
Towards Verifiable Multi-Agent Interaction Pattern Specification
Alberto Tagliaferro

alberto.tagliaferro@mail.polimi.it
Politecnico di Milano, Milan, Italy

Livia Lestingi
livia.lestingi@polimi.it

Politecnico di Milano, Milan, Italy

Matteo Rossi
matteo.rossi@polimi.it

Politecnico di Milano, Milan, Italy

ABSTRACT
Smart cyber agents play a crucial role in software-intensive systems
by monitoring their physical surroundings and making impactful
decisions. This paper addresses the challenge of specifying multi-
agent patterns, which include interactions with human agents in
possibly safety-critical environments. To this end, we introduce
the foundations of a domain-agnostic and flexible Domain-Specific
Language (DSL) called LIrAs. The language is designed to be ac-
cessible to users without programming expertise. LIrAs’ semantics
are mapped to Deterministic Finite-state Automata, making speci-
fications amenable to formal verification. The DSL is exemplified
through an illustrative scenario from the service robotics field.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Formal language definitions; • Computer systems organiza-
tion → Embedded and cyber-physical systems.

KEYWORDS
Multi-Agent Patterns Specification, Domain-Specific Language, Pat-
tern Verification

ACM Reference Format:
Alberto Tagliaferro, Livia Lestingi, and Matteo Rossi. 2024. Towards Ver-
ifiable Multi-Agent Interaction Pattern Specification. In Formal Methods
in Software Engineering (FormaliSE) (FormaliSE ’24), April 14–15, 2024, Lis-
bon, Portugal. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3644033.3644379

1 INTRODUCTION
Software-intensive systems are growingly pervasive due to rapidly
developing technologies such as assistive robotics, IoT, and intel-
ligent manufacturing systems. Smart cyber agents realize such
systems by monitoring their physical surroundings and making
decisions that impact the environment in which they operate. Com-
plex systems often feature multiple agents (i.e.,multi-agent systems)
interacting or synchronizing with each other or the environment
(e.g., with human agents) to perform their tasks. Such systems are
often safety-critical (for example, due to the presence of humans),
and failing to complete a specific task may incur significant costs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0589-2/24/04
https://doi.org/10.1145/3644033.3644379

1.1 Envisioned Toolchain
Specifying interactive multi-agent tasks is a long-standing software
engineering challenge [6]. Specifications should be sufficiently high-
level to preserve accessibility and unambiguous to guarantee the
dependability of the resulting software components.

This paper addresses this issue by presenting the foundational
features of a DSL-based toolchain (see Fig. 1) called LIrAs1 for
specifying multi-agent interaction patterns. LIrAs is developed to
be domain-agnostic and flexible with respect to the number and
nature of agents involved (e.g., software-based or human) and the
number and type of actions constituting the pattern. Agents differ
based on the primitive skill set they offer (e.g., moving for a robot
or switching on the engine for a quadcopter). In LIrAs, such skills
are arranged into patterns. As per Fig. 1, defining the skill set
requires the intervention of an expert practitioner, while pattern
specification is designed to be accessible to non-expert users.

In LIrAs, the semantics of the synchronization dynamics between
agents is based on Deterministic Finite-state Automata (DFA), mak-
ing this aspect of the specifications amenable to model-to-model
conversion and formal verification. Specifically, properties concern-
ing the well-definedness of the synchronizations can then be veri-
fied through the Uppaal tool [11]. This stage of the toolchain targets
only properties concerning the logical and structural soundness of
the pattern (e.g., skills with conflicting goals), thus not involving the
physical component of the corresponding cyber-physical system.

Several LIrAs specifications constitute a pattern library. In the
following, we intend term mission as a sequence of patterns. A
so-defined and verified library of patterns can be used in a wider
mission specification and formal analysis toolchain external and
decoupled from LIrAs, such as the one presented in [12]. The lat-
ter envisages a textual DSL (separate from LIrAs) to specify mis-
sions involving human and robot agents with a particular focus
on human-robot interaction. Such DSL currently exploits human-
robot interaction patterns from a pre-determined and fixed set, thus
limiting the framework’s applicability to real-life scenarios. This
shortcoming could be overcome by importing a LIrAs pattern li-
brary for specifying the mission. We remark that the specification
of the operational environment (e.g., the layout and the points of
interest) is assumed to be done independently of LIrAs (i.e., LIrAs
patterns are parametric w.r.t. the environment).

