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Abstract. Within the framework of parameter dependent PDEs, we develop
a constructive approach based on Deep Neural Networks for the efficient ap-

proximation of the parameter-to-solution map. The research is motivated by

the limitations and drawbacks of state-of-the-art algorithms, such as the Re-
duced Basis method, when addressing problems that show a slow decay in the

Kolmogorov n-width. Our work is based on the use of deep autoencoders,

which we employ for encoding and decoding a high fidelity approximation of
the solution manifold. To provide guidelines for the design of deep autoen-

coders, we consider a nonlinear version of the Kolmogorov n-width over which

we base the concept of a minimal latent dimension. We show that the latter is
intimately related to the topological properties of the solution manifold, and

we provide theoretical results with particular emphasis on second order ellip-
tic PDEs, characterizing the minimal dimension and the approximation errors

of the proposed approach. The theory presented is further supported by nu-

merical experiments, where we compare the proposed approach with classical
POD-Galerkin reduced order models. In particular, we consider parametrized

advection-diffusion PDEs, and we test the methodology in the presence of

strong transport fields, singular terms and stochastic coefficients.

Introduction

In many areas of science, such as physics, biology and engineering, phenomena
are modeled in terms of Partial Differential Equations (PDEs) that exhibit de-
pendence on one or multiple parameters. As an example, consider the stationary
advection-diffusion equation below,{

−div(σµ∇u) + bµ · ∇u = fµ in Ω,

u = gµ on ∂Ω,

where Ω ⊂ Rd is a bounded domain and µ a vector parameter taking values in a
suitable parameter space Θ ⊂ Rp. For each µ ∈ Θ, we assume the above to admit
a unique solution uµ, to be sought within a given Hilbert space (V, || · ||).

In some cases, one is not interested in computing the PDE solution for a single
fixed µ ∈ Θ, but rather for an ensemble of parameter values. In general, this cor-
responds to exploring the so-called solution manifold S := {uµ}µ∈Θ [23, 43]. The
map µ → uµ is known under many equivalent names such as the parametric map
[60], the parameter-to-state map [35] or the solution map [53]. Approximating the
parametric map in a highly-efficient way is a challenging task that can be encoun-
tered in several contexts, from optimal control problems with parametric PDEs
constraints [8] to multiscale fluid mechanics [38], or Bayesian inversion and uncer-
tainty quantification [11]. In all these cases, the main drawback is represented by
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the computational cost entailed by traditional PDE solvers. In fact, despite their
accuracy, each query of a numerical scheme such as the Finite Element Method
(FEM) implies a computational cost that easily becomes unsustainable in many
query applications, where computations are supposed to be carried out within a
very short amount of time.

One possibility is then to replace Full Order Models (FOMs) with cheaper sur-
rogate models, namely Reduced Order Models (ROMs). ROMs originate from the
need of alleviating the computational burden of FOMs at the price of a negligible
compromise in terms of accuracy. During the last decades, several successful model
reduction techniques have been developed, such as the Reduced Basis method [57]
and others. However, the majority of these ROMs heavily relies on linear projec-
tion techniques, thus limiting significantly the spectrum of possible applications.
Indeed, ROMs based on linear reduction methods encounter substantial difficul-
ties whenever the solution manifold has a so-called Kolmogorov n-width [39] that
decays slowly with n. The Kolmogorov n-width is a quantity that measures the
degree of accuracy by which a set can be approximated using linear subspaces of
dimension n, namely

(1) dn(S) := inf
Vn⊂V,

dim(Vn)=n

sup
u∈S

inf
v∈Vn

||u− v||.

If dn(S) decays slowly with n, then projection-based ROMs can reach meaningful
accuracies only for large values of n, which in turn leads to expensive models.
We point out that this phenomenon is far from being uncommon. As a matter
of fact, the slow decay on dn(S) is typical of time-dependent transport-dominated
problems, even under fairly simple circumstances [27, 53]. The same is also true
for stationary and purely diffusive problems, provided that the parameters enter in
a highly nonlinear and possibly spatially localized way. The interested reader can
find a simple yet remarkable example of this fact in the Appendix, Example A.1.

