
MATHEMATICAL CONTROL AND doi:10.3934/mcrf.2019040
RELATED FIELDS
Volume 10, Number 2, June 2020 pp. 305–331

OPTIMAL TREATMENT FOR A PHASE FIELD SYSTEM OF

CAHN-HILLIARD TYPE MODELING TUMOR GROWTH BY

ASYMPTOTIC SCHEME

Andrea Signori

Dipartimento di Matematica e Applicazioni, Università di Milano–Bicocca
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Abstract. We consider a particular phase field system which physical context

is that of tumor growth dynamics. The model we deal with consists of a Cahn-

Hilliard equation governing the evolution of the phase variable which takes
into account the tumor cells proliferation in the tissue coupled with a reaction-

diffusion equation for the nutrient. This model has already been investigated

from the viewpoint of well-posedness, long-time behavior, and asymptotic anal-
yses as some parameters go to zero. Starting from these results, we aim to face

a related optimal control problem by employing suitable asymptotic schemes.

In this direction, we assume some quite general growth conditions for the in-
volved potential and a smallness restriction for a parameter appearing in the

system we are going to face. We provide the existence of optimal controls and
a necessary condition for optimality is addressed.

1. Introduction. Over the last decades, there has been increasing attention by
the mathematical community towards biological models for tumor growth (see [21]).
Among them, the ones introduced by exploiting phase field approaches and contin-
uum mixture theory cover an important role. The key idea consists in reading the
physical evolution process like an interaction between two particular fluids which
are designed to model the tumor cells and the healthy ones. In this regards, we
especially point out two classes. The first one gives rise to the so-called Cahn-
Hilliard-Darcy or Cahn-Hilliard-Brinkman systems which describe the tumor and
healthy cells as inertia-less fluids including effects generated by fluid flow develop-
ment. To this concerns, let us refer to [22, 29, 32, 33, 35, 53]. The second class
neglects the velocity and consists of a Cahn-Hilliard equation (see, e.g., [43] and
the huge references therein) for the phase variable coupled with a reaction-diffusion
equation for the nutrient. Moreover, let us point out the papers [30, 31], where
transport mechanisms such as chemotaxis and active transport are also taken into
account. Further investigations and mathematical models related to biology can be
found, e.g., in [27, 28].

Here, we try to describe the main purpose of the work postponing the technical-
ities and the investigation of the proper assumptions that will be specified in the
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forthcoming section. Before moving on, let us mention that with Ω ⊂ R3 we denote
the set where the evolution takes place and, for a given final time T > 0, we define
the standard parabolic cylinder and its boundary by

Qt := Ω× (0, t), Σt := ∂Ω× (0, t) for every t ∈ (0, T ],

Q := QT , and Σ := ΣT . (1.1)

Hence, the model we are going to consider reads as follows

α∂tµβ + ∂tϕβ −∆µβ = P (ϕβ)(σβ − µβ) in Q (1.2)

µβ = β∂tϕβ −∆ϕβ + F ′(ϕβ) in Q (1.3)

∂tσβ −∆σβ = −P (ϕβ)(σβ − µβ) + uβ in Q (1.4)

∂nµβ = ∂nϕβ = ∂nσβ = 0 on Σ (1.5)

µβ(0) = µ0, ϕβ(0) = ϕ0, σβ(0) = σ0 in Ω, (1.6)

for some positive constants α and β. Let us emphasize that the notation ϕβ , instead
of the simplest ϕ, and the same goes for the other variables, is motivated by the
fact that in the following we are going to let β ↘ 0 and we will denote as ϕ the
limit of ϕβ . So, with the subscript β, we aim to stress the fact that such a variable
corresponds to the system with β > 0.

The above system is a simplified version of the diffuse interface model originally
introduced by Hawkins-Daruud et al. in [38], where the velocity and chemotaxis
contributions are neglected (see also [20, 46, 37, 39, 54]) and it also includes some
regularizing parameters. It is worth spending some words explaining the physical
meaning of the model. The unknown ϕβ is an order parameter and it is devoted to
keeping track of the evolution of the tumor in the tissue. It is usually normalized
between −1 and +1, where these extreme values represent the pure phases, that
is the tumor phase and the healthy cell phase, respectively. The second unknown
µβ , as usual for Cahn-Hilliard equation, stands for the chemical potential for ϕβ .
Finally, the last unknown σβ represents the nutrient-rich extracellular water volume
fraction. It takes values between 0 and 1 with the following property: the closer to
one, the richer of water the extracellular fraction is, while the closer to zero, the
poorer it is. Furthermore, uβ is the so-called control variable which will allow us to
interact in some sense with the above system. As usual in control theory, the system
in which the control variable appears is referred to as state system. Likewise, we
will refer to the solution (µβ , ϕβ , σβ) to as the associated state. As far as P and F
are concerned, they are nonlinearities. The former is a proliferation function, while
the latter is a double-well potential. Customary examples for F are the classical
regular potential, the logarithmic potential, and the double-obstacle one. In this
contribution, we focus the attention on the first one which is given by

Freg(r) :=
1

4
(r2 − 1)2 =

1

4
((r2 − 1)+)2 +

1

4
((1− r2)+)2 for r ∈ R. (1.7)

For different physically meaningful choices of the potentials we refer to [1], and to
the references therein, where several numerical applications to tumor growth can
be found as well.

We point out that the above model has been quite well-understood owing to
the previous works [8, 11, 13] as far as well-posedness and long-time behavior are
concerned. Moreover, in [26] the analyses of the same model without the relax-
ation terms α∂tµβ and β∂tϕβ , has been performed considering regular potentials
and allowing P to possess polynomial growth. Besides, as long-time behavior of
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solutions are concerned, we also mention [40], where the author extends the well-
posedness results proved in [11, 13], as β ↘ 0, to the case of unbounded domains.
Moreover, we refer to [44], where the authors investigate the long-time behavior of
the non-relaxed version of system 1.2–1.6, i.e. the case α = β = 0, showing the
existence of the global attractor in proper phase space. In view of such flourishing
literature, a further natural aim is to investigate some corresponding optimal con-
trol problems in which the state system is governed by the evolution system 1.2–1.6.
In this direction, we refer to the recent work [49], where, making extensive use of
the terms α∂tµβ and β∂tϕβ , an optimal control problem for the above system is
tackled in a general framework for the potential, allowing both the classical and
the logarithmic potential to be considered. Additionally, the same author proves
in the subsequent work [48], via a proper asymptotic scheme known in the litera-
ture as to deep quench limit, that it is also possible to generalize the assumptions
for the potentials in order to take into account also singular and nonregular po-
tentials like the double-obstacle. Furthermore, let us refer to [12], where a similar
optimal control problem is considered for the state system 1.2–1.6 without these
relaxation terms. In addition, regarding some optimal control problem in which
time is taken into account, we address the recent [5], where also long-time behavior
of solutions has been investigated, and we also mention [34], where an optimal time
therapeutic treatment has been investigated. Finally, we point out the contributions
[23, 24] in which the authors investigate an optimal control problem for different
tumor growth model based on the Cahn-Hilliard-Brinkman equation, which was
previously investigated in [25], pointing out also some sufficient conditions for the
optimality. Lastly, let us mention [51], where a distributed optimal control problem
for the Cahn-Hilliard-Darcy system with mass source was studied.

Here, we actually aim to study an intermediate optimal control problem between
[12] and [49]. In fact, we still consider the state system to be 1.2–1.6, but without
considering the relaxation term β∂tϕβ . Let us emphasize the mathematical interest
of this problem. On the one hand, the non-relaxed version of system 1.2–1.6 was
investigated in [26] and the corresponding control problem was then tackled in
[12]. On the other hand, the relaxed model was studied in [8]. There, due to
the stronger regularity, the authors can take into account very general potentials.
Then, by [11, 13], the asymptotic analysis as α and β go to zero was performed.
Moreover, the corresponding control problem was recently treated by the author in
[49]. Hence, it will be interesting to understand how the optimal control problems
associated with these similar models behave. Furthermore, we refer to [47], where
the author, focus the attention on the case α↘ 0, β > 0.

As for the control problem, we are going to take into account the following
tracking-type cost functional

J (ϕ, σ, u) :=
b1
2
‖ϕ− ϕQ‖2L2(Q) +

b2
2
‖σ − σQ‖2L2(Q) +

b3
2
‖σ(T )− σΩ‖2L2(Ω)

+
b0
2
‖u‖2L2(Q), (1.8)

and the control-box constraints

Uad := {u ∈ L∞(Q) : u∗ ≤ u ≤ u∗ a.e. in Q}, (1.9)

where u∗ and u∗ are functions that fix the admissible set in which the control variable
u can be chosen. Furthermore, b0, b1, b2, b3 stand for nonnegative constants, not all
zero, while ϕQ, σQ, σΩ denote some target functions defined inQ and Ω, respectively.
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Since our starting point is [49], we will refer several times to the results there
proved. So, it is worth noting that the cost functional (1.8) is slightly less general
with respect to the one there proposed. There, an additional term of the form
k
2‖ϕ(T ) − ϕΩ‖2L2(Ω) also appears, for a nonnegative constant k and a prescribed

function ϕΩ which models the final configuration of the tumor colony. From a
control viewpoint, this contribution allows us to force the final configuration of the
tumor to be as close as possible, in the sense of L2(Ω)-norm, to the fixed target
ϕΩ. Here, we restrict the investigation to the case k = 0. This will be motivated
by the analysis of the corresponding adjoint problem that leads to assume such a
compatibility condition. To motivate this limitation, let us recall that (see [49,
Syst. (2.22)-(2.26)]) the final conditions of the adjoint problem pointed out in [49]
are the following (note that the constant k is called b2 in that paper)

p(T )− βq(T ) = k(ϕ(T )− ϕΩ), αp(T ) = 0.

