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poral evolution of infection spread is described by an epidemicity index related to the
maximum instantaneous growth rate of new infections, echoing concepts and tools
developed to study the reactivity of ecosystems. Suitable epidemicity indices can showcase
the dynamics of infections, together with commonly employed effective reproduction
numbers, especially when the latter assume values less than 1. In particular, epidemicity
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1. Introduction

Contemporary epidemiological practice uses effective reproduction numbers (RNs), the estimate of the average number of
secondary infections caused by a single primary infector, to compare alternative control measures (Diekmann et al., 1990;
Heesterbeek, 2002; Nishiura & Chowell, 2009; Zhan et al., 2020). To do so, the current standard is to employ reported
infection data, often regardless of their spatial nature (Bokdanyi et al., 2023; Cereda et al., 2021; Cori et al., 2013; Gostic et al.,
2020; Heesterbeek et al., 2015; Jin et al., 2023; Lipsitch et al., 2003; Liu et al., 2018; Parag, 2021; Thompson et al., 2019;
Wallinga & Teunis, 2004; Yang et al., 2015). Effective RNs are commonly used as a proxy to gauge the spread of a pathogen in a
population where values larger than unity indicate rampaging infections, while subunit values typically denote a receding
epidemic and the asymptotic stability of the disease-free equilibrium (DFE) (Anderson et al., 1992). Containment measures
(protective equipment, social distancing, vaccination campaigns, etc.) are usually tuned to guarantee that the effective RN
stays below unity, effectively curbing the long-term course of the epidemic (Flaxman et al.,, 2020; Lemaitre et al., 2020).
Recently (Trevisin et al., 2023), a technological innovation made it possible to include additional data in the evaluation of
spatially explicit RNs, typically big human mobility data gathered from cell phones and their GPS trackers. On the other hand,
differences between spatially implicit and explicit RN estimators using surveillance data tend to diverge only if strong spatial
heterogeneities exist in the disease transmission dynamics. Thus, current spatially implicit standards may prove reasonably
accurate in connected and homogeneously populated contexts, but must be updated when these conditions are not met
(Trevisin et al., 2023).

However, recent results suggest some caution in the use of RNs (Blumberg & Lloyd-Smith, 2013; Lloyd-Smith et al., 2009).
In particular, the common practice of relaxing epidemiological containment measures when the effective RN decreases below
1 has been shown to potentially fail to achieve short-term control objectives (Mari et al., 2021). By using reactivity analysis
(Mari et al., 2017; Neubert & Caswell, 1997), sufficient conditions were found that warrant a drastic curbing of local transient
epidemic flares by preventing outbreaks due to imported cases (Hosack et al., 2008; Mari et al., 2018). The question then arises
as to whether these sufficient conditions can be achieved by suitably lowering the RN below a threshold < 1. It has been
shown, within a spatially implicit context, that this is indeed possible (Mari et al., 2024). As an example, in the case of COVID-
19, safe RN thresholds should not exceed values in the range 0.24 < RN < 0.63, well below unit values, depending on certain
theoretical assumptions (Mari et al., 2021, 2024). This may imply a rethinking of epidemiological practice.

What allows one to investigate the actual short-term temporal evolution of an epidemic is the definition of a suitable
discrete epidemicity index (Mari et al., 2018), which is related to the maximum instantaneous growth of the infectious pool.
As such, it can correctly capture the transient behaviour of the underlying epidemiological system. It should be noted,
however, that in many of the existing theoretical approaches (Hosack et al., 2008; Mari et al., 2018), the epidemic spread was
treated as a continuous process. While this assumption allows a realistic description of transmission dynamics, it may not fare
well with the essentially discrete nature, in both space and time, of the surveillance data that are typically used to monitor the
course of an ongoing epidemic. Furthermore, the estimate of sufficient conditions to prevent transient outbreaks was
addressed in a spatially implicit context, an assumption that we relax in this work following previous attempts at estimating
epidemicity in spatial settings (Mari et al., 2019, 2021; Trevisin et al., 2022). Here, we utilize both a discrete-time and a space-
explicit modeling approach. In this context, similarly to RN inference, an epidemicity index above unit suggests a temporary
increase in the abundance of infectious individuals, while a sub-unit value ensures rapidly fading outbreaks that cannot
spatially coalesce in larger flare-ups (Mari et al., 2021). Among current widespread mathematical approaches in epidemio-
logical modelling, agent-based models—a stochastic family of models tracking each individual's own course of infection
based on probability distributions—are also able to fully function in discrete time and easily provide a spatially explicit
implementation. One shortcoming of these models, however, is the conspicuous computational burden that arises when the
population size of the considered geographical settings exceeds a given order of magnitude (Lazebnik, 2023). The need to
tune several parameters of such models (in this case, the effective reproduction numbers via techniques like those shown in
Trevisin et al. (2023)) would naturally lead to an even higher computational burden, thereby making it difficult to implement
these models in real-time during an ongoing epidemic.

The computation of the discrete epidemicity index is of particular importance when the RNs take on values that are less
than one because a system displaying long-term disease-free conditions may still develop a net increase in the number or
prevalence of infectious (and therefore infected) individuals in the short term, which may lead to public health consequences
whose severity depends on the size of the transient outbreak. Here, we show that the effective RN can be evaluated through
so-called renewal equations in time and space, which connect the current generation of secondary infections (i.e., newly
detected cases) to the active cases that became infected at some earlier time. This task was traditionally performed through a
variety of methods that considered either spatial connectivity (Trevisin et al., 2023) or proxies thereof (Cereda et al., 2021;
Cori et al., 2013; Gostic et al., 2020; Liu et al., 2018; Zhan et al., 2020). To compute the epidemicity index in a discrete-time
setting, one needs to build a Leslie projection matrix (Mari et al., 2024). Similarly to the related next-generation matrix
method (Diekmann et al., 1990; van den Driessche & Watmough, 2002; Allen & van den Driessche, 2008; Diekmann et al.,
2010), the Leslie matrix can be made time-dependent and updated to reflect the implementation of progressive policy
measures. Moreover, it can also be made spatially explicit, which allows us to project the short-term dynamics of epidemic
spread not only in time but also over space.
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2. Materials and methods
2.1. A discrete infection process

