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Abstract: Lower-limb rehabilitation exoskeletons offer a transformative approach to enhancing re-
covery in patients with movement disorders affecting the lower extremities. This comprehensive
systematic review delves into the literature on sensor technologies and the control strategies inte-
grated into these exoskeletons, evaluating their capacity to address user needs and scrutinizing their
structural designs regarding sensor distribution as well as control algorithms. The review examines
various sensing modalities, including electromyography (EMG), force, displacement, and other inno-
vative sensor types, employed in these devices to facilitate accurate and responsive motion control.
Furthermore, the review explores the strengths and limitations of a diverse array of lower-limb
rehabilitation-exoskeleton designs, highlighting areas of improvement and potential avenues for
further development. In addition, the review investigates the latest control algorithms and analysis
methods that have been utilized in conjunction with these sensor systems to optimize exoskeleton
performance and ensure safe and effective user interactions. By building a deeper understanding
of the diverse sensor technologies and monitoring systems, this review aims to contribute to the
ongoing advancement of lower-limb rehabilitation exoskeletons, ultimately improving the quality of
life for patients with mobility impairments.

Keywords: lower limb exoskeleton; rehabilitation exoskeleton; comprehensive review; rehabilitation
robot

1. Introduction

Lower-limb movement disorders substantially impact the quality of human life, bring-
ing a considerable burden on both families and society. It has been reported that millions
of people across the globe experience difficulties in walking due to such disorders caused
by spinal cord injuries, strokes, and other diseases [1]. These may result in the loss of
muscle sensation and related complications such as decubitus ulcers, loss of bone density,
lower-limb joint contractures, and deep vein thrombosis [2]. According to a study by the
World Health Organization, approximately 500,000 individuals suffer from spinal cord
injuries annually [3]. Moreover, the incidence of strokes has significantly increased the
number of patients with lower-limb movement disorders due to the increasing elderly pop-
ulation [4–6]. In addition, factors such as unhealthy lifestyles, extended periods of working
in specific positions, traffic accidents, and warfare can heighten the risk of lower-limb
muscle damage [7], thus preventing people from having an adequate quality of life.
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Rehabilitation training plays a crucial role in helping patients regain muscles’ functions
and increase their chances of recovery. Typically, traditional rehabilitation is facilitated by
a physical therapist and concentrates on restoring muscles’ functions or averting atrophy
in permanently disabled muscles [4,5]. This process entails a progressive restoration
of muscle ability through a sequence of stages, ultimately aiming to enable patients to
walk independently and without pain [5]. This process necessitates regularly arranging
suitable treatments to restore patients’ muscle abilities progressively. The method of
regaining muscle-kinetic ability typically consists of three stages. The first stage seeks to
enable patients to move their limbs within a specific range without pain, using external
forces for assistance. The second stage involves the gradual reduction of auxiliary forces
while promoting active-force generation. In the third stage, patients become capable of
walking independently and regain the ability to control their direction and balance [5,8].
Most rehabilitation training is repetitive and time-consuming, resulting in relatively high
labor costs. The continuing influx of new patients requiring treatments has imposed high
demands for rehabilitation-therapist resources each year [9].

In response to the challenges posed by traditional rehabilitation methods, mechanical
devices like rehabilitation exoskeletons have been developed to ease the labor-intensive
tasks of physical therapists during rehabilitation training [8]. However, current commercial
rehabilitation exoskeletons have limitations, such as being bulky and often necessitating a
treadmill or a learning-to-walk-cart-shaped device in the treatment room [10]. It is essential
to take into account the load on human muscles when using large machines since excessive
loading can lead to severe muscle damage [8]. In recent years, considerable developments
have been reported in passive or powered lower-limb rehabilitation exoskeletons that
are relatively compact and adaptable to the human body, which offers a more promising
solution for patients with movement disorders [11]. These devices aim to overcome the
limitations of traditional rehabilitation approaches and bulky commercial exoskeletons
while providing enhanced mobility and independence for individuals with lower-limb
movement disorders. Moreover, this helps boost users’ confidence in independent mobility
by offering a significant amount of assistive power.

Exoskeletons can be categorized into two main groups: those designed to achieve
partial-body locomotion or independent walking after rehabilitation and those intended to
provide additional torques and power to improve the user’s locomotion [7,12]. Furthermore,
some advanced, portable, commercial exoskeletons, such as Rewalk and Ekso [13,14], help
users travel by precisely adjusting the positions and angles of the exoskeleton joints using
intelligent-control strategies [8]. Despite these advancements, lower-limb rehabilitation
exoskeletons have not been widely adopted, likely due to their relatively high cost or the
fact that these devices have not yet been extensively validated through experiments.

Integrating sensors, processors, and controllers in exoskeleton development is crucial
for monitoring and decision making, ensuring efficient and safe operation. These sensors
are key in tasks like visual detection for obstacle avoidance, pressure detection for stability
maintenance, and capturing body signals for guiding limb movements [9,12]. Sensors
are classified, based on structure, into mechanical or non-mechanical, and by material
as flexible or rigid. In rehabilitation exoskeletons, high-precision sensors, coupled with
specific filtering methods, are vital for accurate and reliable body-signal capture. The
design of the human-exoskeleton interface, incorporating flexible materials, is also crucial
for user comfort and experience [15].

Optimizing sensor integration and interface design significantly contributes to advanc-
ing lower-limb rehabilitation exoskeletons, offering improved solutions for individuals with
movement disorders. While clinical studies have shown that rehabilitation exoskeletons
can be more effective than traditional rehabilitators, the effectiveness of these exoskeletons
for enhancing outward mobility still requires further validation [16,17]. Sensor application
enhances motion-control accuracy and response speed in exoskeleton systems, particularly
with the use of sensors like electromyography (EMG) and electroencephalogram (EEG).
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The rational planning of sensor distribution in an exoskeleton is essential, as it must
align with the functional requirements and structural design of the system, influencing its
effectiveness [18]. Actuator selection should consider power, response speed, and load ca-
pacity to meet the rehabilitation needs of patients [19]. Advanced control algorithms are key
to precise control of the exoskeleton system and improving its rehabilitation effectiveness.

Narayan et al. [20] provided a comprehensive review of the development and control
strategies of lower-limb exoskeletons, focusing on enhancing the interaction between the
user and the exoskeleton. It categorized control strategies into upper-level and lower-level
controls and systematically reviewed the control hierarchy, techniques, and methodolo-
gies used in recent years. Hsu et al. [16] conducted a review on the effect of a wearable
exoskeleton on post-stroke. It found that exoskeleton-assisted training was superior to
traditional training in all phases of walking speed, balance, overall mobility, and en-
durance. Mohebbi et al. [21] identified various subdomains within assistive and rehabil-
itation robotics, and emphasizes the complexity of designing, controlling, sensing, and
optimizing these systems.

However, these previous systematic reviews often have limitations due to the variety
of control strategies employed in the development of lower-limb exoskeletons, including
assist-as-needed, model-based, non-model-based, intelligent-based, and hybrid methods.
Moreover, most studies have primarily focused on electromyography (EMG) and elec-
troencephalogram (EEG) sensors in the design of lower-limb exoskeletons, neglecting a
comprehensive review of other sensor types, such as force sensors and inertial measurement
units, as well as the importance of user-driven design in control strategies [18,22].

This study aims to provide a comprehensive review on user-centered sensor tech-
nologies and control strategies integrated into lower-limb exoskeletons, evaluating their
capacity to address user needs and scrutinizing their structural designs regarding sensor
distribution as well as the latest control algorithms. The review also examines the effec-
tiveness of various sensing modalities to facilitate accurate and responsive motion control.
It concentrates on a systematic classification and description of exoskeleton hardware
research, including the use of functional actuation, advanced epidermal electronic sensors
and monitoring systems, innovative joint structures, and user-driven controller design. By
highlighting the advancements and identifying the strengths and weaknesses of current de-
velopments, this study aims to contribute to the enhancement of lower-limb rehabilitation
exoskeletons and improve the quality of life for individuals with mobility impairments.
The remainder of this study is organized as follows: Section 2 outlines the methodology,
Section 3 discusses sensors and monitoring systems, Section 4 examines control methods
in lower-limb rehabilitation exoskeletons, and Section 5 identifies knowledge gaps and
potential future research directions.

2. Methodology

A comprehensive literature review was conducted for publications from 2014 to
2024, utilizing two scholarly databases: ScienceDirect and Web of Science. The search
employed the keywords “(lower limb or foot) & (exoskeleton or robot) & rehabilitation
& gait assistance”. This initial search yielded a total of 1057 papers. After excluding
396 entries that were conference, meeting, patent, or review materials, 661 papers remained
without duplication. Following an in-depth review of the titles, abstracts, and full texts,
394 papers were deemed irrelevant and subsequently omitted.