However, if α > 0 and β = 0, we formally deduce that{
p(T ) = k(ϕ(T )− ϕΩ)

αp(T ) = 0,

which yields p(T ) = 0 and therefore also that 0 = k(ϕ(T ) − ϕΩ), which is not
satisfied in general since ϕΩ is arbitrary. Hence, to not lead to a contradiction we
assume k = 0, so that the choice of the less general cost functional (1.8) is now
justified.

Thus, the optimal control treated in [49] consists of solving the problem:

(CP )β Minimize J (ϕ, µ, u) subject to the control contraints (1.9) and under the

requirement that the variables (ϕ, σ) yield a solution to 1.2–1.6.

There, the author confirmed the existence of, at least, one optimal control and also
provide some first-order optimality conditions reading as variational inequalities.

Moreover, let us recall that the asymptotic analysis for system 1.2–1.6 has already
been investigated in [8, 11, 13], where the authors carefully point out some sufficient
conditions to let α and β go to zero, both sequentially and separately. As a matter
of fact, they proved that, as β ↘ 0, which is the case we are going to consider,
providing to require additional assumptions, the unique solution to system 1.2–
1.6 converges to some limit which yields a solution to the following problem

V ∗〈∂t(αµ+ ϕ), v〉V +

∫
Ω

∇µ · ∇v =

∫
Ω

P (ϕ)(σ − µ)v

∀v ∈ V , a.e. in (0, T ) (1.10)

µ = −∆ϕ+ F ′(ϕ) in Q (1.11)

∂tσ −∆σ = −P (ϕ)(σ − µ) + u in Q (1.12)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ (1.13)

(αµ+ ϕ)(0) = αµ0 + ϕ0, σ(0) = σ0 in Ω. (1.14)

Furthermore, it was shown that, under a suitable smallness requirement on α, that
will be precised later on, the solution is indeed unique.

From a different perspective, one can take the above system as a starting point,
trying to face the analysis of the corresponding optimal control problem. Namely,
one can try to solve the following minimization problem: minimize J (ϕ, σ, u) sub-
ject to the control constraints (1.9) and under the requirement that the variables
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(ϕ, σ) are solutions to 1.10–1.14. Actually, this is the optimal control problem we
try to tackle by following a different strategy consisting of pass to the limit, as
β ↘ 0, in the optimal control problem (CP )β . This technique turns out to be
particularly interesting since we still will obtain similar results with respect to [49].
At the same time, we will treat the optimal control problem avoiding the investiga-
tion of the linearized system, which is usually not so difficult and, mostly, we can
avoid the discussion on the Fréchet differentiability of the associated control-to-state
mapping, which is usually more challenging.

On the other hand, the first-order necessary condition of (CP ) cannot be directly
obtained by letting β ↘ 0 in the optimality condition for the corresponding optimal
control problem with β > 0. This would be the case if we ensure that every optimal
control for (CP ) can be recovered as limit of sequence of optimal controls for (CP )β ,
which is quite a strong requirement. Unfortunately, we are unable to prove such
a global result. However, a partial one can be stated localizing the problem by
following the idea firstly introduced by Barbu in [2] (see also, e.g., [6, 7, 18, 48],
where such a technique was applied). The idea consists in locally perturbing the
problem (CP )β in order to find the desired approximation result. For this purpose,
the main ingredient is the so-called adapted cost functional that is defined as follows

J̃ (ϕ, σ, u) := J (ϕ, σ, u) +
1

2
‖u− u‖2L2(Q), (1.15)

where u stands for an optimal control for (CP ). Thus, we are naturally lead to
solving the following minimization problem:

(C̃P )β Minimize J̃ (ϕ, µ, u) subject to the control constraints (1.9) and under the

requirement that the variables (ϕ, σ) yield a solution to 1.2–1.6.

Next, instead of looking for approximating sequence of optima for (CP )β , one take

a sequence of controls which are optimal for (C̃P )β . This technique will allow us to

properly let β ↘ 0 in the optimality condition for (C̃P )β to recover the variational
inequality which characterizes the necessary condition for optimality of (CP ).

Summing up, the current contribution has the purpose of showing, by means of
asymptotic approaches, that the following control problem admits a solution:

(CP ) Minimize J (ϕ, µ, u) subject to the control constraints (1.9) and under the

requirement that the variables (ϕ, σ) yield a solution to 1.10–1.14.

Moreover, we will also provide a necessary condition that an optimal control has to
satisfy in terms of a variational inequality.

Lastly, let us sketch the physical background of the control problem we are deal-
ing with. Roughly speaking, we are looking for the best choice u in such a way
that, with the corresponding solution to 1.10–1.14, it minimizes the cost functional
J . Furthermore, the control u appears in equation (1.12), the one describing the
evolution of the nutrient. Therefore, from the model viewpoint, it can be read as
a supply of a nutrient or a drug in medical treatment. Moreover, for some given
a priori targets ϕQ, σQ, σΩ, minimizing the cost functional J corresponds to force
the system to approach a prescribed targets which should be taken as desirable
configurations for clinical reasons, e.g., for surgery. In addition, the ratios among
the constants b0, b1, b2, b3 implicitly describe which targets hold the leading part in
our application and the last term of the cost functional represents the cost we have
to pay to take u into account. In fact, it should be read as the rate of risks to
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afflict harm to the patient by following that strategy, namely the side-effect that
may occur if too many drugs are dispensed to the patient.

The plan for the rest of the paper is as follows. In Section 2, we set the notation
we are going to use and recollect the obtained results. From Section 3 onward,
we start with the proofs of the stated results. Furthermore, Section 3 is devoted
to investigating the well-posedness and the asymptotic behavior, as β ↘ 0, of the
state system. Lastly, in Section 4, we discuss the control problem (CP ) by invoking
some asymptotic schemes. We check the existence of optimal control, study the
well-posedness of the adjoint system, and provide first-order necessary condition for
optimality.

2. Assumptions and main results. In this section, we aim to set the notation
and collect our results. To begin with, we recall that Ω stands for the space domain
where the evolution takes place and we assume it to be a bounded, connected,
smooth, and open set of R3, with boundary indicated by Γ. As the functional
spaces are concerned, it turns out to be convenient to introduce the following

H := L2(Ω), V := H1(Ω), W := {v ∈ H2(Ω) : ∂nv = 0 on Γ},

where ∂n stands for the outward normal derivative. Furthermore, to work with
Banach spaces, we endow them with their standard norms. For a general Banach
space X, we use ‖·‖X to designate its norm, X∗ for its topological dual, and X∗〈·, ·〉X
for the duality product between X∗ and X. Likewise, we use the symbol ‖·‖p for
the usual norm in Lp(Ω). The above definitions, in turn, imply that (V,H, V ∗)
constitutes a Hilbert triplet, that is, the following injections V ⊂ H ≡ H∗ ⊂ V ∗

are both continuous and dense and we have the standard identification between the
dual product of V and the inner product of H. Namely, it holds that

V ∗〈u, v〉V =

∫
Ω

uv for every u ∈ H and v ∈ V .

As for the basic assumptions for the system 1.2–1.6 and for the cost functional (1.8),
we postulate that

α, β > 0. (2.1)

b0, b1, b2, b3 are nonnegative constants, but not all zero. (2.2)

ϕQ, σQ ∈ L2(Q), σΩ ∈ H1(Ω), u∗, u
∗ ∈ L∞(Q) with u∗ ≤ u∗ a.e. in Q. (2.3)

P ∈ C2(R) is nonnegative, bounded and Lipschitz continuous. (2.4)

ϕ0 ∈ H3(Ω) ∩W,µ0 ∈ H1(Ω), σ0 ∈ H1(Ω). (2.5)

Furthermore, we employ the following notation

UR ⊂ L2(Q) be a non-empty and bounded open set such that it contains Uad
and ‖u‖2 ≤ R for all u ∈ UR.

For the potential setting, we require that D(B̂) = R and that

B̂ : R→ [0,+∞) is convex and lower semicontinuous, with 0 ∈ B(0). (2.6)

π̂ ∈ C1(R) is nonnegative, π := π̂′ is Lipschitz continuous with

Lipschitz constant L, i.e. ‖π′‖L∞(R) ≤ L. (2.7)
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Then, we define the potential F , and its derivative as the sum of these two contri-
butions by

F : R→ [0,+∞], F := B̂ + π̂ and F ′ := B + π, (2.8)

where B is a maximal and monotone graph B ⊂ R×R defined as the subdifferential

of B̂, that is, B := ∂B̂. Unfortunately, we are not able to face the asymptotic
analyses, as β goes to zero, without assuming proper growth restrictions for the
potential F . Some sufficient conditions for our purposes are as follows

F = B̂ + π̂ is a C3 function which satisfies (2.9)

|B(r)| ≤ CB(1 + B̂(r)) for every r ∈ R, (2.10)

for a positive constant CB . Anyhow, we emphasize that, although we cannot work at
the utmost generality for the potentials setting, all polynomially growing potentials,
as well as exponential functions, comply with the requirements above; in particular,
(1.7) is allowed. Furthermore, by combining the embedding W ⊂ L∞(Ω) with the
first of the initial conditions (2.5), it is straightforward to infer that F (ϕ0) belongs
to L∞(Ω). It also follows from the above framework that F ′′ is bounded below in
terms of the Lipschitz constant L. Indeed, we have that

F ′′ ≥ −L. (2.11)

It is worth noting that, in the case of (1.7), we can take L = 1, as can be easily
checked by computing its second derivative.

