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Abstract. Forecasting the responses of large-scale civil structures offers an alternative 
to field measurement. Recently, spaceborne remote sensing technology has been 
increasingly adopted to monitor complicated and large structures. This approach 
involves extracting structural displacements from synthetic aperture radar images. To 
overcome some important restrictions associated with these images, the best solution 
is to exploit machine learning-aided prediction of displacement responses. For this 
purpose, it is necessary to measure key external factors, particularly environmental 
and operational conditions. In some cases, installing sensors for these factors may not 
be tractable, in which case some unmeasured and unknown conditions, which can 
affect structural responses, are not incorporated into the prediction process. To avoid 
poor performances and inaccurate forecasting outputs, this paper proposes a 
predictive solution using the idea of supervised teacher-student learning. This method 
consists of two parts of an elaborate regression model via a long-short-term-memory 
neural network acting as a teacher and a simple model through a single-hidden-layer 
feedforward neural network behaving as a student. The effectiveness and success of 
the proposed method are benchmarked by limited information of a long-span bridge. 
Results show that this method can adequately forecast limited bridge responses in the 
presence of the impacts of unmeasured predictors. 
 
Keywords: Forecasting, Machine Learning, Teacher-Student Learning, Supervised 
Regressor, Limited Data, Long-Span Bridge 

1. Introduction 

Evaluation of structural behavior of critical and large-scale civil structures is of paramount 
importance to every society in order to preserve them against catastrophic incidents 
attributable to external loadings such as earthquakes, strong winds, floods, etc. Structural 
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health monitoring (SHM) presents a practical and promising strategy for structural behavior 
evaluation, damage diagnosis, structural failure mode anticipation, and remaining useful life. 
This strategy is based on installing different sensors through either contact [1] or non-contact 
[2] installation frameworks, measuring important data including structural responses and 
environmental/operational conditions, extracting engineering features from raw structural 
responses, analyzing extracted features, and performing SHM tasks [3]. Generally, an SHM 
program can be implemented by model- and data-driven methods [4-7], so that the former 
needs finite element modeling and updating, while the latter entirely lies in the paradigms of 
pattern recognition and machine learning (ML). 

Structural behavior evaluation in the model-driven framework is based on modeling 
the finite element model of the structure under study, updating its initial model, simulating 
different external loadings and environmental actions, and analyzing the behavior of the 
structure of interest [8, 9]. In contract, structural behavior evaluation via the data-driven 
strategy relies on data measurement, feature extraction, and feature analysis under real-world 
external loadings (i.e., ambient vibration or forced vibration) and environmental variability 
(e.g., daily and seasonal temperature, humidity, and wind) [9-11]. One of the limitations of 
the model-based structural behavior assessment is its dependency on a correct finite element 
model of the real structure. As usual, the numerical and real models have discrepancies, in 
which case finite element model updating with the aid of sensory data from experimental 
tests is mandatory [12]. The obstacle is that this process may be challenging for complicated 
and large-scale civil structures. Accordingly, the structural behavior assessment via the data-
driven framework seems more beneficial than the model-driven strategy.  

Nevertheless, the direct concentration on measured data from different sensing systems 
makes limitations. A fact is that civil engineers cannot measure all possible parameters that 
affect structural behavior and responses. Owners and stakeholders of civil structures may not 
persuade to pay considerable costs for sensor deployments and next-generation and 
expensive data acquisition systems with uncertain outputs. Some civil structures are placed 
in impassable environments so that the installation of sensors and data acquisition systems 
may be problematic or even dangerous. Moreover, harsh weather conditions and aging may 
cause sensor malfunction, in which case regular sensor inspection is necessary. All these 
limitations may lead to incomplete and erroneous data measurements that can affect overall 
performances of data-driven methods. These limitations underscore the necessity of a more 
effective and efficient sensing system for monitoring of civil structure. Spaceborne remote 
sensing can alleviate these limitations by providing new data in terms of synthetic aperture 
radar (SAR) images from some satellites. Using these images, which can cover a large area 
on the earth, as well as interferometric techniques, displacement responses are extracted and 
used as important structural responses. However, this strategy includes some limitations. 
SAR images are often huge (i.e., in the unit of GB) and limited so that it may not be feasible 
to provide real-time measurements. Encounter with a small set of displacement samples is 
the other challenge in the spaceborne remote sensing.  