In order to tackle these drawbacks, we propose a novel approach based on Deep
Neural Networks (DNNs) [61] that naturally accounts for possible nonlinearities in
the solution manifold. Our construction is mostly inspired by the recent advance-
ments in nonlinear approximation theory, e.g. [16, 17, 60], and the increasing use
of deep learning techniques for parametrized PDEs and operator learning, as in
[14, 24, 40, 46].

Our contribution. The purpose of the present work is to provide alternative
ROM techniques for parametrized PDEs that are able to overcome the drawbacks
implied by the slow decay of the Kolmogorov n-width. In particular, we focus
on nonintrusive ROMs where the solution map is approximated by a deep neural
network Φ. This idea has been recently investigated both theoretically, as in [40, 42,
60], and practically, e.g. [24, 26]. By now, the drawbacks posed by this approach
are mainly practical: it is often unclear how the network architecture should be
designed and which optimization strategies are better suited for the purpose. Also,
we lack the understanding of the possible ways the nonlinearities in the DNN should
be exploited in order to make the most out of it. Here, we wish to partially answer
these questions and provide a constructive way of designing such Φ.

The key idea is to break the problem into two parts. First, we seek for a low-
dimensional representation of the solution manifold, which we obtain by training a
deep autoencoder [33], Ψ◦Ψ′. The encoder, Ψ′, is used to map the solution manifold
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into a reduced feature space Rn, while the decoder serves for the reconstruction task.
Here we see a clear analogy with the Nonlinear Kolmogorov n-width as defined in
DeVore et al. [18]. There, the authors define

δn(S) := inf
Ψ′∈C(S, Rn)
Ψ∈C(Rn, V )

sup
u∈S

||u−Ψ(Ψ′(u))||,

as a nonlinear counterpart of dn(S). In light of this, we introduce the concept of
minimal latent dimension, denoted as nmin(S), which we define as the smallest n
for which δn(S) = 0. By choosing this particular nmin(S) as latent dimension for
the autoencoder, we are then able to perform a significant model reduction.

Once the autoencoder has been trained, we exploit the encoder Ψ′ in order to
represent each solution uµ through a low-dimensional vector unµ ∈ Rn. We then
train a third network φ : Θ→ Rn to learn the reduced map µ→ unµ. In this way, by
connecting the architectures of φ and Ψ we obtain the complete model, Φ := Ψ ◦φ,
which we later term as DL-ROM (Deep Learning based Reduced Order Model, in
the same spirit of previous works [24, 25]).

The novelty of our contribution is twofold. First, we develop a new constructive
way of using neural networks to approximate the solution map and we test it on
some numerical examples. Second, we prove theoretical results that motivate the
choice of the ROM dimension. Indeed, despite the popularity of autoencoders, e.g.
[24, 44, 50, 69], the choice of the latent dimension n is often handled by trial and
error. In contrast, we establish precise bounds on n thanks to a rigorous theoretical
analysis.

More precisely, in Theorems 1 and 2, we investigate the link between the min-
imal latent dimension nmin(S) and the topological properties of S. In Theorem 3
we explicitly bound nmin(S) in terms of the dimensionality of the parameter space.
In particular, we show that nmin(S) ≤ 2p + 1 as soon as the parametric map is
Lipschitz continuous. The theory is then applied to the case of second order elliptic
PDEs, in Theorem 4, where we demonstrate how the parameters directly affect the
value of the minimal latent dimension. Finally, in Theorem 5, we bound the model
complexity in terms of the ROM accuracy, deriving suitable error estimates that
are later confirmed experimentally.

The paper is organized as follows. In Section 1 we introduce our general frame-
work and briefly recall the driving ideas of linear reduction. In Section 2 we move
to the nonlinear case, where we establish a solid theoretical background for the
construction of the DL-ROM, with particular emphasis on minimal representations
and parametrized PDEs. In Section 3 we dive into the details of our deep learning
approach, thereby discussing the general construction and its numerical properties.
In Section 4 we present some numerical results and assess the proposed methodol-
ogy. Finally, to make the paper self-contained, auxiliary mathematical results are
reported in the Appendix.
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1. General background

Within the present Section we formally introduce the problem of reduced order
modelling for parametrized PDEs. For later comparison, we also take the chance
to recall the linear reduction technique known as Principal Orthogonal Decompo-
sition [47, 57]. In the remainder of the paper, we make use of elementary notions
coming from the areas of Functional Analysis, Numerical Analysis and Topology.
We respectively refer to [1, 22], [58] and [34].

