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Abstract

Flow in fractured porous media occurs in the earth’s subsurface, in biological tissues, and in man-made
materials. Fractures have a dominating influence on flow processes, and the last decade has seen an extensive
development of models and numerical methods that explicitly account for their presence. To support these
developments, we present a portfolio of four benchmark cases for single-phase flow in three-dimensional
fractured porous media. The cases are specifically designed to test the methods’ capabilities in handling
various complexities common to the geometrical structures of fracture networks. Based on an open call
for participation, results obtained with 17 numerical methods were collected. This paper presents the
underlying mathematical model, an overview of the features of the participating numerical methods, and
their performance in solving the benchmark cases.

1. Introduction

Flow in fractured porous media is characterized by an interaction between the fractures and the sur-
rounding porous medium, commonly referred to as the matrix. The strong influence of fracture network
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geometry on flow patterns has motivated the development of mathematical models and numerical methods
that explicitly account for the geometry of fractures [1]. Considering flow both in the fractures and in
the surrounding porous medium, these models are based on the conceptual discrete-fracture-matrix (DFM)
representation of the fractured porous media.

With the development of a wealth of simulation tools for flow in fractured porous media, a need for
verification benchmarks for numerical methods has emerged. To accommodate this need, four research
groups working in the field initiated a comparison study, which led to the presentation of a suite of two-
dimensional benchmark tests and corresponding results for a range of numerical methods [2]. The methods
were probed on test cases featuring known difficulties for numerical methods, including fracture intersections
and combinations of blocking and conducting fractures. The study exposed the relative strengths and
weaknesses between the participating methods, both in terms of accuracy and computational cost. After
the publication of the results, these benchmark cases have been widely applied by the scientific community
in testing numerical methods and new simulation tools [3, 4, 5, 6, 7, 8, 9, 10, 11].

Based on the reception of the verification benchmarks [2] and the capabilities of three-dimensional mod-
eling in the research community, the next phase in the work on verification benchmarks was launched with
a call for participation [12]. The purpose of this call was to extend the platform of verification benchmarks
for numerical methods to three-dimensional problems. In addition, the studies were extended to include
simulations of linear tracer transport as a means to highlight additional nuances in the comparison of the
calculated flow fields. The present paper discusses the results we received as answers to this call.

The paper is organized as follows. In Section 2, an overview of the participation process is given. In
Section 3, we describe the mathematical models for fluid flow and transport in fractured porous media.
Section 4 briefly describes the participating numerical methods as well as the discretization of the transport
problem. The four test cases are described in Section 5, with each description followed by a presentation
and discussion of the corresponding results. Section 6 summarizes the discussion of the results, and Section
7 provides concluding remarks.

2. Benchmark Process

The publication of this verification benchmark study was laid out as a four-stage process: the development
of benchmark cases, a call for participation, collection and synchronization of the results by the participants,
and a final discussion and reporting.

The process started with the participants of the benchmark study [2] developing four new test cases.
These were designed to test the capabilities of numerical methods for DFM representations of flow in three-
dimensional fracture networks. The design of each test case was led by the ”benchmark case designers”
listed in Section 5. An open call for participation was launched in September 2018 [12], followed by a
dedicated mini-symposium at the SIAM Conference on Mathematical and Computational Issues in the
Geosciences, March 2019, Houston. Researchers interested in participating in the benchmark followed a
predefined registration procedure, were approved by the authors issuing the call, and were asked to sign a
participation agreement. During this process, we received applications concerning 15 additional numerical
methods, all of which were approved. Finally, the results of 12 of these methods were submitted and included
in the study.

The case descriptions presented in the call [12] were accompanied by data in the form of geometry
descriptions, existing simulation results, and plotting scripts, all available in the Git repository https:

//git.iws.uni-stuttgart.de/benchmarks/fracture-flow-3d.git. This repository was reused in the
fully transparent collection and synchronization phase. During this phase, the results were uploaded and
made available to all participants, and recomputations and adjustments were allowed until August 2019. In
the fourth phase, all participants contributed to the reporting of the results presented in Section 5. The
last two phases were led by assigned ”benchmark case coordinators”. While access to the Git repository
was restricted to the benchmark participants during the phase of collection and comparison of the results,
all data have been made publicly available upon submission of this manuscript. In addition to the data and
plotting scripts, five Jupyter notebooks are provided, four focusing on reproducing the figures encountered
in Section 5, and one for facilitating the comparison of new results.
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3. Mathematical Models

We introduce two models for flow and transport in fractured media. First, the flow model is presented in
the conventional equidimensional setting, allowing a natural introduction to the physical parameters. From
this formulation, we derive the mixed-dimensional model through appropriate reduction of the equations.
The mixed-dimensional model forms the focus of this study. Finally, we present the equi- and mixed-
dimensional transport models.

3.1. Equidimensional Flow Model

We consider a steady-state, incompressible, single-phase flow through a porous medium described by
Darcy’s law. With the imposition of mass conservation, the governing system of equations is given by

u + K∇h = 0,

∇ · u = q,
in Λ. (1a)

Here, u denotes the fluid velocity in m/s, K is hydraulic conductivity measured in m/s, h is hydraulic head
measured in m, and q represents a source/sink term measured in 1/s. The domain Λ ⊂ R3 will be called
the equidimensional domain. The following boundary conditions on the boundary ∂Λ of Λ complete model
(1a):

h|∂Λh
= h on ∂Λh,

u · n|∂Λu = u on ∂Λu.
(1b)

We assume ∂Λ = ∂Λh ∪ ∂Λu, ∂Λh ∩ ∂Λu = ∅, and |∂Λh| > 0. In (1b) ·|A is a suitable trace operator on
A ⊂ ∂Λ. h is the hydraulic head imposed on the boundary ∂Λh, while u is the prescribed Darcy velocity
normal to the boundary ∂Λu with respect to the outer unit normal vector n.

By substituting Darcy’s law in the mass conservation, the dual problem (1) can be recast in its primal
formulation, given by

−∇ ·K∇h = q in Λ,

h|∂Λh
= h on ∂Λh,

−K∇h · n|∂Λu = u on ∂Λu.

(2)

Problems (1) and (2) are equivalent. However, different numerical schemes are based on either of the two
formulations. Under regularity assumptions on Λ and the data, both problems admit a unique weak solution.
We refer to [13, 14, 15, 16] for more details.

We assume that Λ contains several fractures, i.e., thin inclusions in the domain. The fracture walls are
assumed to be planar with smooth boundaries. The fractures have two distinguishing features: (1) the
thickness, which we measure by the aperture ε, is small compared to the extension of the fracture; and the
(2) hydraulic conductivity may differ significantly from that of the rest of Λ. The latter implies that the
fractures may have a significant impact on the flow in Λ.

We further make the assumption that the principal directions of the local hydraulic conductivity are
aligned with the orientation of the fractures. In particular, the hydraulic conductivity in the matrix (K3), the
fractures (K2), as well as in the intersections between two fractures (K1) and at the crossings of intersections
(K0), can be decomposed in the following way:

K3 = Keq
3 , K2 =


 Keq

2

0
0

0 0 κeq2


 ,

K1 =



Keq

1 0 0
0 κeq1 0
0 0 κeq1


 , K0 =



κeq0 0 0
0 κeq0 0
0 0 κeq0


 .
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Here, Keq
d and κeqd , for different values of d, denote the tangential and normal hydraulic conductivities,

respectively. Thus, Keq
d is an elliptic (d×d)-tensor field, whereas κeqd is a positive scalar field. The subscript

d indicates that the features will be represented by d-dimensional objects in the reduced model, as derived
in the next section. The superscript eq, on the other hand, indicates that these quantities are related to the
equidimensional model.

3.2. Mixed-dimensional Flow Model

The small aperture of the fractures justifies a reduction of dimensionality to a representation where
fractures and their intersections are approximated by lower-dimensional objects. For more details on the
derivation, we refer the reader to [17, 18, 19, 20, 21, 22, 23, 24, 25].

Here, we use Ω to denote the mixed-dimensional decomposition of Λ. First, let Ω contain a three-
dimensional domain Ω3 that represents the (possibly unconnected) matrix. Furthermore, Ω contains up to
three lower-dimensional, open subdomains, namely, the union of fracture planes Ω2, their intersection lines
Ω1 and intersection points Ω0. For compatibility, we assume that Ωd 6⊂ Ωd′ for all d′ > d. Finally, we
introduce Γd = Ωd ∩ ∂Ωd+1 as the set of d-interfaces between neighboring subdomains of codimension one.
Each interface is endowed with a normal unit vector n pointing outward from Ωd+1.

