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The European Union (EU) Medical Device Regulation and In Vitro Medical Device Regulation have
introduced more rigorous regulatory requirements for medical devices, including new rules for post-
market surveillance. However, EU market vigilance is limited by the absence of harmonized reporting
systems, languages and nomenclatures amongMember States. Our aimwas to develop a framework
based on Natural Language Processing capable of automatically collecting publicly available Field
Safety Notices (FSNs) reporting medical device problems by applying web scraping to EU authority
websites, to attribute the most suitable device category based on the European Medical Device
Nomenclature (EMDN), and todisplayprocessedFSNs in an aggregatedway to allowmultiple queries.
65,036 FSNs published up to 31/12/2023 were retrieved from 16 EU countries, of which 40,212
(61.83%) were successfully assigned the proper EMDN. The framework’s performance was
successfully tested, with accuracies ranging from 87.34% to 98.71% for EMDN level 1 and from
64.15% to 85.71% even for level 4.

The field of medical technologies, including medical devices and in vitro
medical devices, plays amajor role in thehealthcare systems in theEuropean
Union (EU), with more than 500,000 medical technologies available in
hospitals, community care settings and at home1. While pre-market eva-
luation of product quality, safety and performance is part of the conformity
assessment procedure, manufacturers must continuously monitor the
performance of their medical devices after they have been released into the
market through post-market surveillance (PMS)2,3.

Several EU public health safety issues involving medical devices,
such as Poly Implant Prothèse breast implant4,5 and metal-on-metal hip
replacements6,7, have highlighted the weakness of PMS as codified by the
previous Medical Device Directive 93/42/EEC. The fact that, up to 2016,
devices approved first in the EU and then in the United States (US) were
associated with an increased risk (adjusted hazard ratio equal to 2.9) of
safety alerts and recalls once on the market, compared to devices
approved first in the US and then in the EU, strengthens this
observation8.

To invert such a tendency towards amore regulatedEUmarket, aswell
as for greater regulatory transparency for patients and healthcare
professionals9, the EU Medical Device Regulation (MDR) 2017/74510 and
the In Vitro Medical Device Regulation (IVDR) 2017/74611 have entered
into force since 26 May 2021 and 26 May 2022, respectively, introducing
stricter rules for risk classification, more rigorous clinical evaluation

procedures, and an emphasized codification of PMS requirements
throughout the full product lifecycle12.

According to the MDR, the PMS plan must be suited to actively and
systematically gathering, recording, and analysing relevant data on the
quality, performance, and safety of a device through its life cycle, enabling
any preventive and corrective actions13. In this new perspective, the PMS
system constitutes the pillar of the manufacturer’s quality management
system, and it is intended to continually re-verify and re-validate the results
of the development phase by gathering real world data from several sources,
in order to improve the safety and performance of the device and allow for
early detection of possible problems. As a consequence, both proactive and
reactive (i.e., vigilance) approaches should be implemented by the manu-
facturer.Once being notified byfinal users about possible problems relevant
to its device and after having performed an internal assessment, as a
response to any serious incident to the device, any field safety corrective
action put in place by the manufacturer is described into a Field Safety
Notice (FSN), that will be issued electronically through the EUropean
DAtabase on MEdical Devices (EUDAMED), a newly created secure and
web-based portal that aims to collate and process information about devices
andmanufacturers at a central level. SuchFSNswill becomeaccessible to the
public as to the national competent authorities, and could be utilized as part
of the data collected by every manufacturer for the proactive PMS, to study
trends and deviations for their own product category or similar devices.
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The creation of EUDAMED and the setting of the European Medical
Device Nomenclature (EMDN)14,15, as common EU nomenclature system,
represent key aspects of the MDR and IVDR to provide standardization in
the data collection process and enhance overall transparency and
coordination between Member States. EUDAMED, constituted by six
modules, was initially scheduled to be fully operational by May 2020,
but has experienced several delays: the new expected completion date
for the last module is the third quarter of 202616. In accordance with the
transitional provisions set out in Regulation (EU) 2024/1860 amending
the medical devices regulations, the mandatory use of each module will
start 6 months after it is declared functional following an independent
audit, and the publication of a Commission notice to that effect in the
Official Journal of the European Union. However, the effective future
use of EUDAMED, in particular of its vigilance andmarket surveillance
modules relevant to the FSNs, is undermined by the following factors: 1)
their limitations are currently unknown and unpredictable, due to
several delays in their development; 2) up to that date, utilization of
EMDN and common reporting form of FSNs is voluntary; 3) once
mandatory, EUDAMED will not contain historical data, now collected
by each national competent authority, meaning that generating trends
for proactive PMS or safety signal detection would require several years
of data accumulation; 4) once functional, no link with other market
jurisdictions outside EU will be provided.

As a result, no integrated computerized infrastructure is currently
supporting the automated collection of safety information from different
EU countries17, and no global database to access such information is now
available18.

Natural Language Processing (NLP), a branchofArtificial Intelligence,
focuses on the design and implementation of systems and algorithms able to
interact through human language19. The significance of NLP in regulatory
science is widely recognized, particularly in extracting useful information
from regulatory documents20,21. In the context of the EU project Coordi-
nating Research and Evidence for Medical Devices22, given the current and
future limits of EUDAMED, we hypothesized that NLP methods could be
exploited to cope with the unstructured and incomplete nature of historical
FSN data collected by each national competent authority, to still allow its
potential utilization for trend analysis useful in PMSand signal detection.As
a result, we proposed a first framework to automatically collect, to classify
based on the EMDN, and to display in an aggregated way the official Italian
FSN data23 publicly available through the website of the Italian Ministry of
Health. Suchapproachwas then further tested in apilot studyon theFSNsof
the Netherlands, characterized by a higher degree of partial data unavail-
ability and unstructuredness24.