1.1. Reduced Order Models for parametrized PDEs. We are given a pa-
rameter space Θ ⊂ Rp, a Hilbert state space (V, || · ||) and parameter dependent
operators aµ : V × V → R and fµ : V → R. For each µ ∈ Θ we consider the
variational problem

(2) u ∈ V : aµ(u, v) = fµ(v) ∀v ∈ V.

We assume the problem to be well-posed, so that for each µ ∈ Θ there exists a
unique solution u = uµ ∈ V . Our interest is to define a ROM that is able to
approximate the parametric map µ→ uµ efficiently. In general, the workflow goes
as follows. First, one chooses a FOM, which we here assume to be based on Galerkin
projections. This corresponds to fixing a so-called high-fidelity discretization, that
is a finite dimensional subspace Vh ⊂ V , dim(Vh) = Nh, used to replace the original

trial space. Having chosen a basis for Vh, say {ϕi}Nh
i=1, for each µ ∈ Θ one turns

equation (2) into the (discrete) problem

(3) uhµ = [uhµ,1, . . . ,u
h
µ,Nh

] ∈ RNh : aµ

(
n∑
i=1

uhµ,iϕi, v

)
= fµ(v) ∀v ∈ Vh.

The main purpose of the high-fidelity discretization is to reframe the original prob-
lem within a finite dimensional setting, without particular care on the computa-
tional cost (for now). Regarding the choice of Vh, we make the following assumption.

Assumption 1. For any ε > 0 there exists Vh := span{ϕi}Nh
i ⊂ V such that

sup
µ∈Θ

∣∣∣∣∣
∣∣∣∣∣uµ −

Nh∑
i=1

uhµ,iϕi

∣∣∣∣∣
∣∣∣∣∣ < ε

that is, the FOM accuracy can be bounded independently on the value of µ ∈ Θ.

The above is a very common assumption in the literature, see e.g. [40], that allows
us to formally replace V with Vh. The objective now becomes that of learning the
map µ→ uhµ in a way that reduces the FOM cost. In particular, the construction

of the ROM consists in finding a suitable map Φ : Rp → RNh for which Φ(µ) ≈ uhµ.
To do so, the common practice is to make extensive use of the FOM during a
preliminary offline stage, which results in the collection of the so-called snapshots,
{µi,uhµi

}i ⊂ Rp × RNh . These snapshots are then processed in order to build the
ROM. In this sense, the identification of Φ can be seen as a problem of Statistical
Learning, as argued in [40]. The way Φ is defined from the data is what characterizes
each ROM, its efficiency and accuracy.
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1.2. Methods based on linear projections. Many state-of-the-art ROMs are
built upon the use of linear reduction techniques, which are known to work par-
ticularly well for second order elliptic PDEs with affine coefficients [2]. The idea
is the following. Having fixed a high-fidelity discretization, one considers the (dis-
cretized) solution manifold Sh := {uhµ}µ∈Θ and tries to approximate it using linear
subspaces. This translates into fixing a reduced dimension n ∈ N and searching for
the orthonormal matrix V ∈ RNh×n that minimizes the errors ||uhµ−VVTuhµ||. In
practice, the identification of such V is done empirically by exploiting the afore-
mentioned snapshots {µi,uhµi

}Ni=1, which is often achieved through the so-called

Principal Orthogonal Decomposition (POD). In short, this latter approach consid-
ers all the FOM snapshots as columns of a matrix, U := [uhµ1

, ,uhµN
] and computes

its singular value decomposition

U = ŨΣWT

where Σ =diag(σ1, .., σN ) with σ1 ≥ ... ≥ σN ≥ 0. Then, in the POD approach,

V is defined by extracting the first n columns of Ũ. It is well-known that this
choice of V is optimal -in some sense- over the training sample {uhµi

}Ni=1. We also

mention that, while this version of the POD considers RNh as a Euclidean space,
slight modifications allow to account for different (e.g. energy) norms.

