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Abstract Over the years, the increasingly complex and interconnected
vehicles raised the need for effective and efficient Intrusion Detection Sys-
tems against on-board networks. In light of the stringent domain require-
ments and the heterogeneity of information transmitted on the Controller
Area Network, multiple approaches have been proposed, which work at
different abstraction levels and granularities. Among these, RNN-based
solutions received the attention of the research community for their per-
formances and promising results. This paper proposes CANdito, an un-
supervised IDS that exploits Long Short-Term Memory autoencoders to
detect anomalies through a signal reconstruction process. In particular,
we improve an RNN-based state-of-the-art IDS for CAN from the detec-
tion and temporal performances to comply with the strict automotive
domain requirements. We evaluate CANdito by comparing its perfor-
mance against state-of-the-art Intrusion Detection Systems (IDSs) for
in-vehicle network and a comprehensive set of synthetic and real attacks
in real-world CAN datasets.

1 Introduction

In the last decades, vehicles have become more complex, especially concerning
their electronics [15]. Car manufacturers nowadays implement entertainment and
autonomous drive-related technologies. As a result, the number of Electronic
Control Units (ECUs) grew to reach more than one hundred units in the most
complex vehicles. This evergrowing complexity, however, raises security risks,
as firstly demonstrated by Koscher and Checkoway in [3, 11], allowing the at-
tacker to gain control of the vehicle’s functionalities, even remotely. To manage
such risks, the scientific research community focuses on developing countermea-
sures and security solutions, amongst which intrusion detection techniques for
Controller Area Network (CAN) 1 have proven effective.

CAN security weaknesses are nowadays well known and discussed in mul-
tiple works [2,36]. As demonstrated by Miller and Valasek in [22,23], one of the
most common known vulnerabilities derives from the lack of authentication of

1For further details on the CAN specification, we refer the reader to [25].
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messages on CAN. A node should not be allowed to send IDs that it does not
own, but there is no mechanism to enforce this rule. Therefore, an attacker that
takes control of an ECU that has access to a CAN bus can ideally send any ID
and payload. In worst-case scenarios, the attacker is also capable of silencing
the owner of the packet to avoid conflicts, as presented in [6,16]. Given the IDS
nature of the work at hand, we present the capabilities of the attacker through
the effects of its actions on the payload and flow of packets on the bus: A weak
attacker may inject forged packets with one or multiple specific IDs on the bus,
without silencing their owner. In this situation, the receivers may or may not
consider the attacker’s packets valid due to the incongruities on the bus. To solve
this conflict, a stronger attacker may silence the owner and then forge packets
with its ID, leading to a masquerade attack. Such masquerade attack can be
implemented with or without consideration of the existence of an IDS check-
ing the bus. If it is considered, the attacker may want to implement a replay
attack, where she/he does not create a new payload but repeats a payload pre-
viously captured on the bus, or a seamless change attack, where the attacker
drives a signal from its current value to a tampered one by changing it slowly
through multiple packets. If it is not considered, an attacker may want to study
the effects of various payloads and IDs on the system, implementing a fuzzing
attack. Finally, an attacker may have the only goal to silence a node without
replacing it, creating a drop attack. As further discussed in Section 4 when we
present our attack tool, we generate datasets that consider these attacks and
evaluate the systems against all of them.

