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A B S T R A C T

In this paper we introduce a Model Order Reduction (MOR) algorithm based on a sparse grid
adaptive refinement, for the approximation of the eigensolutions to parametric problems arising
from elliptic partial differential equations. In particular, we are interested in detecting the
crossing of the hypersurfaces describing the eigenvalues as a function of the parameters.

The a priori matching is followed by an a posteriori verification, driven by a suitably
defined error indicator. At a given refinement level, a sparse grid approach is adopted for
the construction of the grid of the next level, by using the marking given by the a posteriori
indicator.

Various numerical tests confirm the good performance of the scheme.

1. Introduction

Many engineering applications require the knowledge of resonance frequencies of the considered structure. Prime examples are
vibration problems in mechanical engineering, where the vibration of buildings or bridges at their natural frequencies might cause
damage and structural failure.

During the last decades, computation power has substantially increased. Nevertheless, the computation effort required for the
solution of large-scale eigenproblems is still considerable. The situation gets more difficult when manufacturing imperfections and
geometric or material variability are included in the mathematical model as parameters or random fields. In particular, when the
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solution of the same eigenproblem is of interest for many different values of the parameters, the direct computation of eigenpairs
by means of standard numerical techniques entails an unaffordable computational effort.

Model Order Reduction (MOR) methods aim at reducing the overall computational effort by producing a surrogate of the
arameter-to-eigenpair map, which is accurate and at the same time fast to be evaluated. They develop in two phases: several
napshots of eigenpairs (corresponding to an appropriate set of parameter values) are computed during the offline phase, and used
o construct the surrogate, which is then evaluated at any new parameter value during the online phase.

A very popular ROM method developed during the last few decades is the Reduced Basis (RB) method (see, e.g., [1,2]) which
onstructs the surrogate by projection onto the set of precomputed snapshots selected either adaptively by means a greedy algorithm
r by Proper Orthogonal Decomposition (POD).

Up to now, ROM for source problems is a quite mature research area, whereas model reduction for parametric/stochastic
igenproblems is still a largely unexplored field. The way was paved by the pioneering work [3], where an RB approach is proposed
o approximate the smallest eigenvalue. This methodology has been further developed to deal with more eigenvalues in [4]. A
omponent-based RB method for eigenvalue problems is proposed in [5] and an a posteriori estimator for eigenvalues is studied
n [6]. All the previously mentioned contributions do not cover the case of multiple eigenpairs. Instead, in [7], an a posteriori
rror bound for multiple eigenvalues (but not eigenvectors) is studied under the assumption of affine parametric dependence of
he eigenproblem. Finally, in [8] a greedy RB method for both affine and non-affine parametric eigenproblems is proposed, with a
ocus on the smallest (single) eigenpair, only. The same task in the context of stochastic eigenproblems has been solved in [9–11] by
eans of the Stochastic Galerkin and Stochastic Collocation method, respectively, and, more recently, in [12]. Another contribution

n this context can be found in [13], where the particular structure of the problem is exploited, in the spirit of [14].
The aim of the present paper is the development of an algorithm to match (and interpolate) snapshots of eigenpairs of symmetric

roblems as the parameter varies in a given 𝑝-dimensional subset of interest  ⊂ R𝑝, and as the eigenvalues lie in a fixed window
of interest 𝐼𝜆 ⊂ R. In particular, the issues connected with multiple eigenvalues as well as crossings of the hypersurfaces described
by the eigenvalues as the parameter varies in  are thoroughly analyzed.

Indeed, reduced bases were constructed in previous approaches by taking into account a combination of all eigenspaces involved
with such crossings. However, this naively assumes that the chosen eigenspaces are well separated from the rest of the spectrum,
which has to be shown beforehand. Our algorithm allows the user to find the intersection of eigenvalues and this can be used also
to identify isolated clusters of crossing eigencurves in the spirit of a subspace approach.

The parameter space is sampled adaptively, following a two-phase procedure. First, a suitably adapted version of the a priori
matching proposed in [15] is applied. Numerical examples (see Section 4.1) show that this technique might produce an incorrect
matching. Hence, we have developed a novel a posteriori indicator based on the orthogonality of the snapshots of eigensolutions,
which drives the adaptive sampling. The algorithm is first presented on a one-dimensional (in the parametric space) case, and then
extended to the high-dimensional setting by means of hierarchical locally refined sparse grids.

It is worth mentioning that the a priori matching that we use is connected with MOR techniques developed in a different
framework, namely, the parametric-in-frequency Helmholtz boundary value problem. In particular, we mention [16–19], where
rational-based surrogates for the Helmholtz solution map are constructed. Indeed, the roots of the denominator of the surrogate are
approximations to the resonances of the Helmholtz problem, which in turn are eigenvalues of the corresponding elliptic problem.
A matching strategy in the same spirit as [15] and the a priori matching of the present paper is studied in [20]. Moreover, a mode
tracking method for the parametrized Maxwell eigenvalue problem is presented in [21–24].

The paper is organized as follows. In Section 2 we describe the problem of interest. Section 3 is dedicated to the adaptive
algorithm: first we give a general overview of the main steps of the proposed algorithm, details on all the steps then follow. In
Section 4 we present both one and two dimensional results to validate the proposed strategy. Conclusions are finally drawn in
Section 5.

2. Setting of the problem

Let us consider the Hilbert triplet

𝑉 ⊂ 𝐻 ≃ 𝐻 ′ ⊂ 𝑉 ′

and a parameter space  ⊂ R𝑑 . It is beyond the scope of this work to identify the most general assumptions on the parameter space.
Very often in the applications we have in mind, it is a tensor product of intervals (like a hypercube). In any case in what follows
we will need that it is connected and that it supports an initial grid with neighboring points as described later in this section.

For each 𝜇 ∈ , we consider two symmetric and bilinear forms

𝑎(⋅, ⋅;𝜇) ∶ 𝑉 × 𝑉 → R,

𝑏(⋅, ⋅;𝜇) ∶ 𝐻 ×𝐻 → R.

urthermore, we make the following assumptions

𝑉 compact in 𝐻,

𝑎(⋅, ⋅;𝜇) elliptic in 𝑉 ∀𝜇 ∈ ,

𝑏(⋅, ⋅;𝜇) equivalent to the inner product in 𝐻 ∀𝜇 ∈ .

ore general assumptions could be made. However, the features of our strategy are better described in this simpler setting.
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Our aim is to approximate the solutions of the following parametric eigenvalue problem: for all 𝜇 ∈ , find real eigenvalues
𝜆(𝜇) and non-vanishing eigenfunctions 𝑢(𝜇) ∈ 𝑉 such that

𝑎(𝑢, 𝑣;𝜇) = 𝜆(𝜇)𝑏(𝑢, 𝑣;𝜇) ∀𝑣 ∈ 𝑉 . (1)

Our assumptions ensure that the problem is associated with a compact solution operator so that all eigenvalues {𝜆𝑗 (𝜇)}∞𝑗=1
correspond to finite-dimensional eigenspaces. In particular, we are interested in detecting the behavior of the hypersurfaces defined
by 𝜆𝑗 (𝜇) in the region  × R. These hypersurfaces may intersect, leading in general to multiple eigenvalues at one point of
intersection. Indeed, the situation can be very complicated when the dimension 𝑑 of the parametric space gets large. In the simplest
case, 𝑑 = 1, we are dealing with intersections of curves.

