budget, assuming the solution information such as true means and variances of

alternatives are known in prior. By solving this problem, Chen et al. (2000) proposed the optimal

computing budget allocation (OCBA) approach for maximizing the PCS. It provides a closed-form

approximation of the sampling ratios which are asymptotically optimal when the budget tends to

infinite. Glynn and Juneja (2004) solved this problem with the large deviations (LD) formulation,

and obtained the same asymptotically optimal sampling ratios as OCBA under the normality as-

sumption. Further, variants of the OCBA approach have been developed for different goals such as

subset selection (Chen et al., 2008), multi-objective problem (Lee et al., 2010), among others. See

Chen and Lee (2011) for more details of OCBA. In the frequentist framework, the sampling ratios

are dependent on the unknown solution information. For this reason, in practical implementations,

the allocation is usually sequential and the sampling ratios are estimated iteratively using plug-in

estimators for the unknown parameters. Surprisingly, the sequential OCBA implementation using

plug-in estimated parameters generally outperforms the static OCBA approach using perfect infor-

mation, especially when the total budget is small or medium. These results can be found in Chen

et al. (2006), as well as in a recent review of Peng et al. (2018a). This encourages the research

stream using Bayesian models to capture the value of posterior information for better low-budget

performance.

In the Bayesian framework, the budget allocation problem is formulated by incorporating the

solution information accumulated from the sequential sampling procedure. More specifically, the

problem is to optimize a conditional expectation of a certain performance indicator, e.g., a loss

function, subjected to the posterior or predictive distributions of simulation outputs. To this end,

several allocation procedures have been proposed, including the classic expected improvement(EI)

5

(Jones et al., 1998), some variants of EI such as the expected value of information (EVI) (Chick and

Inoue, 2001; Chick et al., 2010), the knowledge gradient (KG)(Frazier et al., 2008), and the Bayesian

OCBA (Chen, 1996; Chen et al., 2009). These procedures try to maximize the posterior information

gains by the end of the next sampling stage and therefore, are considered as myopic heuristics.

Although with these procedures the PCS can converge to one as the budget goes to infinity, the

budget allocation may not necessarily converge to the asymptotically optimal sampling ratios when

the variances are unknown (Ryzhov, 2016). This implies a suboptimal convergence rate and may

limit their large-budget performance. To solve this, Chen and Ryzhov (2019b) modified a recently

proposed variant of EI, known as ‘complete EI’, to allow the convergence to the asymptotically

optimal sampling ratios. Chen and Ryzhov (2019a) proposed a dynamic allocation that learns

the asymptotically optimal sampling ratios from the LD optimality conditions (Glynn and Juneja,

2004). Recently, Peng et al. (2018b) formulated the R&S procedure as a Markov decision process

and proposed an allocation policy. The proposed method achieves the asymptotically optimal

sampling ratios meanwhile it is shown more efficient than some EI methods.

As an enumeration approach, R&S is not efficient for optimization problems with large solution

space, which is usually encountered in many real-world applications. As a result, there emerges a

trend to integrate R&S with metaheuristics to find the optimal or high-quality solutions efficiently.

R&S is incorporated into metaheuristics such as genetic algorithm (GA) (Schmidt et al., 2006;

Lee et al., 2008), nested partition (Chew et al., 2009), cross entropy (He et al., 2010) and particle

swarm optimization (Pan et al., 2006; Zhang et al., 2016). In some cases, such integration is

straightforward. This happens when the search mechanism, or a part of it, aligns to the purpose

of R&S. For example, in multi-objective evolutionary algorithms, it is required to decide at each

iteration the non-dominated set, from which the parents are selected for reproduction. To this end,

Lee et al. (2008) incorporated the multi-objective OCBA (Lee et al., 2010) to correctly recognize

the non-dominated set. For the same purpose, multi-objective OCBA was coupled directly to the

nested partition algorithm in Chew et al. (2009). However, when such mechanism alignment does

not exist, modifications on the budget allocation are required. For example, He et al. (2010) derived

an OCBA approach for the cross entropy algorithm to select the elite set. Although the form is quite

similar to the mOCBA given in Chen et al. (2008), the proposed rule aims at a different objective to

minimize the mean-squared error of the cross entropy weight function. Schmidt et al. (2006) found

that simulation noises affect the correctness of the selection and replacement procedure in GA. The

6

authors proposed a sampling allocation framework that focuses only on the pairwise comparisons

that are adopted by the GA mechanism, and adapted the Bayesian OCBA approach (Chen, 1996)

to improve the budget efficiency. Recently, Zhang et al. (2016) formulated the budget allocation

problem of particle swarm optimization, and proposed an asymptotically optimal budget allocation

under the LD framework. Particle swarm optimization with the proposed budget allocation is

shown more efficient than that integrated with the standard OCBA.

Studies on the budget allocation problem of TS for stochastic optimization problems are quite

sparse. Most of the applications utilize the equal allocation method, which allocates an equal

number of replications (or equal simulation length) to the solutions. These are, e.g., Lutz et al.

(1998), Tsai and Gemmill (1998), Yang et al. (2004), Dengiz and Alabas (2000) and Niroumandrad

and Lahrichi (2018). In Konak and Kulturel-Konak (2005), TS was applied to solve the stochastic

knapsack problem. The authors showed by empirical results that “the performance of a simulation

optimization using TS may highly depend on how the simulation is conducted during the search

and how its output is used to guide the search”. The authors proposed several budget allocation

policies which obtained some improvements from the equal allocation. However, these are simple

heuristics and there is no evidence of optimality.

To the best of our knowledge, the attempt of combining R&S and TS has not been made. Due

to the mechanism discrepancy, the R&S techniques cannot be directly applied with TS. In TS,

the problem is not only about selecting the best solution from the neighborhood, one also needs to

consider the tabu mechanism and the update of the best-known solution. More specifically, the tabu

mechanism is twofold. On the one hand, it prevents a move to a tabu solution; on the other hand, it

allows a move to a tabu solution if the aspiration rule is triggered. Intuitively, the budget allocated

on tabu solutions should be less than that on non-tabu solutions, but should be enough to assure a

correct triggering of the aspiration rule. What is the appropriate budget for tabu solutions? After

moving to a neighborhood solution, the best-known solution should be updated when necessary.

To assure a correct update, how much additional budget should be allocated to the best-known

solution? The optimal budget allocation becomes not so straightforward when considering all these

factors.

7

3. Problem formulation

The simulation optimization problem can be expressed as

min
x∈Θ

y(x), (1)

where Θ is the search space, y(x) = E[Y (x)] is the expectation of the simulation output Y (x),

which is a random variable. Generally, y(x) can only be estimated by the sample mean Ȳ (x;n) =

1
n

∑n
j=1 Yj(x), where n is the number of simulation observations. The estimation accuracy increases

with n, and lim
n→∞

Ȳ (x;n)→ y(x). The following assumptions are made.

Assumption 1. Assume that Var[Y (x)] < ∞ for all x ∈ Θ, and we can collect independent and

identically distributed (i.i.d.) observations, Y1(x), Y2(x), . . . at any x.

Assumption 2. The simulation observations Yj(x)’s are normally distributed, or namely, Yj(x) ∼
N (y(x), σ2(x)), ∀j.

Both assumptions are widely adopted in the SO literature. More specifically, Assumption 1

holds when the observations are collected from different independent simulation replications. Whilst

when the observations are drawn from different segments of the same simulation replication, the

correlation may exist among samples from consecutive segments, but it can be reduced by increasing

the segment length (Law and Kelton, 2000). Assumption 2 holds in many applications because the

performance metrics are generally taken over some averages of a sample path or a batch of samples

(e.g., averaged system time of customers). Even when the normality is not significant, one can

improve the normality through the batch means technique (Law and Kelton, 2000) .

3.1. Tabu search

TS functions similarly as the ordinary local search, proceeding iteratively from one point (so-

lution) to another until a chosen termination criterion is satisfied. Each x ∈ Θ has an associated

neighborhood N(x), and each solution x′ ∈ N(x) can be reached from x by an operation called

move. Local search applies the descent move, i.e., it moves to a neighborhood solution x′ such

that y(x′) < y(x). The evident shortcoming of local search is that it stops at a local optimum.

To overcome this, TS introduces the following adjustments. First, it moves to the best solution

in the neighborhood, no matter the move is descent or ascent. Second, a subset of neighbors in

N(x) are tabu according to a tabu list T , which prevents cycles and guides the search to escape

8

from local optima. The tabu list is considered as a short-term memory, which is updated based on

the recently visited solutions. The elements in T could have various formats: solutions, solution

attributes, operators for generating solutions, etc. Typically, moving to a tabu solution is forbid-

den, but if this move satisfies certain aspiration criteria, it will still be accepted. We consider the

simplest and most common aspiration criteria: the move to a tabu solution is acceptable if this

solution outperforms the best solution visited in the search path, i.e., the best-known solution.

We use the following notations to better describe the move in a single TS iteration:

x: Current solution before performing the move;

x0: Best-known solution, i.e., the best solution among all visited solutions in the previous

iterations;

xi: The i-th neighborhood solution of x;

N : Index set of neighborhood solutions, N = 1, 2, . . . , k;

J : Index set of tabu neighborhood solutions, i.e., J = {j ∈ N |xj is tabu according to T};
I: Index set of non-tabu neighborhood solutions, i.e., I = N \ J ;

b: Index of the best non-tabu neighborhood solution, i.e., b = arg mini∈I y(xi);

g: Index of the best neighborhood solution, i.e., g = arg mini∈N y(xi).

The admissible neighborhood solution set, i.e., a set consisting of all the neighborhood solutions

to which the move is allowed, is given by A = I ∪ J∗, where J∗ = {j ∈ J |y(xj) < y(x0)} is the set

of tabu neighborhood solutions satisfying the aspiration criteria. If mini∈N y(xi) ≥ y(x0), we have

J∗ = ∅, then the admissible neighborhood solution set A reduces to the non-tabu neighborhood set

I. In this case, TS will move to the best solution in I, i.e., xb. Otherwise, the move to the best

solution in A will be adopted. Since arg mini∈I∪J∗ yi = arg mini∈I∪J yi = arg mini∈N yi = g, TS

performs the move to xg.

The complete TS procedure is given in Algorithm 1. The search starts at an initial solution

x0. At each iteration, the move is performed, and the best-known solution x0 will be updated if

necessary. Then, T is updated by adding the new tabu and deleting the oldest tabu if a certain

removal condition, e.g., the length of T exceeds a limit, is met. This procedure repeats until the

termination condition is met. Note that Algorithm 1 coincides with the standard TS framework

given in Gendreau et al. (2010), except that we rephrase it by distinguishing the moves in two

scenarios to facilitate the derivation of budget allocation policy.

9

Algorithm 1: Tabu search

Require: initial solution x0; maximum iteration tmax

Ensure: the best-known solution x0

1 Initialize: iteration t← 1, current solution x← x0, best-known solution x0 ← x, tabu list T ← ∅;

2 while t < tmax do

3 Evaluate the neighborhood solutions of x, obtaining y(xi) for i ∈ N ;

4 if min
i∈N

y(xi) ≥ y(x0) then

5 Move to the best non-tabu neighborhood solution, i.e., x← xb, where b = arg min
i∈I

y(xi);

6 else

7 Move to the best neighborhood solution, i.e., x← xg, where g = arg min
i∈N

y(xi);

8 end

9 if y(x) < y(x0) then

10 Update the best-known solution x0 ← x;

11 end

12 Record tabu for the current move, and add the tabu into T ;

13 if Tabu removal condition is met then

14 Remove the oldest tabu from T ;

15 end

16 t← t+ 1;

17 end

3.2. The budget allocation problem

When TS is applied for SO, during each iteration, a finite simulation budget is allocated for

estimating y(x0), y(x1), . . . , y(xk). Due to simulation noises, estimation errors are inevitable and

would affect the search decisions. According to Algorithm 1, the search decisions based on sample

means are twofold: choosing the neighborhood solution (Line 5 and 7) to move, and updating the

best-known solution (Line 10). Both are essential for the TS performance, the former decides the

search direction, whilst the latter determines the final output. To model these decisions jointly, a

TS move is defined as below.

Definition 1. Let st = (x, x0) be the state of TS at the t-th iteration, where x is the current

solution at the t-th iteration, and x0 is the best-known solution at the t-th iteration. A TS move,

10

denoted as m, is defined as a transition of st → st+1.

Letm(st) represent the correct TS move in state st based on true objective values y(x0), . . . , y(xk),

and m̂(st, n0, . . . , nk, ξ) be the actual move based on Ȳ (x0;n0), . . . , Ȳ (xk;nk), where Ȳ (xi;ni) is

the sample mean calculated from ni simulation samples, and ξ is a general term representing the

simulation randomness. The probability of correct move (PCM) is given by

PCM = P (m̂(st, n0, . . . , nk, ξ) = m(st)).

The sampling allocation has a direct impact on the estimation accuracy and, therefore, the move.

Then, with a fixed budget, optimizing the allocation policy is an essential way to improve PCM.

The problem considered in this research is to optimize the simulation budget allocation at a single

iteration of TS. Given a simulation budget n for one iteration, say t, the problem is

max
α0,...,αk

PCM,

s.t. α0 + α1 + . . .+ αk = 1,

αi > 0, i = 0, 1, . . . , k.

(2)

Here, αi, i = 0, 1, . . . , k is the sampling ratio, ni = αin, i = 1, . . . , k is the budget allocated to the

i-th neighborhood solution, n0 = α0n is budget of the best-known solution (we ignore that αin is

not an integer).

Solving the budget allocation problem (2) is not identical to solving the simulation optimization

problem (1) optimally. In stochastic settings, the optimality gap of TS could be the result of two

factors: the misleading effect of simulation noises and the metaheuristic nature of TS. This article

focuses on mitigating the first factor through solving (2), so as to enhance the TS performance.

Whilst tackling the second factor by improving the search mechanism of TS via, e.g., hybridization,

advanced intensification and diversification, is beyond the scope of this work.

4. Simulation budget allocation

At an iteration, TS selects the search mode depending on the neighborhood features. When

y(xg) ≥ y(x0), g = arg min
i∈N

y(xi), the search is guided by the tabu list, which facilitates the hill-

climbing and exploration of new regions (Algorithm 1 Line 5). This scenario is named Best-Holding.

Otherwise, TS acts as a simple local search algorithm and moves to the best neighborhood solution

(Algorithm 1 Line 7). This scenario is called Best-Improving.

11

!, !!

!" , !!!# , !!!$, !! !" , !"!% , !%!$, !$� � � �

Best-known solution not updated Best-known solution updated

Best-Holding

!(#!)

!, !!

!" , !!!% , !!!$, !! !" , !"!& , !&!$, !$� � � �

Best-known solution not updated Best-known solution updated

!(#!)

Best-Improving

%"

%"#$

%"

%"#$

Figure 1: Correct moves of tabu search in different scenarios

The correct TS moves in two scenarios are given in Figure 1. For Best-Holding, TS replaces

the current solution x with the best non-tabu neighborhood solution xb and maintains the current

best-known solution x0, the correct move is thus m(st) : (x, x0) → (xb, x0). For Best-Improving,

TS replaces the current solution x with the best neighborhood solution xg, and set xg as the best-

known solution. Hence, the correct move is m(st) : (x, x0)→ (xg, xg). In the following subsections,

we derive the budget allocation policy for each scenario.