Consider a metapopulation composed of N communities connected by human mobility. To this end, let the numbers in the
infected compartment within a generic community j be defined as Ij(t, 7), a function of both the current time ¢ and the age of
infection 7 (Allen & van den Driessche, 2008; Cao et al., 2019; Kermack & McKendrick, 1927). Also, let Cj(t) be the proportion
of residents of community j who commute daily to community [ for whatever purpose (Trevisin et al., 2023). The governing
equations in continuous time give rise to the following mathematical formulation (Kermack & McKendrick, 1927; Mari et al.,
2024; Trevisin et al., 2023):

ali(t,7) At T)
at oT

= —v(ML(t,7) (1a)

N o0
(£,0) = 3z (R (D) / o(7) It 7) dr vt (1b)
k=1 0

where: y(7) represents the instantaneous rate of exit from the infected compartment (because of recovery, death, quarantine,
or isolation); ¢(7) is the rate of secondary transmission per single infectious case (per unity of RN); R, (t) is the effective RN of
community k at time t, namely, the number of secondary cases produced by one infectious case of community k at time t
throughout the duration of the infection; and

' _ N Clj(t)nj
70 = ;z%:1czm(t>nm

accounts for each node's exposure to infectious individuals residing in a different community, with n; and ny, being the
population size of nodes j and m, respectively. The terms z;,(t) are computed to consider all possible means of contact and
infection (Trevisin et al., 2023) by assuming homogeneous mixing of the population in the node where infection occurs. It
should be noted that both C and Z are column-stochastic matrices, that is, >~/Cix = > _jzjx = 1. We define the probability of still
being in the infected compartment at the age of infection 7 as

p(r) = exp( -[ v(&)d&).

The probability density function of the generation times, §(7), is related to this quantity via the equation

B(7) = p(r)o(7). (2)

Ce()

One may introduce a temporal discretization of the above problem so that it can be solved computationally with a suitable
time step (e.g., one day), which is practical when epidemiological data (say, drawn from daily surveillance bulletins) are used
to track the spatiotemporal evolution of an outbreak and/or produce epidemiological projections. The ensuing mathematical
problem has already been addressed through the use of the method of characteristics (Trevisin et al., 2023). Once this
problem is tackled, a process discretized in both time and age of infection is obtained. It reads:

N q

[a(t+1) =00 zi(ORk(t) > fily;(t) (3a)
k=1 i=1

Ij,i(tJr 1) = 0',',111‘,1‘,1 (t) fori>2, (3b)

where: Ij; is the number of infected people of infection age i(i = 1, ..., q) in community jGj = 1, ..., N), fi = ﬁ;l o(r)dr is a
discretization of function ¢(7) over one day, q is the maximum age of infection, and

p(i)
p(i—1)

represents the proportion of infectious individuals with age of infection i — 1 that are still infectious on the next day.

Oi_1=

2.2. A spatially-explicit Leslie model
Let us now define a column vector I(t) that collects all the space-age of infection compartments at time ¢, that is:
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T
) ={lq,..In1,- Tig - Ing) (4)
with T indicating matrix transposition. It is possible to rewrite equation (3) in matrix form as:
I(t) = Ld(t - 1), (5)

where matrix L; is the Leslie projection matrix at time t. The elements of the Leslie projection matrix L;(t) (Leslie, 1945) can be
obtained by differentiating each equation by each state variable as follows:

Lix(t) = X (6)

where gj is the j-th equation shown in equation (3) and X is the k-th state variable (listed as in Eq. (4)). For the process shown
in model (3), the Leslie projection matrix is a block matrix that takes the following form:

Ti(t) Ta(t) - Tgq(t) Tg(t)

0'111\] 01\] 01\] ON
L) =| On o2y - Oy Oy |, (7)
O Oy - ggqly Oy

where 1y and Oy are the identity and null matrix of order N, respectively, and the submatrices Tj(t) are defined as:

R1(O)z11(t) Ra(H)z12(t) ... Rn(t)zin(b)
Ti(t) = o0f; Rl(t)zzﬂ(t) Rz(t)zzzz(f) RN(t):ZZN(t) . (8)
Ri(Ozwi(6) Ra(Dzna(t) ... Ru(t)zuw(t)

In order to carry out our reactivity analysis, we shall recur to two additional observed variables, the total abundance of
infected people in a given node j at time t(Y1(t)) and their prevalence in the population (Y(t)). The rationale for this choice is
that, within real-time surveillance programs, the number of infected individuals is usually estimated as a whole and not for
each age of infection. Also, decisions on intervention measures are usually taken at this level of data resolution. They are
defined as:

T T
Y0 = {¥1Yi v Yo = {v3,¥3,. YH ) 9)
where:
. q . 1 q
Yy => I and ¥, = n > i (10)
i=1 i=1

The above algebraic transformation can be done via the block matrices

1 1 1
Wo— (g 2t o). (1)
such that
Yq(t) = W;I(t) and Y, (t) = W5I(¢). (12)

It should be noted that both W; and W, are full-rank matrices, that is, their nullspaces coincide with the zero vector. This
implies that for any I(t) with at least one non-zero element, the corresponding output Y/{(t) = W/I(t) (r = 1, 2) has at least one
non-zero element. This property is a necessary condition to carry out our short-term reactivity analysis on the observed
variables Y(t) and Y(t).