To better define our problem, we restrict the range of the eigenvalues we are interested in to an interval 𝐼𝜆 = [𝜆min, 𝜆max], also
referred to as window of interest. Consequently, we only examine the hypersurfaces in the region  × 𝐼𝜆. This implies in particular
that hypersurfaces can enter or exit this region of interest when the corresponding eigenvalues cross the values of 𝜆min or 𝜆max. It
follows then that the number of eigenvalues considered for 𝜇1 and 𝜇2 in  can be different from each other when 𝜇1 ≠ 𝜇2.

Problem (1) is discretized by finite elements (FEs). That is, we consider a finite dimensional subspace 𝑉ℎ ⊂ 𝑉 and for all 𝜇 ∈ 
we consider the matrix generalized eigenvalue problem: find real eigenvalues 𝜆ℎ(𝜇) and non-vanishing eigenfunctions 𝑢ℎ(𝜇) ∈ 𝑉ℎ
such that

𝑎(𝑢ℎ, 𝑣;𝜇) = 𝜆ℎ(𝜇)𝑏(𝑢ℎ, 𝑣;𝜇) ∀𝑣 ∈ 𝑉ℎ. (2)

This will be considered as our high-fidelity solution. We refer the interested reader to classical references for the study of the finite
element solution of partial differential equations [25,26].

3. Description of the adaptive algorithm

Before examining the details of our approach, we give a general overview of the main steps taken to track the behavior of the
hypersurfaces in the region  × 𝐼𝜆 described by the varying eigenvalues. We assume that we are given a grid in the parametric
space  and that we have computed the eigenvalues in the interval 𝐼𝜆 as well as the corresponding eigenfunctions for each point
of the grid.

The first phase consists in the a priori matching of the eigenvalues of each pair of neighboring parameters 𝜇𝑖 and 𝜇𝑘 where
the indices 𝑖 and 𝑘 are defined based on the used grid. The matching is performed by considering, in a suitable sense, how close
the eigenvalues and the eigenfunctions are to each other. This phase is prone to error in particular if the distance between 𝜇𝑖 and
𝜇𝑘 is large with respect to the variability of the eigenvalues. The a priori phase is followed by an a posteriori verification of the
matching. We introduce a suitable a posteriori indicator that is based on the orthogonality of the eigenfunctions. This phase aims to
confirm whether the a priori matching was performed correctly or not. If not, the corresponding interval is marked for refinement.
Finally, a sparse grid approach is used to drive the refinement strategy, leading to an adaptive procedure that is terminated when
a suitable stopping criterion is met.

The three phases of our adaptive strategy are executed using three interrelated algorithms. Algorithm 3 describes the global
refinement procedure. In turn, this algorithm relies on two additional algorithms. The first one, Algorithm 1, describes the local a
priori matching procedure while the second one, Algorithm 2, enforces the local a posteriori test.

To keep track of the outputs of such algorithms, we use an undirected graph. An undirected graph is a pair (𝑉 ,𝐸) where 𝑉 is
a set of nodes (grid points) and 𝐸 is a collection of unordered pairs between such nodes. We discuss how such a data structure is
convenient for keeping track of all refinements at each level. Such a graph also provides a natural way for reconstructing the final
solution at the end of the algorithm.

3.1. The a priori matching

The FE method (2) leads to an algebraic problem as follows: find 𝜆(𝜇) ∈ R and 𝑢(𝜇) ∈ R𝑁 with 𝑢(𝜇) ≠ 0 such that
𝐴(𝜇)𝑢(𝜇) = 𝜆(𝜇)𝐵(𝜇)𝑢(𝜇), where 𝐴(𝜇) and 𝐵(𝜇) are matrices in R𝑁×𝑁 where 𝑁 is the dimension of our finite element space. 𝐴(𝜇) and
𝐵(𝜇) are symmetric and positive definite for all values of 𝜇 ∈ . To avoid heavy notation, we denote discrete quantities without
indicating the space mesh index ℎ (𝜆 instead of 𝜆ℎ, etc.).

We consider two different parameter values 𝜇𝑖 and 𝜇𝑘 that are the endpoints of what we are going to call from now on a local
subinterval. For these two points, we generate the two sets of FE eigenpairs {(𝜆𝑗 (𝜇𝑖), 𝑢𝑗 (𝜇𝑖))}

𝑛𝑖
𝑗=1, {(𝜆𝓁(𝜇𝑘), 𝑢𝓁(𝜇𝑘))}

𝑛𝑘
𝓁=1. Note that the

values 𝑛𝑖 and 𝑛𝑘 may be different from each other in particular since we are looking for all eigenvalues within the window of interest
𝐼𝜆. We assumed that the bilinear form 𝑏(⋅, ⋅, 𝜇) is equivalent to the scalar product in 𝐻 for all 𝜇 ∈ ; we denote the associated norm
by

‖𝑣‖𝑏,𝜇 = 𝑏(𝑣, 𝑣, 𝜇)1∕2

The eigenfunctions are normalized with respect to this norm so that

‖𝑢 (𝜇 )‖ = ‖𝑢 (𝜇 )‖ = 1.
𝑗 𝑖 𝑏,𝜇𝑖 𝓁 𝑘 𝑏,𝜇𝑘

3 
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Definition 3.1. The cost matrix 𝐷(𝑖,𝑘) associated with the local subinterval with endpoints 𝜇𝑖 and 𝜇𝑘 has size 𝑛𝑖 × 𝑛𝑘 and entries

𝐷(𝑖,𝑘)
𝑗,𝓁 ∶= 𝑤1|𝜆𝑗 (𝜇𝑖) − 𝜆𝓁(𝜇𝑘)| +𝑤2 min{‖𝑢𝑗 (𝜇𝑖) − 𝑢𝓁(𝜇𝑘)‖𝑏,𝜇̄ , ‖𝑢𝑗 (𝜇𝑖) + 𝑢𝓁(𝜇𝑘)‖𝑏,𝜇̄}, (3)

where 𝑤1, 𝑤2 ∈ R+ are weights and 𝜇̄ is a fix parameter value between 𝜇𝑖 and 𝜇𝑘.

Remark 3.2. A similar definition to (3) can be found in [15]. However, some modifications are necessary in the present context,
since the normalization of the eigenfunctions does not necessarily imply the same choice of sign. Hence we have to compare both
the sum and the difference of corresponding eigenfunctions.

Once we have introduced the cost matrix, we want to minimize its entries by solving the following optimization problem: find
the permutation 𝜎⋆ = (𝜎1,… , 𝜎𝑛̄) ∈ (1,… , 𝑛̄)! such that

𝜎⋆ ∶= argmin𝜎∈(1,…,𝑛̄)!