4.1. Budget Allocation of Scenario Best-Holding

For Best-Holding, the correct move m(st) : (x, x0) → (xb, x0) can be misled by the following

wrong move events:

(a) Wrong pick. This happens when a non-tabu neighborhood solution xi is esimated to be better

than xb, or formally, Ȳ (xi;ni) < Ȳ (xb;nb), i ∈ I \ b. In this case, TS fails to pick xb thus the

correct move cannot happen.

(b) Wrong aspiration. This occurs when any tabu neighborhood solution is estimated to be

better than the best-known solution, or formally, Ȳ (xj ;nj) < ỹ(x0;n0), j ∈ J . In this case,

the aspiration rule would be wrongly triggered. TS moves to xj instead of xb and updates

the best-known solution.

12

(c) Wrong update. The best non-tabu neighborhood solution xb is estimated to be better than

x0, or formally, Ȳ (xb;nb) < ỹ(x0;n0), the best-known solution would be wrongly updated.

Thus, the probability of false move (PFM) is given by:

PFM = P (
⋃

i∈I\b
(Ȳ (xi;ni) ≤ Ȳ (xb;nb)) ∪

⋃

j∈J
(Ȳ (xj ;nj) ≤ ỹ(x0)) ∪ (Ȳ (xb;nb) ≤ ỹ(x0))),

where ỹ(·) is the realized value of the sample mean from the last iteration. Since an accurate

estimation of the best-known solution is important for a correct move, we consider the possibility

to allocate budget to improve the estimation accuracy of x0 at the current iteration, and thus ỹ(x0)

is replaced with Ȳ (x0;n0). Then we have

PFM = P (
⋃

i∈I\b
(Ȳ (xi;ni) ≤ Ȳ (xb;nb)) ∪

⋃

j∈J
(Ȳ (xj ;nj) ≤ Ȳ (x0;n0)) ∪ (Ȳ (xb;nb) ≤ Ȳ (x0;n0))),

(3)

and PCM = 1− PFM.

The major difficulty for solving Model (2) is that no closed-form expression exists for PFM.

The common idea is to approximate PFM with its bounds. For R&S problem, Chen et al. (2000)

approximated PCS with a lower bound whose closed form is available. By optimizing the lower

bound, they obtain analytical expressions for the optimal sampling ratios when n→∞. Despite the

allocation is asymptotically optimal, it brings significant improvement to the simulation efficiency

with finite budget. However, this approach requires the normality assumption of simulation outputs.

A more general approach allowing various distribution types is based on the LD framework (Dembo

and Zeitouni, 2010). Glynn and Juneja (2004) showed that the problem of maximizing PCS can

be converted to determining the allocation α∗ = (α0, . . . , αk) that maximizes the LD rate function

associated with the probability of false selection (PFS), which is defined by limn→∞− 1
n log PFS.

This paradigm is then used for solving various simulation budget allocation problems arising in,

e.g., particle swarm optimizaiton (Zhang et al., 2016), identifying the Pareto set (Li et al., 2017).

Similarly, to solve Model (2), we have to decide the allocation that maximizes the rate function

associated with PFM, namely,

max
α0,...,αk

lim
n→∞

− 1

n
log PFM,

s.t. α0 + α1 + . . .+ αk = 1,

αi > 0, i = 0, 1, . . . , k.

(4)

13

Given that PFM is intractable, we approximate it with the bounds provided in Lemma 1.

Lemma 1. The PFM in Eq.(3) is bounded by P ∗ ≤ PFM ≤ kP ∗, where

P ∗ = max{max
i∈I\b

P (Ȳ (xi;ni) ≤ Ȳ (xb;nb)),max
j∈J

P (Ȳ (xj ;nj) ≤ Ȳ (x0;n0)), P (Ȳ (xb;nb) ≤ Ȳ (x0;n0))}.

(5)

Proof. See Appendix A.

With any positive allocation α = (α0, . . . , αk) where αi > 0,∀i = 0, . . . , k, when n → ∞, the

solutions tend to receive infinite number of samples and thus, Ȳ (xi;ni)→ y(xi) for all i = 0, . . . , k.

As a result, the probabilities of all wrong move events decay to zero and thus, P ∗ → 0. Since

P ∗ ≤ PFM ≤ kP ∗ , PFM→ 0 at the same rate of P ∗. The goal of maximizing limn→∞− 1
n log PFM

is equivalent to maximizing limn→∞− 1
n logP ∗.

To derive the rate function of P ∗, we introduce the rate functions of the wrong move events as

follows. For any wrong pick event, P (Ȳ (xi;ni) ≤ Ȳ (xb;nb)), i ∈ I \ b decreases to 0 exponentially

at a rate of

Gib(αi, αb) = lim
n→∞

− 1

n
logP (Ȳ (xi;ni) ≤ Ȳ (xb;nb)) = inf

τ
(αiIi(τ) + αbIb(τ)), (6)

for any wrong aspiration event,

Gj0(αj , α0) = lim
n→∞

− 1

n
logP (Ȳ (xj ;nj) ≤ Ȳ (x0;n0)) = inf

τ
(αjIj(τ) + α0I0(τ)), (7)

and for the wrong update,

Gb0(αb, α0) = lim
n→∞

− 1

n
logP (Ȳ (xb;nb) ≤ Ȳ (x0;n0)) = inf

τ
(αbIb(τ) + α0I0(τ)), (8)

where Ii(τ) is defined in LD theory as the rate function of P (Ȳ (xi;ni) < τ) for y(xi) > τ or

P (Ȳ (xi;ni) > τ) for y(xi) < τ . Eq.(6) - (8) hold for light-tailed underlying distributions such as

the Normal, Bernoulli, Poisson and Gamma family. See Section 2.2 in Glynn and Juneja (2004) for

the detailed derivation of the rate functions.

Then, we obtain the rate function of P ∗ as

lim
n→∞

− 1

n
logP ∗ = min{min

i∈I\b
{Gib(αi, αb)},min

j∈J
{Gj0(αj , α0)}, Gb0(αb, α0)},

14

Therefore, the budget allocation optimization problem (4) becomes

max
α0,...,αk

min
i∈I\b,j∈J

{Gib(αi, αb), Gj0(αj , α0), Gb0(αb, α0)}

s.t.
∑

i∈I\b
αi +

∑

j∈J
αj + α0 = 1,

α0, αb, αi, αj > 0,∀i ∈ I \ b, j ∈ J.

(9)

The rate function Gij(αi, αj), i 6= j is a continuously differentiable concave function and is

monotonically increasing with (αi, αj) (Glynn and Juneja, 2004). The objective function of Model

(9) is a concave function w.r.t α0, . . . , αk, because the minimum of a series of concave functions is

also concave. Thus, Model (9) is a concave optimization model, which can be re-written into

max z

s.t. Gib(αi, αb) ≥ z, ∀i ∈ I \ b,

Gj0(αj , α0) ≥ z, ∀j ∈ J,

Gb0(αb, α0) ≥ z,
∑

i∈I\b
αi +

∑

j∈J
αj + αb + α0 = 1,

α0, αb, αi, αj > 0,∀i ∈ I \ b, j ∈ J.

(10)

Model (10) is a constrained convex optimization model satisfying the constraint qualification

(Lemma 2) and hence, the Karush-Kuhn-Tucker (KKT) conditions are sufficient and necessary

for the optimality. By applying the KKT conditions, we obtain the optimality conditions of the

sampling ratios α0, α1, . . . , αk in Theorem 1.

Lemma 2. The mathematical model (10) satisfies the constraint qualification.

Proof. See Appendix B.

Theorem 1. The budget allocation α0, α1, . . . , αk is optimal for Model (10) if the following condi-

15

tions are satisfied:

∑

j∈J

∂Gj0(αj , α0)/∂α0

∂Gj0(αj , α0)/∂αj
+ (1−

∑

i∈I\b

∂Gib(αi, αb)/∂αb
∂Gib(αi, αb)/∂αi

)
∂Gb0(αb, α0)/∂α0

∂Gb0(αb, α0)/∂αb
= 1, (11a)

Gib(αi, αb) = Gj0(αj , α0) = Gb0(αb, α0),∀i ∈ I \ b, j ∈ J, (11b)

1−
∑

i∈I\b

∂Gib(αi, αb)/∂αb
∂Gib(αi, αb)/∂αi

≥ 0, (11c)

∑

i∈I\b
αi +

∑

j∈J
αj + αb + α0 = 1, (11d)

αi, αj , αb, α0 > 0,∀i ∈ I \ b, j ∈ J. (11e)

where b = arg mini∈I y(xi).

Proof. See Appendix C.

Remark 1. Conditions (11b) indicate that the asymptotically optimal budget allocation is a way to

balance the rate functions of all wrong move events. Since any of these events may lead to a wrong

move, the best way is to balance their occurrences and prevent the existence of a “bottleneck”. This

is found as a common insight for the decision-making based on sampling allocation. Similar results

can be found in the R&S problem (Glynn and Juneja, 2004), and the OCBA problem of particle

swarm optimization (Zhang et al., 2016).

To derive the optimal values of αi’s, the closed-form expressions of Gij(αi, αj)’s are provided in

Lemma 3.

Lemma 3. Suppose Y (xi) ∼ N (y(xi), σ
2
i) for i = 0, . . . , k , then

Gij(αi, αj) =
(y(xi)− y(xj))

2

σ2
i /αi + σ2

j /αj
, ∀i 6= j. (12)

Proof. See Appendix D

The optimal allocation α0, . . . , αk can be obtained by solving the system of equations in Theo-

rem 1. However, due to the high nonlinearity of the rate functions, solving such a system requires

a numerical approach based on certain iterative search algorithm, which introduces extra compu-

tational burden. For a fast and easy implementation, based on some mild assumptions, we provide

the closed-form formulas of the asymptotically optimal budget allocation in Proposition 1.

16

Proposition 1. Assume the simulation output of each solution follows a normal distribution,

αb � αi,∀i ∈ I \ b, α0 � αj ,∀j ∈ J , and αb � α0, the asymptotically optimal budget alloca-

tion α0, α1, . . . , αk for tabu search to maximize the probability of correct move in a single iteration

of Scenario Best-Holding is given by:

αi
αi′

=
σ2
i /(y(xb)− y(xi))

2

σ2
i′/(y(xb)− y(xi′))2

,∀i, i′ ∈ I \ b, i 6= i′, (13a)

αj
αj′

=
σ2
j /(y(x0)− y(xj))

2

σ2
j′/(y(x0)− y(xj′))2

,∀j, j′ ∈ J, j 6= j′, (13b)

αi
αj

=
σ2
i /(y(xb)− y(xi))

2

σ2
j /(y(x0)− y(xj))2

,∀i ∈ I \ b, j ∈ J, (13c)

α0 = max{σ0

√∑

i∈J
α2
j/σ

2
j , αi

σ2
0/(y(xb)− y(x0))2

σ2
i /(y(xi)− y(xb))2

},∀i ∈ I \ b, (13d)

αb = σb

√
α2

0/σ
2
0 −

∑

j∈J
α2
j/σ

2
j +

∑

i∈I\b
α2
i /σ

2
i , (13e)

α0 + αb +
∑

i∈I\b
αi +

∑

j∈J
αj = 1. (13f)

where b = arg mini∈I y(xi).

Proof. See Appendix E.

According to Proposition 1, the budgets allocated to the solutions depend both on their true

mean and variances. Generally, solutions with a higher variability receive more budget. This

coincides with the aim of reducing the noise by increasing sample size. Besides, several insights are

summarized in the following remarks.

Remark 2. Eq.(13a) show that the budget allocated to a non-tabu neighborhood solution, say xi, is

inversely proportional to the gap between its true mean and that of the best non-tabu neighborhood

solution. Indeed, as such gap gets smaller, it becomes harder to recognize the best non-tabu neigh-

borhood solution. For this reason, xi receives more budget to reduce its output variability, so as to

prevent the wrong pick.

Remark 3. Eq.(13b) indicate that the budget allocated to a tabu neighborhood solution is inversely

proportional to the gap between its true mean and that of the best-known solution. Similar to Remark

2, this can be interpreted as a measure to prevent the wrong aspiration.

17

Remark 4. Eq.(13c) reveal the competition of budget between the non-tabu and tabu neighborhood

solutions. Since y(x0) ≤ y(xb) in Best-Holding, tabu neighborhood solutions are less competitive

than non-tabu ones.

Remark 5. Eq.(13d) show that the best-known solution receives more budget than any tabu neigh-

borhood solution. This is because x0 has to be compared to each tabu neighborhood solution for

checking the aspiration criteria, the accuracy of x0 is more critical and should be guaranteed. Also,

as indicated by the second term of Eq.(13d), the budget allocated to x0 increases as the gap between

y(x0) and y(xb) decreases. This acts as a measure to prevent the wrong update.

Remark 6. By plugging Eq.(13d) into Eq.(13e), one can see that the best non-tabu neighborhood

solution xb receives more budget than any other non-tabu neighborhood solution, and the budget

allocated on xb is inversely proportional to the gap between y(x0) and y(xb). Similar to Remark 5,

these can be understood as measures to avoid the wrong pick and wrong update, respectively.

In summary, the proposed allocation policy clearly reveals the critical solutions for budget

allocation, and provides insights on how to guarantee a correct move. A numerical approach to

calculate the sampling ratios is given in Appendix F.

4.2. Budget Allocation of Scenario Best-Improving

For Best-Improving, the events misleading the correct move m(st) : (x, x0) → (xg, xg) are as

follows:

(a) Wrong pick. The best neighborhood solution xg is estimated to be worse than another neigh-

borhood solution, or formally, Ȳ (xi;ni) < Ȳ (xg;ng), i ∈ N \g. In this case, a wrong neighbor

would be picked.

(b) Wrong update. The best-known solution x0 is estimated to be better than the best neighbor-

hood solution xg, or formally, Ȳ (x0;n0) < Ȳ (xg;ng). In this case, the best-known solution

would not be updated correctly.

As a result, the PCM can be formulated as:

PCM = 1− PFM = 1− P (
⋃

i∈N\g
(Ȳ (xi;ni) < Ȳ (xg;ng)) ∪ (Ȳ (x0;n0) < Ȳ (xg;ng)))

= 1− P (
⋃

i∈N∪{0}\g
(Ȳ (xi;ni) < Ȳ (xg;ng))).

(14)

18

As shown, a false move is made when the best solution g is not recognized in the set N ∪ {0}.
The problem of maximizing the PCM in Eq.(14) coincides with the problem of maximizing the

probability of selecting the best from a finite set, i.e., the R&S problem. The budget allocation for

R&S is tackled by the well-known OCBA approach proposed in Chen et al. (2000). For this reason,

the following proposition is provided.

Proposition 2. Assume the simulation output of each solution follows a normal distribution, αg �
αi,∀i ∈ N ∪ {0} \ g, the asymptotically optimal budget allocation α0, α1, . . . , αk for the tabu search

to maximize the probability of correct move in a single iteration of Scenario Best-Improving is given

by:

αi
αj

=
σ2
i /(y(xi)− y(xg))

2

σ2
j /(y(xj)− y(xg))2

, ∀i, j ∈ N ∪ {0} \ g, i 6= j (15a)

αg = σg

√ ∑

i∈N∪{0}\g
α2
i /σ

2
i , (15b)

αg +
∑

i∈N∪{0}\g
αi = 1. (15c)

where g = arg mini∈N y(xi).