To address the demanding issues regarding structural behavior assessment under the 
data-driven framework, the most effective and efficient solution is to leverage ML-aided data 
forecasting. This solution aims to train supervised ML models (i.e., regressors) and then 
predict unseen response data [13-16]. The success of such models depends strongly on 
training data that contains predictors (e.g., environmental/operational factors) and responses. 
As discussed above, the measurement of all potential predictors may not be possible. On the 
other hand, limited data may degrade ML model performances [17, 18]. This paper intends 
to overcome these challenges by proposing an innovative ML method based on the idea of 
supervised teacher-student learning. This method consists of two parts of an elaborate 
regression model acting as a teacher and a simple model serving as a student. Initially, the 
measured and available predictor and response data is fed into a teacher model developed 
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from a long-short-term-memory (LSTM) neural network thereby reconstruing the response 
data. Subsequently, residual data between the measured and reconstructed response data is 
computed to use as a new predictor. Considering this new predictor along with the original 
measured response data, a student model developed from a single-hidden-layer feedforward 
neural network (SLFN) is trained to finally predict unseen response data. The effectiveness 
and reliability of the proposed predictive method are testified by limited information of long-
span bridges. Results show that this method sufficiently succeeds in predicting bridge 
responses using the only ambient temperature as the main predictor. 

2. Proposed method 

2.1 Long-Short-Term-Memory (LSTM) Neural Network 

The LSTM is a type of recurrent neural network that can learn long-term dependencies in 
data that allows it to store and manipulate information over long time intervals. This process 
is carried out by using three gates including an input gate, a forget gate, and an output gate. 
These gates control what information to keep, discard, or output from the internal memory 
cell of the LSTM. The cell can store values for any length of time and the three gates control 
how much information enters or leaves the cell. The input gate decides what new information 
to add to the cell, while the forget gate adjusts the memory content by keeping or discarding 
the relevant information based on rules. Finally, the output gate determines when the 
information is sent out from the cell. The main functions embedded in an LSTM neural 
network can be derived as follows: 

 𝐫! = 𝜎(𝐕"#𝐱! + 𝐕$#𝐬!%& + 𝐞#) (1) 

 𝐚! = 𝜎(𝐕"'𝐱! + 𝐕$'𝐬!%& + 𝐞() (2) 

 𝐪!) = tanh1𝐕$*𝐬!%& + 𝐕"+𝐱! + 𝐞+2 (3) 

 𝐪! = 𝐫!𝐪!%& + 𝐚!𝐪!)  (4) 

 𝐩! = 𝜎1𝐕",𝐱! + 𝐕$,𝐬!%& + 𝐞,2 (5) 

 𝐬! = 𝐩!tanh(𝐪!) (6) 

where xt and st–1 denote the input and hidden states at time steps t and t–1; at, rt, pt, and qt 
stand for the activations of the input, forget, and output gates and the cell at time step t, 
respectively; Vx and Vh are the weight matrices of the input and hidden states; e is the bias 
vector of each gate and state; and σ refers to an activation function.  

In order to use the LSTM for the regression-based forecasting problem, one needs to 
add the predictor and response data to the input and fully connected layers. Finally, a 
regression layer is considered to predict unseen response data. For simplicity, Fig. 1 shows 
the general form of the LSTM for regression modeling. 
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Fig. 1. General form of regression modeling via the LSTM 

2.2 Single-Layer Feedforward Network (SLFN) 

The SLFN is the simplest form of an artificial neural network (ANN) that contains a single 
hidden layer connecting between the input and output layers. This model also conforms to a 
feedforward strategy where the information moves only in one direction, from the input layer 
to the output layer without any cycles or loops. The single hidden layer is most likely a fully 
connected layer with more than one neuron. In this layer, the inputs are multiplied by weights 
and biases based on an activation function such as rectified linear unit (ReLU), hyperbolic 
tangent (tanh), sigmoid, and linear functions. Given the input (predictor) x and output 
(response) y, the main function of the SLFN is written as follows: 