Intrusion Detection Systems (IDSs) for vehicular systems analyze the stream
of packets and monitor the events on on-board networks for signs of intrusions.
Among these, machine learning-based, particularly RNN-based solutions, have
proven effective in recognizing anomalous behavior [17, 32]. Based on the ap-
proach and the results of CANnolo [17], in this paper, we propose CANdito, an
RNN-based, unsupervised IDS that exploits Long Short-Term Memory (LSTM)
autoencoders to detect anomalies through a signal reconstruction process. After
a preprocessing stage, it learns the legitimate signal behavior through an LSTM-
based autoencoder. Then, it computes the anomaly score for each CAN ID based
on their reconstruction error. In particular, we improve the overall architecture
and lighten CANnolo computational requirements to meet real-world timing con-
straints of the automotive domain. We prove the effectiveness of CANdito by con-
ducting experiments on a real dataset of CAN traffic augmented with a set of syn-
thetic but realistic attacks. With respect to existing works, we consider a broader
spectrum of attacks and implement a tool to inject them into real-world CAN
traffic logs. This tool is available at url.to.be.released.once.published. We
demonstrate that CANdito outperforms its predecessor CANnolo, with improved
detection rates and a reduction of more than 50% of the timing overheads. More-
over, to provide a fair evaluation of CANdito, we compare its performances
against state-of-art Intrusion Detection Systems (IDSs) for in-vehicle network
on a public dataset with attack messages. Our experimental results show that

url.to.be.released.once.published
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CANdito outperforms state-of-the-art detection methods with a perfect True
Positive Ration (TPR) and lower time requirements.

In summary, our contributions are the following:

– We improve CANnolo with CANdito, an RNN-based, unsupervised IDS that
exploits LSTM autoencoders to detect anomalies through a signal recon-
struction process.

– We design and provide CANtack, a tool to generate and inject synthetic
attacks in real datasets, to be used as a benchmarking suite for IDS in the
automotive domain.

– An evaluation of CANdito from the point of view of detection and timing
performances on a more comprehensive dataset with respect to state-of-the-
art works.

2 Related Works

Intrusion detection for automotive onboard networks has drawn vast research in
recent years. We refer to Jo et al. [8] for a comprehensive survey of intra-vehicle
IDSs, which can be divided into packet-based and hardware-based. Packet-based
IDSs can be further divided into flow-based, payload-based, and combined. Flow-
based IDSs (e.g., [12,26,27,33]) monitor the CAN bus, extract distinct features
as message frequency or packet inter-arrival time, and use them to detect anoma-
lous events without inspecting the payloads of the messages. On the contrary,
payload-based IDSs (e.g., [1,7,9,17]) examine the payload of CAN packets (usu-
ally only data frames). Finally, combined IDS (e.g., [21,38]) are a combination
of the previous two techniques. Many different machine learning techniques have
been applied to payload-based CAN intrusion detection, from GANs to CNNs,
in both a supervised and unsupervised fashion:

Kang and Kang [9] propose a supervised payload-based IDS based on Deep
Neural Network (DNN). The input feature does not use the entire payload, but
only the mode information, which represents the command state of an ECU,
and the value information, which represents the value of the mode (e.g., wheel
angle or speed). Multiple techniques exploit CNNs. For example, Rec-CNN [5]
transforms the detection process into an image recognition one in an attempt
to exploit the image recognition capabilities of CNNs, generating so-called re-
currence plots that graphically represent the time series of packets. Reduced
Inception-ResNet [28] exploits the deep convolutional neural network model of
the Inception-ResNet architecture, a supervised model designed for image recog-
nition, but significantly simplifies it in an attempt at lower computational times.
CANTransfer [31] instead applies a supervised convolutional LSTM-based model
to CAN intrusion detection with the goal of applying transfer learning to sim-
plify the process of training different vehicles and IDs. CNNs are, however, better
at processing spatial data, while RNNs and LSTMs are generally better suited
for temporal data. CAN-ADF [30] exploits RNNs in a supervised fashion and
inserts a rule-based IDS in front of it to detect simpler attacks in an attempt
to not only detect attacks but also classify them, while TSP [24] studies the
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differences between various loss functions in the development of an LSTM-based
IDS. HyDL-IDS [14] exploits CNNs and LSTMs to build a supervised system
that extracts both temporal and spatial features of each packet stream. Often
paired with these techniques, autoencoders have been proposed to predict or
reconstruct time series. O-DAE [13] approaches detection by attempting to re-
move noise from the time series of packets via a supervised DAE autoencoder
and then recognizing the attacks through the reconstruction. CANet [7] is one of
the few IDSs that elaborates multiple IDs simultaneously, theoretically making
it possible to exploit the correlation between the different information shared
through the various IDs. It accomplishes this through an LSTM network per
CAN ID and an autoencoder that receives the concatenated output of the vari-
ous LSTMs. CANnolo [17] is an unsupervised IDS based on a LSTM autoencoder
and represents the starting point of CANdito. A window of packets is fed to the
RNN autoencoder, which attempts to reconstruct it following the trained model.
Finally, the capabilities of GANs have also been evaluated, E-GAN [35] uses an
unsupervised GAN and the DBC files for a dataset provided by the manufac-
turer first to comprehend the layout of a packet and then recognizes anomalies
inside its various elements.