Now, we first recall some results already presented in other contributions and
then list our statements. The already mentioned optimal control problem (CP )β
has been tackled in [49]. On the other hand, since the above setting perfectly
fits with the one of [49], all the results there proved are at our disposal. There,
the author, after showing the existence of optimal controls, provides the first-order
necessary condition for optimality making use of the so-called adjoint system to
1.2–1.6. For the sake of simplicity, we just recall here the adjoint system there
founded. From now on, uβ denotes an optimal control for (CP )β , and (µβ , ϕβ , σβ)
the corresponding optimal state. Thus, the adjoint system reads as follows

β∂tqβ − ∂tpβ + ∆qβ − F ′′(ϕβ)qβ + P ′(ϕβ)(σβ − µβ)(rβ − pβ)

= b1(ϕβ − ϕQ) in Q (2.12)

qβ − α∂tpβ −∆pβ + P (ϕβ)(pβ − rβ) = 0 in Q (2.13)

− ∂trβ −∆rβ + P (ϕβ)(rβ − pβ) = b2(σβ − σQ) in Q (2.14)

∂nqβ = ∂npβ = ∂nrβ = 0 on Σ (2.15)

pβ(T )− βqβ(T ) = 0, αpβ(T ) = 0, rβ(T ) = b3(σβ(T )− σΩ) in Ω. (2.16)

The well-posedness of the above system has been already established in [49]. So,
we just recall the obtained result.

Proposition 1. Assume that 2.1–2.10 are in force. Then, system 2.12–2.16 admits
a unique solution satisfying

qβ , pβ , rβ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ). (2.17)

Moreover, accounting for the solution of the adjoint system, the following neces-
sary condition was pointed out.
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Theorem 2.1. Assume that 2.1–2.10 are fulfilled. Let uβ ∈ Uad be an optimal con-
trol for (CP )β, (µβ , ϕβ , σβ) be the corresponding optimal state and (pβ , qβ , rβ) the
associated solution to the adjoint system 2.12–2.16. Then, the necessary condition
for optimality is given by∫

Q

(rβ + b0uβ)(v − uβ) ≥ 0 ∀v ∈ Uad. (2.18)

As sketched above, we would like to exploit the control problem (CP )β in order
to solve (CP ) by employing some asymptotic schemes. In fact, in Section 4, we
rigorously show that, as β ↘ 0, system 2.12–2.16 converge to

−∂tp+ ∆q − F ′′(ϕ)q + P ′(ϕ)(σ − µ)(r − p) = b1(ϕ− ϕQ) in Q (2.19)

q − α∂tp−∆p+ P (ϕ)(p− r) = 0 in Q (2.20)

−∂tr −∆r + P (ϕ)(r − p) = b2(σ − σQ) in Q (2.21)

∂nq = ∂np = ∂nr = 0 on Σ (2.22)

αp(T ) = 0, r(T ) = b3(σ(T )− σΩ) in Ω. (2.23)

Below, you can find the precise meaning of the above sentence.

Theorem 2.2. Assume that 2.1–2.10 are fulfilled and let (qβ , pβ , rβ) be the unique
solution to system 2.12–2.16 satisfying (2.17). Then, there exists α0 ∈ (0, 1) such
that, for every α ∈ (0, α0), as β ↘ 0, and up to a subsequence, we have the following
convergences

qβ → q weakly in L2(0, T ;W ) (2.24)

pβ → p weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (2.25)

rβ → r weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (2.26)

βqβ → 0 strongly in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ). (2.27)

Moreover, there exists a positive constant C1, independent of β, such that

β‖qβ‖H1(0,T ;H) + β1/2‖qβ‖L∞(0,T ;V ) + ‖qβ‖L2(0,T ;W )

+ ‖pβ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖rβ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ C1.
(2.28)

In addition, the limit (q, p, r) is the unique solution to system 2.19–2.23 which
possesses the following regularity

q ∈ L2(0, T ;W ) (2.29)

p, r ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ). (2.30)

Next, we can address the results related to the control problem we are dealing
with. We begin with the first fundamental result concerning the existence of optimal
control.

Theorem 2.3. Assume that 2.1–2.10 are in force. Then, the optimal control prob-
lem (CP ) admits at least a solution u ∈ Uad.

Lastly, by employing a proper asymptotic scheme, we develop the first-order
necessary condition for optimality.
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Theorem 2.4. Assume that 2.1–2.10 are satisfied. Let u ∈ Uad be an optimal con-
trol for (CP ) with its corresponding state (µ, ϕ, σ) and let (p, q, r) be the solution to
the associated adjoint system 2.19–2.23. Then, the following variational inequality∫

Q

(r + b0u)(v − u) ≥ 0 ∀v ∈ Uad (2.31)

is satisfied. Moreover, whenever b0 6= 0, the optimal control u is the L2(0, T ;H)−
projection of −r/b0 onto the subspace Uad.

To conclude the section, we recall a well-known inequality and a general fact that
is widely used in the sequel. First of all, let us remind the Young inequality

ab ≤ δa2 +
1

4δ
b2 for every a, b ≥ 0 and δ > 0. (2.32)

Furthermore, we recall the standard Sobolev continuous embedding

H1(Ω) ↪→ Lq(Ω) which holds for every q ∈ [1, 6]. (2.33)

Throughout the paper, we convey to use the symbol small-case c for every constant
which depend only on the final time T , on Ω, onR, on the shape of the nonlinearities,
on the norms of the involved functions, and possibly on α. On the other hand, we
will explicitly point out when an appearing constant may depend on β. For this
reason, the meaning of c might change from line to line and even in the same
chain of inequalities. Differently, we devote the capital letters to indicate particular
constants which we eventually will refer later on.

3. The state system. From this section onward, we start with the proofs of the
introduced statements. We begin with the task of investigating the well-posedness
of system 1.2–1.6, and proving its asymptotic behavior as β ↘ 0. Again, we re-
mark that the above system has already been discussed in [8, 11, 13], where the
asymptotic analysis represents the core of the contributions. For this reason, some
of the calculations below can also be found there. Anyhow, in order to handle the
control problem (CP ), it turns out that the results there obtained are insufficient.
Therefore, we perform all the necessary estimates, having the care to emphasize
when the appearing constants may depend on β.

Theorem 3.1. Let the assumptions 2.1–2.10 be fulfilled and let µ0 := −∆ϕ0 +
F ′(ϕ0). Then, there exists α0 ∈ (0, 1) such that, for every α ∈ (0, α0), system
1.2–1.6 admits a unique solution (µβ , ϕβ , σβ) that satisfies the following regularity

µβ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (3.1)

ϕβ ∈W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) (3.2)

σβ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ). (3.3)

Furthermore, there exists a positive constant C2 such that the following estimate is
verified

β1/2‖∂tϕβ‖L∞(0,T ;H) + ‖ϕβ‖H1(0,T ;V )∩L∞(0,T ;W )∩L∞(Q)

+ ‖µβ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖σβ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W )

≤ C2

(
‖µ0‖V + ‖ϕ0‖W + ‖σ0‖V + 1

)
, (3.4)

where C2 is a positive constant that depends on Ω, T,R, α, the shape of the functions
P and π, but it is independent of β.
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Before moving to the proof, it is worth focusing the attention on the already
obtained limit system 1.10–1.14 which was investigated in [13, Thm. 2.2, p. 41]
(see also [11]). Forgetting the fact that 1.10–1.14 has founded as a result of a limit
procedure, it can be considered as a starting point as a system of partial differential
equations. In this regards, we only have at disposal the derivative of the linear
combination αµ+ϕ, so that the initial condition, in general, reads as (αµ+ϕ)(0) =
η0, for a suitable element η0. Furthermore, owing to what already proved for the
system 1.10–1.14, we claim that, whenever η0 ∈ V , the existence and the uniqueness
of the solution follows, provide a smallness assumption of the constant α is satisfied.
Thus, we consider this problem under the additional assumptions{

η0 = αµ0 + ϕ0

µ0 = −∆ϕ0 + F ′(ϕ0).
(3.5)

The first condition allows us to match the two approaches; that is, to see the above
system as a direct problem and as the limit of system 1.2–1.6 as β ↘ 0. Con-
versely, the second condition states that µ0 cannot be arbitrary chosen, but it has
to be defined in terms of ϕ0 in a prescribed way. At this stage, that requirement
could appear quite unnecessary and unnatural, but it will be motivated in view of a
forthcoming estimate (see the Fourth estimate below) which is of crucial importance
for the asymptotic analysis. Under this additional assumption, it follows that the
second of (2.5) is rather a consequence of the first one combined with the strong
regularity we postulated for ϕ0, which can now be motivated by virtue of the reg-
ularity we want for µ0. Indeed, combining the growth assumption for the potential
(2.10) with the continuous embedding W ⊂ L∞(Ω), we infer from the second of
(3.5) that µ0 ∈ V . On the other hand, whenever η0 ∈ V is given, let us claim that
µ0 and ϕ0 can be reconstructed providing to impose ∂nϕ0 = 0. In fact, using (3.5),
we realize that we are looking for a variable ϕ0 such that{

−∆ϕ0 + ϕ0−η0
α + F ′(ϕ0) = 0 in Ω

∂nϕ0 = 0 on Γ.