Proof. See Chen et al. (2000).

4.3. Sequential budget allocation procedure

The allocation policy given in Proposition 1 and 2 is named optimal computing budget allocation

for tabu search (TSOCBA). The sampling ratios αi’s in TSOCBA are calculated via unknown

parameters y(xi)’s and σi’s. Moreover, the selection of allocation rule depends on the scenario

S ∈ {Best-Holding,Best-Improving}, which, however, is unknown before the sampling procedure.

To facilitate the implementation, Algorithm 2 provides a sequential allocation procedure that uses

information accumulated during the budget allocation for estimating the unknown scenario and

parameters. It starts with an initial allocation phase that collects n0 samples for each of the

neighborhood solution to get a first estimation of the parameters y(xi)’s, σi’s and S . Then, based

on the estimated scenario and values, the allocation rule is selected, and the sampling ratio of each

solution is calculated. After, a small increment of simulation budget, ∆, is allocated to the solutions

based on the calculated sampling ratios. Then, the estimated scenario and parameters are updated.

19

This procedure is continued until the total budget n is exhausted. Ideally, as the estimation gets

better, each allocation step should bring us closer to the correct budget allocation.

One possible concern about the sequential allocation procedure is that the poor estimation of

y(xi)’s, σi’s at the beginning phase may mislead the budget allocation. The situation is even worse

when S is wronly estimated thus a wrong allocation rule will apply. However, it has been shown

in the literature that the sequential implementation using the posterior estimations of y(xi)’s and

σi’s would not necessarily worsen the performance, and sometimes, it obtains better performance

than allocation with perfect information. The reason, according to (Peng et al., 2018a), is that the

posterior mean-variance trade-off happens to lead to a desirable allocation-and-sampling policy in

certain circumstances. The same phenomenon happens for the scenario S , which we will show in

our numerical experiments in Section 5.1.2 and 5.1.3.

TSOCBA can be integrated into TS conveniently. In Algorithm 1, during the evaluation of

the neighborhood solutions (Line 3), the sequential TSOCBA (Algorithm 2) is employed to decide

the number of samples for the solutions. Then, the sample means are calculated and used for the

estimation of y(x0), . . . , y(xk). All other steps remain the same.

In Algorithm 1, we need to decide the initial number of samples n0, and the budget increment

∆. The selection of these two parameters are well discussed in Chen et al. (2000). The value n0

should not be too small to avoid poor estimations of the mean and the variance, which misleads

the budget allocation. Also, a large n0 may reduce the number of samples that can be allocated

according to the policy. Both may lower the PCM. A suitable choice for n0 is between 5 and 20. On

the other hand, the compromise exists for ∆: a large ∆ can result in the waste of budgets to obtain

an unnecessarily high accuracy of some solutions; whilst if ∆ is small, one may need to update the

sampling ratios for many times, increasing the overall computational time. A suggested choice for

∆ is a value bigger than 5 but smaller than 10% of the neighborhood size.

5. Numerical results

In this section, we first show numerically the efficiency of TSOCBA on improving the PCM

in a single iteration budget allocation problem. Different neighborhood landscapes are considered.

Then, to validate the usefulness of TSOCBA on improving the performance of TS, we choose the

following problems: (1) An (s,S) inventory problem (Koenig and Law, 1985). This problem is a

well-known testing bed in the SO literature. With its 2-dimensional integer lattice solution space,

20

Algorithm 2: Sequential budget allocation with TSOCBA

Require: initial budget n0; total budget n; budget increment ∆;

Ensure: number of samples n0, n1, . . . , nk;

1 Initial allocation: Collect n0 simulation samples Y1(xi), . . . , Yn0(xi) for each neighborhood

solution; set ni ← n0, ∀i = 1, . . . , k; set the total budget counter n∗ ← kn0;

2 while n∗ < n do

3 Updating: Compute the sample mean Ȳ (xi;ni) and the sample variance

S2
i =

∑ni
j=1(Yj(xi)− Ȳ (xi;ni))

2/(ni − 1), for i = 0, 1, . . . , k;

4 Allocation:

5 Set ∆∗ ← min{∆, n− n∗}, update n∗ ← n∗ + ∆∗;

6 if mini=1,...,k Ȳ (xi;ni) ≥ Ȳ (x0;n0) then

7 Compute the sampling ratios α0, α1, . . . , αk using Eq.(13) in Proposition 1;

8 else

9 Compute the sampling ratios α0, α1, . . . , αk using Eq.(15) in Proposition 2;

10 end

11 Calculate the number of samples n′i = αin
∗, ∀i = 0, 1, . . . , k;

12 Sampling:

13 for i = 1 to ∆∗ do

14 Select the most starving solution i∗ in terms of the need of additional budget, where

i∗ = arg maxi∈0,1,...,k n
′
i − ni;

15 Collect one additional simulation sample for solution i∗, and update ni∗ ← ni∗ + 1;

16 end

17 end

we can visualize and compare the search trajectory of TS under different budget allocation policies.

(2) A production line throughput maximization problem (Pasupathy and Henderson, 2011). This

problem is quite important in manufacturing, and is also a common benchmark problem for SO

approaches. Due to its large solution space, solving it with traditional R&S approaches requires a

great simulation effort. Hence, it is worthwhile to investigate the potential of TSOCBA on solving

this problem. (3) A physician scheduling problem (Niroumandrad and Lahrichi, 2018). This real-

world problem is taken from our previous work which is critical for the patient wait time and

processing time. This problem is of high complexity due to different decision types and a huge

21

solution space. This serves for testing the performance of TSOCBA in scheduling problems with

complex solution structures. All experiments are coded in C++ and run in a computing cluster

with Intel Gold Skylake @2.4 GHz processors.

The following two budget allocation methods are adopted as benchmarks:

EA: Equal Allocation. At each iteration, the budget is allocated equally to the neighborhood

solutions, i.e., αi = 1/k,∀i = 1, . . . , k.. EA is the most frequently used policy when TS is adopted

for SO.

OCBA: Optimal Computing Budget Allocation. At each iteration, the budget is allocated to the

neighborhood solutions using the OCBA formulas proposed by Chen et al. (2000):

αi
αj

=
σ2
i /(yi − yg)2

σ2
j /(yj − yg)2

, ∀i 6= j 6= g, (16a)

αg = σg

√∑

i6=g
α2
i /σ

2
i , (16b)

αg +
∑

i 6=g
αi = 1. (16c)

where g = arg mini∈[1,...,k] y(xi). There are works that apply the original OCBA to metaheuristics

for handling the budget allocation. For example, Horng et al. (2012) incorporated directly OCBA

into particle swarm optimization. Although OCBA is proposed for the R&S problem rather than

the specific search algorithm, according to the results of Zhang et al. (2016), some improvements

can still be obtained. Therefore, we use the direct incorporation of OCBA into TS as a benchmark.

Note that OCBA is quite similar, but not identical, to Proposition 2. The OCBA approach aims

only at selecting the best neighborhood solution, thus no additional budget is spent on the best-

known solution. We implement OCBA as a sequential allocation procedure as Algorithm 2, except

that Eq.(16) is used for the Allocation step.

5.1. A single iteration budget allocation problem

We consider the budget allocation problem in a single TS iteration. To simulate different

neighborhood landscapes, four instances are introduced in Table 1. Instance A1 represents a case

of Scenario Best-Holding, i.e., the neighborhood solutions are not better than the best-known

solution. Here, x and x0 are the current and the best-known solution respectively, and x1, . . . , x9

are the nine neighborhood solutions. The simulation output Y (xi) ∼ N (i, σ2) for i = 0, . . . , 9,

where σ = 6. The tabu neighborhood solution set is J = {1, 2}. The correct TS move is therefore

22

Table 1: Test instances of the single iteration allocation problem

Instance ID Scenario y(x0) y(x1), . . . , y(x9) σ Tabu neighbor set J Correct TS Move

A1 Best-Holding 0 1,2,3,4,5,6,7,8,9 6 1, 2 (x, x0)→ (x3, x0)

A2 Best-Holding 0 1,2,3,4,5,6,7,8,9 6 3, 4 (x, x0)→ (x1, x0)

B1 Best-Improving 1 0,2,3,4,5,6,7,8,9 6 3, 4 (x, x0)→ (x1, x1)

B2 Best-Improving 1 0,2,3,4,5,6,7,8,9 6 1, 2 (x, x0)→ (x1, x1)

m(st) : (x, x0) → (x3, x0). Instance A2 is also of Best-Holding, but compared to A1, the gap

between y(x0) and y(xb) is much smaller. This case is often faced during the escaping from the local

optimum. Instance B1 and B2 are of Best-Improving. B1 is the case when the best neighborhood

solution xg is not tabu. On the contrary, B2 is a special case when xg is prevented by the tabu list,

and thus, the aspiration criteria is triggered. These instances almost cover all types of neighhorhood

landscapes during a TS procedure.

5.1.1. Static allocation implememtation

In this subsection, we study the performance of the proposed polices in static allocation im-

plememtation. By “static allocation” , we refer to the ideal case where the perfect information of

y(xi)’s and σi’s are known in advanced, and thus, the correct sampling ratios can be calculated. A

finite budget n is allocated by a single step according to the correct sampling ratios. We compare

the performance of Proposition 1 and 2, as well as EA in such ideal case, with two different levels

of n = 100 and n = 1000. Note that this ideal experiment aims only at showing the difference

between the allocations and their impacts on the TS move.

We run the experiment only on Instance A1. Figure 2(a) illustrates the budget allocation

of Proposition 1 and 2. Figure 2(b) depicts the probability of moving to each new state when

different allocations are adopted. This probability is evaluated by Monte Carlo simulations with

5000 replications. For simplicity, the figure uses [i, j] to represent the state (xi, xj). We see that

it is difficult to recognize the correct state (x3, x0) when n is small. As n increases to 1000, the

asymptotically optimal policy, namely, Proposition 1, obtains the best performance. However, we

also observe that the PCM of Proposition 1 is worse than EA when n = 100. This implies that

the asymptotically optimal sampling ratio per se does not guarantee a good performance when the

simulation budget is not large enough, which coincides with the finding in Peng et al. (2018a).

23

27.04

16.94

9.68

0

5

10

15

20

25

30

[1,0] [2,0] [3,0] [4,0] [5,0] [6,0] [7,0] [8,0] [9,0] [1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9]

Fr
eq

ue
nc

y
(%

) EA
Proposition 1
Proposition 2

76.6
86.5

60.04

0

20

40

60

80

100

[1,0] [2,0] [3,0] [4,0] [5,0] [6,0] [7,0] [8,0] [9,0] [1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9]

Fr
eq

ue
nc

y
(%

)

New state

EA
Proposition 1
Proposition 2

n = 100

n = 1000

0 1 2 3 4 5 6 7 8 9
Solution index

0

2

4

6

8

10

Tr
ue

 o
bj

ec
tiv

e
va

lu
e Non-tabu

Tabu
Best-known

0 1 2 3 4 5 6 7 8 9
Solution index

0

0.1

0.2

0.3

0.4

0.5

Sa
m

pl
in

g
ra

tio

Proposition 1
Proposition 2

(a) Sampling ratios of propositions (b) Probability of TS moves

Figure 2: Comparison of difference policies with static allocation implememtation on Instance A1

5.1.2. Sequential allocation implememtation

In actual cases, the y(xi)’s, σi’s and the scenario S are unknown. A static allocation with

perfect information is not allowed, and hence, the sequential procedure utilizing plug-in estimated

parameters is adopted. In the following experiment, we study the performance of three sequential

allocation procedures. TSOCBA is implemented as Algorithm 2. TSOCBA(P1) is implemented

as TSOCBA except that the scenario S is fixed as Best-Holding and Proposition 1 is adopted for

budget allocation. TSOCBA(P2) is implemented in a similar logic. We set n0 = 10 and ∆ = 1, n

increases from 100 to 2000. The PCM is evaluated empirically by Monte Carlo simulations with

10000 replications.

The result of Instance A1 is given in Figure 3 (a). As expected, TSOCBA(P1) outperforms EA

and TSOCBA(P2). TSOCBA has almost identical performance as TSOCBA(P1). TSOCBA(P2)

converges slower than EA. We notice that when n = 1000, the PCM of the sequential approach

TSOCBA(P1) is 0.912, which is actually higher than the PCM obtained by the static allocation

approach with the same policy (0.865 as shown in Figure 2(b)). This validates the finding that

the sequential procedure using posterior estimations of y(x)i’s and σi’s can outperform the optimal

static allocation using perfect information (Chen et al., 2006).

The results of A2, B1 and B2 are given in Figure 3. Basically, TSOCBA(P1) achieves the

best performance for Best-Holding, whilst TSOCBA(P2) is the best for Best-Improving. However,

24

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Simulation budget

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

C
M

EA

TSOCBA

TSOCBA(P1)

TSOCBA(P2)

(a) Instance A1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Simulation budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
C

M

EA

TSOCBA

TSOCBA(P1)

TSOCBA(P2)

(b) Instance A2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Simulation budget

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
C

M

EA

TSOCBA

TSOCBA(P1)

TSOCBA(P2)

(c) Instance B1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Simulation budget

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
C

M

EA

TSOCBA

TSOCBA(P1)

TSOCBA(P2)

(d) Instance B2

Figure 3: PCM as a function of the simulation budget on the instances with σ = 6

these single-policy procedures cannot perform well when the scenario is not consistent. TSOCBA

is robust and almost the best, except in instance B2 where it is outperformed by TSOCBA(P2).

5.1.3. Sequential allocation implememtation - high simulation noises

To test the performance in the case of high simulation noises, we generate the variants of the

testing instances. Instances A1 HV, A2 HV, B1 HV and B2 HV have the same parameters as A1,

A2, B1 and B2 respectively, except that σ = 12. The results are reported in Figure 4. Generally, the

performance of all procedures becomes worse than those in the low-variance cases. This can be well

25

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Simulation budget

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P

C
M

EA

TSOCBA

TSOCBA(P1)

TSOCBA(P2)

(a) Instance A1 HV

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Simulation budget

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
C

M

EA

TSOCBA

TSOCBA(P1)

TSOCBA(P2)

(b) Instance A2 HV

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Simulation budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
C

M

EA

TSOCBA

TSOCBA(P1)

TSOCBA(P2)

(c) Instance B1 HV

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Simulation budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
C

M

EA

TSOCBA

TSOCBA(P1)

TSOCBA(P2)

(d) Instance B2 HV

Figure 4: PCM as a function of the simulation budget on the instances with σ = 12

understood because the high noise level increases the difficulty in selecting the correct move. The

rankings of different procedures remain almost the same in each instance. It is interesting to observe

that in A1 HV, TSOCBA has an advantage over TSOCBA(P1) that uses perfect information on

S . This implies that the posterior estimation of S leads to a desirable allocation policy in certain

circumstances. However, this is not always the case. As shown in B2 HV, TSOCBA is outperformed

by TSOCBA(P2) by a large extent, which shows the penalty of not knowing the true S . While in

A2 HV and B1 HV, there is no significant difference between the performance of TSOCBA and the

procedure using perfect information on S . Indeed, in many classic R&S problems, the sequential

26

implementation using posterior estimations of parameters could lead to a superior performance.