The retained papers were all in English and focused specifically on the design and
control of lower-limb rehabilitation exoskeletons. The selection criteria were twofold:
firstly, articles that reported on innovative exoskeleton designs, including unique sensor
and motor distributions or aspects of human-robot interaction; and secondly, articles that
introduced pioneering control algorithms, such as novel exoskeleton controller designs
and techniques for joint angle or gait control. A total of 55 papers met these criteria.
Additionally, 42 relevant papers were identified within the references of these articles,
leading to a total of 97 papers deemed relevant to the research objective. These papers
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were categorized into two main groups: one primarily focused on the design aspects of
rehabilitation exoskeletons, and the other on the control algorithms of these devices. The
methodology for selection and categorization is graphically illustrated in Figure 1.
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In the following review, a comprehensive overview of research papers on lower-limb
exoskeletons is provided, detailing the types of sensors and monitoring techniques used,
the methods of analysis and control, and the aims, results, and limitations of each study.
A summary of various studies focused on the design, development, and testing of lower-
limb exoskeletons for rehabilitation and gait assistance is also presented in Tables in later
sections. The studies utilized different types of sensors, including EMG and EEG sensors,
inertial measurement units (IMU), force, pressure, displacement, and optical sensors, to
gather data from users and enhance the performance of the exoskeletons. These sensors,
along with different control strategies, help achieve specific aims such as personalizing
rehabilitation, enhancing walking assistance, and improving the safety and comfort of
the devices. Some of the highlighted aims include the quantification of patients’ exercise
data, providing personalized rehabilitation services, reducing muscle load, and making
walking more efficient. The results of these studies have demonstrated considerable
progress in exoskeleton designs, sensors’ integration, and control algorithms, leading to
improved exoskeleton functionality and user experiences. However, these studies also
highlight certain limitations and areas for future research, such as verifying the stability
and feasibility of the prototypes, improving the sensing and control methods, enhancing
the balance and torque capacities, and expanding the subject populations to ensure the
effectiveness of these devices in clinical and geriatric settings. Overall, the following
review provides an overview of the current state of lower-limb-exoskeleton research and
the challenges that need to be addressed to improve the performance and applicability of
these exoskeletons.
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3. Sensors and Monitoring Systems for Lower-Limb Exoskeletons

Sensing technologies used in lower-limb exoskeletons can be broadly classified into
three main categories: human signal monitoring, kinematic and kinetic measurements,
and environmental sensing. Human signal monitoring plays a crucial role in capturing
and analyzing the user’s physiological signals. Biopotential sensors, such as EMG and
EEG sensors, illustrated in Figure 2, are pivotal in tracking muscle activity and brain
signals. They provide critical insights into the user’s physical state, exertion levels, and
cognitive processes. This information is instrumental in customizing the exoskeleton’s
functionality to suit the individual needs and capabilities of the user. EMG and EEG
sensors are among the most thoroughly investigated and implemented monitoring systems
in lower-limb-exoskeleton applications.

Micromachines 2024, 15, x FOR PEER REVIEW 5 of 27 
 

 

EEG sensors, illustrated in Figure 2, are pivotal in tracking muscle activity and brain sig-
nals. They provide critical insights into the user’s physical state, exertion levels, and cog-
nitive processes. This information is instrumental in customizing the exoskeleton’s func-
tionality to suit the individual needs and capabilities of the user. EMG and EEG sensors 
are among the most thoroughly investigated and implemented monitoring systems in 
lower-limb-exoskeleton applications. 

Almost all researchers designing exoskeletons have incorporated EMG sensors into 
their systems [18,23]. EMG sensors offer several benefits in lower-limb rehabilitation exo-
skeletons, including enabling more natural and intuitive control by capturing the user’s 
muscle-activity signals, providing personalized assistance based on muscle strength and 
fatigue levels, and optimizing rehabilitation for individual needs. These sensors also allow 
for real-time feedback to both users and therapists, facilitating immediate adjustments to 
the rehabilitation program [23]. On the other hand, there are cons to using EMG sensors. 
Integrating EMG sensors adds complexity to the exoskeleton system, requiring additional 
hardware and software for signal processing and control, and it can also be affected by 
external factors such as sweat, motion artifacts, and noise, which can lead to inaccurate 
readings and affect the performance of the exoskeleton. Furthermore, an excessive num-
ber of EMG sensors can increase discomfort for the user and elevate the cost of the exo-
skeleton [9,18]. 

 
Figure 2. Flow architecture of signal-monitoring sensors: EMG and EEG sensors [21]. 

Inertial sensors are used to measure the kinematic and kinetic characteristics, as 
shown in Figure 3, which focus on tracking the exoskeleton and user’s limb positions, 
movements, and forces. Inertial sensors like accelerometers, gyroscopes, and magnetom-
eters, often combined into IMUs (Figure 3a), are applied to measure orientations, posi-
tions, and movements of both the exoskeleton and the user’s limbs. Force sensors, includ-
ing strain gauges, capacitive, piezoelectric, and piezoresistive types, are used to measure 
the forces/torques applied to joints and to assess human-robot interactions. Figure 3b 
shows an example of force sensors. Flexible thin-film pressure sensors have also been de-
veloped for measuring contact forces [24]. Displacement sensors, such as linear, angular, 
and laser displacement sensors (Figure 3c), are utilized to monitor the movement and po-
sition of the exoskeleton and the user’s limbs, contributing to the system’s accuracy and 
control. 

Figure 2. Flow architecture of signal-monitoring sensors: EMG and EEG sensors [21].

Almost all researchers designing exoskeletons have incorporated EMG sensors into
their systems [18,23]. EMG sensors offer several benefits in lower-limb rehabilitation
exoskeletons, including enabling more natural and intuitive control by capturing the user’s
muscle-activity signals, providing personalized assistance based on muscle strength and
fatigue levels, and optimizing rehabilitation for individual needs. These sensors also allow
for real-time feedback to both users and therapists, facilitating immediate adjustments
to the rehabilitation program [23]. On the other hand, there are cons to using EMG
sensors. Integrating EMG sensors adds complexity to the exoskeleton system, requiring
additional hardware and software for signal processing and control, and it can also be
affected by external factors such as sweat, motion artifacts, and noise, which can lead
to inaccurate readings and affect the performance of the exoskeleton. Furthermore, an
excessive number of EMG sensors can increase discomfort for the user and elevate the cost
of the exoskeleton [9,18].

Inertial sensors are used to measure the kinematic and kinetic characteristics, as shown
in Figure 3, which focus on tracking the exoskeleton and user’s limb positions, movements,
and forces. Inertial sensors like accelerometers, gyroscopes, and magnetometers, often
combined into IMUs (Figure 3a), are applied to measure orientations, positions, and move-
ments of both the exoskeleton and the user’s limbs. Force sensors, including strain gauges,
capacitive, piezoelectric, and piezoresistive types, are used to measure the forces/torques
applied to joints and to assess human-robot interactions. Figure 3b shows an example of
force sensors. Flexible thin-film pressure sensors have also been developed for measuring
contact forces [24]. Displacement sensors, such as linear, angular, and laser displacement
sensors (Figure 3c), are utilized to monitor the movement and position of the exoskeleton
and the user’s limbs, contributing to the system’s accuracy and control.
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Environmental sensors are designed to detect and respond to the exoskeleton’s sur-
roundings, as shown in Figure 4. Environmental sensors like ultrasonic, infrared, or LiDAR
sensors can be integrated into lower-limb exoskeletons to assist with obstacle detection,
collision avoidance, and navigation. This category of sensors enhances the exoskeleton’s
overall safety and adaptability in various environments.
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By incorporating three sensor categories, advanced lower-limb-exoskeleton systems
become responsive and adaptable, meeting various rehabilitation and mobility needs.
For example, combining kinetic and physiological data, particularly from EMG and EEG
sensors, significantly enhances exoskeleton functionality and safety. This allows for per-
sonalized, controlled experiences, with kinetic data offering insights into external forces
and movements, and EMG and EEG providing details on muscle and brain activity. Such
integrated systems promote natural, precise movements, and effective rehabilitation, with
real-time monitoring ensuring user safety and comfort. Sensor selection is guided by the
exoskeleton’s specific requirements, focusing on user control, autonomy level, and task
complexity. This review critically examines these sensors, emphasizing their impact on
lower-limb-exoskeleton applications.

3.1. Human Signal-Monitoring Sensors

Human signal-monitoring sensors are used to capture and analyze the user’s physi-
ological signals. A review of studies employing these sensors is summarized in Table 1,
where each is identified by the lead author alone. EMG sensors measure minute electrical
signals (muscle action potentials) produced during muscle contractions on the body’s
surface, which have found increasing applications across various fields, such as enhancing
speech recognition [31], force estimation [32], and refining disease identification accuracy
based on specific features [33]. The introduction of EMG sensors has significantly aided
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physical therapists in evaluating patients’ muscle mobility during rehabilitation and of-
fered a valuable database for subsequent treatment monitoring and quantitative analysis.
However, during the measurement process, noise from heartbeats and external vibrations
can disrupt the results and impact the system’s accuracy in detecting muscles’ activations.
To minimize the influence of noise on the outcomes, EMG sensors are often combined with
filtering circuits [33].