Remaining consistent with the notation convention above, data and unknowns will also be annotated with
a subscript related to the dimension. As a first example, on a d-dimensional feature Ωd,i ⊆ Ωd with counting
index i, let εd,i denote the cross-sectional volume, area, or length of the corresponding physical domain for
d = 0, ..., 2, respectively. It has the unit of measure m3− d and is extended as nondimensional unity in Ω3.
Moreover, we introduce for each d-feature with index i, a typical length ad,i such that εd,i = a3−d

d,i . In the
continuation, we will omit the subscript i if no ambiguity arises.

We continue this subsection by presenting the reduced model associated with (1) in the two-dimensional
fractures Ω2 followed by its generalization for all d = 0, ..., 3.

3.2.1. Two-dimensional Fracture Flow

The variables in this formulation are the velocity u3 = u and hydraulic head h3 = h in the rock matrix
Ω3, as well as the integrated tangential velocity u2 and average hydraulic head h2 in the fracture. These
are given pointwise for x ∈ Ω2 by

u2(x) =

∫

ε2(x)

u‖ and h2(x) =
1

ε2(x)

∫

ε2(x)

h.

Here, u‖ denotes the components of u tangential to Ω2. The integrals are computed in the normal direction
of the fracture, and thus, the corresponding units of measurement are m2/s and m for u2 and h2, respectively.

We derive the reduced Darcy’s law and the mass balance equation by averaging and integrating, respec-
tively, over the direction normal to the fractures. Recall that the vector n here refers to the normal unit
vector oriented outward from Ω3.

1

ε2
u2 +Keq

2 ∇2h2 = 0

∇2 · u2 − Ju3 · nK = q2

in Ω2, (3a)

where ∇2 is the del-operator in the tangential directions and q2 is the integrated source term, i.e., q2(s) =∫
ε2(s)

q. Note that we have assumed Keq
2 to be constant in the direction normal to Ω2. The jump operator

is defined as Ju3 · nK |Ωd
=

∑
(u3 ·n|Γ2

), thus representing the mass exchange between fracture and matrix.
In particular, for each subdomain Ω2,i ⊆ Ω2, we sum over all flux contributions over sections of Γ2 that
coincide geometrically with Ω2,i. These fluxes are assumed to satisfy the following Darcy-type law given by
a finite difference between the hydraulic head in Ω2 and on ∂Ω3:

u3 · n + κeq2

2

ad
(h2 − h3) = 0 on Γ2. (3b)

Note that to be mathematically precise, each term in this equation represents an appropriate trace or
projection of the corresponding variable onto Γ2.
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3.2.2. Generalized Flow Model

Next, we generalize the equations described above to domains of all dimensions, thus including the
intersection lines and points. For that purpose, we introduce the integrated velocity ud for d = 1 and
average hydraulic head hd with d = 0, 1 given pointwise for x ∈ Ωd by

u1(x) =

∫

ε1(x)

u‖ and hd(x) =
1

εd(x)

∫

εd(x)

h, for d = 0, 1.

Again, u‖ denotes the components of u tangential to Ω1. The corresponding units of measurement are m3/s
and m for u1 and hd, respectively. The analogs of (3a) on these lower-dimensional manifolds are then given
by

1

ε1
u1 +Keq

1 ∇1h1 = 0

∇1 · u1 − Ju2 · nK = q1 in Ω1,

− Ju1 · nK = q0 in Ω0.

(4)

Here, ∇1 denotes the del-operator, i.e., the derivative, in Ω1. Moreover, the linear jump operator J·K is
naturally generalized to Jud+1 · nK |Ωd

=
∑

(ud+1 ·n|Γd
), where we for each subdomain Ωd,i ⊆ Ωd sum over

all flux contributions over sections of Γd that coincide geometrically with Ωd,i. Finally, q1 and q0 correspond
to the integrated source terms in the intersection lines and points, respectively.

Due to our choice of defining ud as the integrated velocity, a scaling with εd+1 appears in the equation
governing the flux across Γd:

1

εd+1
ud+1 · n + κeqd

2

ad
(hd − hd+1) = 0 on Γd, d = 0, 1. (5)

Recalling that ε3 = 1, it now follows that the effective tangential and normal hydraulic conductivities are
given by:

Kd = εdK
eq
d , in Ωd, d = 1, . . . , 3 (6a)

κd = εd+1
2

ad
κeqd , on Γd, d = 0, . . . , 2. (6b)

From these definitions, it is clear that the units of Kd and κd are m4− d/s and m2− d/s, respectively.
Collecting the above equations, we obtain the generalization of system (3) to subdomains of all dimen-

sions. The resulting system consists of Darcy’s law in both tangential and normal directions followed by the
mass conservation equations:

ud +Kd∇dhd = 0, in Ωd, d = 1, . . . , 3, (7a)

ud+1 · n + κd(hd − hd+1) = 0, on Γd, d = 0, . . . , 2, (7b)

∇d · u3 = q3, in Ω3, (7c)

∇d · ud − Jud+1 · nK = qd, in Ωd, d = 1, 2, (7d)

− Ju1 · nK = q0, in Ω0. (7e)

The source term is given by q3 for the rock matrix and qd(x) =
∫
εd(x)

q measured in m3− d/s.

System (7) is then compactly described by:

ud +Kd∇dhd = 0, in Ωd, d = 1, . . . , 3, (8a)

ud+1 · n + κd(hd − hd+1) = 0, on Γd, d = 0, . . . , 2, (8b)

∇d · ud − Jud+1 · nK = qd, in Ωd, d = 0, . . . , 3, (8c)
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in which the nonphysical u4 and u0 are understood as zero. The boundary conditions are inherited from
the equidimensional model with the addition of a no-flux condition at embedded fracture endings:

hd = h on ∂Ωd ∩ ∂Λh, d = 0, . . . , 3, (9a)

ud · n = εdu on ∂Ωd ∩ ∂Λu, d = 1, . . . , 3, (9b)

ud · n = 0 on ∂Ωd\(Γd−1 ∪ ∂Λ), d = 1, . . . , 3. (9c)

To finish the section, we present the primal formulation of the mixed-dimensional fracture flow model.
Analogous to (2), this formulation is derived by substituting Darcy’s laws (8a) and (8b) into the conservation
equation (8c):

−∇d ·Kd∇dhd + Jκd(hd − hd+1)K = qd, in Ωd, d = 0, . . . , 3. (10)

Again, we interpret the divergence term as zero if d = 0 and the jump term as zero if d = 3. The boundary
conditions are given by

hd = h on ∂Ωd ∩ ∂Λh, d = 0, . . . , 3, (11a)

−Kd∇dhd · n = εdu on ∂Ωd ∩ ∂Λu, d = 1, . . . , 3, (11b)

−Kd∇dhd · n = 0 on ∂Ωd\(Γd−1 ∪ ∂Λ), d = 1, . . . , 3. (11c)

Many discretization schemes presented in this study ignore flow in the one-dimensional fracture intersec-
tions and zero-dimensional intersections thereof. Although these correspond to discretizing a simpler model,
this is perfectly in line with the proposed study.

3.3. Equidimensional Transport Model
We now consider a scalar quantity c with the unit of measure m−3, which is transported through the

porous medium subject to the velocity field resulting from the flow model presented in the previous sections.
The purely advective transport of c is described by the conservation equation:

φ
∂c

∂t
+∇ · (cu) = qc in Λ, (12)

where φ is the porosity of the medium and qc is a source/sink term for c given in m−3/s. We define Dirichlet
boundary conditions on those boundary segments where inflow occurs, i.e.,

c|∂Λc = c on ∂Λc, ∂Λc = {x ∈ ∂Λ : u · n < 0}, (13)

with c being the value for c prescribed on the boundary ∂Λc.

3.4. Mixed-dimensional Transport Model
Analogous to Section 3.2, we choose the average value for c as the primary variable, which is defined as

c3 = c in Ω3 and for the lower dimensional objects (with d ≤ 2) as

cd(s) =
1

εd(s)

∫

εd(s)

c.