Consolidating on these preliminary results, the aimof this paperwas to
propose and validate an extended framework based on NLP to auto-
matically collect the publicly available historical FSN information by web
scraping from each national competent authority’s website for the 27 EU
Member States to: i) create a structured global database from such
unstructured FSN data; ii) assign for each FSN the EMDN code to the

corresponding device; iii) based on specific queries focused on the EMDN
code, manufacturer or device, to aggregate such information to allow trends
visualization and further post-processing, with possible use in proactive
PMS and signal detection.

Results
Initially, a screening was conducted for all the EU 27 national competent
authorities to determine whether they regularly updated publicly available
FSNs on their official websites. The results showed that only 16 (59%) out of
the 27 EU countries do so; this analysis also showed that they currently use
different standards, formats, and criteria for reporting (see Supplementary
Table 1).Within the proposedmethodological framework depicted in Fig. 1
anddescribed indetail in the “Methods” section, theofficialwebsites of these
16 EU national competent authorities were explored, and their publicly
published FSNswere retrieved automatically by web-scraping, by collecting
all the historical information, beginning from thefirst available FSN for each
country and setting as endingdateDecember 31st, 2023.Table 1 provides an
overview of the total number of FSNs retrieved for each country (see also
SupplementaryFig. 1), alongwith the issuedateof thefirst availableFSN, the
estimated number of issuedFSN/month, and the number of FSNs forwhich
it was possible to assign the relevant EMDN code to the corresponding
device in it.

A total of 65,036 FSNs were retrieved from different EU countries; the
total number of retrieved FSNs varied significantly across the countries, also
due to the different coverage timeframe in which the FSNs were made
publicly available, with a larger number of estimated FSN/month for Ger-
many, followed by Spain and Italy. The outlier value for Portugal is justified
by the limited number of medical devices marketed in Portugal due to
economic restrictions and of inspections to identify unsafe devices25, and by
the fact that old data stays available online only for a limited period of time.

On average, the EMDN code was successfully assigned to the relevant
devices in 40,212 (61.83%) FSNs, with a median value per country equal to
60.47%, with a 95% bias-corrected and accelerated bootstrap confidence
interval from 51.80% to 71.83%.

Figure 2 shows the distribution of EMDN level 1 for the FSNs with
assigned EMDN levels (n = 40,212): it is possible to appreciate how the first
three categories with the highest number of FSNs present in the resulting
structured database were “Z—Medical equipment and related accessories,
software and consumables” (n = 13,097; 32.57%), “W—In vitro diagnostic
medical devices” (n = 9723; 24.18%), and “P—Implantable prosthetic and
osteosynthesis devices” (n = 4046; 10.06%).

Results of the framework validation
Different tests were conducted to evaluate the performance of the proposed
framework in order to assess its ability:

- in identifying named entities from the FSN unstructured text, by the
Named Entity Recognition (NER) subtask;
- in assigning the corresponding EMDN code to the device to which the
FSN referred, by the Entity Resolution (ER) subtask.

Fig. 1 | Schematic overview of the methodological framework. This figure shows
the proposed framework. First, data relevant to FSNs were retrieved from different
national competent authorities’ websites using web scraping. Afterwards, named
entity recognition was applied if the names of manufacturers and devices were not

provided as structured fields. After data preprocessing, entity resolution was per-
formed to match the same real-world items. Data integration was then performed
using a mashup module, and a graphical user interface with several types of queries
was build to present the generated harmonized and centralized database to users.
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The proposed general validation strategy is described in the Methods
section, and it is based on the availability of the original PDF files of the
published FSNs, along with the HTML text in the scraped webpage. As
Greece and Portugal provided only standardized PDF files of the FSNs, they
needed to be excluded from the validation process, not respecting such
constraints. As the validation results for Italy and the Netherlands were

already described in detail in previous work23,24, they will not be repe-
ated here.

For the remaining countries, due to no common reporting forms,
multiple languages, alphabets and different nomenclatures amongMember
States, in absence of the availability of a gold standard providing in a
structured way the name entities of interest (manufacturer and device

Table 1 | Number of Field Safety Notices (FSNs) retrieved for each officialMember State public website included in the analysis,
together with their subset for which it was possible to assign an EMDN code to the medical device product category to which
they were referring

Country Issue date of the first
retrieved FSN

Total number of
retrieved FSN

Estimated number of issued
FSN/month

Total number of FSN with assigned
EMDN codes

Croatia 20 Apr 2012 1867 13.33 1341 (71.83%)

Czechia 02 Jun 2015 3463 33.62 2230 (64.40%)

Denmark 26 Jan 2012 4831 33.78 3560 (73.69%)

Estonia 01 Dec 2018 1103 18.08 330 (29.92%)

France 31 Oct 2007 3659 18.86 1830 (50.01%)

Germany 13 Dec 2004 15117 66.01 8439 (55.82%)

Greece 03 Jan 2007 1005 4.93 338 (33.63%)

Ireland 21 Mar 2002 7340 28.12 4149 (56.53%)

Italy 07 Jan 2009 9193 51.07 6622 (72.03%)

Latvia 21 Mar 2010 1794 10.87 1398 (77.93%)

The Netherlands 27 May 2015 4245 41.21 2774 (65.35%)

Poland 08 Mar 2007 4780 23.66 2561 (53.58%)

Portugal 11 Jan 2021 76 2.11 36 (47.37%)

Slovenia 03 Jan 2019 1505 25.08 788 (52.36%)

Spain 04 Jan 2018 4038 56.08 3090 (76.52%)

Sweden 22 Jun 2021 1020 34.00 726 (71.18%)