Within the broader framework, the resulting mission specifi-
cation is automatically converted into a formal model based on
Stochastic Hybrid Automata [5]. Should custom LIrAs interaction
patterns be imported, automated generation of the formal model
would imply drafting the formal model of each custom skill em-
ployed in the newly defined pattern, which requires the input of
an expert user. The resulting formal model of the mission is sub-
ject to Statistical Model Checking [5] to compute quality metrics

1LIrAs stands for “Language for Interactive Agents”.

https://orcid.org/0009-0004-4923-7831
https://orcid.org/0000-0001-8724-1541
https://orcid.org/0000-0002-9193-9560
https://doi.org/10.1145/3644033.3644379
https://doi.org/10.1145/3644033.3644379
https://doi.org/10.1145/3644033.3644379

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Tagliaferro et al.

Target ToolchainLIrAs Toolchain

LIrAs Pattern
Speci�cationLIrAs Pattern

Speci�cationLIrAs Pattern
Speci�cation

Agents
Skill-set

}
DFA Pattern

Speci�cation

Well-formedness
Veri�cation (through

Uppaal)

Pattern
Library

Skill Formal
Model

Mission
Speci�cation

Mission Formal
Model

Environment
De�nition

Mission
Analysis

Pattern Formal
Model

Figure 1: Envisioned toolchain. Automated tasks are in blue,
while tasks to be performed by expert practitioners and non-
expert users are in yellow and green, respectively. Dashed
arrows represent future developments.

concerning the mission (e.g., time to completion and physical effort
required on the humans’ side) and apply reconfiguration measures,
if necessary. In this later stage of the toolchain, given the hybrid
nature of Stochastic Hybrid Automata, both the cyber and physical
components of the corresponding system can be involved in the
formal analysis. Properties to be verified may concern, for example,
relevant physical variables with continuous dynamics (e.g., a robot’s
battery charge) or the incompatibility between the custom-defined
patterns and the environment.

1.2 Related Work
Several formal notations have been exploited over the years to
model the workflow of agents’ tasks, such as Petri Nets [17], au-
tomata [10], and Linear Temporal Logic [19]. However, these ap-
proaches are meant for automated development toolchains and are,
thus, inaccessible to users lacking expertise in formal modeling.

When a human-in-the-loop approach is required, a common
practice consists in using a high-level DSL to define specifications
that would otherwise be excessively ambiguous in natural language.
DSLs for task specification can either be general-purpose [4, 16, 20],
or target specific categories of agents, such as autonomous vehicles
[18], aerial [14] and medical rehabilitation robots [7]. Specifically,
concerning robotics, Nordmann et al. in 2014 surveyed 137 DSLs
[15], and significant progress has been made in the field ever since.
For example, PsALM [13] is a structured grammar-based DSL that
defines 22 patterns for robotic missions. PROMISE [8] envisages
the specification of concurrent robot missions through sequences
of basic actions instead of predefined patterns. PGCD [2] combines
message-passing and motion primitives for robots in a fleet. The
MutRoSe framework [9] automates the decomposition of a mis-
sion into valid task sequences allocated to different robots in a
fleet. PuRSUE [3] envisages a modeling language for human-robot
interactions whose specifications are compiled into Timed Game
Automata. The language, however, contains lower-level primitives
since it targets users with a stronger technical background and
could be considered complementary to LIrAs.

LIrAs allows formore flexible specifications by combining agents’
primitives into patterns rather than relying on a predetermined
set thereof. Therefore, a LIrAs specification is not tied to a specific

type of agent: any set of agents (including humans) offering the
required skills is compatible with a LIrAs pattern. The latter feature
also targets a shared shortcoming of existing languages, i.e., the
limited or absent support for patterns involving human agents.
Finally, LIrAs targets a level of abstraction high enough to avoid the
description of architectural details (patterns are parametric w.r.t.,
for example, a robot’s angular and translational velocities).