Following the derivation of the mixed-dimensional flow model presented in Section 3.2, the resulting mixed-
dimensional transport model reads as:

εdφd
∂cd
∂t

+∇d · (cdud)− Jc̃d+1 (ud+1 · n)K = qc,d in Ωd, d = 0, . . . , 3. (14)

Note that for d = 0, the divergence term is void. Here, the porosity is simply φd = φeq, with units of
measure m−3, and c̃d+1 is evaluated on the basis of a first-order upwind scheme, i.e.,

c̃d+1 =

{
cd+1 if ud+1 · n|Γd

> 0

cd if ud+1 · n|Γd
< 0.

(15)

As in the flow model, the jump operator represents the sum of the fluxes over all contributions defined on
sections of Γd that coincide geometrically with Ωd,i.

6



4. Discretization Methods

The intent of this benchmark study is to quantitatively evaluate different discretization schemes for the
mixed-dimensional flow models (8)-(11). As a means of evaluation, the velocities were inserted into a stan-
dard cell-centered, first-order upwind scheme for the transport equations (14). The temporal discretization
is given by the implicit Euler method with a fixed time-step prescribed for each test case. The main prop-
erties of the discretization methods covered by the benchmark are summarized in Tables 1 and 2, which
also contain references for further details. The majority of the methods followed the mixed-dimensional flow
model and the specified transport discretization, with the following exceptions:

The schemes NCU TW-Hybrid FEM and DTU-FEM COMSOL describe the flow along the fractures by additional
terms defined on the fracture surfaces. This effectively adds connectivity between the degrees of freedom
located on fractures without introducing additional degrees of freedom. This means that these schemes do
not solve the mass balances (8c) for d < 3. Moreover, this approach implies continuity of the hydraulic head
across the fractures and therefore replaces the coupling condition (8b). Other schemes participating in this
study also assume continuity of the hydraulic head across the fractures, and a complete overview is given in
Table 2.

The scheme UNIL USI-FE AMR AFC is an equidimensional approach, meaning that the fractures, their
intersections, and intersections of intersections are discretized with three-dimensional elements using locally
refined grids. Therefore, the lower-dimensional mass balances (8c) for d < 3 and the coupling conditions
(8b) are not relevant for this scheme.

Finally, the schemes ETHZ USI-FEM LM and UNIL USI-FE AMR AFC do not use a first-order upwind scheme
but apply an algebraic flux correction technique for the stabilization of a finite element discretization of
the transport model [26]. Such stabilization techniques provide a similar discretization as the given upwind
scheme.

5. Benchmark Cases and Results

In this section, we present the benchmark cases and compare the submitted results. For each case,
the hydraulic head and tracer concentration are compared using several predefined macroscopic metrics. In
Subsection 5.1, a benchmark case containing a single fracture problem is considered. Subsection 5.2 presents
a benchmark based on a synthetic network composed of nine, regularly arranged fractures. The benchmark
case in Subsection 5.3 considers the geometrically challenging case of almost intersecting fractures, fractures
with small intersections, and other features that a fracture network may exhibit. Finally, in Subsection 5.4,
we study a case with 52 fractures selected from a real network.

5.1. Case 1: Single Fracture

Benchmark case designers: D. Gläser and A. Tatomir
Benchmark case coordinators: B. Flemisch and A. Tatomir

5.1.1. Description

Figure 1 illustrates the first benchmark case, with a geometry that is slightly modified from works [50]
and [51]. The domain Ω is a cube-shaped region (0 m, 100 m) × (0 m, 100 m) × (0 m, 100 m) which is crossed
by a planar fracture, Ω2, with a thickness of 1× 10−2 m. The matrix domain consists of subdomains Ω3,1

above the fracture and Ω3,2 and Ω3,3 below. The subdomain Ω3,3 represents a heterogeneity within the rock
matrix. Inflow into the system occurs through a narrow band defined by {0 m}×(0 m, 100 m)×(90 m, 100 m).
Similarly, the outlet is a narrow band defined by (0 m, 100 m)× {0 m} × (0 m, 10 m).

At the inlet and outlet bands, we impose the hydraulic head hin = 4 m and hout = 1 m respectively, and
cin = 1× 10−2 m−3 is set at the inlet for the transport problem. All remaining parts of the boundary are
assigned no-flow conditions. The parameters for conductivity, porosity, and aperture are listed in Table 3
together with the overall simulation time and time-step size.

7



Figure 1: Conceptual model and geometrical description of the domain for Case 1 of Subsection 5.1.

5.1.2. Results

Three different simulations were carried out with approximately 1k, 10k and 100k cells for the 3d domain.
The precise number of cells and degrees of freedom for each method are listed in Table 7 and will be discussed
in Subsection 5.1.2.g. We compare the methods on the basis of computed pressure head and concentration,
plotted along prescribed lines. The first comparison, represented in Subsection 5.1.2.a, depicts the hydraulic
head along a line crossing the 3d matrix domain, while the solutions reported in 5.1.2.b and 5.1.2.c visualize
the matrix and fracture concentration along lines at the final simulation time. Plots in Subsection 5.1.2.d
and 5.1.2.e depict integrated matrix and fracture concentrations over time, respectively. Finally, we compare
concentration fluxes across the outlet over time in Subsection 5.1.2.f.

5.1.2.a - Hydraulic Head Over Line - Figure 2 depicts the hydraulic head h3 in the matrix along
the line (0 m, 100 m, 100 m)-(100 m, 0 m, 0 m). Each plot corresponds to one of the three refinement levels.

At the coarsest level of around 1000 cells, all methods already show reasonable agreement. As expected,
differences between the methods decrease with increasing refinement level. We remark that two classes of
methods can be distinguished in these plots. First, the methods that use cellwise constant values exhibit
staircase-like patterns. On the other hand, methods using nodal values are interpolated within each cell and
yield a smoother appearance.

To quantify the differences between the participating methods and their convergence behavior over all
refinement levels, we calculate and visualize the spread of the associated data sets. For that purpose, the
solution values are evaluated at 1000 evenly distributed points along the considered line. At each such point,
the mean as well as the 10th and 90th percentiles are determined. Each plot in the bottom row of Figure
2 visualizes the area between the 10th and 90th percentiles over the evaluation points. The number in the
picture title corresponds to that area divided by the area under the mean curve. Convergence between the
methods can clearly be observed.

5.1.2.b - Matrix Concentration Over Line - The pictures at the top of Figure 3 illustrate the
concentration c3 in the matrix at the final simulation time along the line (0 m, 100 m, 100 m)-(100 m, 0 m, 0 m),
again for the different refinement levels. We observe a similar behavior to that in 5.1.2.a in the sense that the
differences between most of the methods decrease with increasing refinement level. However, two methods
show more pronounced deviations from the rest: ETHZ USI-FEM LM exhibits oscillations that can be attributed
to the fact that the employed algebraic flux correction stabilization scheme does not suppress all spurious
oscillations. The NCU TW-Hybrid FEM does not capture the curve behavior at all. The obviously larger spread
in the results is visualized more explicitly in the bottom row of Figure 3. As a result, the convergence is

8
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Figure 2: Case 1 of Subsection 5.1. On the top, the hydraulic head h3 in the matrix over the line (0 m, 100 m, 100 m) -
(100 m, 0 m, 0 m) for three refinements (coarse to fine). On the bottom, the area between the 10th and 90th percentiles for
three refinements (coarse to fine) and data. Results of Subsection 5.1.2.a.
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Figure 3: Case 1 of Subsection 5.1. On the top, concentration c3 in the matrix, at the final simulation time, along the line
(0 m, 100 m, 100 m) - (100 m, 0 m, 0 m) for three refinements (coarse to fine). On the bottom, area between the 10th and 90th
percentiles for three refinements (coarse to fine) and data. Results of Subsection 5.1.2.b.
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much slower compared to Subsection 5.1.2.a.

5.1.2.c - Fracture Concentration Over Line - Figure 4 shows the concentration c2 within the
fracture at the final simulation time along the line (0 m, 100 m, 80 m)-(100 m, 0 m, 20 m).
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Figure 4: Case 1 of Subsection 5.1. On the top, concentration c2 within the fracture, at the final simulation time, along the
line (0 m, 100 m, 80 m)-(100 m, 0 m, 20 m) for three refinements (coarse to fine). On the bottom, area between the 10th and 90th
percentiles for three refinements (coarse to fine) and data. Results of Subsection 5.1.2.c.