Total - 65036 40212 (61.83%)

Fig. 2 | Distribution of EMDN categories at level 1 for FSNs in which the EMDN
code was successfully assigned (n= 40,212). This plot shows the distribution of
EMDN categories within the generated centralized dataset. (See Supplementary
Table 2 for the term descriptions). The x-axis represents the different categories,
while the y-axis represents the count of FSNs for each category. The figure pointed

out that the first three categories with the highest number of FSNs were “Z—Medical
equipment and related accessories, software and consumables” (n = 13,097; 32.57%),
“W—In vitro diagnostic medical devices” (n = 9723; 24.18%), and “P— Implantable
prosthetic and osteosynthesis devices” (n = 4046; 10.06%).
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names) as well as the corresponding EMDN codes, an alternative approach
was proposed to derive a silver standard for comparison. This was possible
by exploiting the previous results obtained from the Italian data, in which
the EMDNcodeswere successfully assigned to the Italian FSNswith already
identified named entities23: if the same FSN was found published both in
Italy and in another country (i.e., the manufacturer issues the same FSN to
all the national competent authorities where the device is on the market),
then the already identified entities were comparedwith those obtained from
theNER subtask. In addition, the knownassignedEMDNcodes, at different
levels of its hierarchical tree-structure, were compared to the output of the
ER process.

To retrieve such corresponding documents for comparison, the “same
FSNs” issued in different countries from the same manufacturer for the
same device and, most importantly, for the same reported problem needed
to be identified. As different problems could arise over time, thus generating
different FSNs for the same device, we firstly hypothesized to capture the
same FSN by comparing the accompanying PDF document, that should
have been identical except for the source language. This hypothesis was
empirically not confirmed, due topossible discrepancies in the issue dates in
the different countries, additional numbers, or pages. To overcome this
limit, a certain range of possible discrepancies between two FSNs was set to

define “potentially equal FSNs”, to be used in the validation process (see
‘Methods’’ for more details).

For the NER subtask validation, in Table 2 the results of the perfor-
mance in correctly identifying theManufacturer andDevice named entities,
considering as reference those FSNs defined as the “same” published in Italy
and in each specific country for which a country-specific approach was
needed (see ‘Methods’’ formore details), are presented, both considering the
exact-match or the relaxed-match evaluation metrics. While the exact-
match metrics varied significantly across countries and entity types, all
relaxed-match metrics were higher than 0.9. As these results could be
affected by a bias due to the small number of available documents retrieved
as “the same FSNs”, a second test was performed based on the “potentially
equal FSNs”. The previously achieved performance was confirmed by the
measured high values of the relaxed-match evaluation metrics, as shown in
Table 3.

To validate the ER subtask, the “same FSNs” published in Italy with
an assigned EMDN code (i.e., the reference for comparison) and in each
specific country were retrieved. A first test was based on comparing the
EMDN codes for those FSNs by counting the EMDN codes assigned by
ER for the specific country that matched with the Italian EMDN code, at
different levels of description in the EMDN hierarchical tree-structure.

Table 2 | Performance of the Named Entity Recognition model on different named entities (i.e., Manufacturer and Device)
considering the “same FSNs” (Jaccard similarity index = 1) as reference standard for validation, in those countries in which a
country-specific approach was needed. Exact-match means perfect string correspondence with ground truth, while relaxed-
match allows partial string overlap (see text for details)

Country Number of retrieved
“same FSNs”

Named entity Precision Recall F1-score

Exact-
match

Relaxed-
match

Exact-
match

Relaxed-
match

Exact-
match

Relaxed-match

Croatia 74 Manufacturer 0.96 1.0 1.0 1.0 0.98 1.0

Device 0.24 0.97 1.0 1.0 0.39 0.99

Estonia 24 Manufacturer 0.29 1.0 1.0 1.0 0.45 1.0

Device 0.21 1.0 1.0 1.0 0.34 1.0

France 99 Manufacturer 0.78 1.0 1.0 1.0 0.88 1.0

Device 0.14 0.98 1.0 1.0 0.25 0.99

Germany 247 Manufacturer 0.77 1.0 1.0 1.0 0.87 1.0

Device 0.26 0.98 1.0 1.0 0.42 0.99

Poland 87 Manufacturer 0.74 1.0 1.0 1.0 0.85 1.0

Device 0.15 1.0 1.0 1.0 0.26 1.0

Table 3 | Performance of the Named Entity Recognition model on different named entities (i.e., Manufacturer and Device)
considering the “potentially equal FSNs” (Jaccard similarity index ≥0.6, cosine similarity ≥0.9, and fuzzy stringmatching ≥60) as
reference standard for validation purposes in those countries in which a country-specific approach was needed. Exact-match
means perfect string correspondencewith ground truth, while Relaxed-match allows partial string overlap (see text for details)

Country Number of retrieved “potentially
equal FSNs”

Named entity Precision Recall F1-score

Exact-
match

Relaxed-
match

Exact-
match

Relaxed-
match

Exact-
match

Relaxed-
match

Croatia 475 Manufacturer 0.85 1.0 1.0 1.0 0.92 1.0

Device 0.18 0.99 1.0 1.0 0.30 0.99

Estonia 221 Manufacturer 0.26 1.0 1.0 1.0 0.41 1.0

Device 0.20 1.0 1.0 1.0 0.34 1.0

France 607 Manufacturer 0.70 1.0 1.0 1.0 0.82 1.0

Device 0.12 0.98 1.0 1.0 0.22 0.99

Germany 1764 Manufacturer 0.76 1.0 1.0 1.0 0.86 1.0

Device 0.31 0.99 1.0 1.0 0.47 0.99

Poland 732 Manufacturer 0.64 1.0 1.0 1.0 0.78 1.0

Device 0.12 0.99 1.0 1.0 0.22 1.0
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As reported in Table 4, a high percentage of success (median [25th;
75th]: 81.1% [78.5%; 86.8%]) evenwhen considering the fourth level was
found, thus indicating very good performance. Again, as these results
could be biased due to the limited number of available FSNs, a second
test based on the retrieved “potentially equal FSNs” was performed.
Relevant results are reported in Table 5, where similar results for mat-
ched EMDN codes up to the fourth level (79.8% [74.5%; 82.0%]) were
present, thus indicating that the proposed methodology was still able to
assign the proper EMDN codes of the corresponding device category for
these “potentially equal FSNs”, regardless of the unavailability or
incompleteness of the datasets, thus confirming the previously observed
very good performance.