Table 1. Detailed information on the studies that use human signal monitoring sensors on lower limb
rehabilitation devices.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Kagirov et al., 2021 [3]

Position sensors and
speed and acceleration

sensors to control
movements

EMG sensors to record
the work of muscles
Telemetry sensors to
measure temperature,

rotation angles, and the
current

Voice-recognition
technology

32-bit microcontroller
STM32 MCU

Intelligent
remote-control

interface
Electric-drives control

Walking-pattern control

To propose an
intelligent control
system with a user

interface and walking
mode switching for
both patients and

doctors.

The correctness of
modeling and

parameter tuning was
verified by testing the
exoskeleton prototype.
The dual-mode control
by voice and graphical
interface improves the
safety and convenience

of use.
Development of a

dynamic model of the
human gait process.

Chen et al., 2016 [4]

Encoders and
potentiometers for

receiving force
feedback
Rotatory

potentiometers to
measure the joint angle

EMG sensors to
estimate human

intention
IMU sensors to

measure kinematics

Force-control strategy
based on encoders and

potentiometers

To design a lightweight,
compact device that
safely interacts with
people and assists
patients with gait

training.

A new tandem elastic
actuator, consisting of a

low-stiffness spring
and a high-stiffness

spring, was developed
and experimentally
demonstrated to be

effective in providing
assisted force.

Explore more advanced
sensing and control

methods and develop a
new generation of

prototypes with more
integrated systems.

Cardona et al., 2020 [9]
EMG and IMU sensors

for biomechanical
model

Adaptive PD control
Quantify exercise data

for personalized
rehabilitation services

Movement data can be
simulated by skeletal

muscle models and gait
improvement programs

can be proposed

Li et al., 2019 [34]

EMG sensors and EEG
sensors for user

intention detection
Inductive rotary

encoders and Hall
sensors to measure

motor rotation angles
On-board extended
Kalman Filter based

inertial measurement
unit to measure angle

information

PD controller for
trajectory tracking
based on hybrid

EEG/EMG signals
Joint feedback

controller

Helping users perform
daily motor tasks

better.

Propose a control
method based on the
mixing of EEG and
EMG signals from
motion images and

verify the effectiveness
of the controller by

designing a
stair-climbing gait.

Further improve the
recognition and control

algorithm.
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Table 1. Cont.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Peña et al., 2019 [18]

EMG sensors to
measure the activation

of the muscles
EMG-driven

torque-estimation
method

Multilayer perceptron
neural network
Online adaptive

impedance controller

To estimate the
appropriate torque and

optimal impedance
control for the user

during the wearing of
the exoskeleton.

Torque is estimated and
optimized using a

simplified model with
a specific EMG signal,
and the experiments

show that the use of the
EMG signal is very

effective for adaptive
control strategies.

To try out the
exoskeleton on patients
with limb injuries and

to verify its
effectiveness.

Tu et al., 2022 [35]

IMU sensors to
measure the angles
Insole-type plantar

pressure diaphragm
sensors to measure

ground reaction force
EMG sensors

User intention
detection

Active
height-adjustment

control

To protect the user’s
body during squatting

activities.

The new E-LEG system
reduces the user’s

muscle activity during
squatting and

effectively relieves
muscle strain.

Huang et al., 2019 [36]

EMG sensors placed on
the legs and hips

Load-cell force sensors
for precise data

Pedal force sensors to
measure the

human-pedal
interaction forces

Sensor-fusion method
PD feedback controller

Helping patients with
lower limb movement
disorders to perform

safe rehabilitation
exercises.

Prototype
demonstrates the

effectiveness of muscle
exercise through EMG

signals in an
experiment.

Further confirm the
feasibility of the design

and procedure, and
involve people with

different levels of
health in the
experiment.

Choi et al., 2020 [37]

Pressure sensors and
resistive force sensors

to measure the gait
cycle

Tensile load cell sensor
to measure the output

of the pneumatic
artificial muscles

Surface EMG signals in
the experiment process

Pulse-width
modulation (PWM)

signals
ADC function of the

microcontroller named
STM32F407VG

Sliding mode control

To design an ankle-foot
orthosis that generates
enough assisted force
to aid the user’s ankle

motion

Using tandem elastic
actuators and polylactic

acid material to
enhance human

ankle-joint strength,
device performance

was tracked and tested
Control the balance of
the device in any state

by controlling the
torque, etc.
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Table 1. Cont.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

He et al., 2019 [38]

Flexible piezoresistive
force sensors to

measure
one-dimensional forces
Six-axis IMU sensors to

detect the movement
Encoder and torque
sensors to drive the

actuators
EEG, EMG sensors for

human-robot
interaction signals

CAN bus
EtherCAT system

STM32F103
microprocessor
Bipedal walking

algorithms
Self-balanced walking

algorithms on flat
terrain

To propose an
anthropomorphic

exoskeleton design and
control.

A supervised algorithm
was developed to

detect synchronized
movements of the user

and the exoskeleton,
and a significant

reduction in muscle
activity was measured.
Improve the detection
accuracy of the filter

and try other methods
to provide assisted

force to the user.

Hassani et al., 2014 [39]

EMG sensors to
measure the muscular

activities
incremental encoders
to measure the joint

angles

The Dspace DS1103
controller board and
the Maxon motion

controller EPOS 70/10
Phase-adaptive control

framework

To propose an
interactive method of

active and passive limb
movements that can

achieve repetitive limb
movements and

intention-driven limb
movements,
respectively.

Satisfactory results
were obtained in many

aspects through
experiments with

healthy people.
Propose a control

framework that can
help users to perform
different tasks such as

combat and stair
climbing.

Yi et al., 2022 [40]

Nine-axis IMUs
embedded in surface

electrodes (Delsys
Trigno) to measure the

joint angles
8-camera video system

to record the 3-D
locations

EMG sensors to
measure the muscle

activities

EMG-IMU sensor
fusion

Ahead-of-time
prediction algorithm

To use the latest
technology to detect

the user’s intention to
move and to avoid
delays caused by

transmission.

The proposed
over-the-top

continuous prediction
method is tested on the

knee joint and
outperforms the

traditional method.
The actual usage

environment is very
diverse and there is a
lack of algorithms for
different movement

patterns.

Bayon et al., 2022 [41]

Resistive force sensors
insole to measure the
ground reaction force

EMG sensors to
measure muscle surface

activities.
IMU sensors to
estimate body
center-of-mass

Balance assistive
controller

Perturbation detection
algorithm

To help users maintain
balance when standing

or moving.

A collaborative
ankle-ankle

exoskeleton control
strategy is proposed to

effectively reduce
muscle activity and

maintain balance
control in the
experiment.

Extension of the control
strategy to multi-joint
exoskeleton systems.
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Table 1. Cont.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Jradi et al., 2024 [42]

Three force-sensitive
resistor was used to
measure the ground

reaction force
Two EMG sensors and

two IMU sensors

An adaptive active
disturbance rejection

controller

Ankle-foot orthoses are
utilized to provide

continuous assistance
to patients with foot
drop while walking

and to supplement the
user’s muscle strength.

The proposed adaptive
active-interference-

suppression controller
is adaptive with

enhanced synchronized
motion of the ankle

joint.
The joint motion may
affect the neighboring
joint motion, and the
effect of the controller

will be verified on more
clinical patients in the

future.

Luo et al., 2023 [43] Load-cell force sensors
EMG sensors

DAQ card linked to
mini-PC

Microprocessor ARM
CORTEX-M4

Human-computer
systems trained by

simulation to predict
user HCI forces.

Proposes decoupled
RL-based control,

which can be trained in
arbitrary situations to

avoid discomfort
during

human-computer
interaction.

The EEG sensing technique has been gaining increased interest for applications in
exoskeletons. Unlike the muscles’ electrical signals that necessitate sensor placements in
multiple locations, EEG sensors only need to be densely affixed to the head to capture
the majority of the body’s intentions. EEG sensors can be classified into invasive, which
involve electrodes being placed into specific brain locations, and non-invasive, which
require sensitive sensor elements to be fitted onto the scalp to measure physiological
electrical signals [34]. Owing to its high temporal sensitivity and safety, EEG technology is
predominantly used in the medical field, assisting clinicians in diagnosing specific diseases.
The technology also holds considerable potential in intelligent rehabilitation, often referred
to as brain-computer interfaces [44].