However, it could also lead to misleading results in the low-confidence scenario characterizing by:

the differences between the means of solutions are small, the variances are large, and the simulation

budget is small (Peng et al., 2018a). As observed in our case, the sequential implementation based

on estimated S is not worse than that using true S in most of the neighborhood configurations,

even with large simulation noises.

In summary, the proposed TSOCBA outperforms EA and the two single-policy procedures in

almost all the test instances of the single iteration budget allocation problem.

5.2. The (s,S) Inventory problem

We consider an inventory system with zero delivery lag and backlogging, which is introduced in

Koenig and Law (1985). At the beginning of each period, if the inventory level is below Ssmall, an

order is placed and the inventory level is replenished to Sbig. Placing an order incurs a constant

ordering cost of 32, and a variable ordering cost of 3 per unit. The demand in each period is

i.i.d. and follows the Poisson distribution with mean 25. After subtracting the demand, for each

unit remaining in the inventory, a holding cost of 1 per unit is incurred; unsatisfied demand incurs

a penalty of 3 per unit, and becomes the backlog for the next period. The goal is to find a

policy x = (Ssmall, Sbig) ∈ Θ, where Θ = {(Ssmall, Sbig) ∈ Z2 : 20 ≤ Ssmall ≤ 80, 40 ≤ Sbig ≤
100, Ssmall < Sbig}, that minimizes the long-term expected inventory cost per period. The optimal

solution is x∗ = (20, 53) with y(x∗) = 111.1265, which is found by a complete enumeration and

using the Markov chain method presented in Zheng and Federgruen (1991) to evaluate exactly the

solutions.

To apply TS, the neighborhood is defined as N(x, rad) = {x′ ∈ Θ : ||x′ − x|| ≤ rad, x′ 6= x},
where rad is the radius of the neighborhood, and ||x|| is the norm of vector x. After the move

x → x′, the reverse direction vector dr = −(x′ − x) is added into the tabu list T . Let x be

the current solution, given a vector dr, any neighborhood solution is tabu if located in the cone

R(x, dr, θ) = {x′ ∈ N(x, rad) : arccos (x′−x)·dr
||x′−x||||dr|| ≤ θ}, where θ is an user-defined tabu angle. In

this way, the tabu neighborhood subset is
⋃
dr∈T R(x, dr, θ).

We set rad = 3, θ = 15°, tmax = 100, x0 = (60, 80), and the maximum length of T as 4.

To avoid solution re-evaluating, the solutions visited in the last three iterations are removed from

the current neighborhood. y(x) is evaluated by simulation with a total simulation length of l

27

(a) EA (b) OCBA (c) TSOCBA

Initial solution
Optimal solution

Initial solution
Optimal solution

Initial solution
Optimal solution

Figure 5: A visualization of the TS trajectory in the solution space of the (s,S) inventory problem (n = 300 and

l = 10). The brightness of a pixel represents the ρ30(x) value estimated from 500 replications.

20 30 40 50 60 70 80 90 100
Number of Iterations

111

111.5

112

112.5

113

113.5

114

114.5

115

115.5

116

Cu
rre

nt
 B

es
t O

bj
ec

tiv
e

Va
lu

e
y(

x 0) EA
OCBA
TSOCBA
y(x*)

111.8

111.6

112.7

111.1
20 40 60 80 100

Number of Iterations

111

111.5

112

112.5

113

113.5

114

114.5

115

115.5

116

Cu
rre

nt
 O

bj
ec

tiv
e

Va
lu

e
y(

x)

EA
OCBA
TSOCBA
y(x*)

111.1

112.6

111.9

 20 40 60 80 100
Number of Iterations

112

114

116

118

120

122

124

126

128

Cu
rre

nt
 B

es
t O

bj
ec

tiv
e

Va
lu

e
y(

x 0)

EA
OCBA
TSOCBA

(a) Objective value of current solution (b) Objective value of the best-known solution (c) Boxplot of the best-known solution value

Figure 6: Tabu search performance on the (s,S) inventory problem, n = 300, l = 10 (Data from 500 replications)

periods. A warm-up of 50 periods is used to guarantee the steady-state performance. To study the

TS performance with different budget allocation procedures, levels of simulation noise and total

budget, a full-factorial design of experiments (DOE) is performed with the following factors and

levels: budget allocation procedure (Alloc) - EA, OCBA, TSOCBA; budget per iteration (n) - 200,

250, 300; simulation length (l) - 10, 30, 50. Each setting runs for 500 replications. For OCBA and

TSOCBA, n0 = 5 and ∆ = 1. The simulation noise level corresponding to each l level is evaluated

by the Coefficient of Variance (CV). For l = 10, 30 and 50, the CV of Y (x∗) is 0.0695, 0.0372 and

0.0275, respectively.

There are 3*3=9 different cases in terms of n and l. Take the case of (n = 300, l = 10) as an

example. Figure 5 illustrates the search trajectory of TS. It depicts the probability that TS visits

a specific solution along its search path [x0, x1, . . . , xt]. The probability of visiting a solution by

28

Table 2: Probability of visiting, recognizing, and maintaining the optimal solution of the (s,S) Inventory problem

(Estimated from 500 replications)

Methods ρ30(x∗) ρ∗30(x∗) ρ030(x∗) ρ100(x∗) ρ∗100(x∗) ρ0100(x∗)

EA 0.008 0.004 0.002 0.774 0.05 0.008

OCBA 0.13 0.04 0.032 0.982 0.2 0.056

TSOCBA 0.136 0.068 0.044 0.994 0.572 0.074

iteration t, given by ρt(x) = P (x ∈ [x0, x1, . . . , xt]), is estimated empirically from 500 replications.

A brighter spot indicates a higher frequency of visiting. As shown, when EA is adopted, the search

can hardly reach the optimum. Also, we observe some bright spots scattered in the left-up corner

of the solution space. Both indicate the misleading effect of the simulation noises on the search

path. Whilst when OCBA or TSOCBA is used, a clear path links the initial solution to the optimal

solution region. The estimated ρ30(x∗) values are reported in Table 2, TSOCBA leads to the highest

chance of visiting the optimum.

Figure 6(a) depicts the averaged quality of the search path. As shown, OCBA and TSOCBA

converge faster than EA. Since x0 is the final output of TS, we report the averaged y(x0) value

in Figure 6(b). TSOCBA has a small advantage over OCBA. This gap is due to a more accurate

update of x0, which can be shown in Table 2. Here, ρ∗t (x
∗) = P (x∗ ∈ [x0

0, x
1
0, . . . , x

t
0]) is defined

as the probability that TS has stored the optimal solution x∗ as the best-known solution during

the search, ρ0
t (x
∗) = P (xt0 = x∗) is the probability that TS has maintained x∗ as the best-known

solution at iteration t. Figure 6(c) provides the boxplot of y(x0). Here, the averages of the data are

labeled by markers. As shown, TSOCBA has the smallest gap between the first and third quartile

(except for the 20th iteration), showing a stable performance. Further, it can be seen from the

outliers that TSOCBA achieves the best worst-case performance.

Define Optimality Gap at Iteration as OptGapt = (y(xt0)−y(x∗))/y(x∗)∗100. We use OptGap30

and OptGap100 for measuring the convergence speed and quality, respectively. Table 3 reports the

comparisons results in all cases. The mean and standard deviation of the data are reported. Besides,

EA and OCBA are compared to TSOCBA via the Mann-Whitney U test with a significance level

of 5%. The symbols “+”, “=” and “-” indicate that the method is statistically worse, equal and

better than TSOCBA, respectively. As shown, TSOCBA is the best among the competitors in

terms of both indicators, regardless of the total budget number and simulation noise level. The

29

Table 3: Comparison results of the (s,S) inventory problem

#Budget Sim.length
OptGap30 Mean (Std) OptGap100 Mean (Std)

EA OCBA TSOCBA EA OCBA TSOCBA

200 10 6.54 (3.9) + 3.71 (2.8) = 3.51 (2.5) 1.86 (2) + 0.832 (1.1) = 0.789 (0.91)

30 0.791 (1) + 0.456 (0.59) = 0.406 (0.45) 0.459 (0.38) + 0.357 (0.3) + 0.285 (0.25)

50 0.421 (0.47) = 0.26 (0.23) = 0.259 (0.22) 0.341 (0.27) + 0.25 (0.21) + 0.215 (0.18)

250 10 5.17 (3.3) + 2.13 (2) = 1.99 (1.8) 1.6 (1.8) + 0.69 (0.84) + 0.593 (0.68)

30 0.599 (0.75) + 0.319 (0.34) + 0.265 (0.19) 0.4 (0.33) + 0.324 (0.28) + 0.231 (0.19)

50 0.352 (0.41) + 0.221 (0.19) = 0.2 (0.14) 0.309 (0.24) + 0.228 (0.21) + 0.164 (0.12)

300 10 4.22 (2.9) + 1.15 (1.2) + 1.05 (1.1) 1.41 (1.6) + 0.57 (0.55) + 0.471 (0.47)

30 0.484 (0.72) + 0.275 (0.21) + 0.248 (0.17) 0.355 (0.27) + 0.27 (0.23) + 0.215 (0.15)

50 0.322 (0.39) + 0.21 (0.17) + 0.181 (0.13) 0.274 (0.22) + 0.215 (0.18) + 0.152 (0.1)

Average 2.1 (3.1) + 0.969 (1.7) + 0.901 (1.6) 0.779 (1.2) + 0.415 (0.57) + 0.346 (0.48)

overall performance of TSOCBA is statistically better than EA and OCBA. Moreover, in all cases,

TSOCBA is more stable than EA and OCBA due to a smaller standard deviation. A detailed

ANOVA can be found in Appendix H.

5.3. The throughput maximization problem

We consider the throughput maximization problem taken from SimOpt.org (Pasupathy and

Henderson, 2011). There is a three-machine flow line with finite capacity buffer in front of Machine

2 and 3. The number of buffer storage (including the one in service at the machine) are denoted as ζ4

and ζ5. The service time of machine i is exponentially distributed with service rate ζi, i = 1, 2, 3. A

full buffer causes the blockage of the upstream machine, and an empty buffer causes the starvation of

the downstream machine. The block-after-service behavior is considered, i.e., a finished job cannot

be released from a machine if the downstream buffer is full. Machines are considered to be reliable

and no failure can happen. The first machine is never starved, and the last machine is never blocked.

The total buffer capacity and the total service rates are limited. The goal is to find an allocation

of buffer capacities and service rates x = {ζ1, . . . , ζ5} such that the steady-state throughput (TH)

of the flow line is maximized, which can be formulated as a minimization problem: min
x

1/TH(x),

subjected to ζ1 + ζ2 + ζ3 = 20; ζ4 + ζ5 = 20; 1 ≤ ζi ≤ 20 and ζi ∈ Z+, for i = 1, . . . , 5. The

throughput is evaluated by simulation with a warm-up of 2000 jobs followed by a period of l jobs.

This problem has totally 21660 feasible solutions. The optimal solutions are known as (6, 7, 7, 12, 8)

and (7, 7, 6, 8, 12). The optimal throughput is 5.776 and hence, y(x∗) = 1/5.776 = 0.1731.

30

 20 40 60 80 100
Number of Iterations

0.174

0.176

0.178

0.18

0.182

0.184

0.186

0.188

Cu
rre

nt
 B

es
t O

bj
ec

tiv
e

Va
lu

e
y(

x 0)

EA
OCBA
TSOCBA

0 20 40 60 80 100
Number of Iterations

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Cu
rre

nt
 O

bj
ec

tiv
e

Va
lu

e
y(

x)
EA
OCBA
TSOCBA
y(x*)

0.1731

0 20 40 60 80 100
Number of Iterations

0.173

0.174

0.175

0.176

0.177

0.178

0.179

0.18

0.181

Cu
rre

nt
 B

es
t O

bj
ec

tiv
e

Va
lu

e
y(

x 0) EA
OCBA
TSOCBA
y(x*)

0.1745
0.1742

0.1738

0.1731

(a) Objective value of current solution (b) Objective value of the best-known solution (c) Boxplot of the best-known solution value

Figure 7: Tabu search performance on the throughput maximization problem, n = 100, l = 50. (Data from 500

replications)

To apply TS, define the neighborhood by N(x) = {x(i, j) ∈ Θ,∀i, j ∈ 1, ..., 5, i 6= j}, where

x = {ζ1, . . . , ζ5} is the current solution, x(i, j) is the solution obtained by moving one unit from

ζi to ζj , i.e., ζi ← ζi − 1 and ζj ← ζj + 1. |N(x)| = 8 if x is not on Θ’s boundary. After moving

one unit from ζi to ζj , we tabu the reversing move from ζj to ζi in the next 2*#stations = 6

iterations. We remove the last three visited solutions from the current neighborhood, if applied.

Set x0 = (14, 3, 3, 17, 3), tmax = 100. We perform a full-factorial DOE with the following factors

and levels: budget allocation procedure (Alloc) - EA, OCBA, TSOCBA; budget per iteration (n) -

50, 100, 150; simulation length (l) - 30, 50, 70. Each experiment setting runs for 500 replications.

For OCBA and TSOCBA, n0 = 5 and ∆ = 1. The CV of Y (x∗) is 0.1668, 0.1244 and 0.1022 for

l = 30, 50 and 70, respectively.

The results of the case (n = 100, l = 50) is given in Figure 7, where the true value y(xt) is

estimated by the sample mean from 500 replications of long-term simulation of 20000 jobs. Figure

7(a) shows that the search path quality is similar for all methods, which may due to a relatively

small neighborhood size. However, TSOCBA can output a better solution (as depicetd in 7(b)),

which is the result of a more accurate x0 updating. Futher, Figure 7(c) shows that TSOCBA has

a lower variability and a better worst-case performance than EA and OCBA.

The case-by-case comparison results are reported in Table 4. TSOCBA obtains the best averaged

performance for both indicators in all cases, and in most of them the advantages of TSOCBA are

statistically significant. The overall performance of TSOCBA statistically outperforms the two

benchmarks in terms of the optimality gap in both early and late search phase. Furthermore, the

standard deviation of TSOCBA is the smallest in all cases, which indicates a better performance

31

Table 4: Comparison results of the throughput maximization problem

#Budget Sim.Length
OptGap20 Mean (Std) OptGap100 Mean (Std)

EA OCBA TSOCBA EA OCBA TSOCBA

50 30 2.91 (3.3) + 2.71 (3) + 2.36 (2.8) 1.48 (1.7) = 1.77 (2.4) + 1.45 (1.9)

50 1.99 (2.4) + 1.81 (2) + 1.56 (1.9) 1.17 (1.2) + 1.24 (1.5) + 0.966 (1.1)

70 1.6 (1.8) + 1.33 (1.6) + 1.12 (1.5) 1.03 (1.2) + 1.13 (1.3) + 0.751 (0.99)

100 30 1.73 (2.1) + 1.37 (1.7) + 1.04 (1.3) 1.07 (1.2) + 0.896 (1.1) + 0.615 (0.73)

50 1.21 (1.5) + 0.921 (1.2) + 0.748 (1) 0.81 (0.98) + 0.619 (0.84) + 0.438 (0.58)

70 0.896 (1.1) + 0.689 (0.92) + 0.481 (0.62) 0.653 (0.8) + 0.538 (0.77) + 0.356 (0.43)

150 30 1.38 (1.7) + 0.961 (1.3) = 0.823 (1) 0.855 (1) + 0.657 (1.1) + 0.484 (0.61)

50 1.06 (1.2) + 0.647 (0.84) + 0.48 (0.65) 0.605 (0.76) + 0.483 (0.61) + 0.363 (0.48)

70 0.752 (1) + 0.489 (0.67) = 0.414 (0.53) 0.549 (0.68) + 0.431 (0.58) + 0.267 (0.32)

Average 1.5 (2) + 1.21 (1.7) + 1 (1.5) 0.914 (1.1) + 0.862 (1.3) + 0.632 (1)

robustness. See Appendix H for the ANOVA details.