Again, the fact that α has to be sufficiently small helps us and the existence and
uniqueness of a solution to the above equation can be proved. Indeed, the nonlinear
term F ′(ϕ0) can be split as F ′(ϕ0) = B(ϕ0) +π(ϕ0), where the perturbation π(ϕ0)
does not bother since it is balanced by the term ϕ0−η0

α which dominates owing to
the smallness of the denominator (we can indeed assume that αL < 1, which gives
1
α > L). Then, by combining ∂nϕ0 = 0 with the elliptic regularity theory, we are
able to reconstruct ϕ0 which fulfills the first condition of (2.5). Finally, from the
first equation of (3.5), we also recover µ0 with the prescribed regularity. With these
comments in mind, we can proceed with the proof of Theorem 3.1.

Proof of Theorem 3.1. For the uniqueness part, we refer the reader to [8, Sec. 3].
As the existence is concerned, we take into account an approximation scheme.
The approximating system Let us take ε ∈ (0, 1) and consider the so-called
Yosida approximation of the maximal and monotone operator B. Namely, for every
r ∈ R, we introduce

B̂ε(r) := min
s∈R

(
1

2ε
(s− r)2 + B̂(s)

)
, Bε(r) :=

d

dr
B̂ε(r), and Fε := B̂ε + π̂.

(3.6)
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It turns out that B̂ε is a well-defined C1 function, Bε is Lipschitz continuous (see,
e.g., [4, Prop. 2.11, p. 39]), and for every r ∈ R, it holds that

0 ≤ B̂ε(r) ≤ B̂(r) and B̂ε(r)↗ B̂(r) as ε↘ 0. (3.7)

Hence, in order to solve 1.2–1.6, we first solve the approximated system obtained by
substituting F by Fε, and then we let ε ↘ 0 to prove the existence to the original
problem. Therefore, we are going to face the following system

α∂tµβ,ε + ∂tϕβ,ε −∆µβ,ε = P (ϕβ,ε)(σβ,ε − µβ,ε) in Q (3.8)

µβ,ε = β∂tϕβ,ε −∆ϕβ,ε + F ′ε(ϕβ,ε) in Q (3.9)

∂tσβ,ε −∆σβ,ε = −P (ϕβ,ε)(σβ,ε − µβ,ε) + uβ in Q (3.10)

∂nµβ,ε = ∂nϕβ,ε = ∂nσβ,ε = 0 on Σ (3.11)

µβ,ε(0) = µ0, ϕβ,ε(0) = ϕ0, σβ,ε(0) = σ0 in Ω. (3.12)

Our starting point is the result below.

Lemma 3.2. Assume that 2.1–2.10 are satisfied. Then, the approximating problem
3.8–3.12 admits a unique solution.

As the uniqueness is concerned, it can be proved as a special case of [8, Sec. 3]. As
regards the existence, let us only mention that, e.g., a Faedo-Galerkin scheme, along
with some a priori estimates, will lead to proving the asserted result. For instance,
as a basis of V , one could take into account the basis consisting of the eigenfunctions
of the Laplacian operator with homogeneous Neumann boundary conditions. We
decide to skip the details because the estimates we are going to perform below are
very similar to the ones that could allow one to solve the approximating problem.
In addition, let us point out that Bε and the map which assigns (µβ,ε, ϕβ,ε, σβ,ε) 7→
P (ϕβ,ε)(µβ,ε−σβ,ε) =: Rβ,ε are both smooth and Lipschitz continuous, for every β
and every ε, and therefore the classical Picard-Lindelöf theorem directly yields the
existence of a unique global solution to the system of ordinary differential equations
given by that scheme.
First estimate We multiply (3.8) by µβ,ε, (3.9) by −∂tϕβ,ε, and (3.10) by σβ,ε.
Next, we integrate over Qt and by parts, and add the resulting equalities to obtain
that

α

2

∫
Ω

|µβ,ε(t)|2 +

∫
Qt

|∇µβ,ε|2 + β

∫
Qt

|∂tϕβ,ε|2 +
1

2

∫
Ω

|∇ϕβ,ε(t)|2

+

∫
Ω

Fε(ϕβ,ε(t)) +
1

2

∫
Ω

|σβ,ε(t)|2 +

∫
Qt

|∇σβ,ε|2 +

∫
Qt

P (ϕβ,ε)(σβ,ε − µβ,ε)2

=
α

2

∫
Ω

|µ0|2 +
1

2

∫
Ω

|∇ϕ0|2 +

∫
Ω

Fε(ϕ0) +
1

2

∫
Ω

|σ0|2 +

∫
Qt

uβσβ,ε,

where we denote the integrals on the right-hand side by I1, ..., I5, in this order. The
terms on the left-hand side are nonnegative since they all are squares and P and
Fε are so by (2.4) and (2.7) along with 3.6–3.7, respectively. Moreover, I1, I2 and
I4 can be easily controlled owing to the assumptions on the initial conditions (2.5).
As for I3, we deduce that

|I3| =
∣∣∣ ∫

Ω

Fε(ϕ0)
∣∣∣ =

∫
Ω

B̂ε(ϕ0) +

∫
Ω

π̂(ϕ0) ≤
∫

Ω

B̂(ϕ0) +

∫
Ω

π̂(ϕ0) ≤ c,
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by invoking the properties of B̂ε pointed out by (3.7) and accounting for the features
of the initial datum ϕ0 and on the function π̂. Then, by employing the Young
inequality, we bound I5 as follows

|I5| ≤
1

2

∫
Qt

|uβ |2 +
1

2

∫
Qt

|σβ,ε|2.

Thus, a Gronwall argument yields that

‖µβ,ε‖L∞(0,T ;H)∩L2(0,T ;V ) + β1/2‖∂tϕβ,ε‖L2(0,T ;H) + ‖∇ϕβ,ε‖L2(0,T ;H)

+ ‖Fε(ϕβ,ε)‖L∞(0,T ;L1(Ω)) + ‖σβ,ε‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (3.13)

Second estimate Analyzing (3.13), we realize that it does not provide any infor-
mation of ϕβ,ε in L2(0, T ;H). Hence, we try to reconstruct the full norm of ϕβ,ε in
L2(0, T ;V ). In this direction, we add equations (3.8) and (3.10) to get

∂t(αµβ,ε + ϕβ,ε + σβ,ε)−∆(µβ,ε + σβ,ε) = uβ .

Then, we test the above equation by αµβ,ε +ϕβ,ε + σβ,ε and integrate over Qt and
by parts. Upon rearrange the terms, we obtain that

1

2

∫
Ω

(α|µβ,ε(t)|2 + |ϕβ,ε(t)|2 + |σβ,ε(t)|2) + α

∫
Qt

|∇µβ,ε|2 +

∫
Qt

|∇σβ,ε|2

=
1

2

∫
Ω

(α|µ0|2 + |ϕ0|2 + |σ0|2)− (α+ 1)

∫
Qt

∇µβ,ε · ∇σβ,ε

−
∫
Qt

∇µβ,ε · ∇ϕβ,ε −
∫
Qt

∇σβ,ε · ∇ϕβ,ε +

∫
Qt

uβ(αµβ,ε + ϕβ,ε + σβ,ε),

where the integrals on the right-hand side are denoted by I1, . . . , I5, in this order.
Using (2.5), we immediately deduce that |I1| ≤ c. Furthermore, by combining the
above estimate with the Young inequality, we find that the remaining terms can be
estimated as

|I2|+ |I3|+ |I4|+ |I5| ≤ c
∫
Qt

(|µβ,ε|2 + |∇µβ,ε|2) + c

∫
Qt

(|ϕβ,ε|2 + |∇ϕβ,ε|2)

+ c

∫
Qt

(|σβ,ε|2 + |∇σβ,ε|2) +
1

2

∫
Qt

|uβ |2.