1.3 Paper Contributions
In this research idea paper, we lay the foundations for the LIrAs
toolchain, presenting:

- the fundamental features of the LIrAs syntax;
- their formalization through DFA;
- an illustrative application of LIrAs to a use case from the
assistive robotics domain.

LIrAs syntax and semantics are outlined in Section 2 and exem-
plified through the illustrative example; Section 3 concludes and
discusses future research directions.

2 LIRAS SYNTAX AND SEMANTICS
We present the foundational features of LIrAs’s syntax and its

semantics based on DFA.

2.1 Syntax
LIrAs’s syntax is exemplified through Listing 1 and Listing 2. Agents
are the actors realizing LIrAs’s specifications. Each agent is char-
acterized by an id and is indicated in the rest of this paper as
aid ∈ AG. In the following, the term action refers to an atomic skill
an agent possesses. Actions are the foundational building blocks of
the language and are denoted as <action{i}>. An action may be
parametric w.r.t. the environment (e.g., moving to a specific point of
interest in the environment), and the actual value of each parameter
must be specified through an identifier (e.g., moveTo poi1).

Actions can be declared within conditional blocks, which, based
on their type, capture premature termination, introduce dependen-
cies between agents, and impose time constraints. Table 1 details
the grammar for a conditional action block. The DSL assumes that
a set AP of atomic predicates (e.g., indicating an agent being in
possession of a resource) and a set W of real-valued variables (e.g.,
capturing the position of an agent) are available. In the following,
we use the generic token <condition> to indicate conditions con-
sisting of atomic predicates and constraints of the form 𝑤 ≶ 𝜃

(where 𝑤 is a variable and 𝜃 is a threshold), possibly combined

Listing 1: Abstract example of LIrAs’ syntax, reporting the
fundamental elements.

1 <pattern>
2 <agent1>:
3 <l1>: <action1>
4 <l2>: <conditional action2>
5 <action3>
6 <agent2>:
7 <l1>: <action1>
8 <l2>: <conditional action2>
9 <success> <condition>
10 <failure> <condition>

Towards Verifiable Multi-Agent Interaction Pattern Specification FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

through the usual Boolean operators (¬,∧). There are two types of
conditional action blocks:

• <action> until <condition>, stating that <action> is
interrupted as soon as <condition> is true;

• <action> if <condition> else <action’>, stating that if
<condition> is true, then <action> is executed, otherwise
<action’> is.

Actions executed by the same agent are grouped into sequences.
The declaration of agent aid ’s sequence begins with <agent_{id}>.
Sequences are composed of an ordered list of sub-sequences, each
syntactically identified by a label of the form <l{i}>, where i is
a strictly increasing index. Formally, sub-sequence 𝑖 executed by
agent aid is represented through notation aid .si . Sub-sequences
contain one or more actions that must be executed sequentially.
Notation aid .si .xj refers to action 𝑗 of sub-sequence aid .si . Action
aid .si .xj+1 can start only if aid .si .xj has been completed. Similarly,
aid .si+1 can only start if aid .si has been completed. In Listing 1, a1’s
sequence includes two sub-sequences labelled as <l1> and <l2>.
Sub-sequence <l1> only contains <action1>, while <action2> and
<action3> both belong to <l2>, and are executed sequentially.

Sub-sequences belonging to different agents’ sequences can
share the same label. Synchronization between different agents,
indeed, occurs by having sub-sequences with the same label start
simultaneously. In Listing 1, Lines 3 and 7 start simultaneously, and
the same happens for Lines 4 and 8. By default, aid .s1 begins simul-
taneously for all agents. If a sub-sequence contains no action, it can
either be declared empty or omitted entirely. Both cases correspond
to the agent performing a default action (e.g., waiting or moving
freely), which can be redefined through the default keyword.