𝑛𝑖
∑

𝛼=1

𝑛𝑘
∑

𝛽=1
𝐷𝑖,𝑘

𝜎𝛼 ,𝜎𝛽
, (4)

with 𝑛̄ ∶= min{𝑛𝑖, 𝑛𝑘}. Between the several options available to compute the solution of (4), we adopt the so-called Hungarian
Algorithm [27]. The permutation solution is then used to reorder the eigensolutions so that there is a one-to-one correspondence
between the matched eigensolutions

For each subinterval, one can have three possible scenarios, namely 𝑛𝑖 < 𝑛𝑘, 𝑛𝑖 > 𝑛𝑘 and 𝑛𝑖 = 𝑛𝑘. In all scenarios, the output
of the Hungarian algorithm will be interpreted similarly. In other words, the one-to-one correspondence between the matched
eigensolutions will be always established, and 𝑛̄ matching eigenvalues will be detected. This is enforced by our choice of a high
enough unassignment cost.

The structure of our code is reported in Algorithm 1, where we assume, without loss of generality, that 𝑛𝑖 ≥ 𝑛𝑘, i.e., 𝑛̄ = 𝑛𝑘.

Algorithm 1 Local a priori matching

Require: 𝜇𝑖, 𝜇𝑘 ∈ , {(𝜆𝑗 (𝜇𝑖), 𝑢𝑗 (𝜇𝑖))}
𝑛𝑖
𝑗=1, {(𝜆𝓁(𝜇𝑘), 𝑢𝓁(𝜇𝑘))}

𝑛𝑘
𝓁=1, 𝑤1, 𝑤2 ∈ R+

Ensure: Reordered eigenpairs {(𝜆⋆𝑗 (𝜇𝑖), 𝑢
⋆(𝜇𝑖))}

𝑛𝑖
𝑗=1, {(𝜆

⋆
𝓁 (𝜇𝑘), 𝑢

⋆
𝓁 (𝜇𝑘))}

𝑛𝑘
𝓁=1

1: Compute 𝐷(𝑖,𝑘) ∈ R𝑛𝑖×𝑛𝑘 with weights 𝑤1, 𝑤2 ⊳ See (3)
2: Find 𝝈⋆ solution to (4) ⊳ Hungarian algorithm
3: Set (𝜆⋆𝑗 (𝜇𝑖), 𝑢

⋆(𝜇𝑖)) = (𝜆𝑗 (𝜇𝑖), 𝑢𝑗 (𝜇𝑖)) for 𝑗 = 1,… , 𝑛𝑖
4: Set (𝜆⋆𝓁 (𝜇𝑘), 𝑢

⋆
𝓁 (𝜇𝑘)) = (𝜆𝜎⋆

𝓁
(𝜇𝑘), 𝑢𝜎⋆

𝓁
(𝜇𝑘)) for 𝓁 = 1,… , 𝑛𝑘

3.2. The a posteriori verification

After the a priori matching, we introduce an a posteriori verification phase, which is based on the following projection matrix.

efinition 3.3. The projection matrix 𝛱 (𝑖,𝑘) associated with the local subinterval with endpoints 𝜇𝑖 and 𝜇𝑘 has size 𝑛𝑖 × 𝑛𝑘 and its
entries are given by

𝛱 (𝑖,𝑘)
𝑗,𝓁 = |𝑏(𝑢𝑗 (𝜇𝑖), 𝑢𝓁(𝜇𝑘), 𝜇̄)|, (5)

with 𝜇̄ being a fixed parameter value between 𝜇𝑖 and 𝜇𝑘.

Ideally, if the matching was performed correctly, the projection matrix should be close to diagonal: two matching eigenfunctions
should be similar to each other and two non-matching eigenfunctions should be close to orthogonal with respect to the bilinear
form 𝑏. In order to check whether the projection matrix is close to diagonal, we make use of a positive tolerance value 𝑡𝜋 . This is
used to truncate 𝛱 (𝑖,𝑘) — inside a loop over 𝑗 = 1,… ,min{𝑛𝑖, 𝑛𝑘} — in accordance with lines 4–13 of Algorithm 2. Let 𝑟1, 𝑟2 be the
vectors containing the non-zero elements of the 𝑗th column and 𝑗th row of 𝛱 (𝑖,𝑘), respectively (line 14). If both 𝑟1 and 𝑟2 contain
just one element, the a priori matching is considered correct. Instead, if their length differs, the interval is marked for refinement
(lines 16–19). Checking the orthogonality of eigenfunctions is a good stopping criterion in general, but might fail when we are
close to multiple eigensolutions. In such a case, the orthogonality between distinct eigenfunctions depends on the solver and is not
immediate to check in practice. For this reason, we introduce a second positive tolerance value 𝑡𝜆 that is responsible for verifying
if two (or more) eigenvalues belong to a cluster. This scenario corresponds in Algorithm 2 to the case where 𝑟1 and 𝑟2 have the
same length, larger than 1. Lines 20–25 introduce a specific definition for when multiple eigensolutions are to be considered as one
cluster of indistinguishable eigenfunctions. The local subinterval is marked for refinement when it fails the 𝑡𝜆 stopping criterion.

Remark 3.4 (Choice of the Tolerances 𝑡𝜋 , 𝑡𝜆). Note that in the limit 𝑡𝜋 → 0, the projection matrix 𝛱 (𝑖,𝑘) is diagonal. On the other
hand, the truncation process will leave the projection matrix unchanged as 𝑡𝜋 → 1, possibly leading to an infinite loop over the
refinement level (see Section 3.4). There is then a threshold between 𝑡𝜋 being large enough to capture potential errors in matching
choices, and small enough to minimize the number of refinements. The selection of the optimal value for 𝑡𝜋 becomes more delicate

as the dimension of the parameter space gets larger.

4 
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A similar balance must hold for 𝑡𝜆. When there is considerable overlap between two (or more) eigenfunctions, this will translate
nto non-zero off-diagonal elements of 𝛱 (𝑖,𝑘). This can lead to a very large number of refinements in order for the subinterval to
e certified, unless 𝑡𝜆 is chosen such that those overlapping eigenfunctions are identified as a cluster. However, if 𝑡𝜆 is chosen to

be too large, then wrong matching choices of orthogonal eigenfunctions will be certified by the a posteriori estimator because such
eigenfunctions will be incorrectly considered indistinguishable. This premature termination can lead to wrong results.