Motivation. The main limitation of current state-of-the-art approaches is that,
while different methods work well on different problems, they can hardly achieve
results that are good enough on any anomaly and, at the same time, provide fast
enough results to process the network’s traffic in real-time. The way this limi-
tation compels a system largely depends on the different types of IDS approach
adopted. Generally, flow-based approaches can provide fast predictions while
being limited to the detection of specific kinds of vulnerabilities, while payload-
based approaches have a broader scope, but it is often a problem to make them
work in real-time on the total traffic. Moreover, the traffic on different CAN
IDs has different characteristics, but the current state-of-the-art methods rarely
consider them to provide better results.

3 CANdito

In this section, we describe CANdito, an improved version of CANnolo [17], a
state-of-the-art IDS for CAN that exploits Recurrent Neural Network (RNN)-
based autoencoders. RNN-based architectures are effective in modeling time-
series and have been successfully proposed for CAN traffic anomaly detection [32].
On the other hand, autoencoders do not require a labeled training dataset since
target signals are generated automatically from the input sequence. Moreover,
being unsupervised, they learn a model of the legitimate network traffic and not
specific anomalies, making them able to potentially recognize novel attacks. Fig-
ure 1 shows an overview of the architecture of the system, which works by recon-
structing the time series of CAN packets for each ID and computes their anomaly
score based on the reconstruction error. The effectiveness of reconstructing the
signal (as opposed to predicting the successive one) has been demonstrated by
Malhotra et al. [19], which uses LSTM encoder-decoder architectures as recon-
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Figure 1: Overview of CANdito’s detection process.

structors to detect anomalies in multi-sensor contexts. It comprises three mod-
ules: a data preprocessing module, an LSTM-based autoencoder, which learns
the legitimate signal behavior, and an anomaly detector, which compares the
reconstruction errors.

3.1 Data Preprocessing

The first module of CANdito builds the input sequences by applying the READ
algorithm [20] and associating to each CAN ID the corresponding ranges of
the signals. Using this information, the payloads of each packet are converted
into the list of their signals rescaled in the [0-1] range, excluding constant bits,
counters, and Cyclic Redundancy Checks (CRCs).

Our resulting input sequence is composed by a matrix n x k, where n = 40
is the dimension of the window of CAN packets, k is the number of signals per
packet (rescaled in the [0-1] range). Notice that at this step, CANdito discards
and flags as anomalous any CAN ID that has not been found in the training set.

3.2 LSTM-based autoencoder

The second module of CANdito is based on an autoencoder whose encoder and
decoder layers are implemented with two recurrent LSTMs. The encoder is com-
posed of a dense layer, which consists of 128 units with an Exponential Linear
Unit (ELU) [4] activation function. The dense layer is followed by a 20% dropout
layer and two recurrent LSTM layers with L = 64 units each. The cell and hid-
den states of the last LSTM layer of the encoder are used to initialize the states
of the first LSTM layer of the decoder. The output of the encoder is reversed
before being fed into the decoder. Symmetrically, the decoder consists of two
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recurrent LSTM layers with 64 units each, a dense layer, consisting of 128 units
with ELU activation function, and a second output dense layer with k units with
sigmoid activation function (to scale the results to the [0,1] interval).