Again, almost all methods appear to converge with increasing refinement. NCU TW-Hybrid FEM and
UiB-TPFA exhibit the largest deviations over all refinement levels. Close to the outlet boundary, ETHZ USI-FEM LM

yields rather different values than the rest of the methods, but its tendency to approach the other methods
with refinement can be observed clearly. Additionally, INM-EDFM still shows considerably different results on
the right boundary for the highest refinement level. Looking at the bottom row of Figure 4, the convergence
behavior of the spread is better than that of the matrix concentration reported in Subsection 5.1.2.b, yet
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worse than for the matrix hydraulic head in Subsection 5.1.2.a.

5.1.2.d - Integrated Matrix Concentration Over Time - Unlike the first three plots in 5.1.2.a-
5.1.2.c, Figure 5 illustrates an integrated quantity over time, namely, the integrated matrix concentration∫

Ω3,3
φ3c3 dx. Correspondingly, all curves appear much smoother than above. Over the three refinement

0 10 20 30
t [y]

0.00

2.50×101

5.00×101

7.50×101

1.00×102

1.25×102

1.50×102

1.75×102

∫ Ω
3
φ
3
c 3

subfig. a

∼ 1k cells

0 10 20 30
t [y]

subfig. b

∼ 10k cells

0 10 20 30
t [y]

subfig. c

∼ 100k cells

Figure 5: Case 1 of Subsection 5.1. integrated matrix concentration
∫
Ω3,3

φ3c3 dx for three refinements (coarse to fine). Results

of Subsection 5.1.2.d.

levels, most methods again exhibit decreasing differences between each other. Remarkably, the UiB-TPFA

shows a pronounced underestimation that increases over time. This can be explained by the inconsistency of
the employed two-point flux approximation on the tetrahedral grids. Additionally, the NCU TW-Hybrid FEM

and ETHZ USI-FEM LM again exhibit larger differences.

5.1.2.e - Integrated Fracture Concentration Over Time - Analogously, the integrated fracture
concentration

∫
Ω2
ε2φ2c2 dx for each time-step is visualized in Figure 6. The behavior of the curves is
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Figure 6: Case 1 of Subsection 5.1. Integrated fracture concentration
∫
Ω2
ε2φ2c2 dx over time for three refinements (coarse to

fine). Results of Subsection 5.1.2.e.

12



generally different from that reported in Subsection 5.1.2.d, as the fracture fills up completely before the
final simulation time. Here, the UiB-TPFA is in line with the other methods whereas the NCU TW-Hybrid FEM

and ETHZ USI-FEM LM both deviate from the majority.

5.1.2.f - Concentration Flux Across the Outlet Over Time - Finally, Figure 7 depicts the
integrated concentration flux across the outlet boundary over time. Compared to the results in Subsec-
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Figure 7: Case 1 of Subsection 5.1. Integrated flux of c across the outlet boundary over time for three refinements (coarse to
fine). Results of Subsection 5.1.2.f.

tion 5.1.2.e, the agreement between the methods appears to be poorer. In particular, the two-point flux
approximation of the UiB-TPFA results in an underestimation similar to that reported in 5.1.2.d. Again,
ETHZ USI-FEM LM and NCU TW-Hybrid FEM yield considerably different results at all refinement levels.

5.1.2.g - Computational Cost - Indicators for the computational costs associated with the different
methods are presented in Table 7. Most methods satisfy the prescribed numbers of elements. The most
notable exception is given by the NCU TW-Hybrid FEM, where six to ten times as many tetrahedral elements
have been employed, to compensate for the fact that the degrees of freedom are associated with the vertices.
The number of vertices are in line with the prescribed cell numbers. The relations of the number of degrees of
freedom to the number of cells vary considerably between the different schemes, reflecting the characteristics
from Table 2. The lowest such numbers are for the purely head- and vertex-based schemes on tetrahedrons
for the NCU TW-Hybrid FEM and DTU-FEM COMSOL, while the highest ones result from the schemes that have
head and velocity values as degrees of freedom. Additionally, the ratios of the number of nonzero entries
to the number of degrees of freedom exhibit a large variability, ranging from approximately 5 (TPFA on
tetrahedrons) to 30 (MPFA schemes with only head degrees of freedom).

5.2. Case 2: Regular Fracture Network

Benchmark case designers: A. Fumagalli and I. Stefansson
Benchmark case coordinators: W. Boon and D. Gläser

5.2.1. Description

The second benchmark is a three-dimensional analog of the two-dimensional test case 4.1 from the
benchmark study [2]. The domain is given by the unit cube Ω = (0 m, 1 m)

3
and contains 9 regularly oriented

fractures, as illustrated in Figure 8. The boundary ∂Ω is decomposed into three parts, each corresponding
to a chosen boundary condition (see Figure 8). First, ∂Ωh = {(x, y, z) ∈ ∂Ω : x, y, z > 0.875 m} is
the part of the boundary on which we impose h = 1 m. Second, we set a flux boundary condition on
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Figure 8: Representation of the domain (Ω3 = (0, 1)3) and the fractures for Case 2 of Subsection 5.2. The inlet and outlet
boundaries are colored in blue and purple, respectively, and on the right side, the permeability distributions among Ω3 and Ω2

are illustrated.

∂Ωin = {(x, y, z) ∈ ∂Ω : x, y, z < 0.25 m} by imposing u = −1 m/s. On the remainder of the boundary of
Ω, we impose no-flow conditions.

Two variants of the test case are considered: Case 2.1 has highly conductive fractures and Case 2.2 has
blocking fractures. In both cases, different hydraulic conductivities are prescribed in the following matrix
subregions:

Ω3,0 = Ω3 \ Ω3,1

Ω3,1 = {(x, y, z) ∈ Ω3 : x > 0.5 m ∩ y < 0.5 m}
∪ {(x, y, z) ∈ Ω3 : x > 0.75 m ∩ 0.5 m < y < 0.75 m ∩ z > 0.5 m}
∪ {(x, y, z) ∈ Ω3 : 0.625 m < x < 0.75 m ∩ 0.5 m < y < 0.625 m ∩ 0.5 m < z < 0.75 m}.

For an illustration of these regions, we refer to the right part of Figure 8. A complete overview of the
parameters used in this test case is given in Table 4.

Finally, for the transport problem, we impose unitary concentration at the inflow boundary ∂Ωin.

5.2.2. Results

The results were collected for a sequence of 3 simulations by discretizing the 3d domain using approxi-
mately 500, 4k, and 32k cells. The number of cells and degrees of freedom used by the participating methods
are reported in Table 8. In the following, we discuss the results on the basis of line profiles of the hydraulic
head in the 3d matrix as well as plots of the average concentrations within specified subregions of the 3d
matrix.

5.2.2.a - Hydraulic Head Over Line - Figure 9 shows the hydraulic head h3 plotted along the
diagonal line segment (0, 0, 0)-(1, 1, 1) for all grid refinements and for both Case 2.1 and Case 2.2. In
the case of conductive fractures the spread decreases significantly upon grid refinement, although some
noticeable differences still prevail for the finest grid.

In the case of blocking fractures, the highest discrepancies are shown by the schemes that assume conti-
nuity of the hydraulic head across the fractures. As expected, these methods cannot capture the jump in the
hydraulic head present in this test case. On the other hand, the remaining schemes seem to approach the
same solution. We observe that the UNICE UNIGE-VAG Disc and the UNIL USI-FE AMR AFC produce slightly
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lower and the UNICAMP-Hybrid Hdiv scheme slightly higher hydraulic heads, but the deviations tend to
diminish with increasing grid refinement.

The UNICE UNIGE-VAG Cont and UNICE UNIGE-VAG Disc methods incorporate Dirichlet boundary con-
ditions on the vertices rather than on faces. This may explain, in part, the deviations in hydraulic head
observed on coarse meshes for these methods. As expected, these differences decrease with mesh refinement.
For the UNIL USI-FE AMR AFC method, the differences might come from the representation of the fractures,
which have the same spatial dimension as the background matrix. In particular, each fracture consists of a
layer of elements that is refined at least twice by using adaptive mesh refinement.

5.2.2.b - Mean Matrix Concentration Over Time - The second comparison in Case 2 concerns the
solution of the transport equation over time. These solutions are computed only on the second level of mesh
refinement, i.e., using approximately 4000 cells. For the simulation of the transport model, the upwind
scheme is employed for all methods except UNIL USI-FE AMR AFC and ETHZ USI-FEM LM, which employ a
finite element discretization with an algebraic flux correction [26].