Once V has been built, the solution manifold is projected onto the reduced space
Rn, and each FOM solution is associated with the corresponding low-dimensional
representation, unµ := VTuhµ. To be operational, the ROM then needs to implement
a suitable algorithm that approximates the correspondence µ → unµ. If we repre-
sent the latter as a map φ : Θ→ Rn, then the ROM approximation of high-fidelity
solutions can be written as Φ(µ) := Vφ(µ) ≈ uhµ. Within the literature, this step
has been handled in multiple ways. In the Reduced Basis method [43, 57], particu-
larly in the so-called POD-Galerkin method, φ is defined intrusively by projecting
and solving equation (3) onto span(V). Depending on the parametrization and on
the type of PDE, this procedure may turn to be too expensive, which is why several
alternatives have been proposed, see e.g. [4, 52, 62]. Nonintrusive approaches for
defining φ include Gaussian process regression [31], polynomial chaos expansions
[36], neural networks [14, 66] and others.

Nevertheless, because of the linear approximation, these ROMs encounter sub-
stantial difficulties as soon as S has a Kolmogorov n-width, see equation (1), that
decays slowly. In fact,

sup
µ∈Θ
||uhµ −Vφ(µ)|| ≥ sup

µ∈Θ
||uhµ −VVTuhµ|| ≥ dn(Sh) ≥ dn(S)− ε,

where ε > 0 is the accuracy of the high-fidelity discretization. Therefore, if dn(S)
decays slowly, one may be forced to consider large values of n, which in turn makes
φ more expensive and harder to identify. As we argue in the next Section, one pos-
sible solution to this problem is given by nonlinear reduction techniques. However,
despite this being a promising direction, only a few steps have been made so far,
e.g. [6, 24, 44].

2. Nonlinear Dimensionality Reduction

In the present Section we formalize the idea of using nonlinear reduction tech-
niques for the compression of the solution manifold. We start by introducing all
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concepts and results in an abstract fashion. Only at the end, Section 2.2, we
rephrase the content in terms of parametrized PDEs.

2.1. Nonlinear Kolmogorov n-width and minimal latent dimension. Within
this Section, we consider an abstract setting where (V, || · ||) is a Hilbert space and
S ⊂ V a generic subset. In particular, S needs not to be the solution manifold
of a parametrized PDE and the theory is presented regardless of a possible dis-
cretization. We address the problem of finding a low-dimensional representation of
S while minimizing the reconstruction error.

When V is finite-dimensional, the linear reduction described in Section 1.2 per-
forms an encoding of S via the map u→ VTu =: un ∈ Rn, where n is the reduced
dimension; the set is then recovered through un → Vun ≈ u. Therefore, a pos-
sible generalization to the nonlinear case is to substitute VT with some encoder
Ψ′ : S → Rn and V with a decoder Ψ : Rn → V . Of note, this is also an approach
that easily extends to infinite-dimensional settings. Depending on the restrictions
that we impose on Ψ′ and Ψ, different reconstruction accuracies can be obtained.

Here, we only require Ψ′ and Ψ to be continuous. This, naturally gives rise to
the optimization problem below,

(4) δn(S) := inf
Ψ′∈C(S, Rn)
Ψ∈C(Rn, V )

sup
u∈S

||u−Ψ(Ψ′(u))||,

where C(X,Y ) denotes the collection of all continuous maps from X to Y . As we
mentioned in the Introduction, the above corresponds to the (continuous) Nonlinear
Kolmogorov n-width as defined in [18]. It is clear that dn(S) ≥ δn(S). Also, δn(S)
is nonincreasing in n, which reflects the fact that better approximations can be
achieved in higher dimensional spaces. However, in the context of reduced order
modelling, smaller values of n are often preferable, as they allow for less expensive
models. In this sense, whenever there exists a smallest dimension nmin that allows
for an arbitrarily accurate reduction, i.e. δnmin(S) = 0, we may want to focus on
that one. For this reason, we introduce the notation