Therefore, the Gronwall lemma entails that

‖ϕβ,ε‖L∞(0,T ;H) ≤ c. (3.14)

Moreover, we also realize that

‖Rβ,ε‖L2(0,T ;H) ≤ c. (3.15)

Third estimate It is worth noting that (3.10) possesses a parabolic structure
with respect to the variable σβ,ε and, owing to the above results, it follows that
its forcing term belongs to L2(0, T ;H). Hence, the parabolic regularity theory for
homogeneous Neumann problems with regular initial conditions, gives us

‖σβ,ε‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c. (3.16)

Fourth estimate Now, we present the key estimate for the forthcoming asymptotic
analyses which motivates the unusual requirement (3.5). To begin with, let us
formally differentiate (3.9) with respect to time to infer that

∂tµβ,ε = β∂ttϕβ,ε −∆∂tϕβ,ε + F ′′ε (ϕβ,ε)∂tϕβ,ε. (3.17)
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Next, we multiply it by α and replace the first term of (3.8) with this new equation
leading to obtain that

αβ∂ttϕβ,ε − α∆∂tϕβ,ε + αF ′′ε (ϕβ,ε)∂tϕβ,ε + ∂tϕβ,ε −∆µβ,ε

= P (ϕβ,ε)(σβ,ε − µβ,ε). (3.18)

This formal procedure can be rigorously motivated. Indeed, by introducing the
auxiliary variable zβ := α∂tϕβ,ε, we can rewrite (3.18) as a parabolic equation as
follows

β∂tzβ −∆zβ = fβ in Q,

where fβ is defined by

fβ := ∆µβ,ε − ∂tϕβ,ε − αF ′′ε (ϕβ,ε)∂tϕβ,ε + P (ϕβ,ε)(σβ,ε − µβ,ε).
Owing to the above estimates and to the growth conditions 2.9–2.10 for the po-
tential, we easily realize that, for every β, the forcing term fβ ∈ L2(0, T ;V ∗).
Therefore, the abstract theory for parabolic equations (see, e.g., [42]) guarantees
the existence and the uniqueness of a solution zβ ∈ H1(0, T ;V ∗)∩L2(0, T ;V ), when-
ever the initial datum zβ(0) is sufficiently regular, that is, whenever zβ(0) belongs
at least to H. As we will see, the particular choice of the initial datum µ0 assumed
by (3.5), entails, in the limit, that zβ(0) = 0, so that the required regularity is
trivially fulfilled.

Then, we multiply (3.18) by ∂tϕβ,ε and integrate over Qt and by parts to find
that

αβ

2

∫
Ω

|∂tϕβ,ε(t)|2 + α

∫
Qt

|∇∂tϕβ,ε|2 + α

∫
Qt

F ′′ε (ϕβ,ε)|∂tϕβ,ε|2 +

∫
Qt

|∂tϕβ,ε|2

=
αβ

2

∫
Ω

|∂tϕβ,ε(0)|2 +

∫
Qt

P (ϕβ,ε)(σβ,ε − µβ,ε) ∂tϕβ,ε

−
∫
Qt

∇µβ,ε · ∇∂tϕβ,ε, (3.19)

where the integrals on the right-hand side are denoted by I1, I2, I3, in this order. As
the third integrals of the left-hand side is concerned, we remind that Fε is defined
by (3.6) and that F ′′ is bounded below. Moreover, the same bound holds true for
Fε with the same constant L. Therefore, the third and fourth contributions on the
left-hand side verify that

α

∫
Qt

F ′′ε (ϕβ,ε)|∂tϕβ,ε|2 +

∫
Qt

|∂tϕβ,ε|2 ≥ (1− αL)

∫
Qt

|∂tϕβ,ε|2, (3.20)

whereas the other terms on that side are nonnegative. As regards the right-hand
side, let us emphasize that the definition (3.5) plays a fundamental role. Indeed, by
taking t = 0 in the equation (3.9), we get

µβ,ε(0) = β∂tϕβ,ε(0)−∆ϕβ,ε(0) + F ′ε(ϕβ,ε(0)) in Ω

Using (3.5), the initial conditions (3.12), and rearranging the terms lead to infer
that

β∂tϕβ,ε(0) = µ0 + ∆ϕ0 − F ′ε(ϕ0) = B(ϕ0)−Bε(ϕ0) in Ω.

On the other hand, from well-known results (see, e.g., [4, Chapt. 2]), we also have
the convergence, both a.e. in Ω and in L2(Ω), of the operator Bε to element having

minimum norm of the limit operator B. Actually, since B̂ is regular, it turns out
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that its subdifferential B is single-valued, so that the element having minimum
norm is B itself. Hence, we have

Bε(r)→ B(r) strongly in L2(Ω), a.e. in Ω, for every r ∈ R. (3.21)

Therefore, we easily realize that ‖B(ϕ0)−Bε(ϕ0)‖2H → 0, as ε→ 0. Meanwhile, the
other integrals can be easily controlled thanks to the Young inequality. Recalling
that P is bounded by (2.4), we control I2 by

|I2| ≤ δ
∫
Qt

|∂tϕβ,ε|2 + cδ

∫
Qt

(|σβ,ε|2 + |µβ,ε|2), (3.22)

for a positive constant δ, yet to be determined. In a similar manner, we obtain

|I3| ≤
α

2

∫
Qt

|∇∂tϕβ,ε|2 + c

∫
Qt

|∇µβ,ε|2. (3.23)

Upon collecting 3.20–3.23, we rearrange the initial equation (3.19) to infer that

αβ

2

∫
Ω

|∂tϕβ,ε(t)|2 +
α

2

∫
Qt

|∇∂tϕβ,ε|2 + (1− αL− δ)
∫
Qt

|∂tϕβ,ε|2

≤ c(1 + ‖B(ϕ0)−Bε(ϕ0)‖2H)

has been shown, where the right-hand side has been managed owing to the above
estimates. On the other hand, we can assume α to be sufficiently small in order to
have that αL < 1, so that it suffices to take δ small enough to conclude (1−αL−δ) >
0, which, in turn, implies that

β1/2‖∂tϕβ,ε‖L∞(0,T ;H) + ‖∂tϕβ,ε‖L2(0,T ;V ) ≤ c(1 + ‖B(ϕ0)−Bε(ϕ0)‖H). (3.24)

Fifth estimate Moreover, (3.8) shows a parabolic structure with respect to the
variable µβ,ε, so that

α∂tµβ,ε −∆µβ,ε = fβ in Q, where fβ := −∂tϕβ,ε + P (ϕβ,ε)(σβ,ε − µβ,ε).

On account of the above estimates, we easily realize that fβ ∈ L2(0, T ;H). Thus,
the regularity theory for homogeneous Neumann parabolic equations yields that

‖µβ,ε‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c. (3.25)

Sixth estimate Furthermore, let us read (3.9) as an elliptic equation with respect
to the variable ϕβ,ε as follows

−∆ϕβ,ε + F ′ε(ϕβ,ε) = µβ,ε − β∂tϕβ,ε in Q.

Then, we consider the above equation written at time t, split F ′ε on account of (2.8),
multiply it by −∆ϕβ,ε(t) and integrate over Ω and by parts to obtain that∫

Ω

|∆ϕβ,ε(t)|2 +

∫
Ω

B′ε(ϕβ,ε(t))|∇ϕβ,ε(t)|2 = −
∫

Ω

µβ,ε(t) ∆ϕβ,ε(t)

+ β

∫
Ω

∂tϕβ,ε(t) ∆ϕβ,ε(t) +

∫
Ω

π(ϕβ,ε(t)) ∆ϕβ,ε(t),

where the terms on the right-hand side are denoted by I1, I2 and I3, in that order.
Note that, at the first stage, the second term on the right-hand side can be ne-
glected since it is nonnegative by the properties of B′ε. On the other hand, Young’s
inequality, along with the above estimates, gives

|I1|+ |I2|+ |I3| ≤
3

4

∫
Ω

|∆ϕβ,ε(t)|2 + c.
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Hence, invoking first the elliptic theory, and then comparison in (3.9), lead to con-
clude that

‖ϕβ,ε‖L∞(0,T ;W ) + ‖Bε(ϕβ,ε)‖L∞(0,T ;H) ≤ c. (3.26)

Furthermore, the continuous embedding W ⊂ L∞(Ω), entails that

‖ϕβ,ε‖L∞(Q) ≤ c. (3.27)

Passing to the limit Lastly, we draw some consequences from the above a priori
estimates, showing that we can let ε↘ 0 to complete the proof.

Owing to standard weak compactness arguments, we infer that, as ε ↘ 0, and
up to a not relabeled subsequence, the following convergences

µβ,ε → µβ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (3.28)

ϕβ,ε → ϕβ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W )
(3.29)

σβ,ε → σβ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (3.30)

Rβ,ε → ζβ weakly in L2(0, T ;H) (3.31)

Bε(ϕβ,ε)→ ψβ weakly star in L∞(0, T ;H) (3.32)

are satisfied. Furthermore, compactness embedding results (see, e.g., [50, Sec. 8,
Cor. 4]) easily imply that

µβ,ε → µβ , ϕβ,ε → ϕβ , σβ,ε → σβ strongly in C0([0, T ];H) ∩ L2(0, T ;V ).

These convergences give sense to initial conditions (1.6) and allow us to iden-
tify the limit of the nonlinear terms. Indeed, the boundedness and the regular-
ity of P , along with the above strong convergences, yield that ζβ = Rβ , where
Rβ := P (ϕβ)(σβ −µβ). Arguing in a similar fashion, we infer that π(ϕβ,ε) strongly
converges to π(ϕβ) in L2(0, T ;H). Lastly, from the monotonicity properties of the
Yosida approximation introduced by (3.6), we get (see, e.g., [3, Lemma 1.3, p. 42])
that

lim sup
ε↘0

∫
Q

Bε(ϕβ,ε)ϕβ,ε = lim
ε↘0

∫
Q

Bε(ϕβ,ε)ϕβ,ε =

∫
Q

B(ϕβ)ϕβ ,

which implies ψβ = B(ϕβ). In conclusion, the limit triplet (µβ , ϕβ , σβ) yields a
solution to 1.2–1.6 and possesses the postulated regularity 3.1–3.3, so that Theorem
3.1 is completely proved.