2.3. Short-term reactivity analysis: the discrete epidemicity index and the amplification envelope
The evaluation of the Leslie projection matrix on a given day allows one to carry out a quantitative analysis of short-term
epidemiological dynamics. Before continuing, let us briefly recall the computation of the algebraic p-norm (denoted as ¢”) of a

vector x of dimension n:
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n 1/p
lIxll, = <lei”> (13)
i=1

Let us now introduce the amplification envelope of a perturbation (Neubert & Caswell, 1997), which corresponds to the
maximum growth of a trajectory departing from an equilibrium (in this case, the DFE) and is defined as:

[Yr(t+m)ll, || W (L(6)™ ()],

#0 HYr— = X||I(t)Hp¢O er

: (14)
®lp

Qw
.Am( ) maX”Yr ‘ Hp

where m represents the number of days after which the perturbation's growth is evaluated, and r = 1, 2 depending on the
chosen transformation matrix W,. Notable particular cases include the discrete epidemicity index (Mari et al., 2024), which is
defined for m = 1 and corresponds to the maximum amplification of any perturbation in one time step, that is

£7(t) = AT (1), (15)
and the maximum amplification achieved by any perturbation at any time i.e.,

W (L(0)™ (D)
AL« (£) = maxp Al (t) = maxmmax”l(t)HﬁOHWr—P. (16)

Ollp

Note that the above formula is valid under the hypothesis that the Leslie projection matrix can be ‘frozen’ on day t and applied
also in the following days, which is a reasonable assumption at least over relatively short time intervals.

Regardless of the epidemiological metric of interest, it is necessary to define which norm should be used to measure the
amplifications. The most common choices are 2! or ¢, where the former corresponds to the total absolute deviation of a
trajectory originated by a perturbation of the DFE, while the latter refers to its Euclidean distance. In both cases, the
epidemicity index can be formally (and in some cases analytically) defined. The choice of the norm addresses different in-
formation regarding the fate of a perturbation and has been shown to impact the results of the analysis (Mari et al., 2024). In
the following, we shall conduct our reactivity analysis using the output variable Y; (total number of infectious individuals in
each local population) as measured by the 2!-norm, as well as the output variable Y (prevalence of infectious individuals in
each local population) as measured by both the 2-and the 2>-norm. Because the most populated nodes of a metapopulation
are more likely to record more infectious individuals, the use of the 92-norm with the output variable Y; would overshadow
the epidemiological role of other, less populated nodes, regardless of whether their healthcare infrastructure could poten-
tially be under severe strain.

In addition, it may be of interest to consider the epidemicity subset, which is the ensemble of nodes that can produce
transient responses (Harrington et al., 2022). The epidemic subset in the p-th norm is defined as:

IWLOCp, )

/TP 17
WD, (7

E(t) = {j such that MaX ) <0

where we used I;(t) to indicate the set of infected people in node j.
2!-norm. Applying this norm to a non-negative vector Y(t) corresponds to evaluating the sum of the vector components at
time ¢, that is:

IY(0)]l =D Y;(t). (18)
j
Therefore:

N 4
WOl = > Li(t). (19)

j=1 i=1

is the total abundance of infectious individuals in the whole metapopulation at time t. By using the multiplication by the
Leslie projection matrix, and by recalling the column-stochasticity of matrix Z, one finds out that

N q-
W1t +1) Hl—ZZUOR Ofil;(t) +ZZ‘711]1 (20)

j=1 i=1

If we let o4 = 0, the above expression reduces to:
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N ¢
IWHI(E+ 1)l = > > (a0R;(0)f; + 7)j(t).- (21)

j=1 i=1

Therefore, the problem of finding the & epidemicity is equivalent to:

N 4q
manYiZ Z UOR] (t)f; +‘71) jl(t)
j=1 i=1
N g (22)
subject to > "I;(t) = constant.
j=1 i=1

This is a linear programming (LP) problem in the variables Ij;(t). Since there is only one equality constraint, the optimal
solution has just one basic variable, precisely the one characterized by max;; (soR;(t)f; + 0;). For this well-known result, see
e.g., Luenberger (1973). One can of course set the constant to one so that [;; = 1 and the epidemicity index reads:

SQ] (t) = maxj,i (UoRj(t)fi + 0',‘) (23)
If we assume gj = ¢ Vj < g, and f; = 0, then:
&% (£) = gomax;R;(t)max;f; + o. (24)

This result shows that the maximum one-step growth of the system depends on the maximum local effective RN. As such,
whenever any local effective RN exceeds the threshold (Mari et al., 2024) the system is reactive, which implies that

ao maxf
there exists at least one perturbation that develops a growing response associated with a transient epidemic outbreak.

The ¢'-norm can be used for the prevalence of infectious people. In this case, the norm is proportional to the average
prevalence across the different communities. As such, a decision maker might be interested in avoiding its increase over time.
The relevant algebra becomes slightly more complex. Let us consider the norm

N q Ii
IY2(0)[ly = WA = >0 >+ ©
k=1 i=1

ng

Multiplying by the Leslie matrix, at time t + 1 we have

N N n ()
IWl(t+1)||; =00 ) szjRj(t)er > f; 0

k=1 j=1 i-1 4 k=1 i=1

N .
Z zq:ailk’l(t). (26)

Nk

Let us introduce the variables y; ;(t) = % thus obtaining a revised form of the above formula, which now reads:

N N N ¢
Wt + 1)y = Zzzkj n ny]l +Z Zaly]l
k=1 j=1 k iz j=1 i=1
(27)
N ¢ N
ZZ{(ZZM ) (B)fioo + 07 | ;).
j=1 i=1
Therefore, the problem of finding the epidemicity index, that is maxy, H#OW is equivalent to the following LP
problem:
max; ; (aon;R;()f; + 07)y;i(t)
(28)

N 4
subject to » " y;;(t) = constant,

with n;(t) = Zk 1245 (£) nf The solution has one basic variable, the one characterized by: max;;(aon;(t)R;(t)f; + 0;). The
epidemicity index is given by
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&% (t) = max;; (gon;(OR; (O + 7). (29)

It should be noted that if all ny are equal, then this solution would yield the one shown in Eq. (23). If we assume g =0 Vj < q,
and f; = 0, then:

€Y (t) = somax;n;(t)R;(t)maxf; + o. (30)

Therefore, if we consider the prevalence to establish epidemicity, the focal community might not be the one with the
maximum RN, but the one with the maximum 7;(t)R;(t), which depends on the interplay between population size, con-
nectivity, and local RNs.