The example from the service robotics domain demonstrates how
a pattern can be specified using LIrAs (see Listing 2) starting from
a natural language specification. We assume that a set of predicates
is available: time(𝑥) is true if at least 𝑥 time units have elapsed
since the beginning of the pattern; position(𝑥,𝑦) is true if agent 𝑥 ’s
position equals 𝑦 while dist(𝑥,𝑦) returns the Euclidean distance
between 𝑥 and 𝑦; possess(𝑥,𝑦) is true if agent 𝑥 holds resource 𝑦;
finally, tired(𝑥) is true if agent 𝑥 requires rest before moving again,
and SoC(𝑥) returns the state of charge of agent 𝑥 .

The scenario involves three agents: two robots (indicated as
Robot1 and Robot2) and a Human. The robots’ skill set includes
stopping, moving to a target, fetching a resource, and delivering a
resource. The human’s skill set includes moving to a target, follow-
ing another agent, stopping, and receiving a resource from another
agent (the latter must synchronize with a delivering action). We as-
sume that the environment features two points of interest (referred
to as room1 and room2) and one resource named item1. Initially,
Robot1 waits for the Human to approach (Line 4). Concurrently,
Robot2 moves to room1 for patrolling (Line 15). Upon completing

Table 1: Grammar for a conditional action.

𝜓 ::= 𝑥 until 𝜙 | 𝑥 if 𝜙 else 𝑥 ′ 𝑥, 𝑥 ′ ∈ AC (action)
𝜙 ::= 𝑝 |𝑤 ≶ 𝜃 | ¬𝜙 | 𝜙 ∧ 𝜙 𝑝 ∈ AP (atomic predicate)

𝑤 ∈ W (real-valued variable)
𝜃 ∈ R (real-valued threshold)

Listing 2: LIrAs interaction pattern for the three agents from
the service robotic example.

1 P a t r o l F e t c hD e l i v e r (Robot1 , Robot2 , Human ,
2 room1 , room2 , i tem1 , d_th , t _ th , c_ th)
3 Robot1 :
4 l1: s t op
5 l2: moveTo room1 i f d i s t (Human ,Robot1) < d_th e l s e s t op
6 l3: f e t c h i tem1
7 l4: moveTo Human
8 l5: d e l i v e r i t em1
9 Human :
10 l1: moveTo Robot1 u n t i l d i s t (Human ,Robot1) < d_th
11 l2: f o l l ow Robot1 (room1) i f ! t i r e d e l s e s t op
12 l3-l4: s t op
13 l5: r e ce i veF rom Robot1
14 Robot2 :
15 l1: moveTo room1
16 l2-l5: s t op u n t i l ! p o s i t i o n (Human , room1)
17 moveTo room2
18
19 s u c c e s s p o s i t i o n (Human , room1) && po s s e s s (Human , i t em1)
20 f a i l u r e t ime (t _ t h) | | SoC (Robot1) < c_ th

this initial movement, Robot1must guide Human to room1 (Line 5).
Throughout this interaction, the robot monitors the distance with
the Human, stopping if it exceeds a certain threshold and resuming
when the Human gets closer. Human follows Robot1 (Line 10); if
tired, it stops and resumes following the robot only when rested.
When both Human and Robot1 reach room1, Human waits (Line
12) for Robot1 to fetch item1 and deliver it (Lines 6, 7, and 8). Since
its presence in room1 is not necessary once Human is there (Line
16), Robot2 moves to room2 (Line 17). The pattern is successfully
completed when Human is in room1 and has item1 (note that the
pattern can be completed before Robot2 reaches room2). The pat-
tern fails if it takes more than time t_th to complete or if Robot1’s
charge (SoC) falls below a threshold.

Listing 2 shows a broader range of synchronization dynamics
among sub-sequences. Sub-sequences can also be grouped into
a continuation, labeled as <l{i}-{i+k}> (see Listing 2, Line 12).
This sub-sequence set starts synchronously with 𝑠𝑖 and is only
required to end for 𝑠𝑖+𝑘+1 to start (i.e., no further synchronization is
enforced with sub-sequences in the range [𝑠𝑖+1, 𝑠𝑖+𝑘]). This feature
captures the cases when more than two agents are involved and
not all sub-sequences must start synchronously for all the agents.
In the example in Listing 2, Line 12 features a continuation because
the human does not need to synchronize with Robot1 when it has
picked up the item and starts moving back to the human to deliver it.
Similarly, Robot2 only needs to synchronize with the human when
they enter room1, thus Lines 16 and 17 are part of a continuation.