5.4. The physician scheduling problem

In this section, we consider a real-world physician scheduling problem in the pretreatment phase

for cancer patients (Niroumandrad and Lahrichi, 2018). See Appendix G for the details of the

problem and adaption of the TS algorithm.

A full-factorial DOE is performed with the following factors and levels: budget allocation proce-

dure (Alloc) - EA, OCBA, TSOCBA; budget per iteration (n) - 2000, 3000, 4000; objective weight

(w) - 0.2, 0.5, 0.8 (the simulation noise level increases with w). The CV of a randomly generated

initial solution is 0.0101, 0.0203 and 0.0399 for w = 0.2, 0.5 and 0.8, respectively. Each experiment

setting runs for 500 replications. For OCBA and TSOCBA, n0 = 5 and ∆ = 1.

The results of the case (n = 3000, w = 0.5) is depicted in Figure 8. Here, the value of y(xt) is

estimated by simulation with 10000 replications. As shown in Figure 8(a), OCBA and TSOCBA

converge faster than EA due to a better descent direction. OCBA and TSOCBA have nearly the

same performance at the early search phase, while after the 60th iteration, TSOCBA can reach

a better solution space. Figure 8(b) shows that TSOCBA outperforms OCBA in terms of y(x0)

after the 80th iteration. Indeed, at the early search phase, it is easier to gain improvements of the

objective value and TS performs like a greedy algorithm picking the best neighborhood solution,

which aligns to the goal of OCBA. As the procedure continues and the landscape becomes more

complex, TS keeps entering and escaping from local optima under the tabu mechanism. Without

32

100 200 300 400 500
Number of Iterations

270

275

280

285

290

295

300

305

310

315

Be
st

 O
bj

ec
tiv

e
Va

lu
e

y(
x 0)

EA
OCBA
TSOCBA

50 100 150 200 250 300 350 400 450 500
Number of Iterations

270

275

280

285

290

295

300

305

310

Cu
rre

nt
 B

es
t O

bj
ec

tiv
e

Va
lu

e
y(

x 0)

EA
OCBA
TSOCBA

273.3

280.5

272.3

50 100 150 200 250 300 350 400 450 500
Number of Iterations

270

280

290

300

310

320

330

340
Cu

rre
nt

 O
bj

ec
tiv

e
Va

lu
e

y(
x)

EA
OCBA
TSOCBA

(a) Objective value of current solution (b) Objective value of the best-known solution (c) Boxplot of the best-known solution value

Figure 8: Tabu search performance on the physician scheduling problem, n = 3000, w = 0.5. (Data from 500

replications)

considering such ad-hoc mechanism in the budget allocation, OCBA is not able to perform as well

as TSOCBA. Figure 8(c) shows that TSOCBA is more reliable and achieves a better worst-case

performance than EA and OCBA.

The case-by-case comparison results are reported in Table 5. TSOCBA obtains the best averaged

OptGap100 and OptGap500 in almost all cases. Exceptions are observed in (w = 0.2, n = 3000) and

(w = 0.2, n = 4000), which are considered as the “easy” cases because of the low noise level and

large amount of budget. The overall performance of TSOCBA statistically outperforms the two

benchmarks in terms of optimality gap both in early and late search phase. Moreover, in almost all

cases, TSOCBA obtains a smaller standard deviation than EA and OCBA, which implies a more

stable performance. The ANOVA details are provided in Appendix H.

5.5. A Comparison to OptQuest

To further validate the performance of TS with the proposed budget allocation policy (short

as TSOCBA) on solving SO problems, besides TS with equal allocation (short as EA), we use

the OptQuestr optimization engine as a benchmark, whose performance is well-recognized by

simulation optimization practitioners. The main optimization procedure of OptQuest is based on

scatter search, with various techniques included to complement the default search mechanisms, such

as genetic algorithm, particle swarm optimization, cross entropy and simultaneous perturbation

stochastic approximation.

The performance comparison is made on the throughput maximization problem with n = 100,

l = 50, and the physician scheduling problem with n = 3000,w = 0.5. For a fair comparison,

33

Table 5: Comparison results of the physician scheduling problem

Weight #Budget
OptGap100 Mean (Std) OptGap500 Mean (Std)

EA OCBA TSOCBA EA OCBA TSOCBA

0.2 2000 2.15 (1) + 1.32 (0.83) = 1.25 (0.73) 1.4 (0.63) + 0.748 (0.53) = 0.72 (0.49)

3000 1.84 (0.9) + 1.11 (0.7) = 1.14 (0.65) 1.21 (0.58) + 0.545 (0.44) - 0.685 (0.44)

4000 1.66 (0.82) + 1.1 (0.75) - 1.16 (0.64) 1.02 (0.53) + 0.531 (0.47) - 0.693 (0.46)

0.5 2000 8.41 (2.5) + 5.05 (2.1) + 4.25 (2) 6.71 (2) + 3.97 (1.7) + 3.13 (1.5)

3000 6.84 (2.4) + 3.45 (1.7) + 2.89 (1.6) 5.33 (1.8) + 2.51 (1.2) + 2.14 (1.1)

4000 5.94 (2.1) + 2.93 (1.6) + 2.6 (1.5) 4.63 (1.6) + 2.21 (1.2) + 1.83 (1)

0.8 2000 14.4 (3.1) + 11.5 (2.9) + 10.9 (2.7) 11.6 (2.4) + 9.05 (2.4) + 8.57 (2.5)

3000 12.5 (2.9) + 8.53 (2.4) + 7.5 (2.4) 10.1 (2.2) + 6.43 (1.9) + 5.39 (1.8)

4000 11.8 (2.6) + 7.75 (2.2) + 7.02 (2.1) 9.07 (2.1) + 5.81 (1.9) + 4.91 (1.7)

Average 7.27 (5.1) + 4.75 (4) + 4.3 (3.7) 5.67 (4.1) + 3.53 (3.2) + 3.12 (2.9)

all algorithms consume the same simulation budget n at each search iteration, and use the same

termination condition. We run the algorithms for 50 replications on the throughput maximization

problem, and 10 replications for the physician scheduling problem. Note that the initial solution of

TSOCBA is generated randomly, while OptQuest uses its default initialization mechanism.

The results are shown in Figure 9. Both the mean and 95% confidence intervals of the best-known

objective value are illustrated. For the throughput maximization problem, all algorithms converge

to the optimal objective value y(x∗), but the speed of TSOCBA is much faster than OptQuest. The

difference between TSOCBA and EA is relatively small. The confidence interval of TSOCBA is

much narrower than OptQuest, showing a stable performance. For the complex physician scheduling

problem, TSOCBA outperforms OptQuest to a large extent in terms of convergence speed and final

solution quality, and there is a considerable performance gap between TSOCBA and EA.

Notably, the performance gap between EA and OptQuest is due to the different search mecha-

nisms, while that between EA and TSOCBA is caused by the different simulation budget allocation

policies. On the one hand, comparing to the general purpose optimization engine, we greatly im-

prove the performance by designing ad-hoc TS algorithms for the problems; on the other hand,

the performance can be further improved by optimizing the simulation budget allocation, and such

benefit tends to increase with the problem complexity. Indeed, when tackling complex SO problems

with large solution space, mitigating the misleading effect of simulation noises becomes more critical

for an efficient search.

34

nadialahrichi
Texte surligné

nadialahrichi
Texte surligné

nadialahrichi
Note
which difference?

nadialahrichi
Note
remove "the speed of "

(a) Throughput maximization problem (b) Physician scheduling problem

Figure 9: Comparison of tabu search coupled with TSOCBA, EA, and OptQuest Solver on the throughput maxi-

mization problem (n = 100, l = 50) and physician scheduling problem (n = 3000, w = 0.5). Results are averaged

from multiple replications of experiments. 95% confidence intervals are illustrated as shaded bands.

5.6. Discussion

The benefits of optimizing the budget allocation for TS come from two aspects: (a) A better

search direction; (b) A higher accuracy on updating the best-known solution. These tackle, to

some extent, the first and second difficulties in SO, respectively. More specifically, in the (s,S)

inventory problem, TSOCBA outperforms EA because of both (a) and (b), and its advantage over

OCBA is due to (b). In the throughput maximization problem, due to the small neighborhood

size, all methods have similar search path qualities, and hence, (b) is the main factor distinguishing

the methods. While in the real-world physician scheduling problem, due to (a), TSOCBA can

better guide the search in the complex solution landscape, and helps TS reaching a more promising

region than EA and OCBA. From a larger perspective, these benefits from optimizing the budget

allocation by considering the specific search mechanisms should hold not only for TS, but also for

other metaheuristics.

TS shows the potential of solving large-scale SO problems. Coupled with TSOCBA, TS can

obtain quasi-optimal solutions for the (s,S) inventory problem and the throughput maximization

problem. More specifically, using 100(iterations)∗300(budget/iteration) = 3× 104 simulation sam-

ples (Sim.length = 50 periods), the proposed method results in an averaged optimality gap of 0.152

(%) for the (s,S) inventory problem. For the throughput maximization problem, the averaged op-

35

timality gap is 0.363 (%), which corresponds to an averaged TH of 5.756, using in total 1.5 × 104

simulation samples (Sim.length = 50 jobs). The consumed number of samples is significantly less

than that by the R&S approaches. For example, Ni et al. (2017) tackled the same throughput

maximization problem with R&S. Even for finding the best in a small subset of the solution space

(3249 out of 21660 solutions), the proposed selection procedure spends 5.5×105 simulation samples

(Sim.length = 50 jobs) to guarantee an indifference zone δ = 0.1 (i.e., TH ≥ 5.766) with a PCS of

0.95. Indeed, leveraging the topology of the solution space instead of a complete enumeration, TS

is more efficient. However, unlike R&S, there is no evidence that TS would converge to the optimal

solution as the budget goes to infinity, which is a common shortage as many metaheuristics. Still,

the powerfulness and usefulness of TS have been shown in various difficult combinatorial optimiza-

tion problems. Therefore, TS is quite promising for solving SO problems if the misleading effects

of simulation noises can be properly mitigated.

TSOCBA reveals the optimal budget allocation on the tabu, non-tabu and best-known solutions.

This policy remains valid no matter how the neighborhood solutions and tabus are generated. This

implies that various techniques can be incorporated into the basic TS + TSOCBA framework to

enhance its performance in SO. For example, metamodels can be adopted to recommend promising

neighbors, avoiding an evaluation of the entire neighborhood. Other example is shown in Shylo

and Shams (2018), where a machine learning model is trained for predicting high-quality solution

attributes. These predictions are then used for controlling the update of tabus, guiding the search

to promising regions.

6. Conclusions

In this research, we tackle the simulation budget allocation problem when tabu search (TS) is

applied for stochastic simulation optimization. With the presence of simulation noises, the search

direction of TS can be misled and thus, converging to high-quality solutions becomes difficult.

The goal of this article is to improve the search efficiency by a proper allocation of the finite

simulation budget. We formulate the problem as a maximization problem of the probability of

correct move (PCM) in a single search iteration. A correct move refers to the move indicated by

perfect information on the solution quality. Under the large deviations framework, we develop a

surrogate model to maximize the exponential convergence rate of the PCM as the budget increases.

By solving this surrogate model, we propose a new budget allocation policy for TS, and provide

36

theoretical results on its asymptotic optimality. Given as closed-form formulas, the proposed policy,

named TSOCBA, can be easily implemented in practice.

The efficiency of TSOCBA is first validated in a single iteration budget allocation problem

with different neighborhood landscapes. Then, TSOCBA is coupled with TS to solve stochastic

simulation optimization problems arising from different application scenarios. Design of experiments

(DOE) is carried out to study the impacts of budget allocation policy, simulation noise level and

the number of available budget. Through extensive numerical experiments, we show that TSOCBA

can enhance the TS performance both in terms of convergence speed and final solution quality.

TSOCBA is compared to the conventional OCBA proposed in Chen et al. (2000). In the (s,S)

inventory problem, TS guided by TSOCBA has a better chance to recognize the optimal solution

than TS with OCBA. In the complex physician scheduling problem, TS coupled with TSOCBA

can reach a more promising region in the search space and obtains a smaller optimality gap than

OCBA. Also, TSOCBA is more reliable with lower performance variability. Moreover, as found in

many cases, the advantage of TSOCBA over OCBA increases with the level of simulation noise,

which implies a greater benefit of using TSOCBA in high-stochasticity settings. Finally, we show

that the performance of TS coupled with TSOCBA succeeds the OptQuestr, which is a well-known

solver for simulation optimization problems, in the throughput maximization problem and physician

scheduling problem.

The allocation policy derived in this research is asymtoptically optimal and hence, its low-budget

performance may not be guaranteed. Also, the budget allocated to each iteration is simply set as

constant, which may not be the best philosophy. Therefore, it remains a future work to develop

a dynamic sampling allocation policy for TS. Recently, machine learning models are used to guide

the simulation sampling and successfully improve the probability of correct selection in ranking &

selection problem (Goodwin et al., 2022). We will study the potential of using machine learning

predictions to enhance the tabu search performance in simulation optimization.

Acknowledgements

We thank Chun Cheng, Jiaqi Liang, and Xiangyi Zhang for helpful discussions. We thank the ref-

erees for comments that improve the manuscript. This work is supported by IVADO and the Canada

First Research Excellence Fund, and partially by Shanghai Pujiang Program (21PJ1413300).

37

References

Avriel, M., 2003. Nonlinear programming: analysis and methods. Courier Corporation.

Bechhofer, R.E., 1954. A single-sample multiple decision procedure for ranking means of normal

populations with known variances. The Annals of Mathematical Statistics , 16–39.

Bechhofer, R.G., 1995. Design and analysis of experiment for statistical selection, screening, and

multiple comparisons. 04; QA279, B4.

Branke, J., Chick, S.E., Schmidt, C., 2007. Selecting a selection procedure. Management Science

53, 1916–1932.

Chen, C.H., 1996. A lower bound for the correct subset-selection probability and its application to

discrete-event system simulations. IEEE Transactions on Automatic Control 41, 1227–1231.

Chen, C.H., He, D., Fu, M., 2006. Efficient dynamic simulation allocation in ordinal optimization.

IEEE Transactions on Automatic Control 51, 2005–2009.

Chen, C.H., He, D., Fu, M., Lee, L.H., 2008. Efficient simulation budget allocation for selecting an

optimal subset. INFORMS Journal on Computing 20, 579–595.

Chen, C.h., Lee, L.H., 2011. Stochastic simulation optimization: an optimal computing budget

allocation. volume 1. World Scientific.

Chen, C.H., Lin, J., Yücesan, E., Chick, S.E., 2000. Simulation budget allocation for further

enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems 10, 251–270.

Chen, C.H., Yücesan, E., Dai, L., Chen, H.C., 2009. Optimal budget allocation for discrete-event

simulation experiments. IIE Transactions 42, 60–70.