If one considers the epidemic subset in 2!-norm, its elements are defined for the observed variable Y;(t) as the nodes
corresponding to:

ooRj(t)max;f; + o> 1, (31)
and, for the observed variable Y;(t) as:
aonj(O)R;(t)maxf; + o> 1. (32)

Any perturbation to the DFE acting upon one or more of these age-space combinations would thus be at least temporarily
amplified, thereby developing a transient epidemic outbreak. As an example, these perturbations may be associated with the
arrival of infected individuals with specific ages of infection in specific communities of the spatial network, provided that the
local effective RNs allow for epidemic behaviour.

2%-norm. In this case, the norm of the infectious compartment is defined as the Euclidean distance from the DFE, i.e.:

IMOIPENH G (33)
J

Thus, the 22-norm accounts for the behaviour of the whole system, but emphasizes superlinearly the fastest growing local
components of the perturbation. For this reason, and owing to the structure of the Leslie projection matrix, a linear pro-
gramming solution could not be yielded. A closed-form analytical solution is however possible should one consider an iso-
lated node with no connectivity (see Mari et al. (2024)). In order to evaluate the effect of mobility on the ¢>-norm epidemicity
index, we measure the divergence between the epidemicity indices computed with connected versus disconnected nodes. To
this end, we resort to the mean absolute percentage deviation, which is defined as:

1 - —EF |
MAPD = Z? (34)
i=1 i
where E¥ denotes the ¢2-norm epidemicity index corresponding to a metapopulation with all £ = 0 Vj (i.e., a metapopulation
where the connectivity matrix C is an identity matrix).

24. Long-term dynamics: the global reproduction number

A simple way to assess the long-term dynamics of an epidemic usually consists of evaluating the RN, which is commonly
done via the next-generation matrix (Diekmann et al., 1990; van den Driessche & Watmough, 2002; Allen & van den
Driessche, 2008; Diekmann et al., 2010). While this approach has been extensively used for continuous-time models, it
has not yet found many applications in discrete-time epidemiological systems (Allen & van den Driessche, 2008).

Following the canonical next-generation matrix approach, let us decompose the Leslie projection matrix into two
matrices, a transmission matrix T(t), containing all the terms reflecting the new cases (see Eq. (3)a), and a transition matrix
=(t), containing the transition terms (see Eq. (3)b), such that T(t) + =(t) = L(t). As such, the full transmission matrix T(t) is
constructed as follows:

Ti(t) To(t) - Tg_1(t) Ty(t)
Oy Oy - Oy Oy
T(t) = : : : : ) (35)
Oy Oy - Oy Oy
Oy Oy - Oy Oy

where matrices Tj(t) are defined as in Eq. (8). The full transition matrix, on the other hand, is defined as follows:
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Oy Oy - Oy Oy
oly Oy - Oy Oy

()= O oy - Oy  Oy|. (36)
O Oy - oy qly Oy

The next-generation matrix can be built as (Allen & van den Driessche, 2008; Van Den Driessche, 2017):

K(t) = T(t)(Ing — =(t)) ", (37)

where Iyq is the identity matrix of size Nq x Nq. The global RN of the system is defined as the spectral radius of the next-
generation matrix:

RE(t) = p(K(1)). (38)

This quantity determines the long-term behaviour of the system as a whole and also bears consequences on the amplification

envelope. In fact, if R%(t)> 1 then the amplification envelope grows unbounded over time (i.e., Afliax(t) — o0 if t = o). This
relationship implies that in a spatially connected system where local effective RNs are either above or below the unit
threshold, whenever RC(t) > 1 there exists at least one possible perturbation of the DFE that could be indefinitely amplified
over time. In practice, however, the finite size of the population and the nonlinearity of the transmission process would
prevent us from observing this behaviour.

2.5. Assumptions on COVID-19

To calculate the distribution of generation times, we use the estimates reported in Ganyani et al. (2020), where a mean
generation time of 5.2 days and a standard deviation of 1.7 days are documented. We estimate a mean duration of infection
(including incubation and a pre-symptomatic phase followed by either symptomatic or asymptomatic periods) equal to 11.7
days (which corresponds to a constant value g; = exp(—0.068) Vj > 1) (Gatto et al., 2020). Finally, we assume ¢ = 1 for the
sake of simplicity.

2.6. Experiments on a synthetic metapopulation

In some of our experiments, we resort to a fictitious metapopulation of the kind used in Trevisin et al. (2023). Specifically,
we assume that the metapopulation is composed of N connected local communities, whose population abundance is
randomly generated from a Zipf distribution with an exponent equal to —2—a value in line with previous estimates e.g., Soo
(2005)—and a minimum value generated from a uniform distribution with support between 10% and 10° to mirror the typical
population size of a mid-sized city. The number of communities is also drawn from a discrete uniform distribution whose
support includes all natural numbers in [2, 10]. This choice was made to contain the computational burden arising from a
larger number of connected nodes. The proportion of outgoing mobility £; = >~;-/Cj; is drawn from a normal distribution with
reflecting boundaries (to ensure values between 0 and 1) and prescribed mean/standard deviation values. For mobile in-
dividuals, the probabilities of reaching different destinations are randomly generated from a uniform 0—1 distribution and
normalized to £;. For the non-spatial case, it has been demonstrated that there is a clear relationship between the (effective)
RN and the epidemicity index, and that this relationship can be estimated analytically (Mari et al., 2024). The local effective-
RNs are generated from a log-normal distribution with a mean of 1.05 and a standard deviation of 0.33, whose parameters are
generated by observing real-world COVID-19 effective reproduction number timeseries in several countries (see Huisman
et al. (2022)).