A set of sequence declarations, one for each agent aid ∈ AG,
with |AG | ≥ 1, constitutes a pattern, whose identifier is indicated
through token <pattern> in Listing 1. The execution of a pattern
is considered complete when the last subsequence of each agent
has been completed. It is also possible to specify sufficient condi-
tions for successful (e.g., each agent’s goal has been achieved) or
unsuccessful (e.g., an agent is unable to proceed due to exhausted
battery) termination of the pattern through tokens <success> and
<failure> followed by a condition expressed according to Table 1.

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Tagliaferro et al.

2.2 Semantics
As detailed in the following, the semantics of synchronization
among agents in LIrAs patterns defined according to this syntax
can be mapped to DFA. DFA are defined as follows.

Definition 2.1. A DFA is a 5-tuple (𝐴,𝑄, 𝑞𝑖𝑛𝑖 , 𝐹 , 𝛿) where𝐴 is the
alphabet (i.e., a set of symbols); 𝑄 is the set of states, with 𝑞𝑖𝑛𝑖 ∈ 𝑄

as the initial state; 𝐹 ⊆ 𝑄 is the subset of final states; 𝛿 : 𝑄 ×𝐴 → 𝑄

defines the state transitions labeled with symbols in 𝐴.

A LIrAs pattern can be converted into a DFA network. The con-
version is exemplified through the DFA network in Fig. 2, modeling
the pattern in Listing 2.

Each agent in set AG corresponds to a standalone DFA, and the
DFA in the network synchronize over symbols in 𝐴. DFA modeling
agent aid ∈ AG has an initial state aid .𝑞𝑖𝑛𝑖 modeling the situation
in which no subsequence has started and a final state aid .𝑞𝑒𝑛𝑑
modeling the case in which all subsequences have ended. For each
subsequence aid .si , the DFA has two states (indicated as aid .𝑞𝑖,𝑏 and
aid .𝑞𝑖,𝑐), modeling aid being busy executing aid .si and aid having
completed aid .si and waiting for the following synchronization, re-
spectively. Notice that a (aid .𝑞𝑖,𝑏 , aid .𝑞𝑖,𝑐) pair is defined even when
aid .si consists only of the default action, but not for continuations
(e.g., for subsequence a2 .s3). In the latter case, state a2 .𝑞3,𝑐 is not
necessary because, due to the continuation, a2 does not need to
synchronize with other agents to start a2 .s4 .

Symbols 𝑙𝑖 ∈ 𝐴 are defined for each index 𝑖 ∈ N such that sub-
sequence aid .si is defined for some aid ∈ AG. Internal action 𝜀 and
symbol end marking the end of a sequence are also available. Transi-
tion function 𝛿 then defines, for all (aid .𝑞𝑖,𝑏 , aid .𝑞𝑖,𝑐) pairs, a transi-
tion labeled with internal action 𝜀 from aid .𝑞𝑖,𝑏 to aid .𝑞𝑖,𝑐 capturing
the completion of aid .si . Furthermore, a transition labeled with 𝑙 𝑗
is defined between each (aid .𝑞𝑖,𝑐 , aid .𝑞 𝑗,𝑏) pair such that no other
subsequence aid .sk with 𝑖 < 𝑘 < 𝑗 exists, marking the start of aid .sj .
If aid .si is the last for aid , an edge labeled with end from aid .𝑞𝑖,𝑐 to
aid .𝑞𝑒𝑛𝑑 is defined.