Chen, Y., Ryzhov, I.O., 2019a. Balancing optimal large deviations in ranking and selection, in:

2019 Winter Simulation Conference (WSC), IEEE. pp. 3368–3379.

Chen, Y., Ryzhov, I.O., 2019b. Complete expected improvement converges to an optimal budget

allocation. Advances in Applied Probability 51, 209–235.

Chew, E.P., Lee, L.H., Teng, S., Koh, C.H., 2009. Differentiated service inventory optimization

using nested partitions and mocba. Computers & Operations Research 36, 1703–1710.

38

Chick, S.E., Branke, J., Schmidt, C., 2010. Sequential sampling to myopically maximize the ex-

pected value of information. INFORMS Journal on Computing 22, 71–80.

Chick, S.E., Inoue, K., 2001. New two-stage and sequential procedures for selecting the best

simulated system. Operations Research 49, 732–743.

Costa, A., Alfieri, A., Matta, A., Fichera, S., 2015. A parallel tabu search for solving the primal

buffer allocation problem in serial production systems. Computers & Operations Research 64,

97–112.

Dembo, A., Zeitouni, O., 2010. Large deviation techniques and Applications. volume 38. Springer-

Verlag Berlin Heidelberg.

Dengiz, B., Alabas, C., 2000. Simulation optimization using tabu search, in: 2000 Winter Simulation

Conference Proceedings (Cat. No. 00CH37165), IEEE. pp. 805–810.

Ferland, J.A., Ichoua, S., Lavoie, A., Gagné, E., 2001. Scheduling using tabu search methods with

intensification and diversification. Computers & Operations Research 28, 1075–1092.

Frazier, P.I., Powell, W.B., Dayanik, S., 2008. A knowledge-gradient policy for sequential informa-

tion collection. SIAM Journal on Control and Optimization 47, 2410–2439.

Gendreau, M., 2002. Recent advances in tabu search, in: Essays and surveys in metaheuristics.

Springer, pp. 369–377.

Gendreau, M., Laporte, G., Séguin, R., 1996. A tabu search heuristic for the vehicle routing problem

with stochastic demands and customers. Operations Research 44, 469–477.

Gendreau, M., Potvin, J.Y., et al., 2010. Handbook of metaheuristics. volume 2. Springer.

Glover, F., 1986. Future paths for integer programming and links to artificial intelligence. Com-

puters & Operations Research 13, 533–549.

Glynn, P., Juneja, S., 2004. A large deviations perspective on ordinal optimization, in: Proceedings

of the 36th conference on Winter simulation, Winter Simulation Conference. pp. 577–585.

Goldsman, D., Kim, S.H., Marshall, W.S., Nelson, B.L., 2002. Ranking and selection for steady-

state simulation: Procedures and perspectives. INFORMS Journal on Computing 14, 2–19.

39

Goodwin, T., Xu, J., Celik, N., Chen, C.H., 2022. Real-time digital twin-based optimization with

predictive simulation learning. Journal of Simulation , 1–18.

He, D., Lee, L.H., Chen, C.H., Fu, M.C., Wasserkrug, S., 2010. Simulation optimization using the

cross-entropy method with optimal computing budget allocation. ACM Transactions on Modeling

and Computer Simulation (TOMACS) 20, 1–22.

Horng, S.C., Yang, F.Y., Lin, S.S., 2012. Applying pso and ocba to minimize the overkills and re-

probes in wafer probe testing. IEEE Transactions on Semiconductor Manufacturing 25, 531–540.

Jones, D.R., Schonlau, M., Welch, W.J., 1998. Efficient global optimization of expensive black-box

functions. Journal of Global Optimization 13, 455–492.

Juan, A.A., Faulin, J., Grasman, S.E., Rabe, M., Figueira, G., 2015. A review of simheuristics: Ex-

tending metaheuristics to deal with stochastic combinatorial optimization problems. Operations

Research Perspectives 2, 62–72.

Kim, S.H., Nelson, B.L., 2001. A fully sequential procedure for indifference-zone selection in simu-

lation. ACM Transactions on Modeling and Computer Simulation (TOMACS) 11, 251–273.

Kim, S.H., Nelson, B.L., 2006. Selecting the best system. Handbooks in Operations Research and

Management Science 13, 501–534.

Koenig, L.W., Law, A.M., 1985. A procedure for selecting a subset of size m containing the l

best of k independent normal populations, with applications to simulation. Communications in

Statistics-Simulation and Computation 14, 719–734.

Konak, A., Kulturel-Konak, S., 2005. Simulation optimization using tabu search: an empirical

study, in: Proceedings of the Winter Simulation Conference, 2005., IEEE. pp. 7–pp.

Law, A.M., Kelton, W.D., 2000. Simulation modeling and analysis. volume 3. McGraw-Hill New

York.

Lee, L.H., Chew, E.P., Teng, S., Chen, Y., 2008. Multi-objective simulation-based evolutionary al-

gorithm for an aircraft spare parts allocation problem. European Journal of Operational Research

189, 476–491.

40

Lee, L.H., Chew, E.P., Teng, S., Goldsman, D., 2010. Finding the non-dominated pareto set for

multi-objective simulation models. IIE Transactions 42, 656–674.

Li, J., Liu, W., Pedrielli, G., Lee, L.H., Chew, E.P., 2017. Optimal computing budget alloca-

tion to select the nondominated systems—a large deviations perspective. IEEE Transactions on

Automatic Control 63, 2913–2927.

Luo, J., Hong, L.J., Nelson, B.L., Wu, Y., 2015. Fully sequential procedures for large-scale ranking-

and-selection problems in parallel computing environments. Operations Research 63, 1177–1194.

Lutz, C.M., Davis, K.R., Sun, M., 1998. Determining buffer location and size in production lines

using tabu search. European Journal of Operational Research 106, 301–316.

Nelson, B.L., Swann, J., Goldsman, D., Song, W., 2001. Simple procedures for selecting the best

simulated system when the number of alternatives is large. Operations Research 49, 950–963.

Ni, E.C., Ciocan, D.F., Henderson, S.G., Hunter, S.R., 2017. Efficient ranking and selection in

parallel computing environments. Operations Research 65, 821–836.

Niroumandrad, N., Lahrichi, N., 2018. A stochastic tabu search algorithm to align physician

schedule with patient flow. Health Care Management Science 21, 244–258.

Pan, H., Wang, L., Liu, B., 2006. Particle swarm optimization for function optimization in noisy

environment. Applied Mathematics and Computation 181, 908–919.

Pasupathy, R., Henderson, S.G., 2011. Simopt: A library of simulation optimization problems, in:

Proceedings of the 2011 Winter Simulation Conference (WSC), IEEE. pp. 4075–4085.

Peng, Y., Chen, C.H., Chong, E.K., Fu, M.C., 2018a. A review of static and dynamic optimization

for ranking and selection, in: 2018 Winter Simulation Conference (WSC), IEEE. pp. 1909–1920.

Peng, Y., Chong, E.K., Chen, C.H., Fu, M.C., 2018b. Ranking and selection as stochastic control.

IEEE Transactions on Automatic Control 63, 2359–2373.

Qiu, M., Fu, Z., Eglese, R., Tang, Q., 2018. A tabu search algorithm for the vehicle routing problem

with discrete split deliveries and pickups. Computers & Operations Research 100, 102–116.

41

Rinott, Y., 1978. On two-stage selection procedures and related probability-inequalities. Commu-

nications in Statistics-Theory and methods 7, 799–811.

Ryzhov, I.O., 2016. On the convergence rates of expected improvement methods. Operations

Research 64, 1515–1528.

Schmidt, C., Branke, J., Chick, S.E., 2006. Integrating techniques from statistical ranking into

evolutionary algorithms, in: Workshops on Applications of Evolutionary Computation, Springer.

pp. 752–763.

Shylo, O.V., Shams, H., 2018. Boosting binary optimization via binary classification: A case study

of job shop scheduling. arXiv preprint arXiv:1808.10813 .

Tsai, Y.W., Gemmill, D.D., 1998. Using tabu search to schedule activities of stochastic resource-

constrained projects. European Journal of Operational Research 111, 129–141.

Xu, J., Huang, E., Chen, C.H., Lee, L.H., 2015. Simulation optimization: A review and exploration

in the new era of cloud computing and big data. Asia-Pacific Journal of Operational Research

32, 1550019.

Xu, J., Huang, E., Hsieh, L., Lee, L.H., Jia, Q.S., Chen, C.H., 2016. Simulation optimization in

the era of industrial 4.0 and the industrial internet. Journal of Simulation 10, 310–320.

Yang, T., Kuo, Y., Chang, I., 2004. Tabu-search simulation optimization approach for flow-shop

scheduling with multiple processors: a case study. International Journal of Production Research

42, 4015–4030.

Zhang, S., Xu, J., Lee, L.H., Chew, E.P., Wong, W.P., Chen, C.H., 2016. Optimal computing

budget allocation for particle swarm optimization in stochastic optimization. IEEE Transactions

on Evolutionary Computation 21, 206–219.

Zheng, Y.S., Federgruen, A., 1991. Finding optimal (s, s) policies is about as simple as evaluating

a single policy. Operations Research 39, 654–665.

42

Appendix A. Proof of Lemma 1

Let P ∗ be the maximum probability of the wrong move events, namely,

P ∗ = max{max
i∈I\b

P (Ȳ (xi;ni) ≤ Ȳ (xb;nb)),max
j∈J

P (Ȳ (xj ;nj) ≤ Ȳ (x0;n0)), P (Ȳ (xb;nb) ≤ Ȳ (x0;n0))},

it can be seen that PFM ≥ P ∗. The upper bound of PFM is obtained by the Bonferroni inequality:

PFM ≤
∑

i∈I\b
P (Ȳ (xi;ni) ≤ Ȳ (xb;nb)) +

∑

j∈J
P (Ȳ (xj ;nj) ≤ Ȳ (x0;n0)) + P (Ȳ (xb;nb) ≤ Ȳ (x0;n0))

≤ (|I| − 1)P ∗ + |J |P ∗ + P ∗

= kP ∗.

Lemma 1 is proved.

Appendix B. Proof of Lemma 2

The proof is based on Slater’s condition (Avriel, 2003). It indicates that for a convex problem

max
x

y(x),

s.t. ω(x) ≤ 0,

h(x) = 0,

where ω(x) = (ω1(x), ω2(x), . . .)T , h(x) = (h1(x), h2(x), . . .)T and 0 = (0, . . .)T , the CQ is valid if

there exists a point x† satisfying ω(x†) < 0 and h(x†) = 0. Firstly, we show that Model (10) is

convex. This can be easily seen because: (1) the inequality constraint functions ωib(z, α0, . . . , αk) =

z−Gib,∀i ∈ I \ b, ωj0(z, α0, . . . , αk) = z−Gj0,∀j ∈ J , and ωb0(z, α0, . . . , αk) = z−Gb0 are convex

due to the rate functions G’s are concave; (2) the equality constraint h(z, α0, . . . , αk) = 1− ∑
i∈I\b

αi−
∑
j∈J

αj−αb−α0 is affine; (3) the objective function z is linear. Secondly, we show that there exists a

feasible point satisfying Slater’s condition. Given a set of positive values {α0, . . . , αk : α0+. . .+αk =

1}, the condition h(z, α0, . . . , αk) = 0 holds regardless the value of z. Due to the concavity and

positivity of G’s, one can always find G∗ = mini∈I\b,j∈J{Gib, Gj0, Gb0} > 0. Then, for a point

x† = (z∗, α0, . . . , αk) such that 0 < z∗ < G∗, we have ωib(x
†) = z∗ −Gib ≤ z∗ −G∗ < 0,∀i ∈ I \ b,

ωj0(x†) = z∗ −Gj0 < 0,∀j ∈ J and ωb0(x†) = z∗ −Gb0 < 0. In summary, because ω(x†) < 0 and

h(x†) = 0, the point x† satisfies the Slater’s condition. Lemma 2 is proved.

43

Appendix C. Proof of Theorem 1

Theorem 1 can be obtained by solving Model (10) via the KKT conditions. For simplicity, we

use Gij to denote the rate function Gij(αi, αj) in the following context. Let L be the Lagrangian

function of Model (10), we have

L =z −
∑

i∈I\b
λi(z −Gib)−

∑

j∈J
λj(z −Gj0)− λb(z −Gb0)−

v(α0 + αb +
∑

i∈I\b
αi +

∑

j∈J
αj − 1)−

∑

i∈I\b
ri(−αi)−

∑

j∈J
rj(−αj)− rb(−αb)− r0(−α0),

where λ, v and r are Lagrangian dual variables. The KKT conditions are as follows:

(1) The primal feasibility:

z −Gib ≤ 0,∀i ∈ I \ b, (C.1a)

z −Gj0 ≤ 0,∀j ∈ J, (C.1b)

z −Gb0 ≤ 0, (C.1c)
∑

i∈I\b
αi +

∑

j∈J
αj + αb + α0 = 1, (C.1d)

αi, αj , αb, α0, z ≥ 0,∀i ∈ I \ b, j ∈ J. (C.1e)

(2) The dual feasibility:

λi, λj , λb, ri, rj , rb, r0, v ≥ 0,∀i ∈ I \ b, j ∈ J. (C.2)

(3) Complementary slackness:

λi(z −Gib) = 0,∀i ∈ I \ b, (C.3a)

λj(z −Gj0) = 0,∀j ∈ J, (C.3b)

λb(z −Gb0) = 0, (C.3c)

riαi = 0,∀i ∈ I \ b, (C.3d)

rjαj = 0,∀j ∈ J, (C.3e)

rbαb = 0, (C.3f)

r0α0 = 0. (C.3g)

44

(4) Lagrangian stationary:

∂L

∂z
= 1−

∑

i∈I\b
λi −

∑

j∈J
λj − λb = 0, , (C.4a)

∂L

∂αi
= λi

∂Gib
∂αi

− v + ri = 0, ∀i ∈ I \ b, (C.4b)

∂L

∂αj
= λj

∂Gj0
∂αj

− v + rj = 0, ∀j ∈ J, (C.4c)

∂L

∂αb
=

∑

i∈I\b
λi
∂Gib
∂αb

+ λb
∂Gb0
∂αb

− v + rb = 0, (C.4d)

∂L

∂α0
=

∑

j∈J
λj
∂Gj0
∂α0

+ λb
∂Gb0
∂α0

− v + r0 = 0. (C.4e)

The KKT system contains k+2 decision variables z, α0, α1, . . . , αk and 2k+2 dual variables λ’s,

r’s and v, as well as 3k + 4 equations. In the following, we try to obtain the relationship between

the sampling ratios α0, . . . , αk by eliminating the dual variables through substitutions.

Firstly, the expressions of dual variables are obtained. Given that the sampling ratios are pos-

itive, i.e., αi, αj , αb, α0 > 0, from the complementary slackness (Eq.(C.3d)-(C.3g)) we have that

ri, rj , rb, r0 = 0,∀i ∈ I, j ∈ J . Then, the expressions of λ’s are derived as follows.

From Eq.(C.4b), we have:

λi =
v

∂Gib

∂αi

, i ∈ I \ b.

And from Eq.(C.4c):

λj =
v

∂Gj0

∂αj

, j ∈ J.

Substitute λi in Eq.(C.4d) we get:

∑

i∈I\b

v
∂Gib

∂αi

∂Gib
∂αb

+ λb
∂Gb0
∂αb

− v = 0,

λb = v[1−
∑

i∈I\b

∂Gib/∂αb
∂Gib/∂αi

]
1

∂Gb0/∂αb
.

