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TWO RIGIDITY RESULTS FOR STABLE MINIMAL
HYPERSURFACES

Giovanni Catino, Paolo Mastrolia, and Alberto Roncoroni

Dedicated to the memory of Cinzia Coatti

Abstract. The aim of this paper is to prove two results concerning the rigidity of
complete, immersed, orientable, stable minimal hypersurfaces: we show that they are
hyperplane in R4, while they do not exist in positively curved closed Riemannian
(n+1)-manifold when n≤ 5; in particular, there are no stable minimal hypersurfaces
in Sn+1 when n ≤ 5. The first result was recently proved also by Chodosh and Li,
and the second is a consequence of a more general result concerning minimal surfaces
with finite index. Both theorems rely on a conformal method, inspired by a classical
work of Fischer-Colbrie.

1 Introduction

It is well-known that a minimal surface M2 ⊂ R3 is a critical point of the area
functional At for all compactly supported variations, i. e. d

dt

∣
∣
∣
t=0

At = 0; equivalently,
M2 is minimal if and only if the mean curvature H , i.e. the (normalized) trace of the
second fundamental form, is identically zero, or if and only if M2 can be expressed,
locally, as the graph Γ(u) of a solution u of the minimal surfaces equation

(1 + u2
x)uyy − 2uxuyuxy + (1 + u2

y)uxx = 0.

In 1914, S. Bernstein showed that an entire (i.e., defined on the whole plane R2)
minimal graph in R3 is necessarily a plane; the so-called “Bernstein problem” in
higher dimension can be then stated in the following way: if the graph Γ(u) of
a function u : Rn → R is a minimal hypersurface in Rn+1, does Γ(u) have to be
necessarily a hyperplane? Many famous mathematicians worked on this problem in
the Sixties, in particular Fleming [Fle62] (who gave a new proof in the case n = 2),
De Giorgi [Gio65] (case n = 3), Almgren [Alm66] (case n = 4), Simons [Sim68] (the
three remaining cases for n ≤ 7) and, eventually, Bombieri, De Giorgi and Giusti
[BGG69], who showed that, for n≥ 8, there are minimal entire graphs that are not
hyperplanes. We explicitly remark that a minimal graph is area-minimizing, i.e. it
is not only a critical point of the area functional, but also a minimum, while this
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is not true for minimal hypersurfaces that are “non-graphical”, and also that area-
minimizing implies stability, that is the non-negativity of the second variation for
the area functional d2

dt2

∣
∣
∣
t=0

At ≥ 0 for all compactly supported variations.
A natural generalization of the classical Bernstein problem, thus, is the stable

Bernstein problem, that is: if Mn ↪→ Rn+1 is a complete, orientable, isometrically
immersed, stable minimal hypersurface, does M have to be necessarily a hyperplane?
In the case n = 2 the (positive) answer was given in three different papers, which
appeared between 1979 and 1981 (see do Carmo and Peng [CP79], Fischer-Colbrie
and Schoen [FS80] and Pogorelov [Pog81]).

In higher dimensions, the aforementioned result of Bombieri, De Giorgi and Giusti
implies that there exist non-flat orientable, complete, stable minimal hypersurfaces
in Rn+1 for n≥ 8, while for n≤ 5 the stable Bernstein theorems is true with some
additional assumptions (for instance, if one requires bounds on the volume growth of
geodesic balls, see e.g. [SSY75]; see also [CP82], [CSZ97], [Che01], [NS07] and refer-
ences therein for other interesting results in the same spirit). Moreover, by [BGG69]
and [HS85], we also note that there are non-flat area-minimizing (and thus minimal
and stable) complete orientable hypersurfaces M7 ↪→R8.

Up until recently, without additional hypothesis, the remaining cases (3≤ n≤ 6)
were still open, even if the study of minimal (in particular stable or in general
with finite index) hypersurfaces immersed into a Riemannian manifold (not only the
Euclidean space, then) is a very active field and has attracted a lot of interest. Then,
in 2021, Chodosh and Li [CL24] (see also [CL23]) showed that a complete, orientable,
isometrically immersed, stable minimal immersion M3 →R4 is a hyperplane. Their
proof, clever and highly non-trivial, is based on the non-parabolicity of M : they
perform careful estimates for the quantity

F (t) =
∫

Σt

|∇u|2

(here u is a positive Green’s function for the Laplacian and Σt is the t-level set of
u), relating it to

∫

Σt
|AM |2 (AM is the second fundamental form of M ).