In this preliminary stage, guard conditions deriving from condi-
tional action blocks (including time constraints) are not involved in
the mapping to DFA. The same holds for early termination condi-
tions due to success and failure. In the future, we plan on incorpo-
rating all these aspects into the model-to-model conversion of LIrAs

Robot1:

Human:

Robot2:

Figure 2: DFA network representing the illustrative example
scenario.

patterns, thus requiring an extension of the semantics to Timed
Automata. In light of this, we use Uppaal for our analysis2, even
if the models do not currently capture time. Also, the properties
regarding the well-definedness of patterns that are verified on DFA
networks are expressed in Timed Computation Tree Logic (TCTL),
although the temporal features of the logic are not currently ex-
ploited. As a result, Uppaal considers all the transitions in the DFA
networks non-deterministic w.r.t. the firing time.

Figure 2 shows the DFA specification for the illustrative example.
Notice that, due to the continuations of Human and Robot2, the
former does not need to synchronize over symbol 𝑙4, and the same
stands for the latter and symbols 𝑙3, 𝑙4, and 𝑙5. For the network in
Fig. 2, the TCTL property captured by Formula (1)—which states
that there exists a path such that eventually all agents reach the
final state—is verified.

EF
∧

aid ∈AG
aid .𝑞𝑒𝑛𝑑 (1)

The property captured by Formula (2) (i.e., “for all paths, eventually
all agents reach the final state”), instead, does not hold for the
network since an agent can remain indefinitely in any state other
than 𝑞𝑒𝑛𝑑 .

AF
∧

aid ∈AG
aid .𝑞𝑒𝑛𝑑 (2)

Including timing constraints and conditional action blocks in
the model extends the range of verifiable properties, potentially
highlighting issues arising from unsatisfiable action completion
conditions (e.g., a location being unreachable). For the network
in Fig. 2, examples of issues that may arise from the verification
of well-formedness properties are item1 being in an unreachable
position (thus, the action on Line 6 never terminates) or the entire
pattern always failing to complete within time t_th.

3 FUTURE RESEARCH OUTLOOK
In the future, we plan on releasing LIrAs as a fully-fledged toolchain
by implementing all the steps envisaged in Fig. 1. To this end, it
is necessary to extend LIrAs’s semantics to Timed Automata, in-
corporating guards and timing constraints in the model-to-model
conversion and significantly extending the range of verifiable prop-
erties. State-of-the-art testing techniques could be employed to
explore the domain of the involved variables in the absence of a
specific environment definition.

We also plan on assessing the effectiveness of LIrAs when serv-
ing as the basis for a broader mission analysis framework through
realistic scenarios (see, for example, those collected in [1]). This
requires developing an automated approach to compile LIrAs pat-
terns into Stochastic Hybrid Automata, potentially starting from
formal model snippets corresponding to individual skills.

Finally, a user study is necessary to ascertain the user-friendliness
of the language to non-expert users with a technical skillset (e.g.,
practitioners without a background in programming) and domain
experts (e.g., logistic experts in need of deploying a multi-agent
mission in their facility).

2Example Uppaal models are available at: https://doi.org/10.5281/zenodo.10556557.

https://doi.org/10.5281/zenodo.10556557

Towards Verifiable Multi-Agent Interaction Pattern Specification FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

REFERENCES
[1] Mehrnoosh Askarpour, Christos Tsigkanos, Claudio Menghi, Radu Calinescu,

Patrizio Pelliccione, Sergio García, Ricardo Caldas, Tim J von Oertzen, Manuel
Wimmer, Luca Berardinelli, et al. 2021. Robomax: Robotic mission adaptation
exemplars. In Intl. Symp. on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS). IEEE, 245–251.

[2] Gregor B Banusić, Rupak Majumdar, Marcus Pirron, Anne-Kathrin Schmuck,
and Damien Zufferey. 2019. PGCD: robot programming and verification with
geometry, concurrency, and dynamics. In ACM/IEEE Intl. Conf. on Cyber-Physical
Systems. 57–66.

[3] Marcello M Bersani, Matteo Soldo, Claudio Menghi, Patrizio Pelliccione, and
Matteo Rossi. 2020. PuRSUE-from specification of robotic environments to
synthesis of controllers. Formal Aspects of Computing 32 (2020), 187–227.

[4] Matthew L Bolton, Radu I Siminiceanu, and Ellen J Bass. 2011. A systematic
approach to model checking human–automation interaction using task analytic
models. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans 41, 5 (2011), 961–976.