Discussion
The proposed extended framework represents the first attempt to use web
scraping and NLP to automatically collect and classify, based on the stan-
dard EMDN nomenclature, publicly available unstructured FSN data to
create a structured global database fromwhich, through queries focused on
EMDN code, manufacturer or device names, aggregated data are made
available to the user to allow trends visualization and further post-proces-
sing, with possible use in proactive PMS26 and signal detection.

Considering the actual unavailability of EUDAMED for vigilance and
market surveillance, and its future limitations due to not inclusion of his-
torical data, this work shows that it is potentially possible to retrieve and
aggregate such historical FSN data, despite it being provided by the relevant
competent authorities in a fragmented manner, in different languages
according to the Member State, without a common reporting form or
nomenclature. To do so, country-specific strategies were developed for web
scraping purposes, as well as for recognizing entities of interest (Manu-
facturer andDevicenames) in theunstructured text,withveryhighaccuracy
when using a relaxed-approach, capable of not restricting the research to a
very specific string so to take into account the variations in names in dif-
ferent countries. Standardizing and categorizing historical FSN data is
essential for providing consistency in long-term data analysis, allowing for
the seamless integration of historical data with current or future standar-
dizeddata, and enablingmeaningful comparisons across extensivehistorical
timelines to identify long-term trends and patterns. Furthermore, the
inclusion and analysis of such data, especially from similar devices (i.e.,
within the same EMDN categories), could serve several purposes for
manufacturers, such as riskmanagement, improvement of device safety and
performance, and regulatory compliance.

We noticed that only 16/27 EU competent national authorities are
makingpublicly available theFSNs through theirwebsite, thus evidencing in
general a transparencyproblem9with the impossibility formanufacturers to
manually dig for potentially useful information for proactive PMS for 11
Member States.

Among all countries included in the analysis, the fact that the highest
number of FSNs were retrieved from Germany could be explained by the
spanned timeframe of publicly available data (since 2004), and by the fact
that Germany holds the largest share in the European medical device
market1. The availability of a centralized database could be beneficial to all
EU competent authorities, as well as device manufacturers, by expanding
the vision outside what’s happening in its own country and specific market,
thus potentially fostering greater transparency and cooperation towards
more harmonized regulatory standards and practices, and a more effective
and proactive PMS.

By leveraging the available resources, together with specific NLP
approaches, the developed framework allowed to assign the proper EMDN
code relevant to the category of the device in the retrieved FSNs, even when
the information was partially missing or not properly structured. The
EMDN category with the highest number of FSNs was the “Z—Medical
equipment and related accessories, software, and consumables”, followed by
“W—In vitro diagnostic medical devices”. Indeed, category Z includes a
wide range of products, from bioimaging and radiotherapy instruments to
instruments for functional explorations and therapeutic interventions,
software, and non-specific consumables for diagnostic instruments, that
generated a high volume of FSNs, suggesting the need to put particular
attention in the certification process and PMS for such devices. The num-
bers associated with category W underline the need to exercise higher
scrutiny, vigilance, and PMS for these products, as now regulated by
the IVDR.

When comparing the EU system and available PMS data with the US,
where the regulatory oversight is managed by the Food and Drug Admin-
istration (FDA), the European complexity and heterogeneity strikingly
appear. The FDA has established several structured databases and stan-
dardized information collection systems to ensure the safety and effective-
ness ofmedical devices, two ofwhich are relevant to PMS: theManufacturer
andUserFacilityDeviceExperience (MAUDE)andRecall database27. These

Table 4 | Performance of the Entity Resolution model in
attributing an EMDN code to the medical device category
relevant to the “same FSNs” that matched with the Italian
EMDNcode, assumedas reference for that device, at different
levels of the EMDN hierarchical tree up to the fourth (see text
for details)

Country Number of
“same FSNs”
with non-
empty EMDN

EMDN
level 1

EMDN
level 2

EMDN
level 3

EMDN
level 4

Croatia 55 98.18% 98.18% 92.73% 83.64%

Czechia 87 95.40% 91.95% 87.36% 79.31%

Denmark 160 95.62% 93.75% 90.0% 80.62%

Estonia 9 100.0% 100.0% 100.0% 88.89%

France 69 94.20% 94.20% 89.86% 78.26%

Germany 170 94.71% 92.35% 87.65% 80.0%

Ireland 10 90.0% 70.0% 70.0% 60.0%

Latvia 38 97.37% 94.74% 94.74% 81.58%

Poland 60 91.67% 90.0% 83.33% 76.67%

Slovenia 42 97.62% 97.62% 97.62% 90.48%

Spain 106 94.34% 92.45% 89.62% 83.96%

Sweden 41 100.0% 100.0% 95.12% 87.80%

Table 5 | Performance of the Entity Resolution model in
attributing an EMDN code to the medical device category
relevant to the “potentially equal FSNs” that matched with the
Italian EMDN code, assumed as reference for that device, at
different levels of the EMDN hierarchical tree up to the fourth
(see text for details)