Patients with conditions such as spinal cord injuries often experience motor-nerve
damage and difficulty transmitting neurotransmitters from the brain to the hand and
legs. In these cases, EEG sensors can read the brain’s electrical signals and transmit them
through peripheral cables to the motion part, stimulating muscle movement through
electrical stimulation or assisting movement via external forces. However, EEG signals
suffer from poor spatial resolution, mainly due to signal attenuation as they travel through
the skull [45]. Moreover, external disturbances like blinking and changes in breathing can
introduce artifacts into the EEG signal, affecting measurement accuracy [34]. To address
these challenges, various solutions have been proposed, such as replacing wet Ag/AgCl
electrodes commonly used in EEG sensors with a polyvinyl alcohol-glycerol-NaCl contact
hydrogel and a 3D-printed silver-coated polylactic acid electrode [44], and utilizing more
advanced filters to remove interfering signals [45].

3.2. Kinematic- and Kinetic-Measurement Sensors

Inertial, force, and displacement sensors are widely used to measure kinematic and
kinetic characteristics. Table 2 lists the studies employing such sensors to measure the
kinematic and kinetic characteristics of human lower-limb rehabilitation devices, together
with the primary aim(s) and major findings. IMUs have garnered significant interest due
to their cost-effective nature in measuring body motion. An IMU is an electronic device
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capable of measuring six degrees of freedom movements, including accelerations along
the three orthogonal directions and rotational velocities along three directions (via a three-
axis gyroscope). The signals for an IMU can be easily processed to determine an object’s
positions and orientations in the three-dimensional space. IMUs are also equipped with a
magnetometer to measure gravitational forces. Each sensor is utilized to gather data for the
three body axes: roll, pitch, and yaw. As IMUs directly measure linear accelerations and
rotational velocities, their output is typically superior to the accelerations and velocities
derived from time-based position data. However, a notable drawback of current IMU
technology is the drift in position level, which may occur due to noise in the integrated
signals, causing a gradual divergence from the actual value [46]. To address the drift issue
associated with IMUs, various approaches have been proposed, including sensor fusion
(incorporating magnetometers and GPS) and model-based techniques such as extended
Kalman filters [47].

Table 2. Detailed information of studies that use IMUs, force, and displacement sensors to measure
kinematic and kinetic of human-lower limb rehabilitation devices.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Zhou et al., 2020 [1]

Ultra-small rotary
magnetic encoder

sensors
Cable-displacement
force/torque sensors

(MINI 45, ATI)

Assess the gravity
compensation by

perceived assistance

A passive lower-limb
exoskeleton using a
spring structure is

proposed for assisted
walking.

A prototype of the
exoskeleton has been

built and the results of
tests on healthy people

have verified the
usability of the

exoskeleton.
Verification of the

user’s lumbar force and
quantitative evaluation

of the EMG signal
acquisition.

Chen et al., 2016 [4]

Encoders and
potentiometers for

receiving force
feedback
Rotatory

potentiometers to
measure the joint angle

EMG sensors to
estimate human

intention
IMU sensors to

measure kinematics

Force-control strategy
based on encoders and

potentiometers

To design a lightweight,
compact device that
safely interacts with
people and assists
patients with gait

training.

A new tandem elastic
actuator, consisting of a

low-stiffness spring
and a high-stiffness

spring, was developed
and experimentally
demonstrated to be

effective in providing
assisted force.

Explore more advanced
sensing and control

methods and develop a
new generation of

prototypes with more
integrated systems.
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Table 2. Cont.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Sado et al., 2019 [7]

Position sensors to
measure the joint angle
Resistive force sensors
to measure the ground

reaction force

Dual extended Kalman
filter sensor-less joint

torque estimation
Linear quadratic
Gaussian torque

amplification controller
Supervisory controller

To propose an
anthropomorphic

exoskeleton design and
control.

A supervised algorithm
was developed to

detect synchronized
movements of the user

and the exoskeleton,
and a significant

reduction in muscle
activity was measured.
Improve the detection
accuracy of the filter

and try other methods
to provide assisted

force to the user.

Cardona et al., 2020 [9]
EMG sensors and IMU

sensors for
biomechanical model

Adaptive PD-control
strategy

EPOS2 70/10 digital
position controller

To quantify patients’
exercise data and

provide personalized
rehabilitation services.

Patients’ movement
data can be simulated

by human skeletal
muscle models and gait
improvement programs

can be proposed.
Assemble and fabricate

the exoskeleton
prototype, and verify

the stability and
feasibility of the
prototype with

engineering
knowledge.

Han et al., 2020 [12]

Force sensors to
measure interaction

force and foot pressure
Maxon Encoder (Mile
1024 CPT) to measure
the angle position and

velocity

A linear discrete-time
extended state observer

based intelligent-PD
controller

A novel tracking
differential controller is

designed and a
hyperlocal model is

used to obtain real-time
velocity and
acceleration.

Experimental and
simulation validation
methods are used to

verify the higher
performance of the

controller, motor, and
other hardware

devices.

Huo et al., 2018 [25]

Resistive force sensors
to measure the ground

reaction force
IMU sensors to obtain
the orientation rotation

matrix

Sensor fusion with
Kalman Filter

Gait-mode-detection-
based torque assistive

controller

To propose a
sensor-based approach
for fast gait detection.

Real-time gait
estimation using fuzzy
logic algorithms allows

the selection of the
appropriate kinetic and

kinematic model for
each gait, but currently
it is still not applicable
to walking at too low a

speed.
Personalized and
customized assist

algorithm, trying to
increase the output
power to achieve
higher assist ratio.
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Table 2. Cont.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Arnez-Paniagua et al.,
2019 [26]

IMU sensors to
measure the
acceleration

Incremental encoders
to measure the joint

angle
Resistive force sensors
to measure the ground

reaction force

Gait-cycle detection
Gait-sub-phases
detection by a

Mamdani fuzzy
inference system
Adaptive ankle

reference generator
algorithm

To control orthotics to
help patients with gait

impairment to walk
normally.

A model-based control
method is proposed for

the control of
dorsiflexion and

supination movements
of the ankle joint.

Li et al., 2017 [27]

Force sensors (ATI) to
measure the ground

reaction force
Rotary encoders to
measure the spring

displacement
Rotary potentiometers

to measure the joint
angle

The Dspace control
system

Multi-modal control
scheme (consists of
three control modes:

robot-assisted,
robot-dominant, and

safety-stop mode)

Addressing instability
of use due to nonlinear

factors.

A control scheme
combining three modes
is proposed to achieve
on-demand assistance,
corrective motion, and
stop motion in different

ranges, respectively.
Do more experiments

in clinical and
rehabilitation areas.

Leal-Junior et al., 2018
[46]

IMU sensors
Polymer optical fiber

(POF) curvature
sensors (a kind of

displacement sensor)
Hysteresis

compensation
technique

Tree analysis of current
problems

Sensor-fusion
algorithms

Verification of
algorithm validity

using root-mean-square
error

Breaking through the
strain limit and fracture
toughness of ordinary
curvature sensors, the

softness of fibers is
similar in order of

magnitude to that of
the human body.

Fusing two sensors to
complement each

other’s defects and
improve the

measurement accuracy
of the sensors

compared to not using
an exoskeleton.

To make a basis for
future research on

sensor-fusion methods
and to replace other

traditional sensors with
lower costs.

Jeong et al., 2020 [48]

Air pressure sensors
embedded in the shoes

EMG sensors for
muscle surface

activities
IMU sensors for

inclination angles

Feedback controller
Feedforward controller

Weight support and
balance control method

Maintains better
stability during user

movement and
provides partial weight

support.

A new control method
using air-pressure

sensors to detect the
user’s center of gravity
in real time is proposed,

assorting a series of
elastic actuators to

generate corresponding
auxiliary torque.

Weakened signals
measured by EMG
sensors verify the

effectiveness of the
device on assist the

human body.
The experiment should

be extended to more
people and observe the
changes in their other
physical indicators.
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Table 2. Cont.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Zhang et al., 2018 [49]

Absolute position
magnetic encoders
(MBA8) to measure

joint angles
Torque sensors to

measure the interaction
torque

IMU sensors (VN-100S)
to estimate the

extrapolated center of
mass

Resistive pressure
sensors (FSR 402) to
detect the ground

contact

Admittance-based
controller

Balance controller

To develop an active
compliant exoskeleton
for the hip joint that can
assist users in multiple

planes of motion.

The proposed balance
control strategy

generates enough
guiding forces.

Preliminary tests on
healthy subjects

demonstrated the
effectiveness.

Expand the subject
population to make it

effective in clinical and
geriatric populations,

as well as consider
balance problems

under other
perturbations.

Taherifar et al., 2018
[50]

Single-axis
tension-compression

force sensors to
measure the interaction

forces
Angular position

sensors to measure the
position errors

Assist-as-needed
controller based on the

impedance control
Human swing leg

control

To design an
exoskeletal

rehabilitation system
that provides assistance

as needed. Based on
the target impedance
gain and feedforward
force, a parameter was

set to assist in
determining whether
assistance is needed.