[5] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, Danny Bøgsted
Poulsen, Jonas Van Vliet, and Zheng Wang. 2011. Statistical model checking
for networks of priced timed automata. In Intl. Conf. on Formal Modeling and
Analisys of Timed Systems. Springer, 80–96.

[6] Swaib Dragule, Sergio García Gonzalo, Thorsten Berger, and Patrizio Pelliccione.
2021. Languages for specifying missions of robotic applications. Software Engi-
neering for Robotics (2021), 377–411.

[7] Peter Forbrig and Alexandru-Nicolae Bundea. 2020. Modelling the collaboration
of a patient and an assisting humanoid robot during training tasks. In Intl. Conf.
HCII. Springer, 592–602.

[8] Sergio García, Patrizio Pelliccione, Claudio Menghi, Thorsten Berger, and Tomas
Bures. 2019. High-level mission specification for multiple robots. In ACM SIG-
PLAN Intl. Conf. on Software Language Engineering. 127–140.

[9] Eric Bernd Gil, Genaína Nunes Rodrigues, Patrizio Pelliccione, and Radu Cali-
nescu. 2023. Mission specification and decomposition for multi-robot systems.

Robotics and Autonomous Systems 163 (2023), 104386.
[10] Bruno Lacerda and Pedro Lima. 2009. LTL plan specification for robotic tasks

modelled as finite state automata. In Proc. of Workshop ADAPT–Agent Design:
Advancing from Practice to Theory, Workshop at AAMAS, Vol. 9.

[11] Kim G Larsen, Paul Pettersson, and Wang Yi. 1997. UPPAAL in a nutshell. Int. J.
on Softw. Tools for Tech. Transf. 1, 1-2 (1997), 134–152.

[12] Livia Lestingi, Davide Zerla, Marcello M Bersani, and Matteo Rossi. 2023. Specifi-
cation, stochasticmodeling and analysis of interactive service robotic applications.
Robotics and Autonomous Systems 163 (2023), 104387.

[13] Claudio Menghi, Christos Tsigkanos, Patrizio Pelliccione, Carlo Ghezzi, and
Thorsten Berger. 2019. Specification patterns for robotic missions. IEEE Transac-
tions on Software Engineering (2019).

[14] Martin Molina, Ramon A Suarez-Fernandez, Carlos Sampedro, Jose Luis Sanchez-
Lopez, and Pascual Campoy. 2017. TML: a language to specify aerial robotic
missions for the framework Aerostack. International Journal of Intelligent Com-
puting and Cybernetics 10, 4 (2017), 491–512.

[15] ArneNordmann, NicoHochgeschwender, and SebastianWrede. 2014. A survey on
domain-specific languages in robotics. In International conference on simulation,
modeling, and programming for autonomous robots. Springer, 195–206.

[16] Fabio Paterno, Cristiano Mancini, and Silvia Meniconi. 1997. ConcurTaskTrees:
A diagrammatic notation for specifying task models. In Intl. Conf. on Human-
Computer Interaction. Springer, 362–369.

[17] Khodakaram Salimifard and Mike Wright. 2001. Petri net-based modelling of
workflow systems: An overview. European journal of operational research 134, 3
(2001), 664–676.

[18] Daniel Castro Silva, Pedro Henriques Abreu, Luís Paulo Reis, and Eugénio
Oliveira. 2014. Development of a flexible language for mission description for
multi-robot missions. Information Sciences 288 (2014), 27–44.

[19] Jana Tumova and Dimos V Dimarogonas. 2016. Multi-agent planning under
local LTL specifications and event-based synchronization. Automatica 70 (2016),
239–248.

[20] Wil MP Van Der Aalst and Arthur HM Ter Hofstede. 2005. YAWL: yet another
workflow language. Information systems 30, 4 (2005), 245–275.

	Abstract
	1 Introduction
	1.1 Envisioned Toolchain
	1.2 Related Work
	1.3 Paper Contributions

	2 LIrAs Syntax and Semantics
	2.1 Syntax
	2.2 Semantics

	3 Future Research Outlook
	References