In this paper we provide a completely different proof of Chodosh and Li result,
based on a conformal deformation of the metric, a comparison result and integral
estimates, and we also prove another rigidity result when the ambient space is a
complete Riemannian manifold with non-negative sectional curvature and either uni-
formly positive bi-Ricci curvature or uniformly positive Ricci curvature. To be pre-
cise, and to fix the notation, we consider smooth, complete, connected, orientable,
isometrically immersed hypersurfaces Mn ↪→ (Xn+1, h), n≥ 2, where (Xn+1, h) is a
(complete) Riemannian manifold of dimension n + 1 endowed with metric h. We
denote with g the induced metric on M and with H the mean curvature of M ; we
have that M is minimal if H ≡ 0 on M . In this latter case we say that M is stable if

∫

M

[

|A|2 + Rich(ν, ν)
]

ϕ2 dVg ≤
∫

M
|∇ϕ|2 dVg ∀ϕ ∈C∞

0 (M), (1.1)
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where A = AM is the second fundamental form of Mn, ν is a unit normal vector to
M in X and dVg is the volume form of g.

As we recalled before, stability is related to the non-negativity of the second
variation or, equivalently, the non-positivity of the Jacobi operator

LM := Δ + |A|2 + Rich(ν, ν).

The first result is thus the following:

Theorem 1.1. A complete, orientable, immersed, stable minimal hypersurface M3 ↪→
R4 is a hyperplane.

The second result concerns minimal hypersurfaces with finite index. We recall
that a minimal immersion Mn ↪→ (Xn+1, h) has finite index if the number of negative
eigenvalues (counted with multiplicity) of the Jacobi operator LM on every compact
domain in M with Dirichlet boundary conditions is finite; in particular stability
implies finite (equal zero) index. Before presenting our next result, we need to recall
the notion of bi-Ricci curvature tensor introduced in [SY96]: given two orthonormal
tangent vectors u, v we define

BRich(u, v) = Rich(u,u) + Rich(v, v)− Secth(u, v) ,

where Secth(u, v) denotes the sectional curvature of the plane spanned by u and v.
Our second result is the following:

Theorem 1.2. If (Xn+1, h) is a complete (n + 1)-dimensional, n≤ 5, manifold with

non-negative sectional curvature and either uniformly positive bi-Ricci curvature or

uniformly positive Ricci curvature, then every complete, orientable, immersed, min-

imal hypersurface Mn ↪→ (Xn+1, h) with finite index must be compact.

As a byproduct we have the

Corollary 1.3. If (Xn+1, h) is a complete (n + 1)-dimensional, n ≤ 5, manifold

with non-negative sectional curvature and uniformly positive Ricci curvature, then

there is no complete, orientable, immersed, stable minimal hypersurface Mn ↪→
(Xn+1, h).

In particular, there is no complete, orientable, immersed, stable minimal hyper-
surface of the round spheres Mn ↪→ (Sn+1, gstd), provided n≤ 5. In dimension n = 2
this follows from a more general result proved in [SY82], while, in dimension n = 3, it
was recently proved in [CLS22, Corollary 1.5]. We mention that Theorem 1.2 holds
also for complete, orientable, immersed, stable minimal hypersurface of the cylinder
Mn ↪→ (R × S

n, gstd) (observe that in this case Sect ≥ 0 and BRic ≥ 1), provided
n ≤ 5. As far as we know, Corollary 1.3 is new in the cases n = 4,5 (see [Che08]
where the same technique is used). We do not know if Theorem 1.2 and Corollary
1.3 hold also in dimension greater than five. We note that, in the same spirit, in
[SY96] the authors obtained a compactness result for stable minimal hypersurfaces
of dimension n≤ 4 immersed in space with uniformly positive bi-Ricci curvature.
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2 Proof of Theorem 1.1

In this section we give an alternative proof of [CL24, Theorem 1] (see Theorem 1.1).
The main idea is to use a weighted volume comparison for a suitable conformal
metric g̃ together with a new weighted integral estimate inspired by [SSY75].

Let Mn ↪→ Rn+1 be a complete, connected, orientable, isometrically immersed,
stable minimal hypersurface.

2.1 Conformal change. It is well known (see e.g. [Fis85, Proposition 1]) that,
since Mn ↪→ Rn+1 is stable, then there exists a positive function 0 < u ∈ C∞(M)
satisfying

−Δgu = |A|2gu on M . (2.1)

Following the line in [Fis85] (see also [ENR07]), let k > 0 and consider the conformal
metric

g̃ = u2kg,

where g = ı∗h is the induced metric on M (and ı denotes the inclusion). First of all
we prove the following lower bound for a modified Bakry-Emery-Ricci curvature of g̃.
In particular, this implies the non-negativity of the 2-Bakry-Emery-Ricci curvature
of g̃ for a suitable k.

