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Abstract. A novel approach based on funicular analysis is investigated to cope with the design 
of spatial truss networks fabricated by Wire-and-Arc Additive Manufacturing (WAAM). The 
minimization of the horizontal thrusts of networks with fixed plan geometry is stated both in 
terms of any independent subset of the force densities and in terms of the height of the restrained 
nodes. Local enforcements are formulated to prescribe lower and upper bounds for the vertical 
coordinates of the nodes, and to control the stress regime in the branches. This allows also for 
a straightforward control of the length and maximum force magnitude in each branch. 
Constraints are such that sequential convex programming can be conveniently exploited to 
handle grids with general topology and boundary conditions. Optimal networks for WAAM are 
preliminary investigated, accounting for different sets of the above prescriptions. 

 
 
1 INTRODUCTION 

Among different Additive Manufacturing (AM) processes, Wire-and-Arc Additive 
Manufacturing (WAAM) results particularly suitable for applications in structural engineering. 
The WAAM process, which consists of off-the-shelf welding equipment mounted on top of a 
numerically controlled robotic arm, allows realizing large-scale structural elements (up to few 
meters), with limited constraints in terms of forms and shapes. The WAAM process can be used 
to fabricate two-dimensional specimens using a layer-by-layer deposition in a so-called 
“continuous” printing process. The WAAM technique employing “dot-by-dot” printed stainless 
steel bars is herein considered, see Figure 1 and the investigations in [1,2]. High strength 
performances are reported for specimens fabricated using the WAAM process, although a more 
complex mechanical response is pointed out with respect to those traditionally manufactured. 

Gridshells take their strength from their double curvature, being constructed from members 
that mainly undergo axial forces [3]. A numerical approach based on funicular analysis, see e.g. 
[4-6], is proposed to cope with the design of spatial truss networks fabricated by “dot-by-dot” 
WAAM.  
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Figure 1: A specimen fabricated using the “dot-by-dot” WAAM process   

The equilibrium of funicular networks can be conveniently handled through the force density 
method, i.e. writing the problem in terms of the ratio of force to length in each branch of the 
network [7]. As investigated in the literature for the case of vertical loads, independent sets of 
branches can be detected for networks with fixed plan geometry [8]. 

In this contribution, following [9], the minimization of the horizontal thrusts in networks 
with fixed plan geometry is stated both in terms of any independent subset of the force densities 
and in terms of the height of the restrained nodes. Local enforcements are formulated to 
prescribe lower and upper bounds for the vertical coordinates of the nodes, and to control the 
force densities in the branches. This allows also for a straightforward control of the force 
magnitude and of the length of each branch of the gridshell, in view of prescriptions arising 
from the results of the experimental tests. Constraints are such that sequential convex 
programming can be conveniently exploited to handle grids with general topology and 
boundary conditions. 

Preliminary numerical simulations are shown concerning the optimal design of gridshells 
with minimum thrusts, under the combined effect of different sets of the above prescriptions. 
The ongoing research is mainly devoted towards endowing this design formulation with 
buckling constraints. 

 

2 THE NUMERICAL APPROACH 
Funicular analysis is widely adopted to cope with the design of arcuated structures, see e.g. 

[3]. Following this approach, spatial structures such as three-dimensional trusses and gridshells 
can be modelled as statically indeterminate networks of vertices and edges with given topology. 
Boundary supports are prescribed at the restrained nodes of the network; unrestrained ones are 
in equilibrium with the prescribed vertical and horizontal loads.  

The equilibrium of funicular networks can be handled by means of the force density method, 
that consists in writing the problem in terms of the ratio of force to length in each branch of the 
network [6]. Considering a network with 𝑚𝑚 branches, and denoting by 𝑳𝑳 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒍𝒍) the diagonal 
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matrix gathering the length of the branches stored in the vector 𝒍𝒍, the force density vector may 
be defined as: 

𝒒𝒒 = 𝑳𝑳−1𝒔𝒔, (1) 

being 𝒔𝒔 the vector collecting the force in the branches.  
As investigated in the literature for the case of vertical loads, independent sets of branches 

can be detected when addressing networks with fixed plan geometry [8]. However, enforcing 
the nodes to lie within a prescribed design domain (that is a range of heights) is not 
straightforward.  