The top of Figure 10 depicts the temporal evolution of the mean tracer concentrations in three matrix
regions for the case of highly conductive fractures. These regions were selected to form a representative
illustration of the spread between the schemes. It can be seen that the majority of the schemes produce
rather low concentrations in the first region, on the order of 2.5 % at the final simulation time. In contrast,
the ETHZ USI-FEM LM and the UNIL USI-FE AMR AFC schemes produce significantly higher concentrations
with values above 10 % at the end of the simulation. In general, the temporal evolution of the concen-
trations in these three regions agrees very well among the majority of participating schemes, while the
ETHZ USI-FEM LM and the UNIL USI-FE AMR AFC schemes show significant deviations. These might be re-
lated to the flow discretization methods, but could also be affected by the different discretization that is
employed for the transport discretization related to these methods, and, for UNIL USI-FE AMR AFC, also the
underlying equidimensional model.

For the case of blocking fractures, the concentrations in the same matrix regions are illustrated in the
bottom row of Figure 10. In general, a larger spread of the computed concentrations can be observed.
For the first region, the schemes that assume continuity of the hydraulic head produce significantly lower
concentrations, while the remaining schemes produce solutions that agree rather well. However, for the
second and third regions, the concentrations at the final simulation time show a widespread among all
participating schemes.

As a general trend, it can be observed that the differences in computed concentrations increase with
time. Additionally, differences increase with the regions’ distance from the inflow boundary. As expected,
for the case of conductive fractures, the differences are smaller than in the case of blocking fractures.

5.3. Case 3: Network with Small Features

Benchmark case designers: E. Keilegavlen and I. Stefansson
Benchmark case coordinator: I. Stefansson and A. Fumagalli

5.3.1. Description

This test case is designed to probe accuracy in the presence of small geometric features, which may cause
trouble for conforming meshing strategies. The domain is the box Ω = (0 m, 1 m)×(0 m, 2.25 m)×(0 m, 1 m),
containing eight fractures (see Figure 11).

We define the inlet and outlet boundaries as follows:

∂ΩN = ∂Ω \ (∂Ωin ∪ ∂Ωout)

∂Ωin = (0 m, 1 m)× {0 m} × (1/3 m, 2/3 m)

∂Ωout = ∂Ωout,0 ∪ ∂Ωout,1

∂Ωout,0 = (0 m, 1 m)× {2.25 m} × (0 m, 1/3 m)

∂Ωout,1 = (0 m, 1 m)× {2.25 m} × (2/3 m, 1 m)
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Figure 9: Case 2 of Subsection 5.2. Plots of the hydraulic head h3 along the line (0, 0, 0) - (1, 1, 1) for the different refinement
levels (grid refinement increases from left to right) for the case of conductive fractures (Case 2.1, upper row) and blocking
fractures (Case 2.2, lower row). Results of Subsection 5.2.2.a.
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Figure 10: Case 2 of Subsection 5.2. On the top, temporal evolution of the average tracer concentration in matrix regions 1, 10
and 11 (from left to right) for the case of conductive fractures (Case 2.1). On the bottom, temporal evolution of the average
tracer concentration in the matrix regions 1, 10 and 11 (from left to right) for the case of blocking fractures (Case 2.2). Results
of Subsection 5.2.2.b.
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Figure 11: Representation of the fractures and the outline of the domain for Case 3 of Subsection 5.3.

The boundary conditions for flow are homogeneous Dirichlet conditions on ∂Ωout, uniform unit inflow on
∂Ωin, so that

∫
∂Ωin

u3 ·ndS = −1/3 m3/s, and homogeneous Neumann conditions on ∂ΩN . For the transport
problem, we consider a homogeneous initial condition and as boundary condition a unit concentration at
∂Ωin. A complete overview of the parameters used in Case 3 is given in Table 5.

5.3.2. Results

Similar to the previous cases, we compare the methods on the basis of a) the hydraulic head of the
matrix domain along two lines, b) the integrated fracture concentration over time, c) the fluxes out of the
domain and d) computational cost. Two different simulations with approximately 30k and 150k cells for
the 3d domain were performed. It was seen as infeasible to include one more level of refinement for all
methods. However, refined versions of the USTUTT-MPFA with up to approximately 1× 106 matrix cells were
produced. At this stage, there were no noticeable differences between solutions on different grids, and the
finest solution was included as a reference solution.

5.3.2.a - Hydraulic Head Over Line - Figure 12 shows the profile of the hydraulic head h3 in
the matrix along the line (0.5 m, 1.1 m, 0 m)-(0.5 m, 1.1 m, 1 m). This shows considerable differences be-
tween the methods for both refinement levels. However, the agreement is better for the second refine-
ment level, where most of the methods are within a relative hydraulic head range of approximately 10 %.
The UNICE UNIGE-VAG Disc, UNICE UNIGE-VAG Cont, DTU-FEM COMSOL, and UNIL USI-FE AMR AFC methods
show the highest discrepancies in these plots, but the deviation from the reference solution decreases sig-
nificantly with higher refinement. The significant difference between the refinements may indicate that the
small features of the fracture network geometry are not adequately resolved, at least not by the coarser
grids. This is in line with the purpose of the test case.

5.3.2.b - Mean Fracture Concentration Over Time - Data were reported for the integrated
concentration c2 =

∫
Ω2,i

c2/|Ω2,i| on each fracture i throughout the simulation. There is a general agree-

ment between the methods, with the method of ETHZ USI-FEM LM showing some deviations for some of
the fractures. As an example, Figure 13 shows the plots for both refinement levels for fracture number 3,
demonstrating limited difference between the refinement levels.

5.3.2.c - Boundary Fluxes - The total outflow uout =
∫
∂Ωout

u3 · ndS and the proportion exiting

over ∂Ωout,0, i.e., rout =
∫
∂Ωout,0

u3 · ndS/uout, are shown in Figure 14. When compared to the prescribed

inflow of −1/3 m3/s, the uout values reveal a small lack of volume conservation for ETHZ USI-FEM LM, but the
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Figure 12: Case 3 of Subsection 5.3. Hydraulic head h3 in the matrix over the line (0.5 m, 1.1 m, 0 m)-(0.5 m, 1.1 m, 1 m) for
the coarse (left) and fine (right) grid. The solid black line shows the solution obtained with the USTUTT-MPFA scheme on a grid
with approximately 1 × 106 matrix cells. Results of Subsection 5.3.2.a.

method improves for the finer grid. The ratio rout provides an indication of whether the flux fields agree.
The ratios generally agree well with the refined USTUTT-MPFA, except for the ETHZ USI-FEM LM method,
which does not approach the reference value for the finest grid.

5.3.2.d - Computational Cost - Based on the data presented in Table 9, we note that the UNIL USI-FE AMR AFC

applies 68k and 203k cells for the cases where 30k and 150k cells were prescribed, respectively. The rest of
the methods are well within 10 % of the prescribed values. As for the other test cases, there are significant
variations in the number of degrees of freedom and nonzero matrix entries related to the design of the
methods.

5.4. Case 4: Field Case

Benchmark case designers: E. Keilegavlen and A. Fumagalli
Benchmark case coordinator: E. Keilegavlen

5.4.1. Description

The geometry of the fourth case is based on a postprocessed outcrop from the island of Algerøyna, outside
Bergen, Norway, and is a subset of the fracture network presented in [52]. From the outcrop, 52 fractures
were selected, extruded in the vertical direction and then cut by a bounding box. The resulting network has
106 fracture intersections, and multiple fractures intersect the domain boundary. The simulation domain
is the box Ω = (−500 m, 350 m)× (100 m, 1500 m)× (−100 m, 500 m). The fracture geometry is depicted in
Figure 15.
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Figure 13: Case 3 of Subsection 5.3. Mean concentration within fracture number 3 throughout the simulation time for the
coarse (left) and fine (right) grid. Results of Subsection 5.3.2.b.
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Figure 14: Case 3 of Subsection 5.3. Total outflux (left) and ratio exiting over ∂Ωout,0 (right). The bar pairs correspond to
the coarse and fine grid, while the reference solution is indicated by the horizontal line. Results of Subsection 5.3.2.c.
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Figure 15: Case 4 of Subsection 5.4. Representation of the fractures and the outline of the domain. Inlet boundaries are shown
in blue, outlets in purple.