 𝐲 = 𝜏(𝐖𝐱 + 𝐛) (7) 

where W is the weight matrix; b denotes the bias vector; and τ is the activation function. For 
the regression problem, the SLFN is compatible with the supervised learning paradigm. In 
this case, the input layer receives training data including both the predictors and responses. 
The data is fed into the hidden layer and then SLFN predict the response data at the output 
layer. To simplify, the general form of the SLFN in the regression problem (i.e., the 
supervised learning framework) is illustrated in Fig. 2. 

 
Fig. 2. General form of regression modeling via the SLFN 

2.3 Framework of Supervised Teacher-Student Learning 

The main motive for proposing the supervised teacher-student learning strategy is to address 
the restrictions of unmeasured predictors and limited information. Although the proposed 
data forecasting method has a more complicated structure compared to state-of-the-art 
regressors, it can overcome the mentioned limitations. Generally, this method consists of two 
main parts including a teacher model, which is a rigorous regressor, and a student model, 
which is a simpler regressor than the teacher model. According to the previous contents, the 
LSTM and SLFN act as the teacher and student models, respectively. 
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Fig. 3. Workflow of the proposed solution derived from the supervised teacher-student learning 

To begin, the proposed method inputs the measured predictor and response data into 
the LSTM with the aim of forecasting the response data. If the measured predictor is the 
major factor for variability in the response data, the teacher model operates properly with 
reliable performance. In statistics, the R-squared (R2) metric is one of the widely-used 
measure for checking the performance of a regressor. Good forecasting follows a large value 
of R2 equal or close to one and vice versa. In case of the influence of unmeasured predictors, 
the model cannot predict appropriately. For this issue, the residual between the measured and 
predicted response data is considerable. The underlying rationale behind this fact is the 
residual data contains the unmeasured predictors [19]. Hence, one can incorporate the 
residual data as a new predictor. Using the measured response and also new predictor from 
the teacher model (i.e., LSTM), a SLFN model is trained to predict the response data based 
on the concept of student model. For ease of understanding, Fig. 3 depicts the flowchart of 
the proposed predictive method, where the variable β is a value regarding the goodness-of-
fit in regression modeling.  

3. Application 

3.1 A Steel Arch Bridge with Limited Data 

The steel arch bridge constructed within 2000-2003 is located in Shanghai, China. Fig. 4 
indicates a side view of this structure along with its main dimension. The total length of the 
bridge is equal to 750m including a main span of 550m and two side spans of 100m. The 
bridge girder was fixed by the arch ribs and columns and it was ended with the cross-beam 
at the side spans. The girder of the main span was constructed from a double steel box-beam 
model. This girder included 39.5 m width and 2.7m height, where was supported on the arch 
rib through suspenders and connected to the integral arch and girder segment of the side span 
by bearings at the two ends. 
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Fig. 4. The steel arch bridge 

 
Fig. 5. Limited data of the steel arch bridge: (a) the temperature data, (b) the displacements at the bridge arch, 

(c) the displacements at the bridge main girder 

Due to the geological and environmental characteristics of the zone where steel arch 
bridge is located, it was decided to study the bridge behavior between 2013-2016. For this 
reason, 38 SAR images from TerraSAR-X were used to extract displacement responses at 
the bridge arch and main girder [21]. During the structural behavior evaluation, air 
temperature was recorded to investigate the effect of this environmental factor on the bridge. 
Fig. 5 shows the limited temperature and displacement data. 