Country Number of
“potentially equal
FSNs “ with non-
empty EMDN

EMDN
level 1

EMDN
level 2

EMDN
level 3

EMDN
level 4

Croatia 327 94.80% 94.19% 90.83% 79.82%

Czechia 530 96.23% 93.77% 90.94% 81.70%

Denmark 813 95.57% 92.99% 89.42% 79.83%

Estonia 79 87.34% 83.54% 82.28% 72.15%

France 404 93.81% 92.33% 86.88% 76.98%

Germany 1194 93.97% 91.54% 87.44% 78.81%

Ireland 53 88.68% 84.91% 77.36% 64.15%

Latvia 259 96.14% 94.59% 91.51% 85.71%

Poland 434 94.93% 91.47% 86.18% 73.73%

Slovenia 229 96.51% 94.32% 90.83% 82.10%

Spain 659 96.05% 94.23% 89.07% 80.73%

Sweden 232 98.71% 95.69% 93.97% 85.34%
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databases are structured, with the possibility of several different querying
and direct data download, whichmakes these data actionable, as testified by
several commercial software in the US market that ingest such data and
generate further value from its processing. However, comparing, matching
or aggregating safety information from the EU and the US (and from other
world markets like China, Russia, Brazil, the United Kingdom, Canada,
Singapore, SouthKorea, Japan) remains a challenging taskdue to several key
factors, including differences in device nomenclature, regulatory frame-
works, and reporting awareness28. However, our proposed framework has
the potential to be applied to these databases by replacing the first step of
web scraping with direct data download, thereby taking a preliminary step
toward exploring possible regulatory harmonization.

The spontaneous reporting systems (i.e., the FDA MAUDE, future
EUDAMED), are crucial for safety signal detection, allowing the identifi-
cation and analysis of potential adverse events associated with medical
products. The FDAhas issued guidance to establish a process for identifying
and assessing emerging signals defined as new information about medical
devices thatmay impact patientmanagement or the benefit-risk profile, but
the guidance did not include specific methods for these evaluations29.
Although our tool currently does not directly identify possible anomalies,
the richness of the generateddataset serves as the foundational startingpoint
for further analysis. Instead of interrogating 16 different national databases,
utilizing only one centralized database with possible queries about manu-
facturer, device, or EMDN, and obtaining results in a structured format
could allow for a better understanding of the medical device market by
moving from the currently narrow single competent authority perspective
to a more global vision. This holistic view significantly simplifies the data
retrieval process and helps in identifying patterns, trends and insights that
may be obscured when data is dispersed across multiple national databases.

While standardization and classification in reporting could ensure
consistency in how PMS data is presented to users, some inherent limita-
tions of passive surveillance systems could still be present, and make cross-
country comparisons (in particular among differentmarkets – i.e., USA and
EU) difficult. For instance, itmay be difficult to determine the root causes of
reported problems due to limited information and the absence of access to
the actual devices. Also, the lack of a denominator indicating the number of
people exposed to the devices makes the calculation of the incidence rate
unfeasible; therefore, it is difficult to identify outliers devices with higher
incidence of safety problems30. As publication of FSN is inherently delegated
to the manufacturer itself, and thus connected to its propensity to properly
react, this cannot be standardized, and maybe affected by external factors.
Overreporting may be driven by media coverage, where medical devices
withwell-known adverse event problems aremore likely to be exposed, thus
leading to an excess of reports that donot necessarily indicate a true increase
in the risk for such devices. On the other hand, underreporting may occur
due to several reasons, such as lack of awareness of the requirement for
reporting, uncertainty about the reasons behind the problems after interal
assessment, anddiscretion exercised bymanufacturers due to the absence of
a standardized reporting threshold18,30. The degree to which these reporting
biases are present could significantly differ fromone country to another, and
also the extent of these biases remains unclear. For instance, the tendency of
overreporting may be more pronounced in countries where certain devices
are extensively used, or where national clinical practices involve more
detailed monitoring, or in countries with stringent regulatory oversight,
heightened public awareness, and legal repercussions. Conversely, in
countries where reporting is less emphasized, underreporting might be
more prevalent. This disparity in reporting behavior, stemming from dif-
ferences in the reporting requirements, allocating responsibilities among
different stakeholders, and balancing central and regional control2, makes
global analysis to assess the safety and effectiveness of devices complicated
evenwhen data is formatted in a standardizedmanner, thus constituting an
inherent limitations of passive surveillance systems. However, despite such
challenges in data quality, meaningful analysis could still feasible with
careful consideration. For instance, these issues could be mitigated by
complementing the original data also using external sources, such as clinical

registries, to achieve a more accurate and robust analysis by using all the
possible information to maximize the potential of identifying outliers for a
certain category of medical device, both in reporting behaviour and in
relevant risk for the patient.

Our proposed framework is characterized by several strengths: 1)while
the study focused on FSNs retrieved until 31 December 2023, it enables
automatic retrieval of newFSNsover time to keep the database updated; 2) a
Graphical User Interface (GUI) was developed to allow for querying the
standardized and categorized data based on different user’s needs (i.e.,
country, manufacturer, device, type, action, EMDN levels, time interval),
retrieving both cumulative results, trends, as well as the specific FSNsmade
available as structured fields, with reference to the original web link (see
Supplementary Fig. 1). This visualization tool providesmany advantages for
exploratory analysis, as a first step for potentially supporting the identifi-
cation of patterns, trends, and anomalies. The integration of direct links to
original sources not only enhances transparency and allows for real-time
verification, but also facilitates amore thorough examination of the original
information, thereby contributing to the overall reliability of the analysis.