2.6.1. Experiments on a two-node synthetic metapopulation
In some cases, we use an even simpler, two-node synthetic metapopulation with local population abundances n; and n,.

We further define the local RNs as R; = 0.5, R, = 1.5. The mobility fluxes between the two nodes are described by the
connection matrix

c- (1 %51 ]§252>’

where £7 and &, quantify the outgoing mobility from either of the two nodes.
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2.7. Experiments on the COVID-19 pandemic in Italy

In what follows, we will resort to the COVID-19 pandemic in Italy between January 24, 2020 and October 15, 2021 as a
testbed for our analytical framework. The rationale behind this choice, in particular concerning the selected time window, is
that suspected cases linked to the BA.1 (Omicron) variant, which substantially altered the epidemiological parameters (such
as the distribution of generation times), were detected in Italy shortly after this period. Extending the temporal window of
analysis would thus require a multi-variant approach, which lies outside the scope of this paper. We consider N = 20 local
communities, corresponding to the regions of Italy (first-level administrative divisions). Epidemiological data is retrieved
from the Italian Department of Public Protection (https://github.com/pcm-dpc/COVID-19). It should be noted that, for the
sake of standardization, data from the autonomous provinces of Trento and Bolzano are merged in a single region Trentino-
Sudtirol (while they correspond to different NUTS-2 entities for statistical purposes). To evaluate matrices C and Z, as well as
the local effective RNs, we resort to the same technique implemented in Trevisin et al. (2023), which is based on Eq. (3a), with
I;; representing the new infections observed in node j at time t. Note that the RNs calculated in this way do not correspond to
the global RN introduced above; rather, they represent sequences of regional-level RNs that also account for the local con-
nectivity patterns of each region. The pre-pandemic connectivity matrix is estimated through mobility data obtained from the
Italian Institute of Statistics (ISTAT) (accessible at: https://www.istat.it/it/archivio/139381) and updated during the COVID-19
pandemic through the "Workplace mobility” information provided by the Google Community Mobility Reports (https://
www.google.com/covid19/mobility/). The computation of the aforementioned matrices is identical as in (Trevisin et al.,
2023), except for a coarser spatial resolution (regional vs. provincial) being chosen to compensate a wider spatial domain
(national vs. regional).

3. Results
3.1. Effect of mobility on the global reproduction number and epidemicity indices

We first tested the influence of the connectivity of the system on the value of the global effective RN, R¢(t), using a two-

node synthetic metapopulation as described in the Materials and Methods section. Specifically, we investigated how R®(t)
relates to the largest local effective RN and to the weighted mean of the local effective RNs (where the weights are assumed
equal to the proportion of the total resident population in the corresponding node). Our results suggest that

% < RE(t) < maxjR;(t), (39)

where n; is the population of the j-th community, and R;(t) is its local effective RN.

The first result we report (Fig. 1) is that the global RN may take sub-unit values even is one node has a local RN above the
unit threshold. Under such scenario, the number of expected infections does not grow indefinitely over time, but rather tends
to zero asymptotically. The global RN is indeed defined as a function of not only the local RNs, but also the local populations
and the mobility fluxes among the interconnected communities. We find that the global effective RN strongly depends on the
differences in population size between the two nodes and the configuration of the outgoing fluxes (Fig. 1). Indeed, for all the
tested parameter combinations, the global RN appears to be maximum (i.e., equal to 1.5 in our numerical example) for either
zero or full outgoing mobility (i.e., when the new infections in each node depend only on the active cases in another, unique
node). For well-mixed mobility fluxes (both & equal to 0.5, where £ represents the proportion of outgoing mobility from each
node), the global effective RN takes its minimum value, which is equal to the population-weighted average of the local RNs.
We find singularities when only one of the £ is null. Because of the definition of the spatial exposure matrix Z, in such cases the
active population in either of the two nodes is null, which prevents the computation of the epidemiological indices. Finally, a
central symmetry holds for all combinations of the two mobility-related parameters. When different configurations of the
local population sizes are tested, the lower bound of the global RN changes following the relationship shown in Eq. (39). A
larger population in the node with the largest local RN results in higher values of the global RN across the tested mobility
combinations, whereas the opposite induces a drastically lower minimum value of the global RN.

Moreover, we tested the impact of the two local RNs with fixed mobility fluxes (§; = £, = 0.25) for different configurations
of the population distribution (Fig. 2). We found that both local RNs and population sizes substantially impact the values of
the considered epidemiological indices (highlighting whether the system may asymptotically converge to a stable DFE and, if
so, whether this equilibrium is reactive). In a simple scenario with equal populations in the two nodes, the condition for the
asymptotic stability of the DFE (RS < 1, which applies when both local RNs are <1 or when one is above the unit threshold
and the other is sufficiently below it) does not automatically guarantee non-reactive conditions. Indeed, panel A of Fig. 2
shows that additional thresholds for both local RNs must be met to guarantee that both the ¢'-and the ¢*-norm epide-
micity indices take sub-threshold values, similarly to previous finding for continuous-time systems (Mari et al., 2021). When
the population is heterogeneously distributed (panels B—D), with one local population being substantially larger than the
other, the global RN almost uniquely depends on the RN of the most populated node, with little dependence on the other local
RNs. The global RN displays high sensitivity to the largest local RN whenever the ny/n; ratio increases, while this behaviour is

883


https://github.com/pcm-dpc/COVID-19
https://www.istat.it/it/archivio/139381
https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/

C. Trevisin, L. Mari, M. Gatto et al. Infectious Disease Modelling 9 (2024) 875—891

ng = 108

0.5 1 1.5

Fig. 1. Global RN in a simplified network of two nodes as a function of the proportion of mobile individuals. The black lines correspond to the unit threshold of
the global RN. Different population size combinations are tested in the different panels. The two nodes have local RNs Ry = 0.5 and R, = 1.5. Mobility fluxes are
defined through the coefficients of outgoing mobility from each node (¢; and &,; see Materials and Methods).

less pronounced for the considered epidemicity indices,as shown in Fig. 2. However, when the population sizes are extremely
different from each other (e.g., in the case of Fig. 2D, where ny/n; = 50), then the epidemicity indices computed on the
prevalence of infectious individuals acquire an almost exclusive dependence on the RN corresponding to the largest local
population. Finally, the threshold for the ¢'-norm epidemicity never changes and is slightly larger than 0.2, which is
consistent with previous spatially-implicit investigations (Mari et al., 2024).