The inlet and outlet boundaries are defined as follows:

∂ΩN = ∂Ω \ (∂Ωin ∪ ∂Ωout),

∂Ωin = ∂Ωin,0 ∪ ∂Ωin,1, ∂Ωout = ∂Ωout,0 ∪ ∂Ωout,1,

∂Ωin,0 = (−500 m,−200 m)× {1500 m} × (300 m, 500 m),

∂Ωin,1 = {−500 m} × (1200 m, 1500 m)× (300 m, 500 m),

∂Ωout,0 = {−500 m} × (100 m, 400 m)× (−100 m, 100 m),

∂Ωout,1 = {350 m} × (100 m, 400 m)× (−100 m, 100 m).

The boundary conditions for flow are homogeneous Dirichlet conditions on ∂Ωout, uniform unit inflow on
∂Ωin, so that

∫
∂Ωin

u3 · ndS = −1.2× 105 m3/s, and homogeneous Neumann conditions on ∂ΩN . For the
transport problem, we consider a homogeneous initial condition, with a unit concentration at ∂Ωin. The
parameters for conductivity, porosity and aperture are given in Table 6, as is the total simulation time and
time-step size.

Because of the complex network geometry, grid refinement studies were considered infeasible and the
benchmark specified the usage of a single grid. A Gmsh [53] configuration file, was provided to assist
participants with geometry processing and meshing. The use of this predefined grid was optional, but the
number of 3d cells should be approximately 260k.

5.4.2. Results

Results were reported for 14 schemes. The two methods that participated in Case 3, which is closest
in geometric complexity, but not in Case 4, are INM-EDFM and UNIL USI-FE AMR AFC. The participating
methods are compared in terms of a) hydraulic head of the matrix domain along two lines, b) time series of
concentrations in selected fractures and c) computational cost.

5.4.2.a - Hydraulic Head - Figure 16 shows the hydraulic head along the two specified lines, to-
gether with the spread of the reported results. Both lines start in points at the outflow boundaries where
the hydraulic head is set to 0; the first line ends far away from the inlet, while the second ends at the
inlet boundary. For the first line there are noticeable deviations for some of the solutions: The UiB-TPFA

scheme predicts a significantly higher hydraulic head drop, likely caused by the inconsistency of the scheme.
Conversely, the UNICE UNIGE-VAG Disc and UNICE UNIGE-VAG Cont methods underestimate the drop in hy-
draulic head compared to the average of the reported results, while there is only minor disagreement among
the other methods. On the second line, the UiB-TPFA scheme overestimates the drop in hydraulic head over
the domain, while the other methods are in very good agreement.

5.4.2.b - Concentration Plots - The quality of the flux field is measured by the time series of average
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Figure 16: Case 4 of Subsection 5.4. Hydraulic head profiles across the domain. Left: Profile from outlet ∂Ωout,0 towards the
opposite corner. Right: Profile from outlet ∂Ωout,1 towards ∂Ωin. Results of Subsection 5.4.2.a.

concentrations in the fracture planes, with good agreement among most of the methods. Figure 17 shows
the time evolution of concentration for three of the fractures, numbers 15, 45 and 48, which show the largest
differences between the methods. The results produced by the ETHZ USI-FEM LM deviate slightly from the
other methods on two of these figures, while UNICE UNIGE-VAG Disc also shows a slight deviation for one of
the figures.

5.4.2.c - Computational Cost - Measures for the computational cost of the participating methods
are given in Table 10. Most of the groups used the provided mesh file. The UNICAMP-Hybrid Hdiv method
used a grid with only approximately 40% of the cells in the provided grid. DTU-FEM COMSOL employed almost
seven times more 3d cells for its nodal-based method, yielding a number of degrees of freedom that is in
the lower half with respect to all participating methods. As in the previous test cases, there are significant
differences in the number of unknowns and nonzero matrix elements among the methods.
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Figure 17: Case 4 of Subsection 5.4. Mean concentration over time in three selected fractures with identification 15, 45, and
48. Results of Subsection 5.4.2.b.

6. Summary of Results

The performance of each method for all test cases is indicated in Figure 18. We also list the main points
emerging from the discussion of the results in Section 5:

1. Of the 17 schemes that participated in at least one of the test cases, 14 presented simulation results
on all four cases.

2. Cases 3 and 4 pose the highest demands on the methods in terms of geometrical complexity. Taken
together, the cases point to the challenges inherent to DFM simulations and indicate the methods’
robustness in this respect.

3. Not unexpectedly, fractures that act as barriers cause trouble for the methods that assume a continuous
hydraulic head over the fracture, as seen in Case 2. Blocking fractures are outside the intended range
of validity for these models, and alternative approaches should be sought for those cases.

4. Out of the 17 schemes, one is not mass conservative. There are no signs of the lack of conservation in the
reported concentration fields, likely due to successful postprocessing of the flux fields. Nevertheless,
for most of the test cases, the concentration fields reported by the nonconforming mesh method
ETHZ USI-FEM LM deviate from the other reported results.

5. The well-known inconsistency of the widely used two-point flux approximation is manifested in the un-
derestimation of permeability in the hydraulic head results reported for UiB-TPFA. The USTUTT-TPFA Circ

method circumvents this inconsistency by locating the hydraulic head values at the circumcenters of
the tetrahedrons. However, this poses additional restrictions on the mesh.

7. Conclusion

This paper has presented a set of benchmark cases for the simulation of Darcy flow in three-dimensional
fractured porous media. The suite consists of one case with a single fracture, one case with 9 fractures and
setups with conductive and blocking fractures, one case with 8 fractures designed to emphasize complex
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Figure 18: Summary of the performance of all methods.

geometric details, and finally a case with 52 fractures, based on a real fracture network. The metrics
employed to measure discretization performance are (1) the profiles of the hydraulic head, (2) the quality
of the flux field measured by simulation of passive tracers and (3) the computational cost as indicated
by the number of degrees of freedom and matrix sparsity pattern. A total of 17 methods participated in
the benchmark, spanning a wide range of discretization approaches for fractured media. Although it was
not possible to identify one approach as superior, the benchmark uncovered important differences between
the methods. The high number of participating methods and research groups proves that simulations in
3d media are fully feasible for a wide range of schemes and research codes. For further development of
discretization methods, 3d cases should therefore become a natural complement to the more traditional 2d
simulation results.

All data used in the benchmark can be found in the online repository https://git.iws.uni-stuttgart.

de/benchmarks/fracture-flow-3d.git. This includes the specification of benchmark case parameters,
geometries, ready-made mesh generation files, applied metrics, and the results of all participating methods.
Additionally, Python scripts and Jupyter notebooks are provided which enable the reproduction of the result
figures as well as the comparison of new computational results. Therefore, we expect that the present work
can serve as a reference point for the further development of discretization methods for fractured porous
media.
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9. Appendix

9.1. Measures of Computational Cost

This section provides three indicators related to computational cost: the number of cells (0d-3d), the num-
ber of degrees of freedom and the number of nonzero matrix entries. There is one table for each test case with
data of all the participating methods at all refinement levels. For the equidimensional UNIL USI-FE AMR AFC

method, the cells listed as “0d-2d cells” are also three-dimensional cells that correspond to the fractures
(“2d”), intersections of fractures (“1d”) and intersections of such intersections (“0d”).

References

[1] I. Berre, F. Doster, E. Keilegavlen, Flow in fractured porous media: A review of conceptual models and discretization
approaches, Transport in Porous Media 130 (1) (2019) 215–236. doi:10.1007/s11242-018-1171-6.

[2] B. Flemisch, I. Berre, W. Boon, A. Fumagalli, N. Schwenck, A. Scotti, I. Stefansson, A. Tatomir, Benchmarks for single-
phase flow in fractured porous media, Advances in Water Resources 111 (2018) 239–258. doi:10.1016/j.advwatres.2017.
10.036.

[3] A. Arrarás, F. J. Gaspar, L. Portero, C. Rodrigo, Mixed-dimensional geometric multigrid methods for single-phase flow
in fractured porous media, SIAM Journal on Scientific Computing 41 (5) (2019) B1082–B1114. doi:10.1137/18M1224751.