With the result below, we aim at improve the result on the asymptotic analysis
of system 1.2–1.6, as β ↘ 0 (compare with the regularity pointed out in [8, 13, 11]).

Theorem 3.3. Suppose that 2.1–2.10 are satisfied and let µ0 := −∆ϕ0 + F ′(ϕ0).
Then, there exists a sufficiently small α0 ∈ (0, 1) such that, for every α ∈ (0, α0) and
β ∈ (0, 1), the unique solution (µβ , ϕβ , σβ) to problem 1.2–1.6, as β ↘ 0, satisfies

µβ → µ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (3.33)

ϕβ → ϕ weakly star in H1(0, T ;V ) ∩ L∞(0, T ;W ) (3.34)

σβ → σ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (3.35)

βϕβ → 0 strongly in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ) (3.36)
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at least for a subsequence. Moreover, the limit (µ, ϕ, σ) turns out to be the unique
solution to the limit system 1.10–1.14. Furthermore, there exists a subsequence for
which we also have the strong convergences

ϕβ → ϕ strongly in C0([0, T ];H2−γ(Ω)), for every γ > 0,

which entails ϕβ → ϕ strongly in C0(Q) (3.37)

µβ → µ strongly in C0([0, T ];H) ∩ L2(0, T ;V ) (3.38)

σβ → σ strongly in C0([0, T ];H) ∩ L2(0, T ;V ). (3.39)

Proof. Since it immediately follows on account of standard techniques from estimate
(3.4), we just sketch the proof and left the details to the reader.

The convergences 3.33–3.36 immediately follow by standard argument by esti-
mate (3.4), while the strong convergences 3.37–3.39 can be obtained by invoking
well-known compactness results (see, e.g., [50]). Hence, it remains to check that
(µ, ϕ, σ) yields a solution to 1.10–1.14. In principle, one should consider the varia-
tional formulation corresponding to system 1.2–1.6 and, using the above estimates,
pass to the limit to conclude. Therefore, the only terms that deserve further com-
ments are the nonlinear ones. Anyhow, the strong convergence (3.37) suffices since,
along with (2.4), (2.8) and (3.4), yields that

F ′(ϕβ)→ F ′(ϕ), P (ϕβ)→ P (ϕ), both strongly in C0(Q).

Furthermore, we infer that

B(ϕβ)→ B(ϕ) at least strongly in L2(0, T ;H).

It is now a standard matter to complete the details. Finally, uniqueness follows as
a consequence of [13, Thm. 2.3].

Let us remark that by [13, Ex. 2.4] the authors pointed out a severe non-
uniqueness result for the system 1.10–1.14 if αL = 1. On the other hand, they
pointed out a stability estimate whenever α is sufficiently small (α < min{ 1

L ,
1

(1+L)2 }), which directly implies uniqueness. The smallness condition is indeed

motivated by the fact that we need the uniqueness for system 1.10–1.14.

4. The control problem. This last section is completely devoted to the investi-
gation of the optimal control problem (CP ). We prove the existence of an optimal
control and point out a variational inequality which characterizes the first-order
necessary condition for optimality.

4.1. Existence of optimal controls. To begin with, we check the existence of
optimal controls, namely, we prove Theorem 2.3.

Proof of Theorem 2.3. For the proof, we employ the direct method of calculus of
variations. In this direction, let us fix a sequence {βn}n which goes to zero as
n → ∞. Then, let {un}n := {uβn

}n ⊂ Uad be a minimizing sequence for J
which, at every step, is made of optimal control for (CP )βn

, and let (µn, ϕn, σn)
be the corresponding solution to system 1.10–1.14. From the bounds pointed out
by estimate (3.4), we deduce that, as n → ∞, there exist some u ∈ Uad, a triple
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(µ, ϕ, σ), such that, up to a not relabeled subsequence, the following convergences

un → u weakly star in L∞(Q)

µn → µ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

ϕn → ϕ weakly star in H1(0, T ;V ) ∩ L∞(0, T ;W )

σn → σ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

are satisfied. Moreover, as made in (3.37), standard compactness results (see, e.g.,
[50, Sec. 8, Cor. 4]) imply that

ϕn → ϕ strongly in C0(Q),

which also gives sense to the initial condition ϕ(0) = ϕ0. Thus, this latter, along
with (2.4), (2.8) and (3.4), allows us to identify the nonlinear terms in the limit. In
fact, as n→∞, we realize that

F ′(ϕn)→ F ′(ϕ), P (ϕn)→ P (ϕ), both strongly in C0(Q).

Next, we take into account the variational formulation of system 1.10–1.14, written
for (µn, ϕn, σn), and pass to the limit as n→∞. Therefore, we realize that (µ, ϕ, σ)
is the unique solution to 1.10–1.14 associated with u. Lastly, invoking the weak
sequential lower semicontinuity of the cost functional J , it turns out that u is the
minimizer we are looking for.

4.2. Approximation of optimal controls. Once the existence has been proved,
we would like to characterize the optimality of (CP ) on account of some asymptotic
schemes. If we want to let β ↘ 0 in the optimality condition for (CP )β in order to
obtain the one for (CP ), we should ensure that every optimal control u for (CP )
can be found as a limit of a sequence consisting of optimal controls for (CP )β .
As anticipated, this strong condition is out of reach, so that we follow a different

way making use of the approximated optimal control problem (C̃P )β . In fact, we

first show that (C̃P )β can be solved, and then we precise in which sense it can be
useful to deduce the necessary condition for optimality of (CP ). Furthermore, as
it complies with the framework of [49], it is straightforward to obtain the result
below.

Lemma 4.1. Under the assumptions 2.1–2.10, whenever β ∈ (0, 1) is given, the

optimal control problem (C̃P )β admits at least a solution.

Moreover, as a consequence of [49], it also follows the first-order optimality con-
dition for optimality (compare with Theorem 2.1).

Theorem 4.2. Assume that 2.1–2.10 are satisfied and let uβ ∈ Uad be an optimal

control for (C̃P )β with the corresponding optimal state (µβ , ϕβ , σβ). Moreover, let
(pβ , qβ , rβ) be the solution to the adjoint system 2.12–2.16. Then, the first-order
necessary conditions for optimality reads as follows∫

Q

(rβ + b0uβ + (uβ − u))(v − uβ) ≥ 0 ∀v ∈ Uad. (4.1)

Now, all the ingredients are set and we are in a position to properly state the
approximation result we mentioned above.
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Theorem 4.3. Assume that 2.1–2.10 are in force. Moreover, let (ϕ, σ, u) be an
optimal triple for (CP ) and let {βn}n be a sequence which goes to zero as n→∞.
Then, there exists an approximating optimal triple, namely a triple (ϕβn

, σβn
, uβn

)

which solves (C̃P )βn and a not relabeled subsequence such that, as n→∞, we have
the following convergences

un := uβn
→ u strongly in L2(Q) (4.2)

ϕn := ϕβn
→ ϕ weakly star in H1(0, T ;V ) ∩ L∞(0, T ;W ) (4.3)

σn := σβn
→ σ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) (4.4)

J̃ (ϕn, σn, un)→ J (ϕ, σ, u). (4.5)

This theorem is the best we can say as far as the approximation of optimal
controls of (CP ) by sequences of optimal controls for an approximating problem is
concerned. The proof mainly relies on monotonicity and compactness arguments.

Proof of Theorem 4.3. Let β ∈ (0, 1), (ϕβ , σβ , uβ) be an optimal triple for (C̃P )β ,
which exists by virtue of Lemma 4.1, and let {βn}n be a sequence which goes to
zero as n → ∞. For the sake of simplicity, with un we denote the optimal control
associated to βn, that is, un := uβn

. Likewise, ϕn := ϕβn
and σn := σβn

. In view
of the boundedness of Uad and of estimates 3.33–3.35, there exist some ϕ, σ, and u
such that, as n→∞, the convergences

un → u weakly star in L∞(Q)

ϕn → ϕ weakly star in H1(0, T ;V ) ∩ L∞(0, T ;W )

σn → σ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

are verified. Moreover, we also realize that the limit (ϕ, σ, u) is an admissible triple
for (CP ). Furthermore, we claim that (ϕ, σ, u) is nothing but (ϕ, σ, u), where u is
an optimal control for (CP ), whereas ϕ and σ are the corresponding states. Note
that this would imply that the sequence (ϕn, σn, un) approximates (ϕ, σ, u) in the
sense described above. The weak sequential lower semicontinuity of the adapted

cost functional J̃ yields that

lim inf
n→∞

J̃ (ϕn, σn, un) ≥ J̃ (ϕ, σ, u) = J (ϕ, σ, u) +
1

2
‖u− u‖2L2(Q)

≥ J (ϕ, σ, u) +
1

2
‖u− u‖2L2(Q), (4.6)

where we also take into account the optimality of (ϕ, σ, u) for (CP ) and the defi-
nition of the adpated cost functional (1.15). On the other hand, the optimality of

(ϕn, σn, un) for (C̃P )βn , implies that

J̃ (ϕn, σn, un) ≤ J̃ (ϕ, σ, u) for every n ∈ N.