Training and Tuning. The input data of the training and threshold calculation
processes are composed by sliding one time step at a time a window of n packets,
while for the testing process, in order to have a lightweight detection process,
the windows of packets do not overlap. A dataset consisting only of legitimate
data sequences has been used as the baseline to establish the ‘normal’ behavior
for any given CAN ID. In particular, we perform training and validation by
reconstructing legitimate traffic data and minimizing the reconstruction error
between a given source sequence s(t) and a target sequence y(t). Also, we make
use of an untampered dataset to perform early stopping and a dataset injected
with our attack tool (presented in Section 4) to evaluate the performance of the
model and, consequently, tune hyperparameters. The loss function of choice is
Mean Squared Error (MSE). The optimizer of choice is Adam [10] with a learning
rate of 0.001. The model of each CAN ID has been trained for a maximum of 50
epochs with an early stopping with patience 5 (i.e., training is stopped before
the maximum number of epochs if the validation accuracy does not improve for
5 consecutive epochs).

3.3 Anomaly score computation

The third module of CANdito works in an unsupervised fashion by computing
the distance between the reconstruction error and the expected normal distri-
bution computed during training. The anomaly score indicates the likelihood of
the test sequence to be anomalous.

Each window of n packets is fed into the trained autoencoder and an anomaly
score is assigned to each window as the squared l2-norm of the reconstruction
error: e(t) = ∥ŷ(t) − s(t)∥22. The chosen detection threshold is, as proposed by
Hanselmann et al. [7], the 99.99 percentile of the scores. The windows whose
score is greater than the threshold are marked as anomalies.

3.4 Improvements from CANnolo

As previously stated, CANdito is based on CANnolo [17], in light of its promising
results in the detection of attacks on CAN. In particular, CANdito required an
in-depth study of CANnolo. To do so, we implemented CANnolo from scratch
and tested it on our extended dataset. This evaluation brought the improvements
described below.

Generalization and computation improvements. The number of artificial
neurons of all layers has been halved. This reduction in dimensions has a twofold
scope. The networks of several CAN IDs are prone to overfitting, reducing the di-
mension of the layers mitigated this problem. Moreover, reducing the dimension
of the layers has a substantial impact on the improvement of the computation
times of the network.
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Overfitting and vanishing gradient mitigation. The activation functions of
the two symmetric dense layers of the encoder and decoder have been modified
from hyperbolic tangent to ELU. This was proven to mitigate the vanishing
gradient problem and to improve the generalization capabilities of the network [4,
7].

Input bloat reduction. The inputs of CANnolo are bit-strings composed of
the condensed notation of the packets (i.e., excluding constant bits). In our
solution, we also exclude signals marked by READ as counters or CRCs. In fact,
counters and CRCs do not carry relevant information for the reconstruction
module, as demonstrated by the fact that considering them did not improve the
effectiveness of the system. Moreover, CANdito’s input is not composed of bit-
strings but by each signal detected by READ rescaled in the [0-1] range. This
significantly reduces the input dimensions, further lowering computing times,
while comparative tests with the two input methods did not show meaningful
effects on detection performances.

Underfitting mitigation. The output sequence of the encoder is reversed be-
fore being fed into the decoder. This operation is meant to help the network
reconstruct the target sequence, which is also reversed as suggested by Sutskever
et al. [29]. While for some CAN IDs the network results are similar with or with-
out reversing the encoder output, other CAN IDs networks are affected by severe
underfitting if the encoder output is not reversed. The same CAN IDs networks
perform well after the change.

Lower computational requirements. To lower the computational effort, we
do not feed the reconstructed sequence back into the decoder. Evaluations at
design time did not show improvements in detection performances between the
two implementations. From an implementation standpoint, code optimization
and moving from Keras to PyTorch also greatly lowered computation require-
ments.

Anomaly score computation improvement. CANnolo uses the Mahalanobis
distance between the reconstruction error of the window under evaluation and
the distribution of errors in untampered scenarios. While such distance has been
considered for the anomaly scores computation, it has underperformed with our
model. Instead, we opted to compute the anomaly score as the squared l2-norm
of the reconstruction error, with a 99.99 percentile of the scores as a detection
threshold, as suggested in [7].