We also stress that, for given combinations of the two local RNs, there exists a scenario where the 2!-norm epidemicity
index is below the reactive threshold and its 2% analogue is not. Under our output transformation matrices W; and W5, this
implies that the total number of infectious people is increasing, yet the 2>-norm of the local prevalences of infectious in-
dividuals is decreasing. Another interesting result concerns the comparison between the 2!'-norm computed on the total
number of infectious individuals (see Fig. 2, where non-reactivity is represented by zones 4 and 5) and that related to their
prevalence in each local population (zones 4 and 6 in Fig. 2). The two observed variables do not share their reactivity
thresholds unless all populations are equal, as shown in our analytical derivations (see Materials and Methods). Indeed,
whenever one node has a population that is substantially larger than the other node's, the threshold of the RN above which
reactive conditions on the prevalence of infectious individuals apply decreases substantially. In our two-node example, it can
be seen that this threshold is halved when the most populous node has a fifty-fold larger population than the other, as shown
in Fig. 2D. Similarly to the 2>-norm, we also remark that the reactivity of the output variable Y, as measured with the 2!-norm
is almost uniquely dependent on the RN of the node with the highest value when substantially different population sizes are
involved, as shown by the elongated shapes of the regions marked as 6 in Fig. 2.

We also measured how the 22-norm epidemicity index changes when higher mobility fluxes (as determined by the co-
efficients of outgoing mobility £; (j =1, ..., N)) depart from a baseline configuration without mobility. To this end, we resorted
to a synthetic metapopulation of N communities with Zipf-distributed population sizes (Materials and Methods). We find
(Fig. 3, panels A—I) lower values of the ¢>-norm epidemicity index for increasing values of the outgoing mobility parameter £,
which is also reflected in the growth of the mean absolute percentage deviation (MAPD, Fig. 3]) with respect to the scenario
without mobility. We also note that, for larger outgoing mobility fluxes (¢ > 0.05), an increase in the number of the inter-
connected communities further amplifies the deviation from the no-mobility scenario (Fig. 3K).

3.2. Computational experiments on the COVID-19 pandemic in Italy

In the following, we provide a practical example of the computation of the epidemicity indices in a realistic spatially
explicit setting. To that end, we refer to the epidemiological data from Italy described in the Materials and Methods section,
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Fig. 2. Comparative analysis of the epidemiological indices in a metapopulation with two nodes. Dependence on the two local reproduction numbers of the
global reproduction number, the ¢'-norm of both observed variables (Y; and Y., respectively the total number of infectious individuals and the prevalence of
infectious individuals in each local population), and the ¢2-norm epidemicity index (based on variable Y5). Colors code different configurations of the epide-
miological indices, leading to different short- and long-term disease transmission scenarios (inset of panel A). Specifically, red denotes endemic conditions (1),
dark grey represents epidemic but non-endemic conditions (2), light grey represents a scenario where the system is reactive in the 2'-norm applied to both
output transformations but not in the 22-norm applied to the Y, transformation (3), and the blue hues represent non-reactivity in at least one of the two
considered 2'-norms (4—6). For both nodes, £; = £5 = 0.25.

where details on the time-varying contact matrix and effective RNs can also be found. Our results are summarized in Fig. 4.
We observe that the global effective RN is quite close to the largest local effective RN for most of the considered period (panel
A), owing to the fairly low mobility coefficients (the largest value reached by any §; is equal to 0.045). The global effective RN,
depending on whether the epidemic is waning or revamping, oscillates across the unit threshold, which leads to the
maximum value of the amplification envelope (panels B and C) taking non-finite values at times. In contrast, the epidemicity
indices always take larger-than-unit values, regardless of the chosen norm. Given our choice of transformation matrices W
and W,, we find that the epidemicity indices computed in the two considered algebraic norms are very close (0.4% mean
absolute percentage deviation), with the values computed with the 2'-norm being slightly larger than their ¢>-norm coun-
terparts. An analysis of the epidemic subset shows that, for both norms and output transformations, all regions were reactive
during the whole timespan of our analysis. This finding suggests that suitable perturbations to the DFE (e.g., in the form of
imports of cases with an age of infection close to the peak in transmissibility) could have produced transient (if R¢(t) < 1) or
sustained (if R¢(t)> 1) epidemic outbreaks regardless of the region(s) where the perturbation was localized and the time
when it occurred. We also compared (Fig. 4B) the 2'-norm epidemicity indices based on the total number of infectious in-
dividuals and their prevalence within the local populations. We found that, although some differences can be spotted, they
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Fig. 3. Impact of increasing outgoing mobility fluxes on the ¢%-norm discrete epidemicity index based on the prevalence of infectious people. A—I: Scatter plots of
the disconnected ¢2-norm epidemicity index E versus the spatially connected epidemicity index &% for different values of the outgoing mobility parameter £.
The dashed black lines represent the identity relationship. J: MAPD between the values of the connected and disconnected ¢>-norm epidemicity index, as a
function of outgoing mobility £. K: As in the left-bottom panel, but MAPD is shown as a function of both outgoing mobility ¢ (color coded) and the number of
interconnected communities N.

are not quantitatively large, with a mean absolute percentage deviation (with respect to Y;) of 0.56% for the 2'-norm
epidemicity index and of 5.56% for the maximum value of the corresponding amplification envelope.