The system was able to
steadily reduce the

force during
human-machine

interaction, and the use
of a tandem elastic

actuator was shown to
contribute to

impedance control.

Bingjing et al., 2019 [51]

Linear potentiometer
sensors to measure the

joint angles
Resistive force sensors

to measure the
human-robot

interaction force

Position controller
Reinforcement-

learning interactive
controller

Velocity feedforward
algorithm

Gravity compensator

To propose a new
human-machine

interaction control
strategy to ensure gait

tracking accuracy.

An adaptive control
strategy based on

sigmoid functions and
reinforcement learning
algorithms, combined

with flexible pneumatic
actuators, is used to

finally verify the
effectiveness of the

strategy.
Implementing active

resistance rehabilitation
training.

Aguirre-Ollinger and
Yu, 2020 [52]

Actuator encoders,
linear potentiometers,
knee joint encoders,

and IMUs to measure
the kinematic data
Rotary encoders to

measure the angular
positions

Force tracking feedback
controller based on the
forward-propagating

Riccati equation

Increasing user
engagement with

traditional tandem
elastic actuators.

Propose variable
structure tandem

elastic actuator with
adjustable stiffness

according to different
commands.
Interference
suppression

components are used to
increase transparency
in the zero-force case,
and force control is

used to correct partially
asymmetric gaits.
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Table 2. Cont.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Chen et al., 2015 [53]

IMU sensors and
pressure sensors in

both shoes for
locomotion mode

recognition

Gait-event detection
Parameter

optimization-based
neural-machine-
interface control

strategy

To propose a better
strategy to classify the
motion characteristics
in different phases and

improve the
parameters such as

feature set and window
size.

The inertial and
pressure feature sets

can be measured
through different

motion tasks of the
subjects, thus

providing better
recognition

performance.
To make the system

more integrated and to
further improve the

recognition
performance.

Gasparri et al., 2019
[54]

High-range force
sensors (FlexiForce
A201, Tekscan) to

measure the ground
reaction force

Torque sensors to track
the instantaneous

torque profile

Proportional
joint-moment controller

32-bit ARM
microprocessor

Assist users in
maintaining stability in

different sports and
improve clinical

usability.

The ankle exoskeleton
using

joint-torque-control
strategy is developed,

and the control
algorithm is also

designed to adapt to
different motion

decisions of users.
Evaluate whether the

metabolic cost of users
is reduced and test it on

a larger scale.

Peña et al., 2019 [18]

EMG sensors to
measure the activation

of the muscles
EMG-driven

torque-estimation
method

Multilayer perceptron
neural network
Online adaptive

impedance controller

To estimate the
appropriate torque and

optimal impedance
control for the user

during the wearing of
the exoskeleton.

Torque is estimated and
optimized using a

simplified model with
a specific EMG signal,
and the experiments

show that the use of the
EMG signal is very

effective for adaptive
control strategies.

To try out the
exoskeleton on patients
with limb injuries and

to verify its
effectiveness.

Tu et al., 2022 [35]

IMU sensors to
measure the angles
Insole-type plantar

pressure diaphragm
sensors to measure

ground reaction force
EMG sensors

User-intention
detection

Active
height-adjustment

control

To protect the user’s
body during squatting

activities.

The new E-LEG system
reduces the user’s

muscle activity during
squatting and

effectively relieves
muscle strain.
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Table 2. Cont.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Kim and Cho., 2019
[55]

Six-axis force/torque
(FT) sensors to detect

user intention
CAN bus

Balancing controller
z-directional

admittance controller
vibration reduction

algorithm and
soft-landing algorithm

for swing leg
compliant control

algorithm for upper
body

moving stop
algorithms for swing
leg and upper body

Assist users to
complete the

sit-to-stand transition.

A new frame is
proposed: KUEX, worn
on the anterior side of

the user, which can
effectively reduce the

wearing time.
There are difficulties in

turning movements.

Huang et al., 2019 [36]

EMG sensors placed on
the legs and hips

Load-cell force sensors
for precise data

Pedal force sensors to
measure the

human-pedal
interaction forces

Sensor-fusion method
PD feedback controller

Helping patients with
lower-limb movement
disorders to perform

safe rehabilitation
exercises.

Prototype
demonstrates the

effectiveness of muscle
exercise through EMG

signals in an
experiment.

Further confirm the
feasibility of the design

and procedure, and
involve people with

different levels of
health in the
experiment.

Li and Hashimoto, 2016
[37]

Resistive strain-gauge
force sensors under the
feet to detect gait cycles
PVC gel soft actuators

include a laser
displacement sensor

(IL-065, Keyence)
myRIO (LabVIEW)

computer for real-time
data acquisition and

conversion

Tree analysis of the soft
actuator

Gait-cycle detection
Operation decision

control
DC field control

To design an advanced,
easy-to-wear soft

plastic gel actuator to
assist users in walking.

The actuator was
shown to reduce

muscle load and make
walking more efficient
in life, and to prevent

actuator breakage.
Research on building
an effective control
algorithm for this

prototype exoskeleton,
designing an intelligent
battery, and reducing
the operating voltage.

He et al., 2019 [38]

Flexible piezoresistive
force sensors to

measure
one-dimensional forces
Six-axis IMU sensors to

detect the movement
Encoder and torque
sensors to drive the

actuators
EEG, EMG sensors for

human-robot
interaction signals

CAN bus
EtherCAT system

STM32F103
microprocessor
Bipedal walking

algorithms
Self-balanced walking

algorithms on flat
terrain

To propose an
anthropomorphic

exoskeleton design and
control.

A supervised algorithm
was developed to

detect synchronized
movements of the user

and the exoskeleton,
and a significant

reduction in muscle
activity was measured.
Improve the detection
accuracy of the filter

and try other methods
to provide assisted

force to the user.
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Table 2. Cont.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Bayon et al., 2022 [41]

Resistive force sensors
insole to measure the
ground reaction force

EMG sensors to
measure the muscle

surface activities
IMU sensors to
estimate body
center-of-mass

Balance assistive
controller

Perturbation detection
algorithm

To help users maintain
balance when standing

or moving.

A collaborative
ankle-ankle

exoskeleton control
strategy is proposed to

effectively reduce
muscle activity and

maintain balance
control in the
experiment.

Extension of the control
strategy to multi-joint
exoskeleton systems.

Park et al.,2021 [56]

IMU sensors
(3DM-GX4-25) to
measure the torso

orientations
Compact torque

Sensors
(TQ-CSKG02-NM150)

to measure joint
torques

Absolute encoders
(RMB28SC) to measure
joint angles; multi-turn

absolute encoders
(EBI1135) to measure
the actuator positions.
Resistive force sensors
to measure the ground

reaction forces

Pulley controller using
the system dynamics

To reduce the mass and
moment of inertia of

the exoskeleton to
extend the service time.

Propose a cable
differential mechanism

to provide sufficient
torque and speed.

To validate the
effectiveness of the

prototype on patients’
lower limb motor

rehabilitation ability
and metabolic exertion.

Huang et al., 2018 [57]

Encoders to measure
the current state of
HUALEX system
IMU sensors to

measure the walking
velocity

Plantar sensors to
judge the current phase

Hierarchical interactive
learning controller

(motion learning and
model-based controller

learning)
Node controller set

nearby each active joint

To propose a control
strategy with a

hierarchical interaction
learning framework

that can handle
different

human-computer
interaction movements.

Experimental results
show that the control
algorithm has more

processing power and
better performance.

An attempt is made to
use a soft modelling

approach to guide the
motion of the

exoskeleton with
sensitivity coefficients.

Shi et al., 2021 [58]

EtherCAT system
(Angle sensors to

measure the terminal
posture, encoder of the
motor to measure the
speed, IMU sensors to
measure the actual hip

angle)

Model-based
human-centered

adaptive controller

To propose a
human-centered

interaction control
method to mitigate the
errors caused by band

connections.

The adaptive controller
is designed based on

the dynamic model of
human-computer
interaction and its

effectiveness is verified
by simulation.
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Table 2. Cont.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Hwang et al., 2019 [59]

IMU sensors to
measure the movement

intention
Kinect sensors to obtain

the joint position
Encoder sensors to

measure the joint angle

Trajectory tracking
control method

Development of
exoskeleton devices
based on the actual

needs of the user such
as gait cycle.

The average value of
gait data of ordinary
people and the data

obtained from Kinect
sensor predefined the
exoskeleton gait and

verified the
effectiveness of the
learning algorithm.

Foroutannia et al., 2022
[23]

Resistive force sensors
to measure the ground

reaction force
IMU sensors to

measure the speed and
body position

CAN bus
Wet Ag/AgCl

electrodes-based EMG
sensors to measure the

muscle activities
Small beam-type load
cells to measure the

interaction force
between the

human-robot system

BECKHOFF
programmable logic

controller

To predict joint
positions more

accurately.