4 CANtack

We designed CANtack to have an easy, partially automated way to consistently
generate different types of anomalies in our datasets while starting from datasets
of real CAN traffic. The tool is available at 2 alongside instructions on how to
use it. The output of the tool is a dataset structured similarly to the ReCAN

2CANtack url: https://github.com/ascarecrowhat/CANtack



8 S. Longari et al.

dataset [37], but with an additional isTampered column, which indicates whether
a log entry has been tampered with or not.

The tool allows choosing between the different attack implementations, which
enable to deploy all the attacks presented in Section 1. Moreover, all different
types of attacks (except for cases in which this does not make sense, i.e., drop
and DoS ) can be either performed in an injection fashion (i.e., without mod-
ifying the original packets of the traffic and specifying an injection rate) or in
a masquerade fashion (i.e., substituting the original packets with the tampered
ones). We proceed to present the list of attacks and their user-defined parame-
ters. Note that for all attacks, the user needs to set the ID to tamper and the
beginning time for the attack in seconds.

Basic injection. The user can specify a payload and a number of tampered
packets. The tool injects or replaces a number of packets with the new tampered
payload.

Progressive injection. As above, the value of every single payload can be
specified.

DoS. The network is flooded with packets with ID ”0” for the specified duration.
It is possible to define the percentage of the bus to fill.

Drop. A set amount of messages from the given ID are deleted from the dataset.

Fuzzy. The payloads are injected or tampered with random values. It is also
possible to choose a bit range to fuzzy a value, e.g., simulating the fuzzing only
of sensor data.

Replay. The payloads are values sniffed from the dataset. To implement this
attack, it is necessary to define the initial sniffing time and whether to partially
randomize the position of the first copied packet among the sniffed ones. More-
over, a series of replacements can be specified to modify only some bit-ranges
with other values. These values can be set with the following options:

– payloads replaces the bit-ranges with explicitly defined data;
– fuzzy randomizes the bit-range;
– min and max respectively find the minimum and maximum value (consid-

ered as an integer) registered in the dataset for that bit-range;
– seamless change defines a final value to reach and increases or decreases

the bit-range from the value read in the last untampered line to the chosen
one;

– counter increases the values of the bit-range by one per packet, in a counter-
like fashion.

5 Experimental validation

First, we compare CANdito with CANnolo [17] from both the point of view of the
detection and the temporal performances. In particular, this experiment evalu-
ates the performance of CANnolo and CANdito over different datasets tampered
with our novel attack tool 4. CANnolo’s implementation has been kept almost
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untouched, threshold computation criterion included. This consideration must
be explicitly made since the authors used as a comparison metric for their ex-
periment just the Area Under Curve (AUC) without focusing over the threshold
computation criterion, which was demonstrated to be sub-optimal.

Then, we demonstrate the effectiveness of CANdito by comparing its per-
formances against state-of-the-art solutions on a public dataset with real-world
attacks.

We evaluate the detection performances of the systems under analysis by
considering the most common metrics used to evaluate unbalanced datasets.
Specifically, we make use of Detection Rate (DR), False Positive Ratio (FPR),
F1 score, Matthews Correlation Coefficient (MCC). Moreover, to evaluate the
timing performances, we use the Testing Time per Packet (TTP).

We evaluate our work through two public datasets: the ReCAN C-1 dataset [37]
used for the first set of experiments and the car-hacking dataset [28] used for the
comparison with the state of the art. The experiments have been tested by serv-
ing datasets split in windows of pre-defined size, as it should happen at runtime
instead of testing the entire sequence in one batch; doing so permits to have a
measure of the testing time that is more accurate.