3.2 Data Forecasting 

To anticipate the bridge behavior, the recorded temperature data is selected as the main single 
predictor data, while each of the displacement data at the bridge arch and girder is considered 
as an individual response. Moreover, in order to model the teacher and student models, the 
training and testing datasets consist of 80% and 20% of all samples. For developing the 
teacher models, one needs to train two LSTM models. Hence, it is necessary to determine the 
model parameters, especially the number of units. The number of epochs is set as 2000 and 
the Adam optimizer is used as the main optimization technique for learning the LSTM. Under 
some sample units, the R2 values of the sample units are computed to choose one of them 
with the maximum R2 amount as shown in Fig. 6, where the LSTM models regarding the 
bridge arch and girder require fourteen optimal units.  

 
Fig. 6. Determination of the optimal unit numbers for the LSTM: (a) arch, (b) girder 
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One of the salient observations in Fig. 6 is that the optimal teacher model at the bridge 
arch, i.e., Fig. 6(a), does not operate properly due to its low R2 rate. Having considered β=0.8, 
this means that other unmeasured predictors alongside of the ambient temperature affect the 
displacement response at the bridge arch; hence, the student model should be trained by 
extracting the residual between the measured and predicted responses. On the other hand, as 
Fig. 6(b) appears, the optimal teacher model yields a R2 value more than β, in which case it 
is not required to train any student model. Therefore, the predicted response data of the LSTM 
at the bridge girder is used as the final output.  

To train the SLFN of the bridge arch, the residual data between the measured and 
LSTM-predicted responses is set as a new predictor. Accordingly, new training data is 
applied to the SLFN to forecast new predicted points. In the SLFN, the only parameter that 
remains undetermined is the number of neurons in the single hidden layer. Using some 
sample neurons, the R-squared measure is exploited to find the optimal number as shown in 
Fig. 7. As can be seen, the optimal neuron number is identical to 4.  

 
Fig. 7. Determination of the optimal neuron number of the single hidden layer of the SLFN for the bridge arch 

element 

 
Fig. 8. Displacement forecasting: (a) the bridge arch using the teacher model, (b) the bridge arch using the 

student model, (c) the bridge girder using the teacher model 

Table 1. Correlation coefficients of the temperature and SAR-extracted displacement responses 

Bridge component Teacher model: LSTM Student model: SLFN 
Arch 0.4347 0.8491 
Girder 0.8217 – 

Fig. 8 and Table 1 present the results of data forecasting concerning the bridge arch 
and girder. In Fig. 8(a), it compares the measured and LSTM-predicted response samples of 
the bridge arch. As can be discerned, there are large discrepancies between the samples 
implying the poor performance of the teacher model (LSTM) for forecasting the 
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displacement of the bridge arch. From Table 1, this model gives R2=0.4347. In contrast, Fig. 
8(b) indicates the predicated response samples from the SLFN. In most cases, the measured 
and predicted data points are in good agreement. In other words, the use of the student 
regression modeling improves the performance of data forecasting from R2=0.4347 to 
R2=0.8491, as also presented in Table 1. Eventually, Fig. 8(c) compares the measured and 
predicted response points at the bridge girder using the teacher model (LSTM). Reliable data 
forecasting with R2=0.8217 are observable.  

4. Conclusions 

This paper has proposed an innovative predictive method based on the paradigm of 
supervised teacher-student learning for forecasting limited data in the presence of 
unmeasured predictors. The proposed method has contained two parts of teacher and student 
regression modeling. For developing a teacher model, the LSTM neural network has been 
considered. Moreover, the student model with a simpler structure has been based on the 
SLFN. The unknown parameters of both models have been determined by using the R-
squared metric. Limited temperature and displacement data of a steel arch bridge have been 
used to validate the proposed method.  

The results have demonstrated that the proposed method performs suitably when 
unmeasured predictors affect response data. Moreover, this method presents a flexible 
strategy for regression modeling so that the teacher model can also yield the final output 
when it satisfies the criterion of date forecasting. In the case study, it has been observed that 
other unmeasured environmental/operational factors have impacted on the bridge arch; 
however, the proposed method could compensate this limitation of field measurement. 
Furthermore, it has been seen that the recorded temperature has been the main reason for 
variability in the displacements of the bridge girder so that the teacher model could obtain 
the final forecasting output. 
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