[4] A. Budisa, X. Hu, Block Preconditioners for Mixed-dimensional Discretization of Flow in Fractured Porous Media, arXiv
e-prints (2019) 1905.13513.

[5] A. Budisa, W. Boon, X. Hu, Mixed-dimensional auxiliary space preconditioners, arXiv preprint arXiv:1910.04704 (2019).
[6] Fumagalli, Alessio, Keilegavlen, Eirik, Dual virtual element methods for discrete fracture matrix models, Oil Gas Sci.

Technol. - Rev. IFP Energies nouvelles 74 (2019) 41. doi:10.2516/ogst/2019008.
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Acronym References Open source code Run scripts Test cases

Two-point flux approximation
UiB-TPFA [27, 28] X[29] [30] 1-4

Multi-point flux approximation
UiB-MPFA [27, 28] X[29] [30] 1-4

Lowest order mixed virtual element method
UiB-MVEM [27, 28] X[29] [30] 1-4

Lowest order Raviart-Thomas mixed finite elements
UiB-RT0 [27, 28, 25] X[29] [30] 1-4

Multi-point flux approximation
USTUTT-MPFA [31] X[32] [33] 1-4

Two-point flux approximation
USTUTT-TPFA Circ [31] X[32] [33] 1-4

Mimetic Finite Differences
LANL-MFD [34] X[35] 1-4

Hybrid finite element method
NCU TW-Hybrid FEM [36, 37] 1

Vertex Approximate Gradient continuous hydraulic head
UNICE UNIGE-VAG Cont [38] 1-4

Hybrid Finite Volumes continuous hydraulic head
UNICE UNIGE-HFV Cont [38] 1-4

Vertex Approximate Gradient discontinuous hydraulic head
UNICE UNIGE-VAG Disc [39] 1-4

Hybrid Finite Volumes discontinuous hydraulic head
UNICE UNIGE-HFV Disc [39] 1-4

Lagrange multiplier - L2-projection finite elements
ETHZ USI-FEM LM [10, 40, 41] X [42] 1-4

Hybrid H(div)
UNICAMP-Hybrid Hdiv [43, 44] X [45] 1-4

Flux-corrected finite element method and adaptive mesh refinement
UNIL USI-FE AMR AFC [46, 26] 1-3

Embedded discrete fracture method
INM-EDFM [47] × × 1,3

First-order Lagrangian finite elements (COMSOL)
DTU-FEM COMSOL [48] × [49] 1-4

Table 1: Names, acronyms, references and test cases covered for all participating discretization methods.
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Acronym Degrees of free-
dom

Local mass
conserva-
tion

Allows h dis-
continuity

Conformity subdomain
dimensions

UiB-TPFA h(elem), λ (mor-
tar flux)

X X geometrically 0-3

UiB-MPFA h(elem), λ (mor-
tar flux)

X X geometrically 0-3

UiB-MVEM h(elem), u
(faces), λ (mor-
tar flux)

X X geometrically 0-3

UiB-RT0 h(elem), u
(faces), λ (mor-
tar flux)

X X geometrically 0-3

USTUTT-MPFA h(elem) X X fully 2-3
USTUTT-TPFA Circ h(elem) X X fully 2-3

LANL-MFD h(faces) X X fully 2-3
NCU TW-Hybrid FEM h, u(nodes) X × fully 2-3

UNICE UNIGE-VAG Cont h(nodes), (frac-
ture faces)

X × conforming 2-3

UNICE UNIGE-VAG Disc h(nodes), (frac-
ture faces)

X X conforming 2-3

UNICE UNIGE-HFV Cont h(faces), (frac-
ture edges)

X × conforming 2-3

UNICE UNIGE-HFV Disc h(faces), (frac-
ture edges)

X X conforming 2-3

ETHZ USI-FEM LM h(nodes) λ
(nodes)

× × none 2-3

UNICAMP-Hybrid Hdiv h, u(elem), λ
(faces)

X X geometrically 0-3

UNIL USI-FE AMR AFC h(nodes) X × not applicable equi-dim.
INM-EDFM h(elem) X × none 2-3

DTU-FEM COMSOL h(nodes) X × fully 2-3

Table 2: Numerical properties for the discretization methods. An entry in the column “conforming” can be “fully” if each
fracture element needs to coincide with a facet shared by two neighboring matrix elements, “geometrically” if each fracture
needs to be a union of element facets from each of the two neighboring matrix subdomain meshes, or “none” if fracture and
matrix meshes can be completely independent of each other.

Matrix hydraulic conductivity K3,1, K3,2 1× 10−6I m/s
Matrix hydraulic conductivity K3,3 1× 10−5I m/s
Fracture effective tangential hydraulic conductivity K2 1× 10−3I m2/s
Fracture effective normal hydraulic conductivity κ2 20 1/s
Matrix porosity φ3,1, φ3,2 2× 10−1

Matrix porosity φ3,3 2.5× 10−1

Fracture porosity φ2 4× 10−1

Fracture cross-sectional length ε2 1× 10−2 m
Total simulation time 1× 109 s
Time-step ∆t 1× 107 s

Table 3: Parameters used in Case 1 of Subsection 5.1.
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Case 2.1 Case 2.2
Matrix hydraulic conductivity K3|Ω3,0

I m/s I m/s
Matrix hydraulic conductivity K3|Ω3,1

1× 10−1I m/s 1× 10−1I m/s
Fracture effective tangential hydraulic conductivity K2 I m2/s 1× 10−8I m2/s
Fracture effective normal hydraulic conductivity κ2 2× 108 1/s 2 1/s
Intersection effective tangential hydraulic conductivity K1 1× 10−4 m3/s 1× 10−12 m3/s
Intersection effective normal hydraulic conductivity κ1 2× 104 m/s 2× 10−4 m/s
Intersection effective normal hydraulic conductivity κ0 2 m2/s 2× 10−8 m2/s
Matrix porosity φ3 1× 10−1 1× 10−1

Fracture porosity φ2 9× 10−1 1× 10−2

Intersection porosity φ1 9× 10−1 1× 10−2

Fracture cross-sectional length ε2 1× 10−4 m 1× 10−4 m
Intersection cross-sectional area ε1 1× 10−8 m2 1× 10−8 m2

Intersection cross-sectional volume ε0 1× 10−12 m3 1× 10−12 m3

Total simulation time 2.5× 10−1 s
Time-step ∆t 2.5× 10−3 s

Table 4: Parameters used in Case 2 of Subsection 5.2.

Matrix hydraulic conductivity K3 I m/s
Fracture effective tangential hydraulic conductivity K2 1× 102I m2/s
Fracture effective normal hydraulic conductivity κ2 2× 106 1/s
Intersection effective tangential hydraulic conductivity K1 1 m3/s
Intersection effective normal hydraulic conductivity κ1 2× 104 m/s
Matrix porosity φ3 2× 10−1

Fracture porosity φ2 2× 10−1

Intersection effective porosity φ1 2× 10−1

Fracture cross-sectional length ε2 1× 10−2 m
Intersection cross-sectional area ε1 1× 10−4 m2

Total simulation time 1 s
Time-step ∆t 1× 10−2 s

Table 5: Parameters used in Case 3 of Subsection 5.3.

Matrix hydraulic conductivity K3 I m/s
Fracture effective tangential hydraulic conductivity K2 1× 102I m2/s
Fracture effective normal hydraulic conductivity κ2 2× 106 1/s
Intersection effective tangential hydraulic conductivity K1 1 m3/s
Intersection effective normal hydraulic conductivity κ1 2× 104 m/s
Matrix porosity φ3 2× 10−1

Fracture porosity φ2 2× 10−1

Intersection porosity φ1 2× 10−1

Fracture cross-sectional length ε2 1× 10−2 m
Intersection cross-sectional area ε1 1× 10−4 m2

Total simulation time 5× 103 s
Time-step ∆t 5× 101 s

Table 6: Parameter used in Case 4 of Subsection 5.4.
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Method Refinement 0d cells 1d cells 2d cells 3d cells dofs nnz

UiB-TPFA

0 0 0 112 1022 1358 6008
1 0 0 756 9438 11706 53904
2 0 0 4576 98311 112039 533547

UiB-MPFA

0 0 0 112 1022 1358 62200
1 0 0 756 9438 11706 672454
2 0 0 4576 98311 112039 7481237

UiB-MVEM

0 0 0 112 1022 3905 24435
1 0 0 756 9438 33651 222927
2 0 0 4576 98311 326561 2259630