5.1 ReCAN Datasets

The ReCAN dataset [37] is a public dataset of CAN logs retrieved in real-world
scenarios. We select the C-1 sub-dataset, which has been retrieved from multiple
test drives of an Alfa Giulia. In more detail, we use sub-datasets 1, 2, 6, 8, and
9 to train the model, sub-dataset 4 to calculate thresholds, sub-dataset 5 for
validation and hyper-parameter tuning, and finally, sub-dataset 7 for testing.
We then use our attack tool to generate the attack datasets. All the datasets are
generated starting from sub-dataset 7 of the ReCAN C-1 dataset. The datasets
have the goal of building attacks as presented in Section 1. All the datasets, their
details, and implementation parameters are available on the CANtack webpage2.

Injection Dataset. This dataset contains generic injection attacks, which con-
sists of added packets on the network, leaving all packets already present in the
dataset unchanged. The new packets are sniffed from previous traffic and only
one physical signal is modified (recognized through the READ algorithm [20]),
although the value changes inside the range of already existing values of the
signal. This is done in an attempt to comply as much as possible with the be-
havior of the ID and increase the difficulty of detection. The packets are added
at 20 times the frequency of the original packet and continue for a sequence of
50 packets.

Drop Dataset. This dataset simulates the event where an attacker turns off an
ECU or its CAN controller. The attack consists of removing a sequence of valid
packets from the original traffic. Twenty-five consecutive packets are removed
each time.

Masquerade Dataset. This dataset contains generic masquerade attacks that
would not be detectable only through frequency-based or rule-based features.
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The modified packets are sniffed from previous traffic and one or more physical
signals are modified in the same fashion as the injection dataset. Moreover, the
anomalous packets maintain the same timestamps as the packet they replace,
alongside its ID. Each anomalous sequence has a length of 25 packets.

Fuzzed Dataset. This dataset represents the event where an attacker is testing
random values of signals in order (usually) to trigger unexpected behavior. The
attack is made in a masquerade fashion (the original packets are removed and
replaced), but only the bits included in some of the signals are fuzzed, while, for
example, constant bits are left untampered. As above, 25 consecutive packets
are removed each time. As above, each anomalous sequence has a length of 25
packets.

Seamless Change Dataset. This dataset contains masquerade attacks that
attempt to evade detection by changing the payload of the packets progressively
until the desired value is reached. The physical values in the tampered ID have
to be at least 4 bits long. The new packets are sniffed from previous traffic and
only one physical signal is modified. As above, each anomalous sequence has a
length of 25 packets.

Full Replay Dataset. This dataset contains masquerade attacks that attempt
to evade detection by copying exact sequences on the bus. No additional check
is made while generating the attacks. Consequently, there is no warranty that
the new sequence is taken from a moment where the condition of the car is very
different, lowering the detection capabilities but also the actual effects of the
attacks. This dataset is primarily interesting to compare the ability of IDSto
detect anomalous sequences that are perfectly valid in a different context. As
above, each anomalous sequence has a length of 25 packets.

5.2 Car-hacking dataset

The car-hacking dataset [28] is composed of logs of real-time CAN messages
via the onboard diagnostic (OBD-II) port of two running vehicles (KIA Soul
and Hyundai Sonata) with message attacks. It has four data features, including
timestamp, identifier (ID, in hexadecimal format), data length code (DLC, val-
ued from 0 to 8) and data payload (8 bytes), and the label of a CAN message.
We refer the reader to [28] for further details on the public dataset under consid-
eration. It contains normal CAN messages (14,237,978) and anomaly messages
(2,331,497) belonging to three categories of attacks (for a total of four attacks).

DoS attack. It aims to flood the CAN bus with numerous forged messages
with low ID values in a short time interval. Thus, almost all the communication
resources are occupied so that messages from other nodes will be delayed or
blocked.

Fuzzy attack. Fake messages are sent from malicious ECUs into the CAN bus
at a slower rate than the DoS attack.

Impersonation attacks. They realize unauthorized service access by spoofing
legitimate authentication credentials, such as spoofing the drive gear and
the RPM gauze.



Title Suppressed Due to Excessive Length 11

5.3 Experimental Results

Table 1: CANnolo vs CANdito performances, tested over the masquerade, fuzzy,
seamless change, and full replay datasets. Only CAN IDs recommended for test-
ing by CANnolo’s authors have been taken into consideration.