The effectiveness and
stability of the
algorithm was

experimentally verified
using an EMG-based
deep learning neural
network placed in an

impedance control loop.
Algorithm fusion

strategies should be
used to develop more

disease-specific
controllers.

Matinez-Hernandez
et al., 2022 [60]

Nine-axis IMU sensors
to measure the angular
velocity, accelerometer,

and magnetometer
signals

Insole resistive force
sensors to detect the

gait cycle

Sensor fusion
Convolutional Neural

Network (CNN)
Gait cycle tracking

Predicted Information
Gain method

To predict gait cycles
more accurately and to

identify walking
activity.

An adaptive strategy
combining

convolutional neural
networks and

predictive information
gain is proposed and its

accuracy is
experimentally

verified.

Wang et al., 2021 [61]

Encoders to measure
the piston position in

the valve
Force sensors to

measure the pressure at
the outlets of the valve
Displacement sensors

to measure the real
joint angle

Piecewise PID
controller

The motion and drive
of the exoskeleton are
optimized to improve
the tracking accuracy

and assist performance.

A control method with
error estimation and

compensation is
proposed, and the

feasibility is verified by
simulation.
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Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Long et al., 2017 [62]

Digital pressure
sensors to measure the

interaction force
between ground and

exoskeleton
Optical encoders to
measure the angular

position
Gasbag-based force

sensors to measure the
interaction force

between human limbs
and the exoskeleton

limbs
CAN bus

Sensor fusion online
Walking phase
identification

Adaptive minimizing
pHRI control strategy

Static balance control in
the stance phase

Improving comfort and
reducing energy

consumption when
wearing an exoskeleton

A sensor-based
adaptive control

strategy is proposed to
continuously keep the

human-machine
interaction force at a

minimum. This
strategy can effectively

assist walking by
verifying the

mean-square value of
human-machine

interaction force and
torque force.
To Improve

applicability for
different users.

Urendes et al., 2019 [63]

Potentiometer sensors
to measure the joint

angle
Resistive force sensors

in each shoe
Ultrasound sensors

measure the distance
for synchro the whole

system
CAN bus

PWM controller
Microcontroller board

dsPIC30F4013
Weight support control

Design of a system
called HYBRID for

monitoring and
analyzing user limb

movement data.

Incorporating features
such as gait guidance
and weight support, it

uses a newer
human-computer

interaction solution
that eliminates the
need for cables and

allows for appropriate
patient proprioceptive

stimulation during
movement.

Cestari et al., 2015 [64]

Embedded force
sensors to detect small

torques
Industrial CAN-OPEN

bus

Maxon EPOS
controllers and NI

CompacRIO controllers

Reducing the energy
requirements of

compliant actuators
and enhancing

adaptability to external
disturbances

An adjustable-rigidity
and embedded sensor

joint prototype for
children was designed,

and the proposed
rigidity-adjustable

design combined with
different force control

strategies can
effectively achieve

energy savings in the
device.

Li et al., 2022 [65]

Load cells (LSB201,
FUTEK) to measure the

tension force
Insole resistive force
sensors for switching

the gait

Adaptive position
tracking controller

Impedance learning
and hierarchical

controller

To consider impedance
matching and

environmental factors
while meeting

flexibility requirements.

To propose an adaptive
control strategy based
on impedance learning
and considering users.
Limitations: Only for a

single joint.
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Table 2. Cont.

Author,
Year [x]

Sensing/Monitoring
Techniques

Analyses and Control
Methods Primary Aims Major Results and or

Limitations

Ashmi and Akhil, 2023
[66]

Pressure sensors
Accelerometer

ADXL335
Optical sensor

ATmega328
microcontroller

PID controller using
particle swarm
optimization

This paper notes the
importance of

controllers and designs
suitable controllers for
the knee and hip joints

of the exoskeleton.

The PID control in this
paper exhibits less

oscillation and better
steady state error
compared to other

controllers. The global
optimum position can
be obtained by finding
the optimum controller

gain constant using
particle swarm
optimization.

Zhong et al., 2023 [67]
Instep-mounted IMUs

and encoders
EMG sensors

Microcontroller
(STM32F407)

Upper controller
(Raspberry CM4)

Improving
personalized gait

performance and gait
symmetry for stroke

patients.

A hybrid
cable-actuated

exoskeleton was
developed and was

positively received by
patients who used it.

The extent of the
efficacy of the

rehabilitation training
remains to be

determined, and a
larger sample and time

will be used in the
future.

In order to directly measure the forces applied on joints and to assess human-exoskeleton
interactions, force sensors are widely used. These sensors are adept at discerning forces
either generated by or exerted on a device. Their readings influence whether an operation
should proceed, thus providing a vital safeguard for both the device and its user [68].
Force sensors are thus used for diverse purposes, such as quantifying the forces applied
to robotic arm joints, guiding automated floor sweepers to alter their direction upon en-
countering walls, enabling tactile light controls, and notifying passengers of unsecured
seat belts [69–72]. Force sensors can generally be categorized according to their operating
principles, which include the strain, capacitive, piezoelectric, and piezoresistive effects.
These sensors are typically lightweight and durable, making them well-suited for reha-
bilitation exoskeleton devices. However, as rehabilitation devices advance, force sensors
are increasingly designed for the moving parts of limbs, such as muscles, to achieve more
accurate motion prediction and control [73]. Flexible thin-film capacitive and resistive
pressure sensors have also been developed for measuring interface forces, which may find
applications in exoskeletons, considering their compact design and low cost [24]. Unlike
the previously fixed sensing environments, sensors used for moving parts need to maintain
synergy with the user’s limb. As a result, researchers have proposed using flexible force
sensors with a gel structure [74] or a multi-sensor approach to gather data about a moving
limb [46].

Apart from the above-mentioned IMUs and force sensors, displacement sensors play
a vital role in lower-limb exoskeleton applications by providing precise measurements of
linear or angular displacements occurring in the exoskeleton’s joints during movement.
They can be broadly categorized as linear displacement sensors, angular displacement
sensors, laser displacement sensors, and others, depending on the target’s movement
being measured [75]. Strain gauges, inductive, and Hall sensors are the primary measure-
ment methods for small displacements, while technologies such as gratings and magnetic
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grids are mainly used for larger displacements. These sensors allow for accurate and
real-time monitoring of the position and movement of the exoskeleton, which are essential
for effective control and coordination with the user’s natural motion. However, current
displacement sensors have drawbacks such as high power consumption and susceptibil-
ity to external interference. Studies have attempted to employ self-powered techniques,
such as generating voltage through an inductive coil [76], but these approaches also face
limitations [77].

Owing to their affordability, robust and straightforward construction, and easy-to-read
data characteristics, mechanical sensors have been a popular choice among the reported
studies. The robotic platform, ALICE [9], features advanced mechanical sensors that
can gather diverse types of information generated during human motion in real-time.
These data, coupled with Quaternion theory, can further help estimate the user’s kinetic
parameters, thereby providing a personalized and safer treatment plan. The rehabilitation-
exoskeleton design proposed by Wang et al. [78] also uses purely mechanical sensors
integrated with a controller (Figure 5a) [78]. These sensors are capable of executing actions
without transmitting data to a microprocessor first, which significantly speeds up the
response time and eliminates signal delays. However, mechanical sensors can produce
errors due to magnetic fields, vibrations, and elastic deformations in motion [78]. Therefore,
lower-limb rehabilitation exoskeletons equipped with these sensors are typically used in
more stable environments, such as laboratories and clinical settings.
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sensing system [78], and (b) a knee-joint exoskeleton equipped with a Polymer Optical Fiber (POF)
curvature sensor [46].

3.3. Environmental and Other Types of Sensors

In addition to the previously discussed sensors, namely, EMG, EEG, IMUs, force, and
displacement sensors, some studies have employed different environmental and other types
of sensors in the lower-limb exoskeletons for various purposes. Some examples include:

• Optical sensors: These sensors use light to measure the displacement, velocity, or
position of objects. Optical encoders or cameras can be utilized for tracking limb move-
ments, providing data for precise control and coordination of the exoskeleton [79].

• Ultrasonic sensors: By emitting and receiving ultrasonic waves, these sensors can
determine the distance to nearby objects, assisting in obstacle detection and avoidance
for exoskeleton users [28].

• Pressure sensors: These sensors measure the force applied over an area and can be
incorporated in the exoskeleton’s foot or contact points to estimate ground reaction
forces, enabling force estimation, better balance, and stability control [24,48].

• Tactile sensors: These sensors can detect touch, pressure, or vibrations and can be
embedded in areas where the exoskeleton interacts with the user’s body, providing
feedback on fit and comfort [80].