Lemma 2.1. Let f := k(n − 2) logu. Then the Ricci tensor of the metric g̃ = u2kg

satisfies

Ricg̃ +∇2
g̃
f − 1− k(n− 2)

k(n− 2)2
df ⊗ df ≥

(

k− n− 1
n

)

|A|2gg

in the sense of quadratic forms. In particular, if n = 3 and k = 2
3 , then the 2-Bakry-

Emery-Ricci tensor Ric2,f
g̃

:= Ricg̃ +∇2
g̃
f − 1

2df ⊗ df satisfies

Ric2,f
g̃

≥ 0.

Proof. Since f = k(n− 2) logu, we have

df = k(n− 2)
du

u

and

∇2
gf = k(n− 2)

(

∇2
gu

u
− du⊗ du

u2

)

,

which implies

Δgf = k(n− 2)
(

Δgu

u
−

|∇gu|2g
u2

)

.
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On the other hand, from the standard formulas for a conformal change of the metric
g̃ = e2ϕg, ϕ ∈C∞(M), ϕ> 0 we get

Ricg̃ = Ricg − (n− 2)
(

∇2
gϕ− dϕ⊗ dϕ

)

−
[

Δgϕ+ (n− 2)|∇gϕ|2g
]

g

and

∇2
g̃
f =∇2

gf − (df ⊗ dϕ+ dϕ⊗ df) + g (∇f,∇ϕ)g.

Note that, in our case, ϕ = k logu; now we exploit the facts that u is a solution of
equation (2.1) to write

Ricg̃ +∇2
g̃
f = Ricg − k2(n− 2)

du⊗ du

u2 + k|A|2gg + k
|∇gu|2g
u2 g

= Ricg −
df ⊗ df

n− 2
+ k|A|2g +

|∇gf |2g
k(n− 2)2

g.

From the Cauchy-Schwarz inequality we have

|∇gf |2gg ≥ df ⊗ df,

thus

Ricg̃ +∇2
g̃
f ≥Ricg +

1− k(n− 2)
k(n− 2)2

df ⊗ df + k|A|2gg;

from Gauss equations in the minimal case we get Ricg = −A2; since A is traceless
we have the inequality

A2 ≤ n− 1
n

|A|2g,

and substituting in the previous relation we conclude

Ricg̃ +∇2
g̃
f − 1− k(n− 2)

k(n− 2)2
df ⊗ df ≥

(

k− n− 1
n

)

|A|2gg. �

2.2 Completeness. In this subsection we are going to prove that the conformal
metric g̃ = u2kg is complete, provided n= 3 and k = 2

3 . In order to do this we follow
the strategy in [Fis85] and we use some computations in [ENR07]. First, we recall
that in the proof of [Fis85, Theorem 1], given a reference point O ∈Mn, the author
showed the existence of a g̃-minimizing geodesic,

γ(s) : [0,∞)→Mn,

where s is the g-arclength and Mn ↪→ Rn+1 is the usual complete, connected, ori-
entable, isometrically immersed, stable minimal hypersurface. For the sake of com-
pleteness, we report the argument here. First of all, for every R > 0, we consider
the geodesic ball (of g) centered at O of radius R, BR(O). Then, we first claim that
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there exists a g̃-minimizing geodesic, γR, joining O to any boundary point of BR(O).
Indeed, consider uR := u+ η, where η is a smooth function such that η ≡ 0 in BR(O)
and η ≡ 1 in Mn \BR+1(O). Since uR is bounded below, the metric

g̃R = u
2(n−1)

n
R g

is complete, and these geodesics exist. Therefore, for every Ri > 0, since ∂BRi(O)
is compact, there exists xi ∈ ∂BRi(O) so that xi is closest (in g̃R) to O. Let γi be
the g̃R-minimizing geodesic joining O to xi. Note that γi ⊂BRi(O) or another point
would be closer to O. Since uRi = u in BRi(O), then γi is a g̃-minimizing geodesic. We
parametrize γi with respect to g-arclength. In particular, since |γ̇i(s)|g = 1 for every
s, up to subsequences, the sequence γ̇i(0) converges to a limit vector as Ri → ∞.
Thus, by ODE theory and Ascoli-Arzelà, γi converges on compact sets of [0,∞) to a
limiting curve γ which is a g̃-minimizing geodesic and is parametrized by g-arclength.