Dataset DR FPR F1 MCC TTP

Masq.
CANdito .9258 .0081 .9505 .9336

.0700

CANnolo .6477 .0029 .7823 .7502

Fuzzy
CANdito .9989 .0081 .9886 .9844
CANnolo .9541 .0029 .9724 .9629

1.0630
Seam.

CANdito .8972 .0079 .9345 .9143
CANnolo .7481 .0029 .8518 .8224

Replay
CANdito .5820 .0080 .7254 .6909
CANnolo .5801 .0029 .7304 .7024

Results on the ReCAN dataset As shown in Table 1, our solution is not
only twice as fast as CANnolo in providing the predictions, but it is also more
effective in almost all the considered attack scenarios.

Focusing on payload-based anomalies, CANdito generally outperforms CAN-
nolo on both the entire dataset and on the subset of the dataset composed of
the selected CAN IDs. For the Masquerade dataset, CANdito performs evidently
better, with an F1 score and MCC both over .15 point higher than CANnolo. We
explain the better performances obtained with the different approaches used to
compute the detection threshold. For the Fuzzy datasets, CANdito shows sim-
ilar performances to CANnolo, with a higher DR, F1-score, and MCC. For the
Seamless Change dataset, the better performances of our new architecture are
more evident. In fact, both the F1 score and MCC improvements range between
.07 and .09. For the Full replayed dataset, the original model is slightly more
effective, but the performances of the two systems are comparable. However, in
light of the stringent requirements of the automotive domain, where the lack of
computational power is critical [18], CANdito is preferable to CANnolo since it
provides detection results in less than half of the time.

As expected, both systems perform poorly on flow-based anomalies (i.e.,
Injection and Drop datasets) since they implement payload-based detection and
do not detect changes in the frequency of packets arrivals.

It is interesting to note that CAN ID 0x1E340000 is responsible for the 18%
of overall false positives and features a very different behavior between the train
set and the test set with the presence of flipping bits that were static for the entire
duration of the training set. This said, it is encouraging to know that a large part
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Table 2: Detection Performance Comparison of State-of-the-art IDS against
CANdito. In bold, the best performance by metric and attack category.

IDSs Attacks Accuracy Precision TPR FPR F1-score TTP

Reduced Inception-ResNet [28]

DoS Attack 0.9993 0.9995 0.9963 0.0001 0.9980

1.5633
Fuzzy Attack 0.8730 0 0 0.0002 -

Gear Spoofing Attack 0.8223 0 0 0.0001 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

CANTransfer [31]

DoS Attack 0.9991 0.9990 0.9951 0.0002 0.9971

1.3264
Fuzzy Attack 0.8718 0 0 0.0001 -

Fuzzy Attack (1-shot) 0.8664 0.9794 0.0309 0.0001 0.0599
Gear Spoofing Attack 0.8223 0 0 0.0004 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

CAN-ADF [30]

DoS Attack 0.9938 0.9826 0.9785 0.0033 0.9805

1.4476
Fuzzy Attack 0.8715 0.0505 0.0002 0.0006 0.0004

Gear Spoofing Attack 0.8222 0 0 0.0004 -
RPM Spoofing Attack 0.7769 0.1200 0.0005 0.0012 0.0011

TSP [24]

DoS Attack 0.9802 0.9100 0.9728 0.0183 0.9403

1.1422
Fuzzy Attack 0.8714 0 0 0.0005 -

Gear Spoofing Attack 0.8221 0 0 0.0005 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

O-DAE [13]

DoS Attack 0.9933 0.9742 0.9843 0.0050 0.9792

1.2130
Fuzzy Attack 0.8714 0 0 0.0006 -

Gear Spoofing Attack 0.8222 0 0 0.0004 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

LDAN [39]

DoS Attack 0.9806 0.9099 0.9756 0.0184 0.9416

0.9283
Fuzzy Attack 0.8717 0 0 0.0006 -

Gear Spoofing Attack 0.8224 0 0 0.0001 -
RPM Spoofing Attack 0.7775 0 0 0.0002 -

E-GAN [35]