To this goal, a minimization problem with multiple constraints was formulated in [9] to 
enforce lower and upper bounds for the vertical coordinates of the vertices of the network.  

At first, the equations that link dependent and independent branches in the network with 
fixed plan projection are presented. The horizontal equilibrium of the nodes with prescribed 
horizontal coordinates 𝒙𝒙𝑠𝑠0 and 𝒚𝒚𝑠𝑠0 reads: 

�𝑪𝑪
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑪𝑪𝑠𝑠𝒙𝒙𝑠𝑠0)

𝑪𝑪𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑪𝑪𝑠𝑠𝒚𝒚𝑠𝑠0)
� 𝒒𝒒 = �

𝒑𝒑𝑥𝑥
𝒑𝒑𝑦𝑦� 

(2) 

In the above equations, 𝑪𝑪𝑠𝑠  is the connectivity matrix of the network and 𝑪𝑪 is its subset 
referring to the unrestrained nodes, whereas 𝒑𝒑𝑥𝑥 and 𝒑𝒑𝑦𝑦 are the components along the cartesian 
axes x and y of the point loads applied at the unrestrained ones. Indeed, by applying Gauss-
Jordan elimination to Eqn. (2), see also [9], the 𝑟𝑟 dependent force densities 𝒒𝒒� may be re-written 
in terms of the 𝑚𝑚 − 𝑟𝑟 independent ones 𝒒𝒒� as it follows: 

𝒒𝒒� = 𝑩𝑩𝒒𝒒� + 𝒅𝒅, (3) 

where 𝑩𝑩 and 𝒅𝒅 have entries that are known. 
The vertical equilibrium of the 𝑛𝑛 unrestrained nodes of the network reads: 

𝑪𝑪𝑇𝑇𝑸𝑸𝑪𝑪𝑸𝑸 + 𝑪𝑪𝑇𝑇𝑸𝑸𝑪𝑪𝑓𝑓𝑸𝑸𝑓𝑓 = 𝒑𝒑𝑧𝑧,  (4) 

where 𝑸𝑸  and 𝑸𝑸𝑓𝑓 gather the vertical coordinates of the unrestrained and restrained nodes, 
respectively, 𝑪𝑪𝑓𝑓 is the subset of 𝑪𝑪 for the restrained nodes; 𝒑𝒑𝑧𝑧 are the vertical components of the 
point loads and 𝑸𝑸 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒒𝒒). 

Hence, an optimization problem with multiple constraints is formulated in terms of the 
independent force densities 𝒒𝒒� and the vertical coordinates of the restrained nodes 𝑸𝑸𝑓𝑓 as: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

min
𝒒𝒒�,   𝑸𝑸𝑓𝑓

𝑓𝑓(𝒒𝒒�)

𝑠𝑠. 𝑡𝑡.    𝒒𝒒� = 𝑩𝑩𝒒𝒒� + 𝒅𝒅

𝑪𝑪𝑇𝑇𝑸𝑸𝑪𝑪𝑸𝑸 + 𝑪𝑪𝑇𝑇𝑸𝑸𝑪𝑪𝑓𝑓𝑸𝑸𝑓𝑓 = 𝒑𝒑𝑧𝑧
𝑧𝑧𝑗𝑗�𝒒𝒒�, 𝑸𝑸𝑓𝑓� ≥ 𝑧𝑧𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚               𝑗𝑗 = 1 … 𝑛𝑛
𝑧𝑧𝑗𝑗�𝒒𝒒�, 𝑸𝑸𝑓𝑓� ≤ 𝑧𝑧𝑗𝑗𝑚𝑚𝑚𝑚𝑥𝑥                𝑗𝑗 = 1 …𝑛𝑛
�𝑠𝑠𝑚𝑚�𝒒𝒒�, 𝑸𝑸𝑓𝑓�� ≤ 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥              𝑑𝑑 = 1 …𝑚𝑚
 𝑙𝑙𝑚𝑚�𝒒𝒒�, 𝑸𝑸𝑓𝑓� ≤ 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥                  𝑑𝑑 = 1 …𝑚𝑚 