• Temperature sensors: These sensors monitor temperature changes and can be inte-
grated into exoskeleton systems to ensure that motors, batteries, or other components
do not overheat during operation [81].
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These alternative sensors can be used individually or in combination with the previ-
ously mentioned sensors to enhance the functionality, safety, and user experience of lower
limb exoskeletons. By integrating various sensor technologies, developers can create more
sophisticated and adaptive exoskeleton systems that cater to the specific needs of users
in rehabilitation or assistive applications. As an example, polymer optical fiber curvature
sensors have been suggested, notable for their high strain limits and fracture toughness
(Figure 5b) [46]. These sensors, which have a similar order of magnitude range of motion
to the human body, have found wide use in many rehabilitation exoskeletons. Yet, factors
like light-source power deviation can cause angular measurement errors, which need to be
compensated by other means. Some researchers suggest integrating two inertial measure-
ment units with Kalman filtering and a polymer fiber curvature sensor based on intensity
variation. This approach can yield high accuracy and relatively low cost when measuring
small angles [46,78].

In summary, sensors and actuators, when judiciously integrated into the designs, can
successfully accomplish diverse functionalities such as ensuring the user’s gait stability,
creating precise human models, and gathering motion data [46,82]. As discussed, various
sensors are required for different measurements, for instance, pressure sensors are required
for the detection of limb and plantar pressure and acceleration, inertial sensors for the
measurement of human motion trajectory, and clear-vision sensors for the detection of
road obstacles. Incorporating a wider range of sensors can enhance the exoskeleton’s
ability to emulate human perception, thereby enabling it to respond with appropriate limb
movements in real time.

It should be noted that patients cannot solely rely on the exoskeleton device for their
rehabilitation and still require guidance from a physical therapist. This need has led
to a growing interest in the field of human-exoskeleton interaction and the proposal of
remote intelligent-control systems for real-time monitoring [3,83]. These systems enable
the rehabilitation devices to be controlled by the user through touch screens or voice
communication for predefined movements. Simultaneously, with the user’s consent, the
physician can remotely access the system to provide updated rehabilitation therapy codes.
Data collected through sensors allow the physician to make timely adjustments, thereby
enhancing the promptness and precision of the rehabilitation process.

4. Control of the Lower-Limb Rehabilitation Exoskeleton

One of the main aspects of developing a high-performance lower-limb exoskeleton
is designing an effective control strategy. Although various control strategies have been
investigated for the actuation and control of lower-limb rehabilitation exoskeletons, ef-
forts to improve these strategies continue. These control strategies aim to replicate as
closely as possible the actual limb position in trials involving healthy individuals, and
subsequently, those with limb injuries [49,50]. Therefore, user perceptions, such as safety
and comfort, must be considered in the control-system design, with a particular focus on
gait planning and stability during movement. Ideally, a controller should be optimized to
consider both aspects, providing a superior user experience [51]. From the perspective of
user-friendliness, controlling a lower-limb rehabilitation exoskeleton initially involves repli-
cating limb movement safely before the user dons the device. Initial control stages should
safely mimic limb movements, integrating individual user data through muscle electrical
sensors for tailored rehabilitation. The planning of gait trajectories is crucial, particularly for
outdoor activities, necessitating detailed monitoring of biomechanical factors such as the
center of mass and step length. Challenges posed by the external environment call for both
structural adjustments and advanced programming to maintain equilibrium. Research has
often focused on sagittal-plane balance; however, comprehensive balance control across all
body planes, including the coronal plane for foot rotation, is critical to prevent injuries and
align the exoskeleton with human joints accurately. A variety of control algorithms, from
classical and intelligent to innovative approaches like moment field control and hybrid
models, have been developed to improve stability and movement accuracy in lower-limb
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exoskeletons. Tailoring control to individual user dynamics, such as limb strength recovery,
is vital for ensuring comfort and effective rehabilitation. Techniques that amplify user
torque and assess stability during physical activities like squatting contribute to enhancing
the functionality and safety of exoskeletons in rehabilitative settings.

These developed control strategies can be broadly classified into four main categories:
assist-as-needed (AAN), black box (model-free), gray box, and white box (model-based).
These classifications reflect the varying degrees of system knowledge and user interaction
required to effectively manage and optimize the exoskeleton’s performance. The black-box
model indicates no clear relationship between input and output data, while the white-box
model shows definite relationships between the inputs and the outputs. The gray-box
model lies between these two, indicating a partial relationship between the inputs and
outputs [84]. Given that the lower-limb rehabilitation exoskeleton is designed to fit the
human body and considering user safety, the system needs to be as close to a white-box
model as possible [85]. The controller output thus needs to be supported by corresponding
sensor data. However, factors such as sensor hysteresis, creep, joints’ nonlinearities, and
external disturbances pose considerable difficulties in realizing a reliable exoskeleton white-
box model [86]. Most of the reported control strategies are based on gray-box models
involving linear representations of nonlinear elements.

Moreover, exoskeletons require different controllers to achieve specific goals. Sliding-
mode control ensures precise joint-angle control, providing stability and robustness to
uncertainties and disturbances, resulting in smoother motion and an improved user experi-
ence [87]. Data-driven models, such as deep reinforcement learning, adapt to the user’s
walking style and predict gait patterns, providing personalized assistance and optimizing
energy efficiency in real-time [88]. Non-model control is a superior alternative to model-
based approaches as it directly manipulates control inputs based on sensor feedback [89].
Assist-as-needed control expertly adjusts the level of assistance based on the user’s needs,
promoting active participation in movement tasks [6]. PID control is a proven method of
controlling joint angles or forces with a perfect balance of simplicity and effectiveness [54].
Hybrid control combines multiple strategies to enhance performance, providing robustness
and adaptability [90]. In the following sections, each of these approaches implemented in
lower-limb exoskeletons is briefly discussed.

4.1. Assist-As-Needed (AAN) Control Strategies

Since exoskeletons require extensive human-computer interaction, the user’s percep-
tion needs to be greatly considered when controlling the movement of the device. Therefore,
assist-as-needed (AAN) is an important control strategy that provides appropriate assis-
tance according to the patient’s needs, leading to better results in rehabilitation and assisted
walking, and is therefore receiving increasing attention from researchers of exoskeleton
controllers [6,91].

The controller allows for personalized rehabilitation programs based on individual
patient differences and the degree of rehabilitation progress. By dynamically adjusting
the level of assistance, the patient’s rehabilitation needs can be better met, and the reha-
bilitation effect can be improved [92]. It is also possible to gradually reduce the level of
assistance according to the patient’s rehabilitation progress, helping the patient to gradually
regain the ability to walk independently. This gradual rehabilitation process can improve
rehabilitation outcomes and reduce dependence on the exoskeleton [6].

By providing assistance precisely when needed, AAN approach effectively reduces
the patient’s fatigue and discomfort. This helps to increase patient motivation and partici-
pation in rehabilitation and promotes rehabilitation outcomes. By improving the dynamic
stability of the exoskeleton system, patients are more stable and secure during walking and
movement [91]. This helps reduce the risk of accidental falls and injuries and improves
rehabilitation outcomes. The AAN also monitors the patient’s movement status and reha-
bilitation progress in real-time and adjusts the level of assistance as needed. This real-time
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monitoring and adjustment ensure that the rehabilitation program is timely and effective,
and improves rehabilitation outcomes [6].

4.2. Model-Free and Intelligent Control Strategies

Model-free control methods, such as simple Proportional-Differential (PD) or Proportional-
Integral-Differential (PID) controllers, have been widely employed to ensure user stability [11,54].
However, these often fall short in addressing oscillations and underdrive issues, leading
to unstable limb movements. A relatively simple adaptive PID controller can achieve
a fast response through parameter adjustment and improve robustness. However, the
presence of random signal noise and system disturbances, such as motor jitter, equipment
weight, human jerk, sweat, and rain, can alter input and output data, adversely affecting
controller performance and user safety. To address these challenges, model parameter
identification methods have been proposed, utilizing statistical observation data for more
accurate parameter prediction. Historically, these methods have focused on least squares,
particle swarm optimization algorithms, and probability theory to compensate for the
unpredictable variables affecting system performance, ensuring greater reliability and
safety in controller operations [93].