Remark 2.2. (i) We observe that the completeness of the metric g̃ = u2kg will follow
if we can show that the g̃-length of γ is infinite, i.e.

∫

γ
ds̃ =

∫

γ
uk ds = +∞.

Indeed, by construction, the g̃-length of every other divergent geodesic starting from
O (i.e. its image does not lie in any ball BR(O)) must be greater or equal than the
one of γ.

(ii) Note that γ has unit speed with respect to g and to g̃, when it is parametrized
by the arclength s and s̃, respectively.

From now on

n = 3 and k =
2
3
.

Lemma 2.3. The metric g̃ = u
4
3 g is complete.

Proof. We do part of the computations for every n. We consider the g̃-minimizing
geodesic γ just constructed and as observed in Remark 2.2 the completeness of g̃ is
equivalent to prove that γ has infinite g̃ length, i.e.

∫ +∞

0
uk(γ(s))ds= +∞.

Since γ is minimizing, by the second variation formula, following the computations
in the proof of Theorem 1 (with H = 0) in [ENR07], we obtain

(n− 1)
∫ +∞

0
(ϕs)2u−k ds≥

∫ +∞

0
ϕ2u−k

⎛

⎝k|A|2 −A2
11 −

n∑

j=2
A2

1j

⎞

⎠ ds

− k(n− 2)
∫ +∞

0
ϕ2u−k(logu)ss ds+ k

∫ +∞

0
ϕ2u−k |∇u|2

u2 ds
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for every smooth function ϕ with compact support in (0,+∞) and for every k > 0.
Since A is trace-free, we have

|A|2 ≥A2
11 +A2

22 + . . .+A2
nn + 2

n∑

j=2
A2

1j ≥
n

n− 1
A2

11 + 2
n∑

j=2
A2

1j ,

thus

k|A|2 −A2
11 −

n∑

j=2
A2

1j ≥
(

kn

n− 1
− 1

)

A2
11 + (2k− 1)

n∑

j=2
A2

1j .

In particular, if

k ≥ n− 1
n

(2.2)

we have
∫ +∞

0
ϕ2u−k

⎛

⎝k|A|2 −A2
11 −

n∑

j=2
A2

1j

⎞

⎠ ds≥ 0.

Using this estimate, the fact that |∇u|2 ≥ (us)2 and integrating by parts, we obtain

(n− 1)
∫ +∞

0
(ϕs)2u−k ds≥ 2k(n− 2)

∫ +∞

0
ϕϕsu

−k−1us ds

+ k [1− k(n− 2)]
∫ +∞

0
ϕ2u−k−2(us)2 ds.

Let now ϕ = ukψ, with ψ smooth with compact support in (0,+∞). We have

ϕ2u−k = ukψ2,

ϕs = kψuk−1us + ukψs,

(ϕs)2u−k = k2ψ2uk−2(us)2 + uk(ψs)2 + 2kψψsu
k−1us,

and substituting in the previous relation we get

(n− 1)
∫ +∞

0
uk(ψs)2 ds (2.3)

≥−2k
∫ +∞

0
ψψsu

k−1us ds+ k(1− k)
∫ +∞

0
ψ2uk−2(us)2 ds.

Let

I :=
∫ +∞

0
ψψsu

k−1us ds;

thus we have

I =
1
k

∫ +∞

0
ψψs(uk)s ds =−1

k

∫ +∞

0
uk(ψs)2 ds−

1
k

∫ +∞

0
ψψssu

k ds.
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Moreover, for every t > 1 and using Young’s inequality for every ε > 0, we have

2kI = 2ktI + 2k(1− t)I

=−2t
∫ +∞

0
uk(ψs)2 ds− 2t

∫ +∞

0
ψψssu

k ds+ 2k(1− t)
∫ +∞

0
ψψsu

k−1us ds

≤−2t
∫ +∞

0
uk(ψs)2 ds− 2t

∫ +∞

0
ψψssu

k ds

+ k(t− 1)ε
∫ +∞

0
ψ2uk−2(us)2 ds+

k(t− 1)
ε

∫ +∞

0
uk(ψs)2 ds.

Assuming

k < 1 (2.4)

and choosing

ε :=
1− k

t− 1
we obtain

2kI ≤−2t
∫ +∞

0
ψψssu

k ds+ k(1− k)
∫ +∞

0
ψ2uk−2(us)2 ds

+
[

k(t− 1)2

1− k
− 2t

]
∫ +∞

0
uk(ψs)2 ds.