𝑧𝑧𝑓𝑓ℎ𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑧𝑧𝑓𝑓ℎ ≤ 𝑧𝑧𝑓𝑓ℎ𝑚𝑚𝑚𝑚𝑥𝑥             ℎ = 1 … 𝑛𝑛𝑓𝑓 

, 

(5.1) 

(5.2) 

(5.3) 
(5.4) 
(5.5) 
(5.6) 
(5.7) 
(5.8) 

A norm of the horizontal thrusts is adopted as objective function, i.e. 
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𝑓𝑓(𝒒𝒒�) = ∑�𝑅𝑅𝑥𝑥ℎ2 + 𝑅𝑅𝑦𝑦ℎ2 ,  
(6) 

where 𝑅𝑅𝑥𝑥ℎ2 and 𝑅𝑅𝑦𝑦ℎ2  are the squared values of the component of the reaction along the x and y 
direction, respectively, for the h-th of the 𝑛𝑛𝑓𝑓 restrained nodes. By using the equilibrium in Eqn. 
(5.3) and Eqn. (5.2), the vertical coordinates of the unrestrained nodes may be written in terms 
of the minimization unknowns (the independent force densities 𝒒𝒒� and the vertical coordinates 
of the restrained nodes 𝑸𝑸𝑓𝑓). Suitable set of constraints can be enforced to prescribe the limits of 
the design domain, see Eqn. (5.4) and (5.5). Side constraints on 𝑸𝑸𝑓𝑓 are used to enforce similar 
prescriptions at the restrained nodes, see Eqn. (5.8). Constraints on the magnitude of the force 
in each branch of the network may be accounted for, see Eqns. (5.6), as well as enforcements 
on the maximum length of each branch, see Eqn. (5.7). It must be remarked that the length 
vector may be straightforwardly computed working on the given coordinates for the prescribed 
plan projection of the network along with the variable height of the nodes. The force vector 
depends both on the force density vector and the vector gathering the length of the branches, 
see Eqn. (1). 

Due to its form, the optimization problem in Eqn. (5) can be solved efficiently by means of 
techniques of sequential convex programming [11]. These were originally conceived to handle 
large scale multi-constrained formulations of size optimization for elastic structures. In a stress-
constrained minimum weight problem of truss design, the area of the sections is sought such 
that the volume is minimized, subject to strength limits. In a statically determinate truss, the 
objective function is linear in the unknowns, whereas the constrained stress may be written in 
terms of the inverse of the unknowns. In [9], the formulation of Eqn. (5), skipping the 
constraints in Eqns. (5.6)-(5.7),  was used to find the funicular polygon of an arch on which 
vertical loads are exerted: it is shown that the thrust is linear in the only independent force 
density 𝑞𝑞�, whereas the constrained vertical coordinates of the unrestrained nodes 𝑸𝑸 are linear in 
the vertical coordinate of the restrained nodes 𝑸𝑸𝑓𝑓 and in the reciprocal variable 1/𝑞𝑞�. Approaches 
of sequential convex programming such as the Method of Moving Asymptotes (MMA) [12] 
implement approximations of the objective functions and constraints in the direct or the 
reciprocal variable, depending on the sign of the gradient. These gradient-based methods can 
be conveniently adopted to handle the considered minimization problem. Reference is also 
made to the application of the multi-constrained formulation herein considered to thrust 
networks with multiple layers, see [13]. It must be remarked that MMA is a versatile tool for 
structural optimization and is extensively used in topology optimization. The solution of a 
displacement-constrained formulation to seek simultaneously for the optimal shape of two-
dimensional structural elements and for the optimal printing orientation in the “continuous” 
WAAM process has been recently tackled by means of MMA in [14]. 