While the current study has provided a valid solution to transform
unstructured, incomplete and dispersed safety information into a standar-
dized and centralized database, it is important to acknowledge some
potential limitations, the first of them stemming from the partial availability
and completeness of retrieved public data, as the analysis heavily relies on
the availability of such data using a cross-learning approach. Also, the
information about the relationship between companies, such as subsidiaries
or parent companies, is absent. Therefore, querying for a specific manu-
facturer’s name will return only notices pertinent to that specific manu-
facturer, and not those of possible company’s subsidiaries. Also, the
feasibility of attributing an EMDN code representing the most suitable
category for the devices in the retrieved FSN was assessed, with median
results around 60% and mainly based on the completeness and quality of
publicly available data. These results could constitute the reference of
comparison for further algorithm improvements. While this limitation
could affect the interpretation of possible extracted trends based on the
EMDN code as representing only a subsample of the available data, this
information could still be valuable when considering that nowadays every
national competent authority refers only to FSN in its own country which,
for a specific device category, is largely underrepresenting the total number
of FSN in all European market. Moreover, while the query of the generated
database focused on the EMDNcodewouldmiss part of the potential FSNs,
other types of queries, such as that for a specific manufacturer or for a
specific device, will not be affected as relating to the NER subtask, thus
allowing to derive specific trends useful for analyzing the corresponding risk
profile over time. Finally, the possibility of searching directly for a specific
devicemodel, as well as querying for specific causes of malfunction relevant
to a category of devices is still missing. The retrieval of such related infor-
mation would require a manual screening of the results. Future develop-
ment in analyzing the content of the PDF files to extract other important
information, such as models and causes of malfunctions, will need to
address this limitation, dealingwith varying formats, languages and styles of
PDF files.

Considering the findings from the current study, several recommen-
dations highlighting current needs in the regulatory process could be pro-
posed. Firstly, a standardization of the reporting format for the information
made publicly available online by Member States could help and enhance
the retrieval process and relevant exploitation of such data for multiple
purposes. Second, a consistent requirement for reporting across various
countries should be defined to avoid inconsistency between regions, which
could lead to different levels of data completeness. Third, FSNs from
manufacturers should incorporate more crucial information about the
reported incident, such as unique device identifiers or the International
MedicalDeviceRegulators Forumcode forAdverseEventTerminology31, to
improve the traceability of devices and the potential utility of the retrieved
information. In this way, the overall efficacy and effectiveness of the
developed framework would be increased by providing other ways of
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aggregating data and reporting results based on severity of the issue. While
the recommendations provided are based on the current study focusing on
the EU Member States, extending the analysis to non-EU countries could
help ensure that the recommendations are reflective of a broader scenario.
Such expansion could also assist in aligning different regulatory standards
and enhancing possible global harmonization.

The proposed approach could constitute a valid solution to have
access to historical data from national authorities while EUDAMED
would start to be populated with more standardized and complete
information. The multifaceted utility of the developed approach could
provide a reliable foundation for well-informed decision-making to
regulatory bodies, especially Expert Panels for assessing high-risk med-
ical devices, through a systematic approach, as well as to manufacturers
in their quest for data to comply to the proactive evaluation of their
devices throughout their market lifeclycle as part of the PMS, thus
contributing to a collective advancement toward evidence-based prac-
tices in the field of regulatory science.

Methods
This section presents a detailed and comprehensive description of the
proposed methodological steps involving NLP techniques, as depicted in
Fig. 1. Briefly, data relevant to FSNs were retrieved from different national
competent authorities’ websites using web scraping. Afterwards, if the
names ofmanufacturers and devices were not available in the extracted text
as structured fields, NER was applied. After data preprocessing, ER was
performed tomatch the same realworld items in different datasets to be able
to associate the device in the FSN with the respective EMDN code repre-
senting its category. Data integration was then performed using a mashup
module and presented to the final users through a graphical interface that
allows several types of queries.

Finally, the description of the validation strategy adopted to evaluate
the performance of the proposed framework for the different countries is
presented.

Data sources
The deployment of the proposed framework requires the availability of two
crucial types ofdataset sources: theDataset ofNotices (DoN)and theDataset
of Devices (DoD). The former consists of all FSNs retrieved from the
national competent authority website as detailed in Supplemental Table 1.
The latter contains information about devices available on anationalmarket,
and only a few EU countries make it available: Italy (including 1,703,175
devices, as of January 2023), Portugal (1,346,977devices, as of January 2023),
and France (77,502 devices, but outdated). In addition of being partial and
outdated, as the French list of devices referred to the Global Medical Device
Nomenclature32, it was not considered further. As a result, with the term

DoD, we refer to the set composed by the Italian and Portuguese list of
devices inwhich the EMDNcode of the corresponding category is provided.

Table 6 reports the original variables for the Italian and Portuguese list
of devices and their modified names in the DoD after preprocessing; in
particular, thefieldDevice in thePortugueseDoDwaspopulatedbymerging
the original fields Brand and Model, if not equal, due to possible data
inconsistency and imprecision found in the published list.

Web scraping
Web scraping, also known as web crawling, is the procedure of auto-
matically extracting data fromwebsites and transforming unstructuredweb
data into a structured format for presentation or storage33,34. In the proposed
approach, web scraping was necessary as the information about FSNs was
available only as HTML text on the competent authorities’ websites. To
automate web scraping on the Chrome browser, the Python library Sele-
nium (https://pypi.org/project/selenium/) and ChromeDriver (https://
chromedriver.chromium.org/) were used.