(C.5)

The expressions of λ’s are related with the dual variable v. If v = 0, then all λ’s would be 0. How-

ever, this is not possible, because from Eq.(C.4a) it is obvious that there must be some λ′s > 0.

So we have v > 0. Note that ∂Gib/∂αi > 0 and ∂Gj0/∂αj > 0 (Glynn and Juneja, 2004), it can

45

be sure that λi, λj > 0,∀i ∈ I \ b, j ∈ J . Whilst for λb, its value depends on [1 − ∑
i∈I\b

∂Gib/∂αb

∂Gib/∂αi
] ,

which can be equal or greater than 0. We discuss both cases as below.

Case λb > 0: Substitute λb and λj into Eq.(C.4e), we have

∑

i∈J

v
∂Gj0

∂αj

∂Gj0
∂α0

+ v[1−
∑

i∈I\b

∂Gib/∂αb
∂Gib/∂αi

]
∂Gb0/∂α0

∂Gb0/∂αb
− v = 0.

After some algebra we get the following condition, denoted by C1, as

∑

j∈J

∂Gj0/∂α0

∂Gj0/∂αj
+ (1−

∑

i∈I\b

∂Gib/∂αb
∂Gib/∂αi

)
∂Gb0/∂α0

∂Gb0/∂αb
= 1. (C.6)

Since all λ′s > 0, from the complementary slackness (Eq.(C.3)) we get the condition C2:

z −Gib = z −Gj0 = z −Gb0 = 0, ∀i ∈ I \ b, j ∈ J,

Gib = Gj0 = Gb0, ∀i ∈ I \ b, j ∈ J.
(C.7)

Given that λb > 0, v > 0 and ∂Gb0/∂αb > 0, from Eq.(C.5) the condition C3 is obtained:

1−
∑

i∈I\b

∂Gib/∂αb
∂Gib/∂αi

> 0. (C.8)

Case λb = 0: Similarly, by substituting λb and λj ’s into Eq.(C.4e), we have

∑

i∈J

v
∂Gj0

∂αj

∂Gj0
∂α0

− v = 0.

After some algebra we obtain the condition C4:

1−
∑

j∈J

∂Gj0/∂α0

∂Gj0/∂αj
= 0. (C.9)

Since λi > 0,∀i ∈ I \ b and λj > 0,∀j ∈ J , from Eq.(C.3) we have

z −Gib = z −Gj0, ∀i ∈ I \ b, j ∈ J,

Gib = Gj0, ∀i ∈ I \ b, j ∈ J.
(C.10)

As λb = 0, from Eq.(C.3) we know that the constraint z − Gb0 ≤ 0 is not forced. Assume this

constraint is inactive, i.e., z −Gb0 < 0. Since z −Gib = 0 and z −Gj0 = 0, we get that

Gb0 > Gib = Gj0 = z. (C.11)

46

Because the rate functions Gib, Gj0 and Gb0 are concave and strictly increasing with α’s, for any

budget allocation α = (α0, . . . , αk) satisfying Eq.(C.11), there must exist an α′ = (α′0, . . . , α
′
k)

rendering that Gb0(α′b, α
′
0) = Gib(α

′
i, α
′
b) = Gj0(α′j , α

′
0) = z′, and z′ > z. More specifically, this can

be done by decreasing α0 or αb meanwhile improving some αi’s or αj ’s. This implies that Eq.(C.11)

is not an optimal condition. Therefore, when λb = 0, if an allocation α is optimal, the constraint

z −Gb0 ≤ 0 has to be active, i.e., z −Gb0 = 0. Thus we get the condition C5:

Gb0 = Gib = Gj0, ∀i ∈ I \ b, j ∈ J. (C.12)

Since v > 0, ∂Gb0/∂αb > 0 and λb = 0, from Eq.(C.5) we obtain the condition C6:

1−
∑

i∈I\b

∂Gib/∂αb
∂Gib/∂αi

= 0 (C.13)

Now we summarize the optimality conditions from both the cases of λb > 0 and λb = 0, and

obtain a general condition set C. It can be easy to see that C2 = C5, C6 = C1∩C4, and C4 = C1∩C6.

Then,

C = {C1 ∩ C2 ∩ C3} ∪ {C4 ∩ C5 ∩ C6}

= {C1 ∪ (C4 ∩ C5 ∩ C6)} ∪ {(C2 ∩ C3) ∪ (C4 ∩ C5 ∩ C6)}

= {(C1 ∪ (C4 ∩ C6)) ∩ (C1 ∪ C5)} ∩ {(C2 ∪ (C4 ∩ C5 ∩ C6)) ∩ (C3 ∪ (C4 ∩ C5 ∩ C6))}.

Given that C6 = C1 ∩ C4, we have C4 ∩ C6 = C4 ∩ C1 ∩ C4 = C1 ∩ C4; also due to C2 = C5, we

have C2 ∪ (C4 ∩ C5 ∩ C6) = C2, then

C = {C1 ∩ (C1 ∪ C5)} ∩ {C2 ∩ ((C3 ∪ C6) ∩ (C3 ∪ (C4 ∩ C5)))}

= C1 ∩ C2 ∩ (C3 ∪ C6) ∩ (C3 ∪ (C4 ∩ C5)).

Since

C1 ∩ (C3 ∪ (C4 ∩ C5)) = (C1 ∩ C3) ∪ (C1 ∩ C4 ∩ C5)

= (C1 ∩ C3) ∪ (C1 ∩ C6 ∩ C2)

= C1 ∩ (C3 ∪ (C6 ∩ C2))

= C1 ∩ (C3 ∪ C6) ∩ (C2 ∪ C3),

47

then

C = C1 ∩ (C3 ∪ C6) ∩ (C2 ∪ C3) ∩ C2 ∩ (C3 ∪ C6)

= C1 ∩ C2 ∩ (C3 ∪ C6).

As a result, the optimality conditions indicated by C are:

∑

j∈J

∂Gj0/∂α0

∂Gj0/∂αj
+ (1−

∑

i∈I\b

∂Gib/∂αb
∂Gib/∂αi

)
∂Gb0/∂α0

∂Gb0/∂αb
= 1,

Gib = Gj0 = Gb0, ∀i ∈ I \ b, j ∈ J,

1−
∑

i∈I\b

∂Gib/∂αb
∂Gib/∂αi

≥ 0.

(C.14)

After adding the constraint of total budget fraction, Theorem 1 is obtained.

Appendix D. Proof of Lemma 3

Under the normality assumption, for each solution xi we have

Ii(τ) =
1

2
(
y(xi)− τ

σi
)2

(see Chapter 2 of Dembo and Zeitouni (2010)). Define Φ(τ) = αiIi(τ) + αjIj(τ). Since Ii(τ) is

strictly convex on τ , Φ(τ) is also convex. Hence, the stationary point τ∗ is the global minimum.

Through Φ′(τ) = 0 we obtain

τ∗ =
αi/σ

2
i

αi/σ2
i + αj/σ2

j

y(xi) +
αj/σ

2
j

αi/σ2
i + αj/σ2

j

y(xj).

Then, having Gij(αi, αj) = inf
τ

(Φ(τ)) = Φ(τ∗), we can obtain Lemma 3.

Appendix E. Proof of Proposition1

Proposition1 is obtained by solving the equation system in Theorem 1. Under the normality

assumption, the following closed-form formulas can be obtained according to Lemma 3:

Gib =
(y(xi)− y(xb))

2

σ2
i /αi + σ2

b/αb
, i ∈ I \ b, (E.1)

Gj0 =
(y(xj)− y(x0))2

σ2
j /αj + σ2

0/α0
, j ∈ J, (E.2)

Gb0 =
(y(xb)− y(x0))2

σ2
b/αb + σ2

0/α0
. (E.3)

48

We first derive the expression of αb. Plug the closed-form expressions of rate functions into

Eq.(11a), we get

∑

j∈J

σ2
0(y(x0)− y(xj))

2

α2
0(σ2

0/α0 + σ2
j /αj)

2

α2
j (σ

2
0/α0 + σ2

j /αj)
2

σ2
j (y(x0)− y(xj))2

+ [1−
∑

i∈I\b

σ2
b (y(xi)− y(xb))

2

α2
b(σ

2
b/αb + σ2

i /αi)
2

α2
i (σ

2
b/αb + σ2

i /αi)
2

σ2
i (y(xi)− y(xb))2

]

· σ
2
0(y(xb)− y(x0))2

α2
0(σ2

0/α0 + σ2
b/αb)

2

α2
b(σ

2
0/α0 + σ2

b/αb)
2

σ2
b (y(xb)− y(x0))2

= 1.

After some algebra we have

α2
b/σ

2
b +

∑

j∈J
α2
j/σ

2
j = α2

0/σ
2
0 +

∑

i∈I\b
α2
i /σ

2
i , (E.4)

then the expression of αb is obtained as

αb = σb

√
α2

0/σ
2
0 −

∑

j∈J
α2
j/σ

2
j +

∑

i∈I\b
α2
i /σ

2
i . (E.5)

Eq.(E.5) requires that α2
0/σ

2
0 −

∑
j∈J

α2
j/σ

2
j +

∑
i∈I\b

α2
i /σ

2
i ≥ 0. This is actually guaranteed by the

condition of Eq.(11c) as illustrated below. By substituting the rate function Gib in Eq.(11c) with

Eq.(E.1) we have

α2
b/σ

2
b ≥

∑

i∈I\b
α2
i /σ

2
i . (E.6)

Then, plug the inequality (E.6) into (E.4) we get

α2
0/σ

2
0 ≥

∑

j∈J
α2
j/σ

2
j , (E.7)

which means α2
0/σ

2
0 −

∑
j∈J

α2
j/σ

2
j +

∑
i∈I\b

α2
i /σ

2
i ≥ 0. Inequalities (E.6) and (E.7) indicate the lower

bounds for αb and α0.

Now, we derive the expression of αi’s. From Eq.(11b) we know that Gib = Gi′b,∀i, i′ ∈ I, i 6= i′.

By substituting the rate functions Gib and Gi′b we have:

(y(xb)− y(xi))
2

σ2
b/αb + σ2

i /αi
=

(y(xb)− y(xi′))
2

σ2
b/αb + σ2

i′/αi′
,∀i, i′ ∈ I \ b. (E.8)

Under the assumption αb >> αi,∀i ∈ I \ b (see Proposition1), the above formula can be simplified

to

(y(xb)− y(xi))
2

σ2
i /αi

=
(y(xb)− y(xi′))

2

σ2
i′/αi′

. (E.9)

49

Then, the ratio between αi and αi′ is obtained

αi
αi′

=
σ2
i /(y(xb)− y(xi))

2

σ2
i′/(y(x0)− y(xi′))2

,∀i, i′ ∈ I \ b, i 6= i′. (E.10)

Similarly, the expression of αj ’s is derived as below. From Gj0 = Gj′0 and α0 >> αj , j ∈ J we

get

αj
αj′

=
σ2
j /(y(x0)− y(xj))

2

σ2
j′/(y(x0)− y(xj′))2

,∀j, j′ ∈ I, j 6= j′. (E.11)

Additionally, from Gib = Gj0, αb >> αi and α0 >> αj we obtain the ratio between αi and αj as

αi
αj

=
σ2
i /(y(xb)− y(xi))

2

σ2
j /(y(x0)− y(xj))2

,∀i ∈ I \ b, j ∈ J. (E.12)

Finally, the expression of α0 is obtained as follows. From Gib = Gb0 we derive:

(y(xb)− y(xi))
2

σ2
b/αb + σ2

i /αi
=

(y(xb)− y(x0))2

σ2
b/αb + σ2

0/α0
. (E.13)

According to the assumption αb >> α0 and αb >> αi, we have

α0

αi
=
σ2

0/(y(xb)− y(x0))2

σ2
i /(y(xi)− y(xb))2

,∀i ∈ I \ b. (E.14)

Combining Eq.(E.7) and (E.14) we obtain the expression of α0 as

α0 = max{σ0

√∑

i∈J
α2
j/σ

2
j , αi

σ2
0/(y(xb)− y(x0))2

σ2
i /(y(xi)− y(xb))2

},∀i ∈ I \ b. (E.15)

Proposition1 is obtained.

Appendix F. Calculation of the sampling ratios

The sampling ratios αi, i = 0, 1, . . . , k can be obtained by solving a set of linear equations (13a)

- (13f). In our implementation, we first set a seed sample ratio as 1, then calculate other sampling

ratios by their relationships. Finally, we normalize the sampling ratios to ensure that the sum

equals 1. The detailed steps are:

Step1 : Set the seed αp = 1, where p is the first element in the set I \ b;

Step2 : Calculate αi,∀i ∈ I, i 6= p, i 6= b by Eq.(13a);

Step3 : Calculate αj ,∀j ∈ J by Eq.(13c);

Step4 : Calculate α0 and αb by Eq.(13d) and Eq.(13e), respectively.

Step5 : Normalize the values: αi ← αi∑k
i=0 αi

, i = 0, 1, . . . , k;

50

Appendix G. Description of the physician scheduling problem

Physicians are critical resources for the radiotherapy center. The scheduling of physicians has a

great impact on the efficiency of the center and the treatment duration of patients. After arriving at

the radiotherapy center, a patient will be assigned to a physician based on the cancer specialization

and the physician’s quota for new patients. Before the patient starts the treatment plan in the

linear accelerator, the patient would undergo a pretreatment phase. As shown in Figure G.10, this

phase consists of a series of tasks. Four main tasks, i.e., consultation, scan contouring, dosimetry

and preparation of a treatment plan, are provided by the assigned physician. To fulfill the needs of

Consultation Contouring
the scan

Validating the
dosimetry

CT scan Preparing the
scan results

Preparing
treatment

Determining
the doses of
radiations

Patient flow Treatment

Pretreatment

Physicians

 Monday Tuesday Wednesday Thursday Friday

A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M. A.M. P.M.
Phys. 1 B A B D C D E F B E
Phys. 2 C C D C E B A B A B
Phys. 3 B C C D E C C A D A
Phys. 4 D A E B D A B D C C
Phys. 5 D E C C E B D E A B
Phys. 6 E A B B B A B B C D
Phys. 7 A B A C D B E C D E
Phys. 8 C C D E A B E D A B
Phys. 9 A B D B C D E E D E

(A) Consultation
(B) Scan contouring
(C) Dosimetry validation
(D) Treatment preparation
(E) Research
(F) Administration

Figure 1. Patient flow in a Radiotherapy Center

Figure 2. Example of a schedule for physicians [1]

Figure G.10: Patient flow for the pretreatment phase in the radiotherapy center

patients, the physician resources are organized by a task-based schedule. An example of physician

schedule is given in Figure 12 of Niroumandrad and Lahrichi (2018). In the schedule, each day of

the physician is divided into two time slots. Each slot is dedicated to a single task. The number of

patients that a physician can meet in a time slot is limited. For each physician, each task type is

scheduled for at least once in a week. The goal is to generate a physician schedule which repeats

weekly for a long-term period. The objective is to minimize the total pretreatment duration and

maximize the preference of physicians, with the following objective function:

y(x) = w
∑

j∈J
φj(x)− (1− w)

∑

i∈I
pi(x). (G.1)

where w is the weight of the pretreatment duration objective, φj is the pretreatment duration of

patient j, and pi is the preference score of physician i on the schedule x. Given that uncertainties

exist in the patient arrival time and type of cancer, a schedule is subjected to randomness in the

objective value. This characterizes the problem as a stochastic SO problem. Remind that the

51

objective function (G.1) is composed by a stochastic term, i.e., the pretreatment duration, and a

deterministic term of preference index. A greater w means a higher simulation noise level.