From (2.3) we get

0≤
[

k(t− 1)2

1− k
− 2t+ (n− 1)

]
∫ +∞

0
uk(ψs)2 ds− 2t

∫ +∞

0
ψψssu

k ds

for every t > 1 and every k satisfying (2.2) and (2.4). Let

P (t) :=
k(t− 1)2

1− k
− 2t+ (n− 1)

and choose k = n−1
n . It is easy to see that P (t) is negative for some t > 1 if n = 3:

indeed

P (t) = (n− 1)t2 − 2nt+ 2(n− 1) = 2t2 − 6t+ 4 =−2(t− 1)(2− t).

Therefore, if n = 3, k = 2
3 and t = 3

2 , we deduce

0 ≤−
∫ +∞

0
u

2
3 (ψs)2 ds− 6

∫ +∞

0
u

2
3ψψss ds

for every ψ smooth with compact support in (0,+∞). Now we choose ψ = sη with
η smooth with compact support in (0,+∞): thus

ψs = η + sηs, ψss = 2ηs + sηss,
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and we get
∫ +∞

0
u

2
3 η2 ds≤

∫ +∞

0
u

2
3

(

−14sηηs − 6s2ηηss − s2(ηs)2
)

ds.

Choose η such that η ≡ 1 on [0,R], η ≡ 0 on [2R,+∞) and with |ηs| and |ηss| bounded
by C/R and C/R2, respectively, for R≤ s≤ 2R (C is a positive constant). Then

∫ R

0
u

2
3 ds≤

∫ +∞

0
u

2
3 η2 ds≤C

∫ +∞

R
u

2
3 ds

for some C > 0 independent of R. We conclude that
∫ +∞

0
u

2
3 ds= +∞,

i.e. g̃ = u
4
3 g is complete. �

2.3 Weighted integral estimates. From lemma 2.1 and lemma 2.3 we have that
the metric g̃ = u

4
3 g is complete and it has non-negative 2-Bakry-Emery-Ricci cur-

vature. Using well known comparison results (see [Qia97]) we immediately obtain
the following weighted Bishop-Gromov volume estimate for a geodesic ball Bg̃

R(x0)
centered at x0 ∈M , of radius R, with respect to the metric g̃.

Corollary 2.4. Let x0 ∈M3. Then, for every R> 0, there exists C > 0 such that

the f -volume

Volf Bg̃
R(x0) :=

∫

Bg̃
R(x0)

e−f dVg̃ ≤CR5,

where f = 2
3 logu. Equivalently, in terms of u and the volume form of g,

∫

Bg̃
R(x0)

u
4
3 dVg ≤CR5.

The last ingredient that we need in the proof of Theorem 1.1 is the following
weighted integral inequality in the spirit of [SSY75, Theorem 1].

Lemma 2.5. For every 0< δ < 1
100 , there exists C > 0 such that

∫

M
|A|5+δu−2− 2δ

3 ψ5+δ dVg ≤C

∫

M
u−2− 2δ

3 |∇ψ|5+δ dVg ∀ψ ∈C∞
0 (M).

Proof. Again, we do part of the computations for every n. From [SSY75] we get
∫

M
|A|pϕ2 ≤C

∫

M
|A|p−2|∇ϕ|2 ∀ϕ ∈C∞

0 (M), (2.5)

for every p ∈ [4,4+
√

8/n] and for some C =C(n,p)> 0. For the sake of completeness
we report here the proof of (2.5). We take ϕ = |A|1+qψ, q ≥ 0, with ψ ∈C∞

0 (M), in
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the stability inequality (1.1) obtaining
∫

M
|A|4+2qψ2 ≤ [(1 + q)2 + ε]

∫

M
|A|2q|∇|A||2ψ2 +

1 + q

ε

∫

M
|A|2+2q|∇ψ|2,

for every ε > 0, where we used Young’s inequality. On the other hand, multiplying
Simons’ inequality (see [CM11, Lemma 2.1] for a proof)

|A|Δ|A|+ |A|4 ≥ 2
n
|∇|A||2. (2.6)

by |A|2qψ2 and integrating by parts, we get
( 2
n

+ 1 + 2q− ε

)∫

M
|A|2q|∇|A||2ψ2 ≤

∫

M
|A|4+2qψ2 +

1
ε

∫

M
|A|2+2q|∇ψ|2

for every ε > 0, where we used again Young’s inequality. Since q ≥ 0, for ε > 0 suffi-
ciently small, we obtain

{

1− [(1 + q)2 + ε]
( 2
n

+ 1 + 2q− ε

)−1
}
∫

M
|A|4+2qψ2 ≤C

∫

M
|A|2+2q|∇ψ|2.