UiB-RT0

0 0 0 112 1022 3905 24435
1 0 0 756 9438 33651 222927
2 0 0 4576 98311 326561 2259623

USTUTT-MPFA

0 0 0 100 1000 1100 22626
1 0 0 400 9600 10000 227354
2 0 0 3600 108000 111600 2731104

USTUTT-TPFA Circ

0 0 0 193 3400 3593 17373
1 0 0 448 9085 9533 46505
2 0 0 2582 104578 107160 530224

LANL-MFD

0 0 0 100 1000 4400 51720
1 0 0 400 8000 34840 390840
2 0 0 1600 64000 267280 3035280

NCU TW-Hybrid FEM

0 0 0 625 9572 1840 25539
1 0 0 2453 65934 11537 169937
2 0 0 22262 638332 104581 1603776

UNICE UNIGE-VAG Cont

0 0 0 81 1134 1511 34085
1 0 0 361 10108 11721 288933
2 0 0 1849 103544 111233 2877105

UNICE UNIGE-HFV Cont

0 0 0 81 1134 3870 39060
1 0 0 361 10108 32319 340879
2 0 0 1849 103544 320221 3454921

UNICE UNIGE-VAG Disc

0 0 0 81 1134 1943 43519
1 0 0 361 10108 13483 328867
2 0 0 1849 103544 119771 3073987

UNICE UNIGE-HFV Disc

0 0 0 81 1134 4077 40041
1 0 0 361 10108 33231 345135
2 0 0 1849 103544 324779 3475475

ETHZ USI-FEM LM

0 0 0 120 1000 1617 38834
1 0 0 480 10115 12714 335023
2 0 0 1920 93150 103470 2775270

UNICAMP-Hybrid Hdiv

0 0 0 526 1054 5968 114924
1 0 0 2884 10589 62164 1249536
2 0 0 15052 100273 604019 12448629

UNIL USI-FE AMR AFC

0 0 0 720 540 1857 49417
1 0 0 10880 38180 56947 1545935
2 0 0 39520 108671 579837 16878449

INM-EDFM

0 0 0 140 1000 1140 7666
1 0 0 720 10000 10720 73364
2 0 0 3800 100000 103800 719292

DTU-FEM COMSOL

0 0 0 0 1006 259 3082
1 0 0 0 10091 1931 26771
2 0 0 0 100014 17850 258202

Table 7: Computational cost indicators for Case 1
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Method Refinement 0d cells 1d cells 2d cells 3d cells dofs nnz

UiB-TPFA

0 27 90 252 512 1820 8253
1 27 180 1008 4096 8074 43513
2 27 360 4032 32768 46622 281717

UiB-MPFA

0 27 90 252 512 1820 8609
1 27 180 1008 4096 8074 44984
2 27 360 4032 32768 46622 287565

UiB-MVEM

0 27 90 252 512 4706 20795
1 27 180 1008 4096 24862 118620
2 27 360 4032 32768 161414 806000

UiB-RT0

0 27 72 226 612 3970 21687
1 27 159 1192 5339 24727 153263
2 27 270 4536 39157 148245 980955

USTUTT-MPFA

0 0 0 284 843 1127 42060
1 0 0 686 3076 3762 207260
2 0 0 4578 38877 43455 2918322

USTUTT-TPFA Circ

0 0 0 312 978 1290 7488
1 0 0 1206 4286 5492 31402
2 0 0 4578 38877 43455 226201

LANL-MFD

0 0 0 434 628 2758 23246
1 0 0 1736 5024 18610 150314
2 0 0 6944 40192 134812 1062572

UNICE UNIGE-VAG Cont

0 0 0 252 512 974 22324
1 0 0 1008 4096 5902 143470
2 0 0 4032 32768 39908 1014088

UNICE UNIGE-HFV Cont

0 0 0 252 512 2223 22599
1 0 0 1008 4096 15048 157980
2 0 0 4032 32768 109368 1172592

UNICE UNIGE-VAG Disc

0 0 0 252 512 2102 46348
1 0 0 1008 4096 10223 238891
2 0 0 4032 32768 56607 1390939

UNICE UNIGE-HFV Disc

0 0 0 252 512 2730 24138
1 0 0 1008 4096 17076 164148
2 0 0 4032 32768 117480 1197288

ETHZ USI-FEM LM

0 0 0 1212 512 3159 67183
1 0 0 1212 4096 7343 182793
2 0 0 1212 32768 38367 1036960

UNICAMP-Hybrid Hdiv

0 27 69 534 923 6018 123312
1 27 90 1896 3912 23988 479322
2 27 249 10744 38742 236868 4830288

UNIL USI-FE AMR AFC

0 1331 2787 6513 1745 16283 410491
1 1331 5211 20673 8129 45257 1180333
2 1331 10059 72033 47553 161805 4274281

DTU-FEM COMSOL

0 0 0 0 550 129 1561
1 0 0 0 3881 836 10900
2 0 0 0 32147 6060 84954

Table 8: Computational cost indicators for Case 2
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Method Refinement 0d cells 1d cells 2d cells 3d cells dofs nnz

UiB-TPFA
0 0 50 4305 31644 44786 207295
1 0 86 13731 138446 180024 849349

UiB-MPFA
0 0 50 4305 31644 44786 2596061
1 0 86 13731 138446 180024 11196843

UiB-MVEM
0 0 50 4305 31644 120696 818151
1 0 86 13731 138446 496032 3438098

UiB-RT0
0 0 50 4305 31644 120696 818151
1 0 86 13731 138446 496032 3438098

USTUTT-MPFA
0 0 0 4321 31942 36263 2459195
1 0 0 12147 131488 143635 10157331

USTUTT-TPFA Circ
0 0 0 4321 31942 36263 191147
1 0 0 12147 131488 143635 745375

LANL-MFD
0 0 0 5617 21056 75878 607730
1 0 0 22468 168448 555887 4367379

UNICE UNIGE-VAG Cont
0 0 0 4321 31870 10213 130781
1 0 0 7711 150083 35485 479105

UNICE UNIGE-HFV Cont
0 0 0 4321 31870 71708 504872
1 0 0 7711 150083 319175 2206691

UNICE UNIGE-VAG Disc
0 0 0 4321 31870 23302 400876
1 0 0 7711 150083 59187 966849

UNICE UNIGE-HFV Disc
0 0 0 4321 31870 80538 532114
1 0 0 7711 150083 335599 2259971

ETHZ USI-FEM LM
0 0 0 750 29295 33270 899809
1 0 0 3000 150930 163430 4421700

UNICAMP-Hybrid Hdiv
0 0 38 5580 24351 153519 3180847
1 0 51 23607 162773 994243 20600135

UNIL USI-FE AMR AFC
0 0 3877 323779 68386 86594 1206048
1 0 3877 323779 547088 148993 2202947

INM-EDFM
0 0 0 4036 29952 33988 240398
1 0 0 10732 149760 160492 1133364

DTU-FEM COMSOL
0 0 0 0 30984 5641 80669
1 0 0 0 150524 30379 469447

USTUTT-MPFA-refined 5 0 0 49428 980212 1029640 75207825

Table 9: Computational cost indicators for Case 3
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Method 0d cells 1d cells 2d cells 3d cells dofs nnz
UiB-TPFA 0 1601 52618 259409 424703 1950313
UiB-MPFA 0 1601 52618 259409 424703 22953336
UiB-MVEM 0 1601 52618 259409 1082740 7342691
UiB-RT0 0 1601 52618 259409 1082740 7342691
USTUTT-MPFA 0 0 52618 259420 312038 21227071
USTUTT-TPFA Circ 0 0 52618 259420 312038 1721932
LANL-MFD 0 0 52070 260417 783158 7953396
UNICE UNIGE-VAG Cont 0 0 52070 260431 95930 1237714
UNICE UNIGE-HFV Cont 0 0 52070 260431 600561 4349901
UNICE UNIGE-VAG Disc 0 0 52070 260431 252326 4497980
UNICE UNIGE-HFV Disc 0 0 52070 260431 704813 4663105
ETHZ USI-FEM LM 0 0 52618 212040 223532 5817930
UNICAMP-Hybrid Hdiv 0 938 24853 94294 629065 13233581
DTU-FEM COMSOL 0 0 0 1860063 319489 4709565

Table 10: Computational cost indicators for Case 4
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