The development of intelligent control algorithms, including neural networks and
fuzzy logic, is deemed effective for managing system nonlinearities and disturbances.
These strategies do not necessitate a mathematical model of the system but instead utilize a
priori knowledge or predefined rules. For instance, neural networks incorporate preloaded
system information into their architecture, whereas fuzzy control systems are governed
by established rules describing system behavior. In the context of rehabilitation training,
these methods are useful for estimating continuous-state parameters, such as joint angles
during motion. However, continuously monitoring these parameters can be computation-
ally intensive and pose challenges in terms of data storage. Mefoued [93] introduced a
multilayer perceptron neural network for efficiently operating a lower-limb orthosis in the
absence of dynamic models, addressing parameter uncertainties, as shown in Figure 6a.
Peña et al. [18] utilized a multilayer perceptron neural network to process electrical muscle
signals and estimate joint torque, as demonstrated in Figure 6b, showcasing potential for
reducing estimation errors and improving user engagement in rehabilitation. However,
the network’s inability to directly respond to muscle forces or internal parameters was
highlighted. This constraint underscores the need for enhanced neural network designs or
hybrid control strategies that can more effectively integrate and respond to dynamic physi-
ological signals and internal system changes. The study suggested optimization through
the torque estimated by the muscles’ electrical signals, coupled with the torque generated
by the inverse dynamics tool in the OpenSim software 4.1+, to enhance user participation.
However, some researchers contend that data training is computationally demanding.
Hence, Pan et al. [94] proposed an innovative learning strategy with multi-loop modula-
tion, which can analyze external disturbances while ensuring gait-learning convergence
without complex computational processes. The exoskeleton’s weight may also be consid-
ered a disturbance, which can be countered by program control in addition to structural
design mitigation. Yang [5] proposed an adaptive, robust control method based on servo-
constraint theory and an optimized fuzzy dynamical system method. Narayan et al. [95]
introduced an adaptive radial-basis-function neural network-computed torque control
(ARBFNN-CTC) scheme that estimated unknown dynamics and improved gait tracking in
passive-assist mode, as demonstrated through experimental trials with pediatric subjects.
The ARBFNN-CTC showed significant improvements over traditional control methods
and exhibited consistent performance across extended gait cycles, indicating its potential
for effective long-term rehabilitation. Kenas et al. [96] developed a model-free Adaptive
Nonsingular Fast Terminal Sliding Mode Controller with Super Twisting and Multi-Layer
Perceptron neural network for the motion control of a 10-DOF lower limb exoskeleton in
rehabilitation. The proposed controller utilized a second-order ultra-local model to simplify
the exoskeleton’s complex dynamics and employed an MLP neural network to estimate
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the ultra-local model’s lumped disturbance. The system’s stability was analyzed using
Lyapunov theory, with desired trajectories derived from surface EMG signal measurements.
Co-simulation experiments conducted with MATLAB/Robotics Toolbox validated the
controller’s effectiveness, showing marked enhancements in stability and precision over
existing model-free controllers.
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Recently, deep-learning and reinforcement-learning algorithms have also been uti-
lized to control the movement of lower-limb exoskeletons. However, such model-free
and intelligent approaches, although promising, are challenging to implement due to
their time-consuming training processes and substantial hardware resource requirements.
Bingjing et al. [51] suggested a reinforcement learning-based interactive control method,
utilizing a double-loop nested control structure for active and passive rehabilitation. This
control method combines two exoskeleton training modes, facilitating individual adap-
tation and active compliance in rehabilitation training [51]. Zheng et al. [88] introduced
a novel strategy, SADRL, combining sensitivity amplification control (SAC) with deep
reinforcement learning (DRL), to enhance lower-limb exoskeleton control. Compared to
SAC alone, SADRL demonstrates superior adaptability and control effectiveness, evidenced
by a significant reduction in human-exoskeleton interaction forces. However, challenges
such as the need for large training datasets and the transferability of learned behaviors
to real-world settings remain. Zheng et al. [89] introduced a deep reinforcement learning
framework for developing a model-free walking controller for lower-limb exoskeletons,
aiming to enhance human performance augmentation. The controller, based on a deep neu-
ral network, directly estimates human motion intentions without the need for a kinematic
or dynamic model of the exoskeleton system. Luo et al. [43] presented a novel approach
to developing a robust controller for lower-limb rehabilitation exoskeletons using deep
reinforcement learning. The proposed controller is trained offline with three independent
networks to handle uncertain human-exoskeleton interaction forces, enabling reliable walk-
ing assistance for users with various neuromuscular disorders. Domain randomization is
employed during training to simulate patient variability, thus eliminating the need for con-
trol parameter tuning. The controller demonstrates effectiveness and robustness in virtual
testing, providing assistance to users with different disabilities without specific parame-
ter adjustments. The decoupled network structure facilitates straightforward sim-to-real
transfer, showing promise for future deployment in physical systems.

4.3. Model-Based Control Strategies

Model-based control strategies have also been explored to address system nonlinear-
ities. Long et al. [97] proposed a model-based control strategy, illustrated in Figure 7a,
which is based on active disturbance suppression. This method extends the state observer
to estimate total disturbances, followed by disturbance rejection using a predetermined
method. Arnez-Paniagua et al. [26] proposed an adaptive model-based control strategy for
ankle-foot orthoses that requires only a few parameters to be set, as shown in Figure 7b.
These control strategies have demonstrated superior performance in trials compared to
conventional PID control. Furthermore, Jeong et al. [48] developed a control method that
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supports the exoskeleton’s weight and maintains balance during movement. Pneumatic
sensors embedded in the sole of the shoe measure the user’s foot center of pressure. Using
this data, the controller for the exoskeleton was designed to provide the magnitude and
direction of assistive forces through elastic actuators, effectively maintaining balance and
supporting weight.
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User-related disturbances are also taken into consideration. Certain rehabilitation
exoskeleton devices have heavy motors and high endpoint impedance, often a result of their
early manufacturing stages. Furthermore, severe spasticity in patients with neurological
injuries can produce substantial response forces in the actuators, leading to unwanted
device movements. To address this issue, Hussain et al. [87] proposed a model-based
trajectory-tracking control strategy based on the boundary-layer-enhanced sliding-mode
control law. This law facilitates guiding limb movements along physiological trajectories.
The exoskeleton’s compliance in the sagittal plane was also adjusted, and the proposed
control strategy was experimentally verified to effectively guide the limb through intended
movements, even when structural uncertainties were present in the model [87].

4.4. Hybrid Control Strategies

Model-based control strategies, while precise, are often hampered by modeling in-
accuracies and uncertainties, leading to potential performance degradation. Accurately
modeling complex systems can be a daunting task. Conversely, non-model-based control
methods rely on feedback to tailor control inputs according to the system’s actual behav-
ior. However, these methods may fall short of achieving optimal control, particularly in
reducing control effort, and the process of designing feedback control laws can be heuristic
and less structured. Additionally, non-model-based control methods necessitate extensive
tuning and experimentation to achieve the desired performance, particularly in complex
systems. Moreover, model-free intelligent control algorithms often demand significant
training or extensive datasets, which may not always be practical or achievable. Given
these considerations, many studies have explored combining model-free and model-based
control strategies to enhance the functionality of lower-limb exoskeletons (Figure 8).
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Bao et al. [90] suggested a hybrid neuroprosthesis system for restoring lower-limb
function in individuals with paraplegia, which utilized both model-based and non-model-
based control methods. Specifically, a tube-based model predictive control (MPC) method
was employed for model-based control to optimize coordination between functional electri-
cal stimulation (FES) and an electric motor during knee-angle-regulation tasks. However,
due to modeling uncertainties, achieving robust control performance proved challenging
with this method. To address these challenges, a non-model-based control approach, in-
corporating nonlinear feedback control, was used to overcome model disturbances, thus
enhancing the system’s robustness. Zheng et al. [89] proposed an end-to-end controller
for a lower-limb exoskeleton system using deep reinforcement learning (E2EDRL). This
controller consisted of high-level control for recognizing human motion intentions and
low-level control for motion tracking, eliminating the reliance on complex kinematic or
dynamic models. A novel multibody simulation environment and hybrid inverse-forward
dynamics simulation method were introduced to facilitate safe and efficient learning of the
E2EDRL strategy. The performance assessment, based on human-exoskeleton interaction
(HEI) forces, demonstrated a superior control performance. Han et al. [12] suggested an
intelligent PD controller based on a linear discrete-time extended state observer. This
discretization effectively reduces time complexity and facilitates easier parameter tuning,
achieving higher accuracy in trajectory tracking and enhanced system robustness [12].

5. Conclusions

This review thoroughly analyzed sensor technology for lower-limb exoskeletons,
emphasizing the crucial role of sensors like EMG and EEG in monitoring physiological
signals, and highlighting the importance of inertial measurement units, force sensors,
and displacement sensors for orientation, interaction, and movement. The study also
explored advancements in control strategies for lower-limb exoskeletons, including assist-
as-needed, model-free, intelligent, model-based, and hybrid algorithms. It emphasized
user safety and comfort, critically assessing the pros and cons of these approaches to offer a
comprehensive perspective on the subject. Future research may likely focus on enhancing
the interaction between humans and lower-limb rehabilitation exoskeletons, reducing
device costs, and promoting the environmental sustainability of the materials used. It
might integrate newly developed sensing technologies like vision, radar, temperature,
humidity, and radiation sensors. Effective use of sensor data through control strategies
could offer optimal protection for users. Anticipated advancements include integrating
machine vision and human-machine interaction, necessitating more sensors and actuators
and potentially leading to significant design changes. The ultimate goal is to improve
the convenience and comfort of the exoskeleton for users, with simulation environments
recommended for testing and validation, aiming for seamless integration into rehabilitation
and better quality of life for those with lower-limb impairments.
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