A correlative analysis between each local effective RN, the global effective RN, and the different epidemicity indices has
been carried out too. Our analysis shows that each local effective RN correlates in a similar way to each of the other considered
epidemiological indices. We find that both the global effective RN and the largest local effective RN correlate almost perfectly
with the 2!-norm epidemicity computed on output variable Y;, with a correlation coefficient of 0.9994 and 1, respectively.
They also correlate with the ¢>-norm epidemicity calculated on the prevalence of infectious individuals in the local pop-
ulations (Y2), with coefficients of 1 and 0.9994, respectively. Because the COVID-19 epidemic in Italy has often produced
synchronous effects in many Italian regions, there also is high correlation between each local effective RN and both the global
effective RN and the ¢>-norm epidemicity index, with coefficients ranging between 0.84 (Molise) and 0.98 (Lazio). However, it
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Fig. 4. Reactivity analysis of the COVID-19 epidemics in Italy. A: Local effective RNs inferred from each region of Italy (thin grey lines) and global effective RN
(thick yellow line). B: ¢'-norm epidemicity index (left axis, dark blue) and maximum value of the amplification envelope (right axis, yellow) of the variables Y,
(total number of infectious individuals in each community) and Y, (prevalence of infectious individuals in each community). C: 82-norm epidemicity index (left
axis, red) and maximum value of the amplification envelope (right axis, green). In panels B and C, grey patches denote R (t) > 1 (in which case the amplification
envelope grows unbounded over time). The Bayesian method used to compute the local effective RNs (Trevisin et al., 2023) produces numerically close values of
the local effective RNs at the beginning of the COVID-19 epidemic. This reflects the fact that the epidemic wave does not affect all nodes at the same time.

can be seen that the fraction of time each region dominates from an epidemicity perspective (e.g., a perturbation in that node
of the metapopulation would produce the largest short-term growth in the system output) is different for the two compared
variables, owing to variations of the 7;(t) coefficient (Materials and Methods). These differences in the share of time each node
dominates across the two different output variables also reflect different epidemicity thresholds for the local RN to guarantee
non-reactive conditions. While these variations in the threshold values are not particularly strong, especially given the ho-
mogeneity in mobility fluxes across the different Italian regions, they do exist. The region that requires the lowest RN
threshold to warrant non-reactive conditions is Apulia (with a limit of 0.202) which is also the region with the highest share of
time as the dominant node (Fig. 5). The region that would require the least stringent threshold is Molise (whose limit for the
RN is 0.226).

Finally, to disentangle the effect of each region’s local RN on the global RN and the 22-norm epidemicity index, we carried
out a sensitivity analysis where we added a +20% variation to each time series of local effective RNs (as shown in Fig. 4A), one
at a time. This analysis is shown in Fig. 6. Positive 20% variations of one local RN often result in a positive 5 — 10% variation of
the global RN and a positive 0.5 — 2% variation on the epidemicity indices, with similar effects on each index. We also find a
negative correlation (with coefficient —0.90) between positive variations of the ¢!-norm of the epidemicity index based on the
prevalence of infectious individuals in each node and the nodal thresholds for the RN guaranteeing non-reactivity. On the
other hand, only reducing one local effective RN at a time produces little to no impact on any of the considered epidemio-
logical indices. This is also justified by all regions being always well above the reactivity threshold.

4. Discussion

Our main result in this paper is the completion of a portfolio of tools for the estimation of epidemiological indices from
data. Such indices generalize current descriptions of infectious disease geographies by embedding general spatial effects and
the actual reactivity of disease demographies. As a result, we have obtained a general framework that allows us to revisit
current standards in the characterisation of the instantaneous state of epidemic transmission. In particular, by relaxing the
assumption of spatially implicit disease dynamics, we have found that one may observe significant differences in alternative
evaluations of the state of an epidemic. Comparative analyses suggest that a ranking of specific control measures may emerge
depending on the degree of heterogeneity of community composition and of the related mobility fluxes. We thus completed
the generalization of popular data-driven epidemiological estimators by deriving spatially explicit epidemicity indices to
include information about human mobility and spatially-driven exposure to contagion. Our collection of results shows that
adding the effects of mobility and spatial connectivity, as opposed to simple spatially implicit frameworks, allows one to
better understand the behaviour of an ongoing epidemic and the role of each node on the collective fate. The spatially
connected framework that we introduced here also contains the definition of epidemic subset, defined as the ensemble of
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Fig. 5. Share of the time each Italian region spends as dominant node from an epidemicity perspective. A: Map of Italy and its regions. Please note that, for
graphical purposes, the position of Sardinia has been slightly displaced eastwards and some Mediterranean islands have been removed. B: Fraction of time spent
as dominant node in the epidemic subset computed with the total number of infectious individuals in each region (observed variable Y;(t) with the ¢'-norm). C:
Fraction of time spent as dominant node computed on the prevalence of infectious individuals in each region (observed variable Y(t) with the ¢'-norm).