Let q := p−4
2 . For ε > 0 small enough, we have

1− [(1 + q)2 + ε]
( 2
n

+ 1 + 2q− ε

)−1
> 0

if p ∈ [4,4 +
√

8/n] and we finally obtain
∫

M
|A|pψ2 ≤C

∫

M
|A|p−2|∇ψ|2 ∀ψ ∈C∞

0 (M).

Taking ψ = ϕp/2, by Holder’s inequality we get (2.5).
Take ϕ = uαψ, with ψ smooth with compact support, u the solution of (2.1) and

α< 0. Since, from Cauchy-Schwarz and Young’s inequalities,

|∇(uαψ)|2 ≤ 2ψ2|∇(uα)|2 + 2u2α|∇ψ|2 , (2.7)

then (2.5) becomes
∫

M
|A|pu2αψ2 ≤ 2C

[∫

M
|A|p−2ψ2|∇uα|2 +

∫

M
|A|p−2u2α|∇ψ|2

]

(2.8)

∀ψ ∈C∞
0 (M).

Now we tackle the first integral on the right-hand side of (2.8) firstly integrating by
parts

∫

M
|A|p−2ψ2|∇uα|2 =−

∫

M
|A|p−2ψ2uαΔuα −

∫

M
uαψ2〈∇uα,∇|A|p−2〉

−2
∫

M
|A|p−2uαψ〈∇uα,∇ψ〉 ,
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secondly we use the fact that

Δuα = αuα−1Δu+ α(α− 1)uα−2|∇u|2 and |∇uα|2 = α2u2α−2|∇u|2 ,

together with Cauchy-Schwarz and Young’s inequalities to get
∫

M
|A|p−2ψ2|∇uα|2 ≤−α

∫

M
|A|p−2u2α−1ψ2Δu− α− 1

α

∫

M
|A|p−2ψ2|∇uα|2

−
∫

M
uαψ2〈∇uα,∇|A|p−2〉+ ε

∫

M
|A|p−2ψ2|∇uα|2 +

1
ε

∫

M
|A|p−2u2α|∇ψ|2 ,

for all ε > 0. From (2.1) we find
∫

M
|A|p−2ψ2|∇uα|2 ≤ α

∫

M
|A|pu2αψ2 − α− 1

α

∫

M
|A|p−2ψ2|∇uα|2

−
∫

M
uαψ2〈∇uα,∇|A|p−2〉+ ε

∫

M
|A|p−2ψ2|∇uα|2 +

1
ε

∫

M
|A|p−2u2α|∇ψ|2 ,

i.e.
(

1− ε+
α− 1
α

)∫

M
|A|p−2ψ2|∇uα|2 ≤ α

∫

M
|A|pu2αψ2

−
∫

M
uαψ2〈∇uα,∇|A|p−2〉+

1
ε

∫

M
|A|p−2u2α|∇ψ|2 ,

Now, since

∇|A|p−2 = (p− 2)|A|p−3∇|A|= (p− 2)|A|
p−2
2 |A|

p−4
2 ∇|A| ,

then, from Cauchy-Schwarz and Young’s inequalities we obtain
(

1− ε+
α− 1
α

− p− 2
2t1

)∫

M
|A|p−2ψ2|∇uα|2 ≤ α

∫

M
|A|pu2αψ2 (2.9)

+
(p− 2)t1

2

∫

M
|A|p−4ψ2u2α|∇|A||2 +

1
ε

∫

M
|A|p−2u2α|∇ψ|2 ,

for every t1 > 0. Now, multiplying by |A|p−4f2 the Simons’ inequality (2.6), integrat-
ing by parts and using Young’s inequality we obtain

∫

M
|A|pf2 ≥

( 2
n

+ p− 3− t2

)∫

M
|A|p−4|∇|A||2f2 − 1

t2

∫

M
|A|p−2|∇f |2

for every t2 > 0. Choosing f = uαψ we get
∫

M
|A|pu2αψ2 ≥

( 2
n

+ p− 3− t2

)∫

M
|A|p−4|∇|A||2u2αψ2 (2.10)

−
( 1
t2

+ ε

)∫

M
|A|p−2ψ2|∇uα|2 − 1

t2

(

1 +
1
t2ε

)∫

M
|A|p−2u2α|∇ψ|2
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for every ε > 0, since

|∇(uαψ)|2 ≤ (1 + t2ε)ψ2|∇(uα)|2 +
(

1 +
1
t2ε

)

u2α|∇ψ|2 .