Due to the high heterogeneity of the scrapedwebsites, country-specific
approaches were developed to effectively extract structured information
about the FSNs, involving the analysis of the unique layout and content
organization of each website as well as developing customized extraction
methods. The heterogeneity was reflected not only in the different formats
and styles of reporting but also in the level of precision and quantity of the
publicly available information. The extracted data was used to populate the
following fields of the DoN, if the corresponding information was available:

Title: webpage title that contains information about the manufacturer
and device.
Manufacturer: Name of the manufacturer that reported the incident.
Device: device name.
Model: device model.
Category: The device category could be a broad category or a specific
identifier that can be linked to any device nomenclature.
Device ID: device identifier provided by the country.
Description: description of the problem reported.
Date: date of receipt of reports.
URL: web address of the specific FSN page.

Named Entity Recognition (NER)
NER, a subtask of NLP, aims to recognize mentions of rigid designators
in text belonging to predefined semantic types, such as person, geo-
graphical location, organization, etc35. NER has been proven crucial in
various NLP applications such as information retrieval36,37, automatic
text summarization38, question answering39, machine translation40, etc.

The four main streams of techniques applied in NER are: rule-based41,
unsupervised learning42, feature-based supervised learning43, and deep
learning (DL)-based approaches44. In recent years, DL-based approaches
have become dominant and achieved state-of-the-art results due to their
ability to automatically discover complex and intricate features, their
effectiveness in learning, and the possibility of training in an end-to-end
approach. In particular, the Transformer45, the first transduction model,
relies solely on self-attention and has demonstrated impressive effectiveness
across differentNLP tasks. Self-attention is an attentionmechanism relating
different positions of a single sequence to compute a representation of the
sequence and effectively capture long-term dependencies. Another key
element in the development of thesemodels involves pre-training on a large
corpus, followed by fine-tuning on a limited labeled dataset for the target, to
address the lack of an adequate large dataset by transferring the knowledge
gained from the pre-trained model to the new one46.

The required named entities to successfully deploy the proposed fra-
mework wereManufacturer andDevice. As these entities were not presented
as structured fields in the FSNs from certain countries, NER was required to
identify and extract themwithin the text of the FSN, typically in thefieldTitle.
Due to the country-specific differences, several approaches were adopted to
obtain the best results by leveraging the available information on a case-by-
case basis, using rule-based, DL-based, or PDF parsing techniques.

Table 6 | Relevant information included in the Dataset of
Devices (DoD) by standardizing information in the available
original list of devices

Country Original Variable Name Modified Variable Name in
the DoD

Italy Manufacturer/assembler Manufacturer

Commercial name Device

Catalogue code Model

Progressive DM/ASS Device ID

CND (the Italian nomenclature for
medical devices)

EMDN

Portugal Manufacturer Manufacturer

Model Device

Brand

NPDM (the Portuguese nomenclature
for medical devices)

EMDN
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TheDL-based approachwas applied toDutch FSNs by fine-tuning the
pre-trained transformer model XLM-RoBERTa, a multilingual masked
language model pre-trained on text in 100 languages with a massive
dataset47.More specifically, themodelwas fine-tuned on theNER task using
Dutch FSNs in which the information aboutManufacturer andDevice was
already identified, todetect such information inotherFSNsthrough thefield
Title24. As XLM-RoBERTa was trained from multiple languages, the same
fine-tuned model was also applied to extractManufacturer from the Esto-
nianFSNs,where a proper training datasetwas unavailable. Despite this, the
fine-tuned model performed well because the style of the field Title in
Estonian FSNs was similar to that in Dutch FSNs.

The PDF parsing was only applied for FSNs from Greece, as these
documents have a standardizedPDF format that shares a uniform structure,
ensuring that the needed information is consistently located in the same
position of the document.

On the other hand, FSNs from all the other countries that necessitated
NER were accompanied by PDF files redacted by manufacturers, possibly
including translations into the respective national languages. As a result,
country-specific rule-based approaches, not requiring a proper training
dataset,were applied for the remaining countries requiring theNER:Croatia,
Estonia (to extract Device only), France, Germany, Poland, and Portugal.

For other countries with already available structured information
about manufacturers and devices, such as Czechia, Denmark, Ireland, Italy,
Latvia, Slovenia, Spain and Sweden, the NER step was omitted.

Data preprocessing
As all variables in the DoN andDoD are string variables, exceptDate in the
DoN, proper text processing techniques were applied to address poor
quality issues, such as text transliteration, using the Python library Uni-
decode (https://pypi.org/project/Unidecode/), removal of brackets, extra
spaces and punctuations, and lowercasing. The company name parsing,
aiming at providing cleaned names by stripping away terms referring to
organization type, was applied only to the field Manufacturer using the
Python package cleanco (https://github.com/psolin/cleanco).

Entity Resolution (ER)
ER describes the problem of extracting, matching and resolving entity
mentions in structured and unstructured data, thus identifying items in
multiple data that refer to the same real world entity48. In our scenario, the
identification of the same device in the DoD and DoN was crucial to
associate each device in the latter with the corresponding EMDN code
reported only in the former. As not all countries provided the list of devices
with information about the EMDN code publicly available, the following
possible country-specific situations could emerge:

Case 1: the national list of devices was available and regularly updated,
i.e., Italy and Portugal.
Case 2: a partial national list of devices was available but outdated.
Case 3: the national list of devices was not available.
In thefirst case, the national list of devices was utilized to performER23.

In the second case, the national list of devices was initially used to perform
ER, and then DoD was used to perform ER for those records lacking mat-
ches. Finally, for the last case, the DoD was considered for the matching24.