 

3 NUMERICAL SIMULATIONS 
A preliminary assessment of the proposed numerical approach for form-finding is shown, 

addressing gridshells that span a 2𝑚𝑚 𝑥𝑥 3𝑚𝑚  bay. The nodes along the perimeters are fully 
restrained. A distributed load per unit of area, measured in the projection of the gridshell onto 
the horizontal plane, is considered. The intensity assumed in the simulations is 2 𝑘𝑘𝑘𝑘/𝑚𝑚2.  
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Figure 2: Optimal design for minimum thrust 

 

  
Figure 3: Optimal design for minimum thrust, with constraints on the maximum value of the force in the 

branches of the network 

 

  
Figure 4: Optimal design for minimum thrust, with constraints on the maximum value of the force and of length 

for each one of the branches of the network 
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The number of branches in the network is 𝑚𝑚 = 384, but the independent ones (to preserve the 
fixed plan projection) are only 38. This means that the number of unknowns for the optimization 
procedure is limited to 78, being 40 the number of restrained nodes (where supports are given).  

At first, an optimal design is sought seeking for gridshells whose nodes coordinate lie in the 
interval [0, 1] 𝑚𝑚: 2 𝑥𝑥 213 constraints of the type in Eqn. (5.4) and (5.5) are enforced, whereas 
constraints in Eqn. (5.6) and (5.7) are disregarded.  The achieved gridshell is given in Figure 2. 
Crosses and circles stand for nodes whose heights match the prescribed upper and lower bounds 
of the design domain, respectively. Force and length maps are provided in the two relevant 
pictures. 

Then, the optimization is run accounting also for the constraints in Eqn. (5.8).  The absolute 
value of the force acting in each branch of the network is limited by prescribing a threshold 
equal to 0.25 𝑘𝑘𝑘𝑘 . The achieved layout, which is fully compliant with the enforced local 
prescriptions, is given in Figure 3. With respect to the solution depicted in Figure 2, small 
variations of the geometry are reported, also affecting the vertical coordinate of some of the 
restrained nodes. The objective function at convergence is 6% more than in the previous case. 
Indeed, this is due to the introduction of the new set of constraints. 

A last run of the optimization is performed accounting for the entire set of constraints given 
in Eqn. (5). This includes control over the maximum length of each branch in the network: the 
maximum allowed value is set to 0.25 𝑚𝑚. As reported in Figure 4, in each branch, the maximum 
stress and maximum length do not exceed the enforced limit. The network still lies within the 
prescribed design domain. A noticeable variation of the shape of the entire gridshell may be 
observed in comparison to the results presented in the previous figures. This last run ends with 
an objective function that is one and half the value found for the reference solution given in 
Figure 2. 

4 CONCLUSIONS 
Wire-and-Arc Additive Manufacturing (WAAM) technology allows realizing metal-based 

free forms and shapes, introducing very few fabrication constraints. The “dot-by-dot” technique 
employs stainless steel rods to build spatial truss-like structures with high strength 
performances, although experimental results point out a more complex mechanical response 
with respect to those that are traditionally manufactured.  

A design approach for “dot-by-dot” WAAM is proposed in this contribution that searches 
among spatial truss networks fulfilling equilibrium using funicular analysis. The minimization 
of the horizontal thrusts of a spatial network with given plan geometry is formulated not only 
in terms of an independent set of force densities, but also in the height of the restrained nodes. 
Constraints are enforced on the height of the vertical coordinates of the nodes, as well as on the 
stress regime and on the length of each branch. Multi-constrained solutions are achieved using 
sequential convex programming. 
 The proposed approach should be regarded as a preliminary step towards the automatic 
generation of gridshell accounting for prescriptions peculiar to the WAAM fabrication process. 
The ongoing research is devoted to endowing the design formulation with buckling constraints 
derived from an ongoing experimental campaign on bars printed through the “dot-by-dot” 
WAAM process. 
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