Now let δ > 0. Using (2.10) in (2.9) with

α =−1− δ

3
≤−1

we obtain
(

1 +
2 + δ

3
1 + δ

3
−

(

2 +
δ

3

)

ε− p− 2
2t1

−
1 + δ

3
t2

)
∫

M
|A|p−2ψ2|∇u−1− δ

3 |2

≤
[

1
ε

+
1 + δ

3
t2

(

1 +
1
t2ε

)]∫

M
|A|p−2u−2− 2δ

3 |∇ψ|2

+
[

(p− 2)t1
2

−
2 + 2δ

3
n

−
(

1 +
δ

3

)

p+ 3 + δ +
(

1 +
δ

3

)

t2

]

×
∫

M
|A|p−4ψ2u−2− 2δ

3 |∇|A||2 ,

for all ε, t1, t2 > 0. Let

n = 3, p= 5 + δ, t1 =
2(5 + 3δ)

9
, t2 = 1

we obtain

(p− 2)t1
2

−
2 + 2δ

3
n

−
(

1 +
δ

3

)

p+ 3 + δ +
(

1 +
δ

3

)

t2 = 0

and

1 +
2 + δ

3
1 + δ

3
− p− 2

2t1
−

1 + δ
3

t2
=

117 + 54δ− 47δ2 − 12δ3

180 + 168δ + 36δ2 .

Thus
(

117 + 54δ− 47δ2 − 12δ3

180 + 168δ + 36δ2 −
(

2 +
δ

3

)

ε

)
∫

M
|A|3+δψ2|∇u−1− δ

3 |2

≤
[1
ε

+
(

1 +
δ

3

)(

1 +
1
ε

)]∫

M
|A|3+δu−2− 2δ

3 |∇ψ|2,

for all ε > 0. Choosing 0< δ < 1/100 and ε small enough we obtain
∫

M
|A|3+δψ2|∇u−1− δ

3 |2 ≤C

∫

M
|A|3+δu−2− 2δ

3 |∇ψ|2 ,
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for some C > 0. From (2.8) and Young’s inequality we get
∫

M
|A|5+δu−2− 2δ

3 ψ2 ≤C

∫

M
|A|3+δu−2− 2δ

3 |∇ψ|2

≤ ε′
∫

M
|A|5+δu−2− 2δ

3 ψ2 +
C

ε′

∫

M
u−2− 2δ

3 |∇ψ|5+δψ−(3+δ)

for all ε′ > 0 and ψ ∈C∞
0 (M). Therefore

∫

M
|A|5+δu−2− 2δ

3 ψ2 ≤C

∫

M
u−2− 2δ

3 |∇ψ|5+δψ−(3+δ)

=C

∫

M
u−2− 2δ

3 |∇ψ
2

5+δ |5+δ.

The conclusion now follows immediately by replacing ψ with ψ
2

5+δ . �

2.4 Final estimate. Combining Lemma 2.5 with Corollary 2.4 we can conclude
the proof of Theorem 1.1. More precisely, let x0 ∈M and let r̃ the distance function
from x0 with respect to the metric g̃ = u

4
3 g. We choose ψ := η(r̃) with 0 ≤ η ≤ 1,

η ≡ 1 on [0,R], η ≡ 0 on [2R,+∞) and |η′| ≤ C/R on [R,2R], for some C > 0 and
R> 0. From Lemma 2.5, for some 0< δ < 1/100, we have

∫

M
|A|5+δu−2− 2δ

3 η5+δ dVg ≤C

∫

M
u−2− 2δ

3 |∇ψ|5+δ
g dVg

=C

∫

M
u−2− 2δ

3 + 2(5+δ)
3 |∇̃ψ|5+δ

g̃
dVg

≤ C

R5+δ

∫

Bg̃
2R(x0)

u
4
3 dVg

≤ C

Rδ
,

where we used the fact that |∇̃r̃|̃g ≡ 1 and Corollary 2.4. Since δ > 0, letting R→ +∞
we get

|A| ≡ 0 on M3

and this concludes the proof of Theorem 1.1.

3 Proof of Theorem 1.2

Proof of Theorem 1.2. Let (Xn+1, h) be a complete n-dimensional, n≤ 5, manifold
with non-negative sectional curvature and either uniformly positive bi-Ricci curva-
ture or uniformly positive Ricci curvature and consider an orientable, immersed,
minimal hypersurface Mn → (Xn+1, h) with finite index. Suppose, by contradiction,
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that M is non-compact. It is well known (see [Fis85, Proposition 1]) that there exist
0< u ∈C∞(M) and a compact subset K ⊂M such that u solves

−Δu =
[

|A|2 + Rich(ν, ν)
]

u on M \K.