Then, the existence of a direct linkage, represented by the field Device
ID, between the DoD and the DoN was checked. So, for each FSN in the
DoN, if the field Device ID was present, the EMDN nomenclature code
corresponding to the device category was automatically retrieved by finding
the deviceswith the sameDevice ID in theDoD.Note that this approachwas
feasible only for about one third of the Italian FSNs, as they occasionally
provide Device ID. For the other countries, the problem was tackled in two
phases to avoid unnecessary computational complexity and higher com-
putational time: 1) identify similar manufacturers in the DoN and DoD; 2)
among the subset of records with identified similar manufacturers, identify
similar devices.

In the first step, the field Manufacturer in the DoN and DoD was
mapped into term frequency-inverse document frequency (TF-IDF)

representations49, and then the cosine similarity was computed between two
TF-IDF vectors50: they were considered similar if the similarity score was
equal to or higher than 0.90. In the second step, the comparison of both the
fields Device and Model was performed to evaluate device similarity using
approximate string matching. In particular, fuzzy string matching51 with a
similarity score from0 to 100 based on the Levenshtein distancewas applied
using the Python package FuzzyWuzzy (https://pypi.org/project/
fuzzywuzzy/). As the field Model was not always present in DoN or DoD,
a comparison based on this field wasmade only if it existed in both datasets.
As a result, the similarity calculated for two devices, one in theDoD and one
in the DoN, was defined as the highest value between the similarities cal-
culated from the fields Device and Model. The minimum similarity
threshold was set to 60, and the pair with the highest similarity score was
identified as the corresponding one.

Note that the identification of similar manufacturers was crucial for the
analysis andcoulddramatically impact the identificationof similar devices, as
deviceswith differentmanufacturerswould not be compared. The use of TF-
IDF representations with the cosine similarity ensured a robust approach to
this purpose.At the same time, the adoptionof fuzzy stringmatching allowed
for the identification of similar devices, even in the presence of minor dis-
crepancies. The conditional comparison based on the fieldModel provided
flexibility in the matching process and leveraged the available information.

Data mashup and graphical user interface
A data mashup merges different homogenous or heterogeneous data
sources into a unique content page52. Informationwithin theDoNandDoD
was combined to provide a comprehensive database to users through aGUI.
The interface was developed using Flutter, built and open-sourced by
Google, that combines a reactive framework with customizable widgets to
create cross-platform applications using a single code base53.

Validation strategy
To evaluate the proposed framework’s performance, different tests were
performed to validate the NER and the ER subtasks based on the “same
FSNs” and “potentially equal FSNs” found in both Italy (i.e., assumed as the
reference for comparison) and the specific country of interest. To ensure the
correspondence between the two FSNs, their attached PDF files were ana-
lyzed to verify whether the samemanufacturer published them for the same
device and, most importantly, for the same reason. The similarity between
the files was assessed by the basic Jaccard similarity index54 evaluated on the
numeric characters found within the files, thus avoiding the uncertainty
related to the translation process. Therefore, if two FSNs published in dif-
ferent markets had a Jaccard similarity index equal to 1, it means they were
referring to the “same FSN”. Empirical observations revealed that, despite
the correspondence between two FSNs, the calculated Jaccard similarity
indexmight result <1 due to discrepancies in the dates, additional numbers,
or pages in the respective PDF files. Therefore, FSNs that could be
“potentially equal”were identifiedby loosening the condition on the Jaccard
similarity index, and including additional conditions for manufacturer and
device similarities, which were calculated using the cosine similarity and
fuzzy string matching, respectively. As a result, two FSNs were considered
“potentially equal” if Jaccard similarity index ≥0.6, cosine similarity ≥0.9,
and fuzzy string matching ≥6024.

For the NER validation, FSNs from the Netherlands had already been
tested by obtaining favourable results, thanks to the possibility of creating a
proper training dataset to fine-tune the pre-trained model24. For other
countries requiring the NER step, the similarities between the identified
named entities Manufacturer and Device, reported by these “same FSNs”
and “potentially equal FSNs”, were used as a measure of model perfor-
mance. The comparison between identified entities and the ground truth
(the Italian FSNs)was quantified by either exact-match or relaxed-match35.
More specifically, with exact-match evaluation, a named entity was con-
sidered correctly recognized only if it exactly matches the ground truth.
Precision, Recall and F1-score were computed based on the number of true
positives (TP), false positives (FP), and false negatives (FN), defined as:
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TP: entities recognized by NER and match ground truth.
FP: entities recognized by NER, but do not match ground truth.
FN: entities not recognized by NER, but annotated in the ground truth.

The relaxed-match evaluation considered instead a correctmatching if
there was an overlap between the identified entity with the ground truth. In
our scenario, a named entity was considered as correctly recognized using
the relaxed-match approach if there is an overlap with the ground truth
regardless of its boundaries. As an example, the device names “sistema
SpaceOAR” from an Italian FSN (ground truth) and “SpaceOAR and
SpaceOAR Vue Systems” from a German FSN, would be considered as a
correct match according to the relaxed-match approach, but not according
to the exact one.

The validation process for the ER subtask was straightforward for the
Italian FSNs because of the direct linkage between DoN and DoD through
thefieldDevice ID. All FSNswith anon-empty value forDevice IDwereused
as the gold standard to evaluate the model’s performance, as previously
reported23. For other countries, the comparison of the EMDNcode assigned
by the ER subtask with the Italian reference at different levels of description
in the EMDN hierarchical tree-structure for the subsets of the “same FSNs”
and of the “potentially equal FSNs” was used as a measure of the model’s
performance.

Data availability
All data supporting the findings of this study are publicly available and
retrievable from the national competent authorities’ websites using web
scraping techniques as described.

Code availability
The code developed for this study using Python (version 3.11.5), and the
graphical user interface, built using Flutter, are restricted for access. How-
ever, results relevant to specific queries could be obtained by the authors
upon reasonable request.
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