Algorithm 2 Local a posteriori verification

Require: 𝜇𝑖, 𝜇𝑘 ∈ , {(𝜆𝑗 (𝜇𝑖), 𝑢𝑗 (𝜇𝑖))}
𝑛𝑖
𝑗=1, {(𝜆𝓁(𝜇𝑘), 𝑢𝓁(𝜇𝑘))}

𝑛𝑘
𝓁=1, 𝑡𝜋 , 𝑡𝜆 ∈ R+

Ensure: if_ref inement = 0 or if_ref inement = 1
1: Set if_refinement=0
2: Compute 𝛱 (𝑖,𝑘) ∈ R𝑛𝑖×𝑛𝑘 ⊳ See Equation (5)
3: for 𝑗 = 1 to min(𝑛𝑖, 𝑛𝑘) do
4: for 𝓁 = 1 to 𝑛𝑘 do
5: if 𝛱 (𝑖,𝑘)

𝑗,𝑗 ≥ 𝛱 (𝑖,𝑘)
𝑗,𝓁 + 𝑡𝜋 then

6: Set 𝛱 (𝑖,𝑘)
𝑗,𝓁 = 0 ⊳ Truncate 𝛱 (𝑖,𝑘)

𝑗,∶ up to tolerance 𝑡𝜋
7: end if
8: end for
9: for 𝓁 = 1 to 𝑛𝑖 do

10: if 𝛱 (𝑖,𝑘)
𝑗,𝑗 ≥ 𝛱 (𝑖,𝑘)

𝓁,𝑗 + 𝑡𝜋 then
11: Set 𝛱 (𝑖,𝑘)

𝓁,𝑗 = 0 ⊳ Truncate 𝛱 (𝑖,𝑘)
∶,𝑗 up to tolerance 𝑡𝜋

12: end if
13: end for
14: Let 𝑟1 = find(𝛱 (𝑖,𝑘)

𝑗,∶ ), 𝑟2 = find(𝛱 (𝑖,𝑘)
∶,𝑗 ) ⊳ Indices of the non-zero elements

15: if (length(𝑟1)) > 1 or (length(𝑟2)) > 1) then
16: if length(𝑟1) ≠ length(𝑟2) then
17: if_ref inement = 1 ⊳ Mark [𝜇𝑖, 𝜇𝑘] for refinement
18: break
19: end if
20: Let 𝛼𝑖𝑗,𝛾1 ∶=

|𝜆𝑗 (𝜇𝑖)−𝜆𝛾1 (𝜇𝑖)|
𝜆𝑗 (𝜇𝑖)

for 𝛾1 ∈ 𝑟1

21: Let 𝛼𝑘𝑗,𝛾2 ∶=
|𝜆𝑗 (𝜇𝑘)−𝜆𝛾2 (𝜇𝑘)|

𝜆𝑗 (𝜇𝑘)
for 𝛾2 ∈ 𝑟2

22: if max𝛾1∈𝑟1 , 𝛾2∈𝑟2{𝛼
𝑖
𝑗,𝛾1

, 𝛼𝑘𝑗,𝛾2} > 𝑡𝜆 then ⊳ No cluster is identified
23: if_ref inement = 1 ⊳ Mark [𝜇𝑖, 𝜇𝑘] for refinement
24: break
25: end if
26: end if
27: end for

3.3. The sparse grid-based adaptive sampling

In the present contribution we aim at a refinement strategy that performs well also when the dimension 𝑑 of our problem is
arge. To mitigate the curse of dimensionality, it is essential to pay particular attention to the way the grid of the parameter space

is refined. One possibility is to use locally-refined sparse grids, in the spirit of what was proposed in [15,28]. In particular, the
efinement step described in Section 3.4 relies on some notions and features related to sparse grids. For the readers’ convenience,
e recall them here.

The main ideas of our sparse grid approach are better explained, without loss of generality, when  = [−1, 1]2. With small
modifications, the case  = [𝑎, 𝑏]×[𝑐, 𝑑], for 𝑎, 𝑏, 𝑐, 𝑑 ∈ R can be handled. Moreover, the following discussion can be easily extended
to the high-dimensional framework, i.e., for 𝑑 ≥ 3.

Let us define the sequence {𝛤 (𝑚)}𝑚∈N0
of nested sets of points in [−1, 1] as follows:

𝛤 (𝑚) ∶=

{

{0} if 𝑚 = 0,
{21−𝑚𝑗}2𝑚−1

𝑗=−2𝑚−1
if 𝑚 > 0. (6)

By tensor product, we get grids of points in . In particular, given a two-dimensional multi-index 𝐦 = (𝑚1, 𝑚2) ∈ N2
0, the

corresponding two-dimensional grid is defined as

𝛤 (𝐦) = 𝛤 (𝑚1) × 𝛤 (𝑚2) =
{

(𝛼1, 𝛼2), 𝛼𝑘 ∈ 𝛤 (𝑚𝑘), 𝑘 = 1, 2
}

.

Let 𝜇 = (𝜇1, 𝜇2) ∈ 𝛤 (𝐦) be given, and assume that both its entries are fractions in lowest terms. We define the set of forward points
(𝜇) of 𝜇 as

−𝑚1 −𝑚2
(𝜇) ∶= {(𝜇1 ± 2 , 𝜇2), (𝜇1, 𝜇2 ± 2 )} ∩, (7)

5 
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Fig. 1. Forward points (squares) and neighbors (crosses) of 𝜇 = (−1,−1) ∈ 𝛤 (1, 1) (left); 𝜇 = (− 1
2
, 1) ∈ 𝛤 (2, 1) (middle); 𝜇 = (− 1

2
, 1
2
) ∈ 𝛤 (2, 2) (right).

nd the set of neighbors  (𝜇) of 𝜇 as

 (𝜇) ∶= {(𝜇1 ± 2−(𝑚1−1), 𝜇2), (𝜇1, 𝜇2 ± 2−(𝑚2−1))} ∩. (8)

Note that both sets (𝜇) and  (𝜇) contain up to 2𝑑 points for any 𝑑 ≥ 2. Some examples are depicted in Fig. 1.

3.4. The refinement strategy

We start with an initial partition 𝑃 (0) or the parameter space . The procedure described in Algorithm 3 describes how to go
from the 𝓁-th partition 𝑃 (𝓁) to the next partition 𝑃 (𝓁+1) containing 𝑃 (𝓁).

Knowing that 𝑃 (𝓁) = 𝑃 (𝓁−1) ∪ 𝑃 (𝓁)
𝛿 , the refinement strategy takes into account only the points in 𝑃 (𝓁)

𝛿 . This is essential in order
to mitigate the curse of dimensionality when the value of 𝑑 is large. On the other hand, we do not need to consider the points in
𝑃 (𝓁) ⧵ 𝑃 (𝓁)

𝛿 since we know from the previous level that the a posteriori indicator confirmed the a priori matching there.
Each element (parameter) in 𝑃 (𝓁)

𝛿 has a collection of neighboring points (see Eq. (8)). This defines a collection of local subintervals
n which we apply Algorithms 1 and 2, leading to either a marking of the subinterval for further refinement or not. The output of
ne iteration of this algorithm defines the output of a level. We perform this algorithm iteratively for increasing values of the level
∈ N0 (with the convention 𝑃 (−1) = ∅, so that 𝑃 (0) = 𝑃 (0)

𝛿 ) until no extra refinements for any subinterval within the current level
ake place, or until the maximum level 𝐿 has been reached.