Hence, passing to the superior limit to both sides leads to deduce that

lim sup
n→∞

J̃ (ϕn, σn, un) ≤ J̃ (ϕ, σ, u) = J (ϕ, σ, u). (4.7)

Finally, by combining (4.6) with (4.7), we infer that

1

2
‖u− u‖2L2(Q) = 0. (4.8)
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It is now straightforward to realize that also the corresponding states coincide,
leading to conclude that (ϕ, σ, u) = (ϕ, σ, u), as we claimed. Lastly, upon collecting
the above information, we have the following chain of equality

J (ϕ, σ, u) = J̃ (ϕ, σ, u) = lim inf
n→∞

J̃ (ϕn, σn, un) = lim sup
n→∞

J̃ (ϕn, σn, un)

= lim
n→∞

J̃ (ϕn, σn, un) = lim
n→∞

J (ϕn, σn, un) +
1

2
‖un − u‖2L2(Q), (4.9)

Thus, we are reduced to show (4.2). Up to now, we have just proven that the weak
limit of un is u. On the other hand, it easily follows from the above estimates, along
with the lower semicontinuity of the cost functional, that

J (ϕ, σ, u) ≤ lim inf
n→∞

J (ϕn, σn, un) ≤ lim sup
n→∞

J (ϕn, σn, un)

≤ lim sup
n→∞

J̃ (ϕn, σn, un) = lim J̃ (ϕn, σn, un) = J (ϕ, σ, u),

so that

J (ϕ, σ, u) = lim
n→∞

J (ϕn, σn, un) (4.10)

is verified. Therefore, by combining (4.9) with 4.8–4.10, we deduce that

1

2
‖un − u‖2L2(Q) → 0,

which conclude the proof.

4.3. The adjoint system. Here, we are going to investigate the adjoint system
proving Theorem 2.2. In order to avoid a heavy notation, we will omit writing the
subscript β on the variables which occur in the calculations below, while we will
reintroduce the correct notation at the end of each estimate. Before moving on, let
us set

QTt := Ω× [t, T ], for every t ∈ [0, T ).

Below, we will proceed quite formally. The justification can be carried out rigor-
ously, e.g., introducing a Galerkin scheme. Moreover, the adjoint system is linear
and therefore, the uniqueness part easily follows by applying standard arguments
from the existence part. On the other hand, system 2.12–2.16 has already been
studied in [49, Sec. 4.4], and we refer there the interested reader for the details of
the Galerkin technique.

Proof of Theorem 2.2. The a priori estimates we are going to point out will allow
us to justify in a rigorous way the passage β ↘ 0 in system 2.12–2.16.
First estimate To begin with, we add to both sides of (2.13) the term p. Then,
we test (2.12) by −q, this new second equation by −∂tp, and (2.14) by r. Summing
up and integrating over QTt lead to

β

2

∫
Ω

|q(t)|2 +

∫
QT

t

∂tp q +

∫
QT

t

|∇q|2 +

∫
QT

t

F ′′(ϕ)|q|2 +
1

2

∫
Ω

|p(t)|2

−
∫
QT

t

∂tp q + α

∫
QT

t

|∂tp|2 +
1

2

∫
Ω

|∇p(t)|2 +
1

2

∫
Ω

|r(t)|2 +

∫
QT

t

|∇r|2
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=
β

2

∫
Ω

|q(T )|2 +
1

2

∫
Ω

|p(T )|2 +
1

2

∫
Ω

|∇p(T )|2 +
1

2

∫
Ω

|r(T )|2

− b1
∫
QT

t

(ϕ− ϕQ)q + b2

∫
QT

t

(σ − σQ)r +

∫
QT

t

P ′(ϕ)(σ − µ)(r − p)q

+

∫
QT

t

P (ϕ)(p− r)∂tp−
∫
QT

t

p ∂tp−
∫
QT

t

P (ϕ)(r − p)r. (4.11)

On the left-hand side two integrals cancel out and, despite the fourth term, the
others are nonnegative. As the fourth term is concerned, we remind that F ′′ is
bounded below in terms of the Lipschitz constant L, so that we have∫

QT
t

F ′′(ϕ)|q|2 ≥ −L
∫
QT

t

|q|2.

Next, we test (2.13) by Kq, for a positive constant K yet to be determined, and
integrate over QTt to get

K

∫
QT

t

|q|2 = αK

∫
QT

t

∂tp q −K
∫
QT

t

∇p · ∇q −K
∫
QT

t

P (ϕ)(p− r)q. (4.12)

Then, after making use of the definition of the final conditions (2.16), we add 4.11–
4.12 to obtain that

β

2

∫
Ω

|q(t)|2 + (K − L)

∫
QT

t

|q|2 +

∫
QT

t

|∇q|2 + α

∫
QT

t

|∂tp|2

+
1

2

∫
Ω

|p(t)|2 +
1

2

∫
Ω

|∇p(t)|2 +
1

2

∫
Ω

|r(t)|2 +

∫
QT

t

|∇r|2

≤ b3
2

∫
Ω

|σ(T )− σΩ|2 − b1
∫
QT

t

(ϕ− ϕQ)q + b2

∫
QT

t

(σ − σQ)r

+

∫
QT

t

P ′(ϕ)(σ − µ)(r − p)q +

∫
QT

t

P (ϕ)(p− r)∂tp

−
∫
QT

t

p ∂tp−
∫
QT

t

P (ϕ)(r − p)r + αK

∫
QT

t

∂tp q

−K
∫
QT

t

∇p · ∇q −K
∫
QT

t

P (ϕ)(p− r)q,

where we denote by I1, . . . , I10 the integrals on the right-hand side, in that order.
Now, we start estimating the terms on the right-hand side. Owing to assumptions
2.2–2.3, we easily realize that

|I1| ≤ c.

Meanwhile, the integrals I2 and I3 can be easily managed by applying the Young
inequality and the fact that ϕ and σ, as solutions to 1.2–1.6, satisfy (3.4). In fact,
we have that

|I2|+ |I3| ≤ δ
∫
QT

t

|q|2 +
1

2

∫
QT

t

|r|2 + cδ,

for a small and positive δ yet to be determined. Invoking the Hölder and Young
inequalities, the continuous embeddings V ⊂ L4(Ω) and V ⊂ L6(Ω), assumption
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(2.4), and estimate (3.4), we infer that

|I4| ≤ c
∫
QT

t

|σ − µ||r − p||q| ≤ c
∫ T

t

‖σ − µ‖6‖r − p‖2‖q‖3

≤ δ
∫ T

t

‖q‖2V + cδ

∫ T

t

(‖σ‖2V + ‖µ‖2V )(‖r‖2H + ‖p‖2H)

≤ δ
∫
QT

t

(|q|2 + |∇q|2) + cδ

∫
QT

t

(|r|2 + |p|2).

By the same token, using (2.32), we get

|I5| ≤ c
∫
QT

t

|p− r||∂tp| ≤ δ
∫
QT

t

|∂tp|2 + cδ

∫
QT

t

(|p|2 + |r|2).

Using the Young inequality once more, we realize that

|I6|+ |I7| ≤ δ
∫
QT

t

|∂tp|2 + cδ

∫
QT

t

|p|2 + c

∫
QT

t

|r|2,

and also that

|I9|+ |I10| ≤ δ
∫
QT

t

|∇q|2 + cδ

∫
QT

t

|∇p|2 + δ

∫
QT

t

|q|2 + cδ

∫
QT

t

(|p|2 + |r|2).

Lastly, owing to (2.32), I8 can be dealt by

|I8| =
∣∣∣αK ∫

QT
t

∂tp q
∣∣∣ ≤ K

2

∫
QT

t

|q|2 +
α2K

2

∫
QT

t

|∂tp|2.

Collecting all the previous estimates, we realize that the backward-in-time Gronwall
lemma yields the estimate we are looking for, provided we check that K and δ can
be chosen in such a way to satisfy the following condition

min
{
K − K

2
− L− 3δ, 1− 2δ, α− α2K

2
− 2δ

}
> 0.

Actually, considering that δ can be taken arbitrarily small, we are reduced to show
that there exists a positive constant K such that

min
{K

2
− L,α− α2K

2

}
> 0.

Let us claim that this is satisfied if α is small enough. For instance, we take
K = 3L, so that

min
{K

2
− L,α− α2K

2

}
= min

{L
2
,
α

2
(2− α3L)

}
.

Hence, we assume at once α to be small in order that 2− α3L > 0. Lastly, we pick
δ small enough to conclude. Finally, a Gronwall argument implies that

β1/2‖qβ‖L∞(0,T ;H) + ‖qβ‖L2(0,T ;V ) + ‖pβ‖H1(0,T ;H)∩L∞(0,T ;V )

+ ‖rβ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (4.13)

Second estimate Then, we test (2.13) by −∆p and integrate over QTt to obtain
that

α

2

∫
Ω

|∇p(t)|2 +

∫
QT

t

|∆p|2 =
α

2

∫
Ω

|∇p(T )|2 +

∫
QT

t

q∆p+

∫
QT

t

P (ϕ)(p− r)∆p,
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where we denote the terms on the right-hand side by I1, I2, and I3, respectively.
Owing to the final conditions (2.16), we easily conclude that I1 = 0. Moreover,
Young’s inequality, combined with the boundedness of P , gives that

|I2|+ |I3| ≤
1

2

∫
QT

t

|∆p|2 +

∫
QT

t

|q|2 + c

∫
QT

t

(|p|2 + |r|2).