In our experiment, we use the real case of Center Intégré de Cancérologie de Laval (CICL).

Located in the Montréal region, this cancer treatment center operates four linear accelerators and

treats more than 1700 patients each year. There are nine physicians, and each has a quota of nine

new patients per week. In practice, besides the four main tasks described above, the physicians will

be designated to other tasks such as research, teaching and administration duties. For simplicity,

we consider the schedule composing by only the four main tasks. The number of arriving patients

is set as 60/week. We consider only curative patients. The patient arrival times are sampled from

the Poisson distribution with mean 4, and the patient cancer type is generated based on historical

data. The number of patients a physician can treat in a time slot is set as three.

The adopted TS is based on the one proposed in Niroumandrad and Lahrichi (2018) for the

stochastic case. Two neighborhood structures, N1(x) and N2(x), are applied alternatively. N1(x)

contains all solutions obtained by swapping two tasks of a physician, while N2(x) includes the

solutions obtained by altering one repeated task of a physician. TS changes from N1(x) to N2(x)

after every 20 consecutive iterations, then switches back to N2(x) after 10 iterations. The tabu list

contains a set of triplets. For N1(x), (i, d1, d2) prevents the swapping of the tasks in time slot d1

and d2 of physician i; for N2(x), (i, d, t) forbids changing physician i’s task on time d to task t.

Each triplet stays in the tabu list for |I|+ 2|J| + |D| = 99 iterations, where I, J and D are the sets of

physicians, patients and time slots in a week, respectively. The solutions visited in the recent fifty

iterations are removed from the current neighborhood. The initial solution is randomly generated,

and the tmax is set as 500.

Appendix H. ANOVA analysis

This section provides the ANOVA details for the DOEs. The ANOVA tables for the DOEs are

given in Figure H.11. The main effects plots are provided in Figure H.12, and the interaction plots

are given in Figure H.13. All ANOVA models adopt the main factors and all their interactions as

explanatory variables. The box-cox transformation is adopted to eliminate the trend in residuals.

For each ANOVA, we test the normality and equal-variance assumptions. However, they do not

hold in all the six ANOVA tests. This is mainly due to the range of the response OptGapt is limited

in [0,+∞]. Indeed, with such a truncation in the left tail, it is more difficult to have normally

52

distributed residuals when the fitted level is closed to 0. Also, the fitted levels distant from 0 would

have higher variances than those closed to 0. These lead to the poor fitness (indicated by the

R-sq(adj) value) in some ANOVA tables, and prevent the further use of conventional post-ANOVA

methods, like Tukey test, to compare the levels of factors. Even though, the F-test, i.e, to identify

whether the effect of a factor is significant, is still considered to be robust.

(s,S) Inventory problem: Table H.11(a) and (b) indicate that for OptGap30 and OptGap100,

the effects of all main factors are significant as the p-values are closed to 0; whilst the interactions

are less influential because of smaller F-values. As shown by the main effects plots, increasing the

total budget n or the simulation length l improves the performance. The influence of allocation

method Alloc is also obvious. TSOCBA achieves the best averaged performance for both indicators.

The n− l interaction plot shows that, the influence of the simulation noise is more significant when

the amount of budget is small. From the l−Alloc interaction plot we observe that, the simulation

noise has a greater impact on EA than on OCBA and TSOCBA, which reveals a better robustness

of OCBA and TSOCBA to the degree of stochasticity.

Throughput maximization problem: According to Table H.11(c) and (d), all main factors

are significant for both OptGap20 and OptGap100. The factor n has the largest influence, followed

by l and Alloc. For Alloc, TSOCBA obtains the best mean for OptGap20 and OptGap100. The only

obvious interaction effect is observed in the n − Alloc plot. Figure H.13 (d) indicates that when

the simulation budget is low (n = 50), the performance of OCBA is even worse than EA, whilst

TSOCBA is still reliable in a low-budget situation.

Physician scheduling problem: As shown in Table H.11(e) and (f), for both OptGap100 and

OptGap500, the main factors are significant. The interactions are also significant but less influential.

The weight w is the most influential factor, followed by Alloc and n. TSOCBA achieves the best

mean performance for both indicators. From the w − Alloc interaction plots (Figure H.13 (e) and

(f)) we see that the advantage of TSOCBA over OCBA increases with the simulation noise level

for both OptGap100 and OptGap500. More specifically, for OptGap100, the averaged advantage of

TSOCBA over OCBA is -0.0065, 0.5645 and 0.8089 when w = 0.2, 0.5 and 0.8, respectively. For

OptGap500, these values are -0.0915, 0.5324 and 0.8094, respectively. This reveals the benefit of

using TSOCBA when the stochasticity is large.

53

According to the assumption ↵b >> ↵0 and ↵b >> ↵i, we have

↵0

↵i
=

�2
0/(yb � y0)

2

�2
i /(yi � yb)2

, 8i 2 I \ b. (B.14)

Combining B.7 and B.14 we obtain the expression of ↵0 as

↵0 = max{�0

sX

i2J

↵2
j/�

2
j , ↵i

�2
0/(yb � y0)

2

�2
i /(yi � yb)2

}, 8i 2 I \ b. (B.15)

Proposition1 is obtained.

Appendix C. ANOVA analysis710

This section provide the ANOVA tables for the DOE experiments. The ANOVA tables for the two DOEs

of the (s,S) inventory problem are given in Table C.7 and C.8, respectively. Table C.9 and C.10 are for the

throughput maximization problem. Table C.11 and C.12 are for the physician scheduling problem. All ANOVA

models adopt the main factors and all their interactions as explanatory variables. The box-cox transformation

is adopted to eliminate the trend in residuals. For each ANOVA, we test the normality and equal-variance715

assumptions. However, they do not hold in all the six ANOVA tests. This is mainly due to the range of the

response OptGapt is limited in [0, +1]. Indeed, with such a truncation in the left tail, it is more di�cult to

have normally distributed residuals when the fitted level is closed to 0. Also, the fitted levels distant from 0

would have higher variances than those closed to 0. These lead to the poor fitness (indicated by the R-sq(adj)

value) in some ANOVA tables, and prevent the further use of conventional post-ANOVA methods, like Tukey720

test, to compare the levels of factors. Even though, the F-test, i.e, to identify whether the e↵ect of a factor is

significant, is still considered to be robust.

Table C.7: ANOVA table of the (s,S) inventory problem (OptGap30)

Source DF Adj SS Adj MS F-Value P-Value

n 2 1.1276 0.5638 500.48 0

l 2 23.5408 11.7704 10448.59 0

Alloc 2 2.1064 1.0532 934.92 0

n*l 4 0.4122 0.1031 91.48 0

n*Alloc 4 0.0439 0.011 9.75 0

l*Alloc 4 0.36 0.09 79.9 0

n*l*Alloc 8 0.1299 0.0162 14.41 0

Error 13473 15.1774 0.0011

Total 13499 42.8982

S R-sq R-sq(adj) R-sq(pred)

0.033563 64.62% 64.55% 64.48%

40

(a) (s,S) inventory problem (OptGap 30)

Table C.8: ANOVA table of the (s,S) inventory problem (OptGap100)

Source DF Adj SS Adj MS F-Value P-Value

n 2 3.179 1.5897 113.56 0

l 2 88.184 44.0922 3149.65 0

Alloc 2 18.345 9.1726 655.23 0

n*l 4 0.084 0.0211 1.5 0.198

n*Alloc 4 0.091 0.0227 1.62 0.166

l*Alloc 4 1.588 0.3969 28.35 0

n*l*Alloc 8 0.147 0.0184 1.31 0.231

Error 13473 188.61 0.014

Total 13499 300.229

S R-sq R-sq(adj) R-sq(pred)

0.118318 37.18% 37.06% 36.93%

Table C.9: ANOVA table of the throughput maximization problem (OptGap20)

Source DF Adj SS Adj MS F-Value P-Value

n 2 42.821 21.4105 519.17 0

l 2 18.191 9.0954 220.55 0

Alloc 2 8.267 4.1336 100.23 0

n*l 4 0.527 0.1316 3.19 0.012

n*Alloc 4 0.869 0.2173 5.27 0

l*Alloc 4 0.022 0.0055 0.13 0.97

n*l*Alloc 8 0.369 0.0461 1.12 0.347

Error 13473 555.626 0.0412

Total 13499 626.691

S R-sq R-sq(adj) R-sq(pred)

0.203076 11.34% 11.17% 10.98%

41

(b) (s,S) inventory problem (OptGap 100)

Table C.8: ANOVA table of the (s,S) inventory problem (OptGap100)

Source DF Adj SS Adj MS F-Value P-Value

n 2 3.179 1.5897 113.56 0

l 2 88.184 44.0922 3149.65 0

Alloc 2 18.345 9.1726 655.23 0

n*l 4 0.084 0.0211 1.5 0.198

n*Alloc 4 0.091 0.0227 1.62 0.166

l*Alloc 4 1.588 0.3969 28.35 0

n*l*Alloc 8 0.147 0.0184 1.31 0.231

Error 13473 188.61 0.014

Total 13499 300.229

S R-sq R-sq(adj) R-sq(pred)

0.118318 37.18% 37.06% 36.93%

Table C.9: ANOVA table of the throughput maximization problem (OptGap20)

Source DF Adj SS Adj MS F-Value P-Value

n 2 42.821 21.4105 519.17 0

l 2 18.191 9.0954 220.55 0

Alloc 2 8.267 4.1336 100.23 0

n*l 4 0.527 0.1316 3.19 0.012

n*Alloc 4 0.869 0.2173 5.27 0

l*Alloc 4 0.022 0.0055 0.13 0.97

n*l*Alloc 8 0.369 0.0461 1.12 0.347

Error 13473 555.626 0.0412

Total 13499 626.691

S R-sq R-sq(adj) R-sq(pred)

0.203076 11.34% 11.17% 10.98%

41

(c) Throughput maximization problem (OptGap 20)

Table C.10: ANOVA table of the throughput maximization problem (OptGap100)

Source DF Adj SS Adj MS F-Value P-Value

n 2 64.62 32.3077 446.23 0

l 2 19.28 9.6392 133.14 0

Alloc 2 14.3 7.1506 98.76 0

n*l 4 0.3 0.0738 1.02 0.395

n*Alloc 4 1.7 0.425 5.87 0

l*Alloc 4 0.12 0.0297 0.41 0.801

n*l*Alloc 8 0.4 0.0496 0.69 0.705

Error 13473 975.46 0.0724

Total 13499 1076.17

S R-sq R-sq(adj) R-sq(pred)

0.269075 9.36% 9.18% 8.99%

Table C.11: ANOVA table of the physician scheduling problem (OptGap100)

Source DF Adj SS Adj MS F-Value P-Value

n 2 227.39 113.7 1020.34 0

w 2 6077.06 3038.53 27268.43 0

Alloc 2 668.35 334.17 2998.94 0

n*w 4 54.18 13.54 121.55 0

n*Alloc 4 4.63 1.16 10.39 0

w*Alloc 4 83.92 20.98 188.28 0

n*w*Alloc 8 9.63 1.2 10.8 0

Error 13473 1501.3 0.11

Total 13499 8626.45

S R-sq R-sq(adj) R-sq(pred)

0.333812 82.60% 82.56% 82.53%

42

(d) Throughput maximization problem (OptGap 100)

Table C.10: ANOVA table of the throughput maximization problem (OptGap100)

Source DF Adj SS Adj MS F-Value P-Value

n 2 64.62 32.3077 446.23 0

l 2 19.28 9.6392 133.14 0

Alloc 2 14.3 7.1506 98.76 0

n*l 4 0.3 0.0738 1.02 0.395

n*Alloc 4 1.7 0.425 5.87 0

l*Alloc 4 0.12 0.0297 0.41 0.801

n*l*Alloc 8 0.4 0.0496 0.69 0.705

Error 13473 975.46 0.0724

Total 13499 1076.17

S R-sq R-sq(adj) R-sq(pred)

0.269075 9.36% 9.18% 8.99%

Table C.11: ANOVA table of the physician scheduling problem (OptGap100)

Source DF Adj SS Adj MS F-Value P-Value

n 2 227.39 113.7 1020.34 0

w 2 6077.06 3038.53 27268.43 0

Alloc 2 668.35 334.17 2998.94 0

n*w 4 54.18 13.54 121.55 0

n*Alloc 4 4.63 1.16 10.39 0

w*Alloc 4 83.92 20.98 188.28 0

n*w*Alloc 8 9.63 1.2 10.8 0

Error 13473 1501.3 0.11

Total 13499 8626.45

S R-sq R-sq(adj) R-sq(pred)

0.333812 82.60% 82.56% 82.53%

42

(e) Physician scheduling problem (OptGap 100)

Table C.12: ANOVA table of the physician scheduling problem (OptGap500)

Source DF Adj SS Adj MS F-Value P-Value

n 2 201.45 100.72 1268.44 0

w 2 4936.11 2468.06 31081.06 0

Alloc 2 591.28 295.64 3723.09 0

n*w 4 44.08 11.02 138.78 0

n*Alloc 4 5.59 1.4 17.61 0

w*Alloc 4 63.39 15.85 199.59 0

n*w*Alloc 8 11.87 1.48 18.68 0

Error 13473 1069.85 0.08

Total 13499 6923.63

S R-sq R-sq(adj) R-sq(pred)

0.281793 84.55% 84.52% 84.49%

43

(f) Physician scheduling problem (OptGap 500)

Figure H.11: ANOVA tables

54

(a) (s,S) inventory problem (OptGap 30) (b) (s,S) inventory problem (OptGap 100)

(c) Throughput maximization problem (OptGap 20) (d) Throughput maximization problem (OptGap 100)

(e) Physician scheduling problem (OptGap 100) (f) Physician scheduling problem (OptGap 500)

Figure H.12: Main effects plots

55

(a) (s,S) inventory problem (OptGap 30) (b) (s,S) inventory problem (OptGap 100)

(c) Throughput maximization problem (OptGap 20) (d) Throughput maximization problem (OptGap 100)

(e) Physician scheduling problem (OptGap 100) (f) Physician scheduling problem (OptGap 500)

Figure H.13: Interaction plots

56

	00Frontespizio DMEC - Open Acces - Author’s Accepted Manuscript_V00
	manuscript-cor (1)
	Introduction
	Literature review
	Problem formulation
	Tabu search
	The budget allocation problem

	Simulation budget allocation
	Budget Allocation of Scenario Best-Holding
	Budget Allocation of Scenario Best-Improving
	Sequential budget allocation procedure

	Numerical results
	A single iteration budget allocation problem
	Static allocation implememtation
	Sequential allocation implememtation
	Sequential allocation implememtation - high simulation noises

	The (s,S) Inventory problem
	The throughput maximization problem
	The physician scheduling problem
	A Comparison to OptQuest
	Discussion

	Conclusions
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Lemma 3
	Proof of Proposition1
	Calculation of the sampling ratios
	Description of the physician scheduling problem
	ANOVA analysis