.5. Updating the graph

Observe that each local subinterval (at level 𝓁 ∈ N0) defines a pair of parameters and thus an edge. As a consequence, we
aturally have an undirected graph (𝑉 ,𝐸), where 𝐸 is the collection of such edges and 𝑉 is the collection of the associated vertices,
amely the grid points in 𝑃 (𝓁). The refinement strategy naturally defines a way to update this graph. In particular, the vertices will
e updated so that they are the grid points in 𝑃 (𝓁+1) and the edges will be given by the local subintervals at the (𝓁 + 1) level.

Notably, it is always possible to find the minimum spanning tree associated with the graph at each level. In particular, this is a
ew graph connecting the same vertices without any cycles. For our purposes, we assume that the weights of this graph are equal.
hus, this tree defines a set of one-dimensional paths in any 𝑑-dimensional parametric space. The creation of the tree is particularly

mportant when we exit the loop over the levels (either because no more refinements are needed or because the maximum level 𝐿
as been reached). At that point, we perform the a-priori matching procedure following the identified one-dimensional paths. Note
hat the removal of cycles allows for no ambiguities in defining the direction of the matching since we always work with a series
f one-dimensional paths.

.6. The complexity of the Algorithm

Let us first discuss about the number of points contained in the parameter grid of level 𝓁 in the worst-case scenario. We
efine the worst-case scenario to be when we refine everywhere, or equivalently, when the output of Algorithm 2 is always
f_refinement = 1. In this case, we know that the total number of inner grid points at each level 𝓁 (for a 𝑑-dimensional
roblem) is 𝑄𝑑,𝓁 =

∑𝓁−1
𝑖=0 2𝑖

(𝑑−1+𝑖
𝑑−1

)

. Next, we count the outer (boundary) points. The formula for generating the number of 𝑓 -faces
n the boundary of a 𝑑-dimensional hypercube is 𝑁𝑑,𝑓 = 2𝑑−𝑓

(𝑑
𝑓

)

. Each such 𝑓 -face contains a sparse grid of dimension 𝑓 . Thus,
he total number of outer grid points is ∑𝑑−1

𝑓=1 𝑁𝑑,𝑓𝑄𝑓,𝓁 . In addition, there are 𝑁𝑑,0 0-faces or vertices. Thus, the formula for all grid
oints is

𝑑
∑

𝑁𝑑,𝑓𝑄𝑓,𝓁 +𝑁𝑑,0.

𝑓=1

6 
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Algorithm 3 Refinement Step

Require: Level 𝓁 ∈ N0, initial grid 𝑃 (𝓁) = 𝑃 (𝓁−1) ∪ 𝑃 (𝓁)
𝛿 with 𝑃 (𝓁−1) = {𝜇(𝓁−1)

𝑠 }𝑁𝓁−1
𝑠=1 and 𝑃 (𝓁)

𝛿 = {𝜇(𝓁,𝛿)
𝑠 }𝑁𝓁,𝛿

𝑠=1 , eigenpairs 𝛬(𝓁)
𝛿 ∶=

{(𝜆𝑗 (𝜇
(𝓁,𝛿)
𝑠 ), 𝑢𝑗 (𝜇

(𝓁,𝛿)
𝑠 )}𝑛𝑠𝑗=1 and graph (𝑉 ,𝐸)

Ensure: Refined grid 𝑃 (𝓁+1) and eigenpairs 𝛬(𝓁+1)
𝛿

1: Set 𝑃 (𝓁+1)
𝛿 = ∅, 𝛬(𝓁+1)

𝛿 = ∅
2: for 𝑠 = 1 ∶ 𝑁𝓁,𝛿 do ⊳ Loop on the points in 𝑃 (𝓁)

𝛿
3: for 𝜈(𝑟,𝑠) ∈ (𝜇(𝓁,𝛿)

𝑠 ) do ⊳ Loop on the neighbors of 𝜇(𝓁,𝛿)
𝑠 (8)

4: 𝛬⋆
𝑠 ∶= {(𝜆𝑗 (𝜇

(𝓁,𝛿)
𝑠 ), 𝑢𝑗 (𝜇

(𝓁,𝛿)
𝑠 ))}𝑛𝑠𝑗=1 ← {(𝜆𝑗 (𝜇

(𝓁,𝛿)
𝑠 ), 𝑢𝑗 (𝜇

(𝓁,𝛿)
𝑠 ))}𝑛𝑠𝑗=1

5: 𝛬⋆
𝑟 ∶= {(𝜆⋆𝑗 (𝜈(𝑟,𝑠)), 𝑢

⋆
𝑗 (𝜈(𝑟,𝑠)))}

𝑛𝑠
𝑗=1 ← {(𝜆𝑗 (𝜈(𝑟,𝑠)), 𝑢𝑗 (𝜈(𝑟,𝑠)))}

𝑛𝑟
𝑗=1 ⊳ See Algorithm 1

6: if_ref inement = a-posteriori check on 𝛬⋆
𝑠 , 𝛬⋆

𝑟 ⊳ See Algorithm 2
7: if if_ref inement = 1 then
8: 𝑃 (𝓁+1)

𝛿 ← 𝜈̄(𝑟,𝑠) ⊳ 𝜈̄(𝑟,𝑠) is the corresponding forward point of 𝜇(𝓁,𝛿)
𝑠

9: Compute 𝛬̄ ∶= {(𝜆𝑗 (𝜈̄(𝑟,𝑠)), 𝑢𝑗 (𝜈̄(𝑟,𝑠)))}
𝑛𝑟
𝑗=1

10: 𝛬(𝓁+1)
𝛿 ← 𝛬̄

11: end if
12: end for
13: end for
14: Update the graph (𝑉 ,𝐸)

As for the asymptotic behavior of this formula, using 𝑄𝑑,𝑓 ≈ 2𝓁𝓁𝑓−1 (see [29]), we derive

𝑑
∑

𝑓=1
𝑁𝑑,𝑓𝑄𝑓,𝓁 +𝑁𝑑,0 ≈

𝑑
∑

𝑓=0
2𝓁 𝓁𝑓−1 2𝑑−𝑓

(

𝑑
𝑓

)

+ 2𝑑

≈ 2𝓁 2𝑑 1
𝓁

𝑑
∑

𝑓=0
𝓁𝑓 2−𝑓

(

𝑑
𝑓

)

+ 2𝑑

≈ 2𝓁 2𝑑 1
𝓁

𝑑
∑

𝑓=0

(

𝓁
2

)𝑓 (

𝑑
𝑓

)

+ 2𝑑

≤ 2𝓁 2𝑑 1
𝓁

∞
∑

𝑓=0

(

𝓁
2

)𝑓 (

𝑑
𝑓

)

+ 2𝑑

≤ 2𝓁 2𝑑 1
𝓁

(

1 + 𝓁
2

)𝑑
+ 2𝑑

≈ 2𝓁 𝓁𝑑−1.