local communities achieving reactive conditions. Here we improve over previous approaches by providing discrete-time
numerical schemes that do not require the implementation of the time-marching solution to a fully coupled system of
ODEs (such as a SIR-like compartmental model, although such applications exist: see e.g., Mari et al. (2018, 2021); Trevisin
et al. (2022)) and can thus be directly used to compute epidemiological indicators from surveillance data. In fact, the tools
described here can be implemented within state-of-the-art computational frameworks, like those used for real-time esti-
mation of effective reproduction numbers via renewal equations (Cori et al., 2013; Trevisin et al., 2023).
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Fig. 6. Sensitivity analysis of selected epidemiological indicators evaluated in the context of the COVID-19 pandemic in Italy. Mean percentage deviation of the
time series of the global reproduction number (panel A), and of the ¢'-and ¢*>-norm epidemicity indices (panels B and C, respectively) of the prevalence of infected
individuals (observed variable Y,), using a +20% variation of the RN time series in each region with respect to the baseline estimates shown in Fig. 4. The effects of
positive perturbations are shown in red, whereas negative perturbations are shown in blue.
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Our results applied to synthetic data show that both the global effective RN and the various epidemicity indices display a
major dependence on the local population size, on mobility fluxes among interconnected communities, and on local RNs. The
results suggest that the computation of the global RN is essential to understand the epidemiological behaviour of a given
metapopulation. Indeed, under a specific set of conditions, having some local effective RNs above the unit threshold does not
necessarily lead to a R® > 1. This implies that the metapopulation may converge to an asymptotically stable DFE despite the
fact that some communities might be characterized by effective RN values pointing at local endemic behaviour. Our results
also confirm the dependence of the global RNs on the local ones, as previously proposed in the literature (Gatto et al., 2012,
2013; Mari et al., 2021). While the long-term characterization of the dynamics of the system, captured by the global effective
RN being either above or below the unit threshold, strongly depends on the magnitude and distribution of the involved
population, as well as on the strength of the mobility fluxes, we find that the reactivity analysis based on the 2!-norm is
substantially less dependent on such factors. This has relevant consequences. In fact, in order to secure non-reactive con-
ditions in the whole metapopulation, all local communities must also display non-reactive conditions, i.e., all local effective
RNs should be below the reactivity threshold (Mari et al., 2024).

We suggest that performing reactivity analyses using multiple output transformations may help to shed light on different
characteristics of transient epidemic growth (measured in terms of, e.g., the sheer increase in the total number of infected
individuals or the prevalence of infections in different communities). Using different norms may shift the attention from
average trends to rapidly increasing local outbreaks, both of which can be useful as short-term warnings of potentially
mounting pressure on the healthcare system at different spatial scales. Combining different output transformations and

norms can be quite informative too. As an example, by having & (t) > 1 evaluated with the Yq output and & (t) <1 evaluated
with the Y3 output signals that the potential burden on each local healthcare system may not increase in the short run, while
the number of total infected individuals does.

The identification of the reactivity properties of an epidemiological system is thus essential to characterize carefully an
epidemic outbreak. This is proven by our 2'-norm analysis on both the total number of infectious individuals or their
prevalence in each local community. Under suitable conditions, the threshold that the spatially connected RN value should
not exceed might be substantially lower than not only the unit—commonly seen as the divide between a hopeful or gloomy
near future—but also the typically stricter spatially-implicit reactivity threshold (Mari et al., 2024). However, when the
mobility fluxes among communities are less marked, like in the case of our practical example on the COVID-19 pandemic in
Italy, this may not be the case, and the reactivity thresholds remain close to each other. This is caused by the similar pop-
ulations and the comparable (and small) mobility fluxes across many Italian regions. Such thresholds would, therefore, be
substantially different in the presence of higher mixing and heterogeneity among local populations.

Our key practical results are the global effective RN and the reactivity analysis in Italy. We find that non only the considered
epidemicity indices always exceed the unit threshold, thereby suggesting reactive conditions throughout the period of
analysis, but also all Italian regions were reactive during the considered timespan of the COVID-19 epidemic in Italy. This
observation has practical implications and justifies why, despite subthreshold estimates for the effective RNs during lull
phases of the epidemic, notably during the 2020 and 2021 summers, local flare-ups have been so common throughout Italy.
Furthermore, our correlation analyses showed that the considered epidemiological parameters are strongly associated with
the largest local effective RN. This implies that, in order to secure non-reactive conditions, all local RNs should be smaller than
a given threshold, which agrees with previous findings (Mari et al., 2024) and our claims stated hereinabove.

An overaching message of our analysis is that a spatial framework becomes essential, as opposed to simply useful and
intellectually rewarding, in given circumstances characterized by a marked heterogeneity of population sizes, mobility fluxes,
and local epidemiological conditions. For this reason, it is useful to retain the ability to mobilize these new spatially explicit
tools when the level of heterogeneity in the disease geography, or boomimg demographic projections, imply forthcoming
conditions conducive to major departures among the key indicators. In particular, this applies to epidemicity indices
measuring the maximum growth rates of new infections. However elaborate, the spatially explicit version of the epidemicity
index that we have derived here may provide results that sharpen decisively the prognostic worth of other epidemiological
indicators based on reported infections. This is not only evident for airborne pathogens, such as the virus causing COVID-19,
but acquires a great importance also for waterborne diseases and for pathogens strongly depending on the environment,
where heterogeneous local conditions must be considered to correctly describe the course of an ongoing epidemic (Trevisin
et al,, 2022).

A natural follow-up of our work would involve the extension of our framework to a scenario considering the circulation of
either multiple pathogens or several different strains of the same pathogen within the same metapopulation. Indeed,
whenever two or more pathogens (or strains thereof) are simultaneously spreading across a metapopulation, they may
produce an increased stress on healthcare systems and a heightened risk of infection (European Centre for Disease Prevention
and Control, 2022; Furlow, 2023). For this reason, an adaptation of the relevant algebra underlying the epidemiological in-
dicators that we have explored here would make it possible to fully understand the epidemiological severeness of such
contexts. However, we believe that this is outside the scope of this paper.
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5. Conclusions

In this work, we derive and implement a portfolio of indicators such as the effective global RN and epidemicity indices
tackling the reactivity of the system in both their spatially implicit and explicit versions. These indicators are based on the
ecological theory of reactivity and may be based on epidemiological data such as the number of reported infections.
Therefore, they may constitute the best guarantee of a comprehensive overview of the effectiveness of epidemic controls
under the typical uncertainty of real-time epidemic management conditions.
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