DoS Attack 0.9806 0.9099 0.9756 0.0184 0.9416

1.0331
Fuzzy Attack 0.8717 0 0 0.0002 -

Gear Spoofing Attack 0.8224 0 0 0.0001 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

HyDL-IDS [14]

DoS Attack 0.9936 0.9819 0.9781 0.0034 0.9800

0.4395
Fuzzy Attack 0.8715 0.0612 0.0002 0.0005 0.0005

Gear Spoofing Attack 0.8221 0 0 0.0001 -
RPM Spoofing Attack 0.7769 0.1042 0.0005 0.0011 0.0009

CANet [7]

DoS Attack 0.9993 0.9992 0.9966 0.0014 0.9979

0.3357
Fuzzy Attack 0.8717 0 0 0.0002 -

Gear Spoofing Attack 0.8223 0 0 0.0001 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

Rec-CNN [5]

DoS Attack 0.9803 0.9097 0.9740 0.0185 0.9408

0.3278
Fuzzy Attack 0.8714 0 0 0.0006 -

Gear Spoofing Attack 0.8221 0 0 0.0005 -
RPM Spoofing Attack 0.7774 0 0 0.0003 -

CANdito

DoS Attack 0.9983 0.9926 1 0.0021 0.9963

0.073Fuzzy Attack 0.9608 0.9915 0.8884 0.0094 0.9296
Gear Spoofing Attack 0.9983 0.9984 0.9934 0.0004 0.9959
RPM Spoofing Attack 0.9996 0.9986 1 0.0004 0.9993
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of the FPR depends on a small set of CAN IDs because this demonstrates that
future works may improve the results of finding a different classification of these
”pathological” CAN IDs. Another possible alternative that is not particularly
time-consuming, considering the small dimension of this set of CAN IDs is to
perform a human-supervised fine-tuning of the model for these specific CAN IDs
on top of the automatic classification.

Results on the Car-hacking Dataset In order to provide a comparison
with the other various machine learning techniques used in the state of the art,
we make use of the systematization done by Wang et al. [34] on the public
car-hacking dataset, and follow the same experimental procedure on CANdito.
Table 2 contains Wang et al. results followed by ours. CANdito achieves better
detection rate on all the datasets, and comparable metrics where it does not
win. The significantly lower detection rate on the fuzzy dataset in relation to the
others can be attributed by the behavior of the dataset, where the randomized
ID sometimes end up being one of the valid ones, but only one malicious packet
is inserted in a window of 39 valid ones. The IDS that better stands up against
CANdito in terms of detection performances is Reduced Inception-ResNet [28],
which, however, is 20 times slower than CANdito, and even more importantly,
given the average packet inter-arrival time of the dataset, which is 0.77ms, is not
compliant with the real-time requirements of the automotive domain. Finally,
CANdito shows overall good detection performances on all the categories of
attacks.

6 Conclusions

In this paper, we presented CANdito, an improved RNN-based and unsupervised
IDS that exploits LSTM autoencoders to detect anomalies through a signal
reconstruction process in CAN traffic. We evaluated CANdito from the point of
view of the detection and timing performances on a more comprehensive real-
world dataset augmented with synthetic attacks generated with CANtack, a tool
to generate and inject synthetic attacks in real datasets, which can be used as a
benchmarking suite for IDS in the automotive domain. Moreover, we compared
its performances against state-of-art Intrusion Detection Systems (IDSs) for in-
vehicle network on a public dataset with attack messages, showing that CANdito
performs overall better of the current state of the art while requiring significantly
less time - up to 1/20 - than the other detection techniques. We plan to overcome
CANdito limitation in detecting attacks that work in the frequency domain by
complementing the improved detection power of the payload-based detection
system presented in this work with the power of frequency-based approaches to
building an end-to-end hybrid IDS able to fully exploit all CAN IDs.
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