Thus, the total number of points is 𝑂(2𝓁𝓁𝑑−1).
Let us now move to the discussion about the complexity of the presented algorithms in the worst-case scenario. Observe that the

local Algorithms 1 and 2 only depend on the number of eigenvalues considered in the associated subinterval. They do not depend
on the dimension of the parametric domain, . Since both the parametric domain  and the window of interest 𝐼𝜆 are bounded,
the number of eigensolutions at any point in  is also bounded. Furthermore, let 𝐶𝑙𝑜𝑐𝑎𝑙 denote the time it takes to execute both
Algorithms 1 and 2 for a certain subinterval. In addition, let 𝐶𝑠𝑜𝑙𝑣𝑒𝑟 denote the time it takes to generate the eigensolutions at an
arbitrary parameter 𝜇. Due to the boundedness described above, we know that such values are bounded from above. We denote
such bounds by 𝐶𝑝 and 𝐶𝑒, respectively.

At any level 𝓁, the operations performed according to Algorithm 3 are: (i) solve the eigenvalue problem corresponding to all
new points of the parametric grid; (ii) run Algorithms 1 and 2 at all local intervals having one new grid point as endpoint (up to
2𝑑); (iii) update the graph. Therefore, the estimate of the runtime of Algorithm 3 is

(2𝓁𝓁𝑑−1 − 2𝓁−1(𝓁 − 1)𝑑−1)(𝐶𝑝 + 2𝑑 𝐶𝑒 + 1).

When Algorithm 3 is repeated until the maximum level 𝐿 is reached, the cumulative runtime becomes
𝐿
∑

𝓁=1
(2𝓁𝓁𝑑−1 − 2𝓁−1(𝓁 − 1)𝑑−1)(𝐶𝑝 + 2𝑑 𝐶𝑒 + 1).

Finally, once the loop over the levels has terminated, we start from the graph corresponding to the created adapted grid, and
we construct the minimum spanning tree. This operation is performed in MATLAB by means of the function minspantree. The

algorithm used there is the Kruskal’s algorithm [30,31] which has a worst-case performance of 𝑂(𝐸𝑙𝑜𝑔𝑉 ) where 𝐸 and 𝑉 are the

7 
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numbers of edges/subintervals and vertices/grid points, respectively. Thus, this translates asymptotically (in the limit where the
number of subintervals equals the number of grid points) to

𝑂((2𝐿(𝐿)𝑑−1) log(2𝐿𝐿𝑑−1)).

Putting everything together, we conclude that the runtime for the global algorithm is

(2𝐿(𝐿)𝑑−1) log(2𝐿𝐿𝑑−1) +
𝐿
∑

𝓁=1
[(2𝓁𝓁𝑑−1 − 2𝓁−1(𝓁 − 1)𝑑−1)(𝐶𝑝 + 2𝑑 𝐶𝑒 + 1)].

Now, the number of inner grid points for a uniform grid is 𝑂(2𝑑𝐿). The runtime using a uniform grid instead of a sparse grid is
hen:

(2𝑑𝐿) log(2𝑑𝐿) +
𝐿
∑

𝓁=1
[(2𝑑𝓁 − 2𝑑(𝓁−1))(𝐶𝑝 + 2𝑑 𝐶𝑒 + 1)].

ere, the exponential dependence on the dimension is obvious. This is in contrast to the exponential dependence on the level 𝓁 in
he sparse grid case.

. Numerical results

Section 4.1 is devoted to a numerical example illustrating the behavior of the two local procedures (a priori matching and
posteriori verification). The global refinement algorithm is discussed in one- and two- dimensional numerical examples in

ections 4.2 and 4.3.
In all the presented numerical experiments we consider the following setting: let 𝛺 = [0, 1]2 be the physical domain and let
= 𝐻1(𝛺) and 𝐻 = 𝐿2(𝛺) endowed with the usual inner products and norms. For all 𝜇 ∈  ⊂ R𝑑 we look for eigenpairs

𝜆(𝜇), 𝑢(𝜇)) ∈ R+ ×𝐻1(𝛺) such that
{

∇ ⋅ (𝑐(𝜇)∇𝑢(𝜇)) = 𝜆(𝜇)𝑢(𝜇) in 𝛺,
𝑢(𝜇) = 0 on 𝜕𝛺,

(9)

here 𝑐(𝜇) is a matrix with size 2 × 2 and positive definite for all possible values of the parameter 𝜇. Integrating by parts, we find
he weak formulation of (9) of the form (1) with the bilinear forms

𝑎(𝑤, 𝑣;𝜇) ∶= ∫𝛺
𝑐(𝜇)∇𝑤 ⋅ ∇𝑣 𝑑𝑥,

𝑏(𝑤, 𝑣;𝜇) ∶= ∫𝛺
𝑤𝑣𝑑𝑥.

he FE method on a sufficiently refined mesh is employed to numerically approximate the eigenvalues and eigenfunctions at fixed
alues of the parameter 𝜇 ∈ . All the computations are performed in Matlab on a laptop with four cores (eight logical processors),
6 GB of RAM. Furthermore, we make use of the Partial Differential Equation toolbox [32] and Sparse Grids Kit [33].

.1. Operations on a subinterval

In the first numerical test we take  = [0.4, 1],

𝑐(𝜇) =
(

𝜇−2 1
1 0.7−2

)

, (10)

nd 𝐼𝜆 = [0, 270]. We first detail the local steps of the proposed algorithm, namely, the a priori matching and the a posteriori
erification, on the subinterval with endpoints 𝜇1 = 0.4 and 𝜇2 = 0.7. The FE method at 𝜇1 (respectively 𝜇2) delivers four (respectively
ine) eigenvalues in 𝐼𝜆 (and corresponding eigenvectors), given by

𝜆(𝜇1) = (80.8, 137.9, 230.6, 265.9)⊤,

𝜆(𝜇2) = (38.2, 81.1, 109.7, 129.4, 188.6, 189.9, 214.8, 260.9, 261.9)⊤.

The 4 × 9 cost matrix (with weights 𝑤1 = 1, 𝑤2 = 200) reads as follows:

𝐷 =

⎡

⎢

⎢

⎢

⎢

⎣

57.7 282.2 311.6 318.8 390.6 391.5 415.6 462.8 463.3
381.9 189.4 202.6 290.1 333.1 324.8 359.5 396.6 406.6
473.2 431.9 403.4 288.7 204.8 323.0 220.3 313.1 310.7
509.9 359.2 290.3 418.4 360.0 345.3 333.8 278.3 286.7

⎤

⎥

⎥

⎥

⎥

⎦

To minimize the total cost, namely, to solve the optimization problem (4), we employ the Hungarian algorithm, whose output is
he permutation 𝜎⋆ = (1, 2, 5, 8) (the entries of the cost matrix identified by 𝜎⋆ are depicted in red). As a consequence, the vectors
𝜆𝑗 (𝜇1), 𝑗 = 1,… , 4} and {𝜆𝓁(𝜇2), 𝓁 = 𝜎⋆1 ,… , 𝜎⋆4 } are matched as follows:

80.8 ↔ 38.2
137.9 ↔ 81.1
230.6 ↔ 188.6

265.9 ↔ 260.9

8 
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Fig. 2. Reference solution. Different colors and labels correspond to different eigencurves so that intersections are visible.

and the vector {𝜆𝓁(𝜇2), 𝓁 = 1,… , 9} is reordered accordingly:

𝜆⋆(𝜇2) = (38.2, 81.1, 188.6, 260.9, 109.7, 129.4, 189.9, 214.8, 261.9)⊤.