Let k > 0 and consider the conformal metric

g̃ = u2kg.

where g is the induced metric on M . Let s be the arc length with respect to the metric
g. Following the construction in [Fis85, Theorem 1], we can construct a minimizing
geodesic γ̃(s) : [0,+∞) → M \ K in the metric g̃ which has infinite length in the
metric g. Now we can argue exactly as in the proof of estimate (6) in [ENR07], using
H ≡ 0, obtaining

(n− 1)
∫ a

0
(ϕs)2 ds≥ k(n− 3)

∫ a

0
ϕϕs

us

u
ds+

k [4− k(n− 1)]
4

∫ a

0
ϕ2

(
us

u

)2
ds

+
∫ a

0
ϕ2

⎛

⎝kRich(ν, ν) +
n∑

j=2
Rh

1j1j

⎞

⎠ ds

+
∫ a

0
ϕ2

⎛

⎝k|A|2 −A2
11 −

n∑

j=2
A2

1j

⎞

⎠ ds,

for every smooth function ϕ such that ϕ(0) = ϕ(a) = 0 and for every k > 0. Arguing
as in [SY96, Section 2] we have the following identity

kRich(ν, ν) +
n∑

j=2
Rh

1j1j = kBRich(e1, ν)− kRich(e1, e1) + kRh
1ν1ν +

n∑

j=2
Rh

1j1j

= kBRich(e1, ν) + (1− k)
n∑

j=2
Rh

1j1j .

Since (Nn+1, h) is with non-negative sectional curvature and either uniformly positive
bi-Ricci curvature or uniformly positive Ricci curvature, we have Rh

1j1j ≥ 0 for every
j = 2, . . . , n and either

BRich(e1, ν)≥R0 or Rich(ν, ν)≥R0

for some R0 > 0. Therefore, if k ≤ 1, we get

(n− 1)
∫ a

0
(ϕs)2 ds≥ k(n− 3)

∫ a

0
ϕϕs

us

u
ds+

k [4− k(n− 1)]
4

∫ a

0
ϕ2

(
us

u

)2
ds

+
∫ a

0
ϕ2

⎛

⎝kR0 + k|A|2 −A2
11 −

n∑

j=2
A2

1j

⎞

⎠ ds.
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Since A is trace-free, we have

|A|2 ≥A2
11 +A2

22 + . . .+A2
nn + 2

n∑

j=2
A2

1j ≥
n

n− 1
A2

11 + 2
n∑

j=2
A2

1j ,

thus

k|A|2 −A2
11 −

n∑

j=2
A2

1j ≥
(

kn

n− 1
− 1

)

A2
11 + (2k− 1)

n∑

j=2
A2

1j .

Choose

k =
n− 1
n

≤ 1.

We get
∫ a

0
(ϕs)2 ds≥

n− 3
n

∫ a

0
ϕϕs

us

u
ds+

6n− n2 − 1
4n2

∫ a

0
ϕ2

(
us

u

)2
ds+

R0

n

∫ a

0
ϕ2 ds.

If n≤ 5, we have

6n− n2 − 1
4n2 ≥ δ0 > 0.

Moreover, there exists C > 0, such that

n− 3
n

ϕϕs
us

u
≥−δ0ϕ

2
(
us

u

)2
−C(ϕs)2.

Therefore, there exists C > 0, such that

C

∫ a

0
(ϕs)2 ds≥

R0

n

∫ a

0
ϕ2 ds

for every smooth function ϕ such that ϕ(0) = ϕ(a) = 0. Integrating by parts we
obtain

∫ a

0

(

ϕϕss+CR0ϕ
2
)

ds≤ 0.

Choosing ϕ(s) = sin(πsa−1), s ∈ [0, a] one has
(

CR0 −
π2

a2

)
∫ a

0
sin2(πsa−1)ds≤ 0

i.e.

a2 ≤ π2

CR0
.

We conclude that the length (in the metric g) of the geodesic γ̃(s) is finite and this
gives a contradiction. Therefore (Mn, g) must be compact and this concludes the
proof of Theorem 1.2. �
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Proof of Corollary 1.3. If M is stable, by Theorem 1.2 it must be compact. Moreover
there exists u > 0 satisfying

−Δu =
[

|A|2 + Rich(ν, ν)
]

u on M.

Integrating over M we get a contradiction, since Rich > 0 on M . Equivalently, one
can use f ≡ 1 in the stability inequality (1.1) to get a contradiction. �
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