Hence, the previous estimate produces

‖∇pβ‖L∞(0,T ;H) + ‖∆pβ‖L2(0,T ;H) ≤ c, (4.14)

from which, applying standard elliptic regularity results for homogeneous Neumann
boundary problems, we obtain that

‖pβ‖L∞(0,T ;V )∩L2(0,T ;W ) ≤ c. (4.15)

Third estimate Furthermore, we test (2.14) first by −∂tr and secondly by −∆r
to get the following parabolic regularity

‖rβ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c. (4.16)

Fourth estimate Next, by testing (2.12) by ∆q and integrating over QTt , we find
that

β

2

∫
Ω

|∇q(t)|2 +

∫
QT

t

|∆q|2 =
β

2

∫
Ω

|∇q(T )|2 +

∫
QT

t

∂tp∆q +

∫
QT

t

F ′′(ϕ)q∆q

−
∫
QT

t

P ′(ϕ)(σ − µ)(r − p)∆q +

∫
QT

t

b1(ϕ− ϕQ)∆q,

where we indicate the terms on the right-hand side by I1, . . . , I5, in that order. In
a similar fashion as in the previous estimates, we first observe that I1 = 0. Next,
owing to the Young and Hölder inequalities, to the boundary of P , and to the
continuous embedding (2.33), the remaining integrals can be dealt as

|I2|+ |I3|+ |I4|+ |I5| ≤
4

5

∫
QT

t

|∆q|2 + c

∫
QT

t

|∂tp|2 + c

∫
QT

t

|q|2

+ c

∫
QT

t

(|p|2 + |r|2) + c,

where estimate (3.4) for the solutions µ and σ, is also taken into account. Hence,
we have that

β1/2‖∇qβ‖L∞(0,T ;H) + ‖∆qβ‖L2(0,T ;H) ≤ c, (4.17)

and the regularity results for elliptic equations with homogeneous Neumann bound-
ary conditions, entails that

β1/2‖∇qβ‖L∞(0,T ;H) + ‖qβ‖L2(0,T ;W ) ≤ c. (4.18)

Fifth estimate Lastly, we rearrange equation (2.12) in the following way

β∂tq = ∂tp−∆q + F ′′(ϕ)q − P ′(ϕ)(σ − µ)(r − p) + b1(ϕ− ϕQ).

Therefore, by comparison in the above equation, we also realize that

β‖∂tqβ‖L2(0,T ;H) ≤ c. (4.19)

Passing to the limit Summing up, upon combining the above estimates we recover
estimate (2.28). Moreover, we infer that there exist some variables q, p and r such
that, up to a not relabeled subsequence, as β ↘ 0, the convergences mentioned by
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2.24–2.27 hold. Furthermore, these uniform bounds, along with standard compact-
ness embedding results, allow us to recover also the following strong convergences

pβ → p strongly in C0([0, T ];H) ∩ L2(0, T ;V ) (4.20)

rβ → r strongly in C0([0, T ];H) ∩ L2(0, T ;V ). (4.21)

Then, we try to draw some consequences from the aforementioned a priori bounds
in order to pass to the limit, as β ↘ 0, in the adjoint system 2.12–2.16. For the
sake of convenience, we rewrite its variational formulation which can be obtained
by testing the system by an arbitrary v ∈ V and integrating over Ω. It reads as
follows

β

∫
Ω

∂tqβ(t) v −
∫

Ω

∂tpβ(t) v −
∫

Ω

∇qβ(t) · ∇v −
∫

Ω

F ′′(ϕβ(t))qβ(t) v

+

∫
Ω

P ′(ϕβ(t))(σβ(t)− µβ(t))(rβ(t)− pβ(t))v =

∫
Ω

b1(ϕβ(t)− ϕQ(t))v

for every v ∈ V , for a.a. t ∈ (0, T )∫
Ω

qβ(t)v−α
∫

Ω

∂tpβ(t) v+

∫
Ω

∇pβ(t) · ∇v

+

∫
Ω

P (ϕβ(t))(pβ(t)− rβ(t))v = 0 for every v ∈ V , for a.a. t ∈ (0, T )

−
∫

Ω

∂trβ(t) v +

∫
Ω

∇rβ(t) · ∇v +

∫
Ω

P (ϕβ(t))(rβ(t)− pβ(t))v

=

∫
Ω

b2(σβ(t)− σQ(t))v for every v ∈ V , for a.a. t ∈ (0, T ),

and the final condition∫
Ω

rβ(T )v =

∫
Ω

b3(σβ(T )− σΩ)v for every v ∈ V .

At this point, we would invoke the above convergences 2.24–2.27 to show that in
the limit, as β ↘ 0, we find

−
∫

Ω

∂tp(t) v −
∫

Ω

∇q(t) · ∇v −
∫

Ω

F ′′(ϕ(t))q(t) v

+

∫
Ω

P ′(ϕ(t))(σ(t)− µ(t))(r(t)− p(t))v =

∫
Ω

b1(ϕ(t)− ϕQ(t))v

for every v ∈ V , for a.a. t ∈ (0, T )∫
Ω

q(t)v−α
∫

Ω

∂tp(t) v+

∫
Ω

∇p(t) · ∇v

+

∫
Ω

P (ϕ(t))(p(t)− r(t))v = 0 for every v ∈ V , for a.a. t ∈ (0, T )

−
∫

Ω

∂tr(t) v +

∫
Ω

∇r(t) · ∇v +

∫
Ω

P (ϕβ(t))(rβ(t)− pβ(t))v

=

∫
Ω

b2(σ(t)− σQ(t))v for every v ∈ V , for a.a. t ∈ (0, T ),

and the final condition∫
Ω

r(T )v =

∫
Ω

b3(σ(T )− σΩ)v for every v ∈ V ,
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which corresponds to the variational formulation associated to system 2.19–2.23.
Nonetheless, since there appear some nonlinear terms, some care is in order. First,
let us recall that both P and F are regular due to (2.4) and (2.9) and that (3.27)
holds. Hence, exploiting the strong convergence (3.37), we claim that, as β ↘ 0,
we have

F ′′(ϕβ)→ F ′′(ϕ) strongly in C0(Q) (4.22)

P (ϕβ)→ P (ϕ) strongly in C0(Q). (4.23)

To prove the former, it suffices to combine (2.10) and (3.37) with the estimate
(3.27), while for the latter we simply account for (3.37) and for the boundedness
of P . Moreover, having in mind the weak convergence (2.24) and the strong ones
4.20–4.21, we can prove that the nonlinear terms can be identified in the limit. In
fact, from (2.24), we have that

qβ → q at least weakly in L2(0, T ;H),

which, along with (4.22), leads to infer that

F ′′(ϕβ)qβ → F ′′(ϕ)q at least weakly in L2(0, T ;H).

Similarly, combining 4.20–4.21 with (4.23), we also deduce that

P (ϕβ)(pβ − rβ)→ P (ϕ)(p− r) strongly in L2(Q)

P ′(ϕβ)(σβ − µβ)(rβ − pβ)→ P ′(ϕ)(σ − µ)(r − p) strongly in L1(Q),

where the first one requires the help of the strong convergence pointed out by (3.37)
and the boundedness of P , whereas in the second we again owe to (3.37), along
with the strong convergences 3.38–3.39. To completely recover system 2.19–2.23 it
suffices to check that the regularity is enough to rewrite the system in a strong
form. So, this is the sense in which we can say that system 2.12–2.16 converges, as
β ↘ 0, to 2.19–2.23.

4.4. First-order necessary condition. We conclude the paper providing the
first-order necessary condition that an optimal control, which exists in view of
Theorem 2.3, has to verify.

Proof of Theorem 2.4. As previously mentioned, in order to get inequality (2.31),
we cannot pass to the limit as β ↘ 0 in the variational inequality (2.18) since
nothing ensures that in such a passage, the control uβ will converge to a limit that
is also optimal for (CP ). Therefore, the investigation made in the subsection 4.2
helps to rigorously handle this issue. Indeed, we are going to consider a sequence
{βn} which goes to zero as n→∞ and then we take into account un := uβn instead
of uβ . Therefore, after extraction of a subsequence {βnk

}, the asymptotics pointed
out by 2.24–2.27 and 4.2–4.5 allow us to pass to the limit as k → ∞ in (4.1) to
obtain (2.31).

Furthermore, the last sentence immediately follows as a straightforward applica-
tion of the Hilbert projection theorem, since Uad is a non-empty, closed and convex
subset of L2(0, T ;H). Moreover, let us note that (2.31) implies that, whenever
b0 > 0, the optimal control u can be implicitly characterized as follows (see, e.g.,
[52])

u(x, t) = max
{
u∗(x, t),min{u∗(x, t),− 1

b0
r(x, t)}

}
for a.a. (x, t) ∈ Q.
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Academiei Republicii Socialiste România, Bucharest, Noordhoff International Publishing,

Leyden, 1976.
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