The a priori matching is then followed by the a posteriori verification. Here, we start with the 4 × 9 projection matrix.

𝛱 =

⎡

⎢

⎢

⎢

⎢

⎣

0.997 0.000 0.001 0.000 0.000 0.070 0.000 0.018 0.014
0.000 0.778 0.000 0.052 0.622 0.000 0.071 0.000 0.000
0.030 0.000 0.663 0.000 0.000 0.564 0.000 0.481 0.007
0.000 0.617 0.000 0.051 0.778 0.000 0.092 0.000 0.000

⎤

⎥

⎥

⎥

⎥

⎦

We fix 𝑡𝜋 = 0.21, and we enter the loop over 𝑗 (line 3 in Algorithm 2. For 𝑗 = 1, the truncation conditions in line 5, 10 are fulfilled,
hence all the off-diagonal entries of the first row and column of 𝛱 are truncated to 0. For 𝑗 = 2, instead, the same process identifies
two non-zero elements both in the second row and in the second column of 𝛱 :

𝛱 =

⎡

⎢

⎢

⎢

⎢

⎣

0.997 0 0 0 0 0 0 0 0
0 0.778 0 0 0.622 0 0 0 0
0 0 0.663 0.000 0.000 0.564 0.000 0.481 0.007
0 0.617 0.000 0.051 0.778 0.000 0.092 0.000 0.000

⎤

⎥

⎥

⎥

⎥

⎦

As a consequence, the first matching choice 80.8 ↔ 38.2 is certified but not the second matching 137.9 ↔ 81.1. Here, the second
eigenvalue at 𝜇1, namely 137.9, is permitted to be matched to both the second (81.1 since 𝛱2,2 = 0.778) and fifth (109.7 since
𝛱2,5 = 0.622) eigenvalues at 𝜇2. Furthermore, the second eigenvalue at 𝜇2, 81.1, can be matched to the second and fourth (265.9
since 𝛱4,2 = 0.617) eigenvalues at 𝜇1.

We then check whether the second and fourth eigenvalues at 𝜇1 form a cluster given the fixed tolerance 𝑡𝜆 = 0.001. A quick
computation yields the following

|𝜆2(𝜇1) − 𝜆4(𝜇1)|
𝜆2(𝜇1)

> 0.001

nd similar results hold at 𝜇2 for the second and fifth eigenvalues. Thus, these eigenvalues are distinguishable from each other and
o eigenvalue clusters are identified. Consequently, the a posteriori verification does not confirm the results of the a priori matching,
nd the subinterval is not certified and is marked for further refinement.

.2. Full 1D example

The main purpose of this section is to show how refinement in a full 1D parametric domain takes place. We continue using the
ame set-up presented in Section 4.1.

For the sake of comparison, we numerically compute the reference solution (see Fig. 2). This is obtained by applying the a priori
atching (Algorithm 1) on the uniform grid of the parametric space  containing 129 points. The matching information is then

propagated from left to right along all the 128 subintervals of .
In contrast, we apply the adaptive refinement algorithm presented in Section 3. The output is the (coarse) adapted sparse grid

of  containing enough points to detect all the features of the reference solution. Fig. 3 depicts the evolution of the parametric
grid as the level increases, whereas in each subfigure of Fig. 4 the result of the local checks are represented: matched eigenvalues
are plotted using the same color and marker; if the projection matrix suggests that more than one matching is possible, the possible
matchings are highlighted by means of black dashed lines. We detail now the level-by-level procedure, which is summarized in
Table 1.
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Fig. 3. Evolution of parametric grid (𝑥-axis) as the level increases (𝑦-axis).

Table 1
Error table for the 1D example.
Error By Level

Level Total no. of
points

No. of wrongly
matched points

No. of
subintervals

No. of uncertified
subintervals

No. of uniform grid
points

No. of full sparse
grid points

0 3 2 2 2 3 3
1 5 3 4 2 5 5
2 7 0 4 1 9 9
3 8 0 2 0 17 17

Level 0 The initial grid is 𝑃 (0) = {0.4, 0.7, 1} (see the blue points in Fig. 3). In particular, the local checks (both the a priori matching
and the a posteriori verification) are performed on the two local subintervals [0.4, 0.7] and [0.7, 1], which are both marked
for further refinement.

Level 1 The grid at level one contains five points 𝑃 (1) = {0.4, 0.55, 0.7, 0.85, 1} (see the black dots in Fig. 3) and it is given by
𝑃 (1) = 𝑃 (0) ∪ 𝑃 (1)

𝛿 , with 𝑃 (1)
𝛿 = {0.55, 0.85}. Following Algorithm 3, the local checks are performed on the four subintervals

[0.4, 0.55], [0.85, 1], [0.55, 0.7] and [0.7, 0.85]. Only the last two subintervals are marked for further refinement.

evel 2 The grid at level 2 is 𝑃 (2) = {0.4, 0.55, 0.625, 0.7, 0.775, 0.85, 1} (see the red dots in Fig. 3) and it is given by 𝑃 (2) = 𝑃 (1) ∪𝑃 (2)
𝛿 ,

with 𝑃 (2)
𝛿 = {0.625, 0.775}. Local checks are then performed on the following subintervals: [0.55, 0.625], [0.625, 0.7], [0.7, 0.775],

and [0.775, 0.85]. Only one subinterval is marked for further refinement, namely [0.775, 0.85].

evel 3 The grid at level 3 is 𝑃 (3) = {0.4, 0.55, 0.625, 0.7, 0.775, 0.8125, 0.85, 1} (see the magenta dots in Fig. 3) and it is given by
𝑃 (3) = 𝑃 (2) ∪ 𝑃 (3)

𝛿 , with 𝑃 (3)
𝛿 = {0.8125}. The local checks on the local subintervals [0.775, 0.8125] and [0.8125, .085] are

performed, and none of the two is marked for refinement. As a consequence, the adaptive algorithm terminates.

It is worth mentioning that, even though the subinterval [0.775, 0.85] was marked for refinement at level 2, the a priori matching
as correct. To explain the extra refinement, we examine the projection matrix associated with this subinterval, more precisely the
× 2 sub-matrix with entries corresponding to the black and cyan eigenvalues:

[

𝛱7,7 𝛱7,8
𝛱8,7 𝛱8,8

]

=
[

0.721 0.682
0.680 0.714

]

.

he off-diagonal terms 𝛱7,8 and 𝛱8,7 are non-zero due to a non-negligible overlap between the corresponding eigenfunctions, which
re depicted in Fig. 5. Therefore, we can identify two causes for the a posteriori verification to suggest the refinement: (i) the
rdering of the eigenvalues proposed by the a priori matching is incorrect; (ii) the eigenfunctions are not orthogonal. The second
ituation typically occurs in the presence of small gaps between the eigenvalue hypersurfaces. Recall that lines 20–25 in Algorithm
are devoted to case (ii). In this example, no clusters are identified, and the algorithm consequently terminates.

Once the adaptive algorithm has terminated, the collected information can be exploited to construct a surrogate for the map
↦ 𝜆(𝜇). Between the various possibilities, we propose to construction this surrogate simply by piecewise linear interpolation. The

esult is depicted in Fig. 6.

.3. A 2D example

In this numerical test we consider the two dimensional parameter space  = [0.8, 1.05] × [0.8, 1.05], and we take the (positive
efinite) diffusion matrix

𝑐(𝜇) = 𝑐(𝜇1, 𝜇2) =
(

𝜇−2
1 0.8𝜇−1

2
−1 −2

)

.

0.8𝜇2 𝜇2
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Fig. 4. Visual summary of the projection matrices.

Fig. 5. Comparison between four non-orthogonal eigenfunctions.
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Fig. 6. Output of each level for the 1D example.

Fig. 7. Reference solution for the 2D example; All hypersurfaces.

The computation of the reference solution relies on the uniform tensor product grid of  containing 129 points (see Fig. 7 for the
eigenvalue hypersurfaces). For eigenvalue problems depending on two parameters, the computation of the reference solution is still
affordable. However, for increasing dimension 𝑑 of the parametric space, such an approach entails prohibitive computational costs,
becoming out of reach and extremely more expensive than the proposed sparse grid-based approach. In the following discussion,
we focus on the two important features of the reference solution, namely, crossings and small gaps of the eigenvalue hypersurfaces.

Given the initial grid 𝑃 (0) being the 3 × 3 uniform lattice, and the tolerances 𝑡𝜋 = 0.57, 𝑡𝜆 = 0.015, we let the adaptive algorithm
run. The level-by-level output is displayed in Fig. 8. The parametric grid produced by the adaptive algorithm is clearly non-uniform,
and two regions in the parametric space can be recognized. At the left-half of , where no refinement happens, the eigenvalue
hypersurfaces are well separated except for the crossing of the 3rd and 4th ones (see Fig. 9(c)), which is however correctly identified
by the a priori matching and subsequently certified by the a posteriori verification already at level 0. On the other hand, all the
added points lie in the right-half of , even though no crossings are present. This refinement pattern is due to small gaps between
the eigenvalue hypersurfaces (see Fig. 9(a)–(b)). In particular, the extra grid points added at each level are meant to help the a
posteriori test certify the identity a priori matching.
12 



M. Alghamdi et al. Journal of Computational and Applied Mathematics 457 (2025) 116270 
Fig. 8. Evolution of grid in the 2D example.

Table 2 summarizes the level-by-level information. We can observe that, from level 5 on, five points are added to the grid,
even though all the eigenpairs were correctly matched. These points serve the purpose of allowing the algorithm to fully certify
13 
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Fig. 9. Final solution for the 2D example; Detailed view.

Table 2
Error table for the 2D example.
Error By Level

Level Total no. of
points

No. of wrongly
matched points

No. of
subintervals

No. of uncertified
subintervals

No. of uniform grid
points

No. of full sparse
grid points

0 9 7 12 4 9 9
1 13 2 10 9 25 21
2 22 1 22 11 81 49
3 36 4 36 10 289 113
4 49 2 39 4 1089 257
5 59 0 34 2 4225 577
6 64 0 20 0 16 641 1281

all subintervals, and produce a correct solution after termination. An important feature to notice is that some refinements can
lead to an increase in the error (represented by the number of wrongly matched eigenpairs). This happens for example at level 3.
Additional refinements at each level generate smaller subintervals. While increased accuracy is obtained, this does not translate into
a continuous decay in the error. A correct solution is only guaranteed when all subintervals are certified.

Next, we compare the performance of our algorithm against two different approaches: using a full sparse grid and a full uniform
grid. In such cases, the number of grid points added at each level is fixed. The number of such points is given in Tables 1 and 2. One
can see that the size of the full uniform grid is equal to that of the full sparse grid in 1D. However, it is about 13 times larger in 2D
at the end of the refinement process, that is, when the smallest subinterval needed to resolve the matching problem is introduced
to the grid. Such a difference in size is even more striking in the case of our adaptive sparse grid. In particular, the adaptive grid is
about 20 times smaller than the full sparse grid, and 260 times smaller than the full uniform grid.

We conclude the section by bringing to the surface one last issue, namely how to propagate the matching information. In the
one dimensional case, this issue was easily solved by defining the propagation direction from left to right. In the two dimensional
case, the way to proceed is not clear anymore, and it becomes even more complicated for 𝑑 > 2.

Our technique relies on the creation of a path connecting all the points of the adapted grid. Such a path (which in principle is not
guaranteed to be unique) must fulfill good properties (e.g., connected, no cycles are allowed) since the information must propagate
distinctively. This step is performed in the code making use of the Matlab commands minspantree and shortestpath.
14 
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Fig. 10. Initial path.

As an example, we display the initial path corresponding to level 0 in Fig. 10. We generate this path by applying the
minspantree function on the graph 𝐺 =graph([1 1 2 4 2 3 5 4 5 6 7 8], [2 4 5 5 3 6 6 7 8 9 8 9]). We then find our one-dimensional
sub-paths using shortestpath. In this case, the three sub-paths all start at (0.8, 0.8) and end at (0.8, 1.05), (0.925, 1.05) and
(1.05, 1.05) respectively.

5. Conclusions

The present paper introduces a novel adaptive algorithm for the numerical treatment of parametric eigenvalue problems arising
from elliptic partial differential equations. It is composed of two phases: locally, we look at a specific subinterval and we decide
(by means of an a priori matching followed by an a posteriori verification) whether to mark it for refinement or not; globally, we
perform a sparse grid-based refinement step, which delivers an adapted grid in the parameter space refined where needed in order
to detect the features and crossings of the eigenvalue hypersurfaces. Finally, a surrogate for the parameter-to-eigenvalue map is
constructed simply by piecewise linear interpolation. Notably, the construction of a surrogate for the parameter-to-eigenfunction
(or parameter-to-eigenvector) map is more delicate, and it is left for future investigations.

Even though the algorithm is written in an arbitrary dimension of the parameter space, numerical examples are performed
in 1D and 2D, only, with the scope of attesting the validity and verifying the performances of the proposed numerical scheme.
Higher-dimensional numerical tests will be presented in a forthcoming contribution.

This work paves the way towards the treatment of stochastic eigenvalue problems, i.e., eigenvalue problems arising from elliptic
partial differential equations with random coefficients. In recent years a huge effort has been made in the study of uncertainty
quantification (UQ) techniques for the source problem, and various methods have been developed (we mention, e.g., the Monte
Carlo method [34], non-intrusive and Galerkin methods [35] and perturbation methods [36–38]. However, the field of stochastic
eigenvalue problems is still quite unexplored, and we believe that the combined use of UQ techniques together with the algorithm
proposed here represents a promising way to go.

Data availability

No data was used for the research described in the article.
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