nmin(S) := min{n ∈ N | δn(S) = 0},

were we adopt the convention min ∅ = +∞. We refer to nmin(S) as to the minimal
latent dimension of S. Clearly, when V ∼= RNh is finite-dimensional, the above
definition is of interest only if nmin(S) � Nh. Nevertheless, as we will see below,
this is always the case as soon as S has an intrinsic low-dimensional structure.
Indeed, the value of nmin(S) is strongly related to the topological properties of
S. For instance, in the case of compact sets, it is invariant under bicontinuous
transformations. More precisely, we have the following.

Theorem 1. Let V and W be two Hilbert spaces. Let S ⊂ V and M⊂ W be two
compact subsets. If S and M are homeomorphic, then nmin(S) = nmin(M).

Proof. Since the situation is symmetric in S and M, it is sufficient to prove that
nmin(S) ≥ nmin(M). If nmin(S) = +∞, the inequality is obvious. Hence, we
assume there exists some n ∈ N for which δn(S) = 0. By definition of infimum, there
exists a sequence of encoding-decoding pairs {(Ψ′j ,Ψj)}j≥0 in C(S,Rn)× C(Rn, V )
such that supu∈S ||u − Ψj(Ψ

′
j(u))||V → 0 as j → +∞. Let now φ : S → M

be bicontinuous (recall that the sets are homeomorphic). Since S is compact, φ
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admits a uniformly continuous extension φ̃ : V → W (cf. Theorem 1.12 in [5]).

We are then allowed to consider the continuous maps Ψ̃j := φ̃ ◦Ψj : Rn → W and

Ψ̃′j := Ψ′j ◦ φ−1 :M→ Rn. For ω a monotone modulus of continuity of φ̃, we have

δn(M) ≤ lim
j→+∞

sup
m∈M

||m− Ψ̃j(Ψ̃
′
j(m))||W =

= lim
j→+∞

sup
m∈M

||m− φ̃(Ψj(Ψ
′
j(φ
−1(m))))||W =

= lim
j→+∞

sup
s∈S
||φ̃(s)− φ̃(Ψj(Ψ

′
j(s)))||W ≤

≤ lim
j→+∞

sup
s∈S

ω
(
||s−Ψj(Ψ

′
j(s))||V

)
≤

≤ lim
j→+∞

ω

(
sup
s∈S
||s−Ψj(Ψ

′
j(s))||V

)
= 0,

as ω(h) ↓ 0 whenever h ↓ 0. This proves that δn(S) = 0 =⇒ δn(M) = 0 and
hence nmin(S) ≥ nmin(M). �

The minimal latent dimension is also related to the so-called topological dimension,
or Lebesgue covering dimension. For a formal definition of the latter we refer to
[19, 21]. In particular, if S has an intrinsic p-dimensional structure, then we are
able to bound nmin(S) explicitly. Indeed, by classical results of Dimension Theory,
the following theorem holds true.

Theorem 2. Let V be a Hilbert space and S ⊂ V a compact subset. If S has
topological dimension p, then nmin(S) ≤ 2p+ 1, and the infimum appearing in (4)
is attained at all reduced dimensions n ≥ 2p+ 1. Additionally, if S is a topological
p-manifold, then the lower bound nmin(S) ≥ p also holds.

Proof. We shall prove that δ2p+1(S) = 0, and that the infimum is attained. To
this end, we notice that S is compact and thus separable. Therefore, by the
Menger–Nöbeling embedding theorem (see Theorem 1.11.4 in [21]), there exists
a subset A ⊂ R2p+1 and a bicontinuous map φ : S → A. By continuity, the set
A is compact. In particular, φ−1 admits a continuous extension Ψ : A → V . The
existence of such an extension can be argued as in the proof Theorem 1, or using
other results such as Dugundji extension theorem [20], with the advantage of gen-
eralizing Theorem 2 to the case of normed spaces. Next, we define Ψ′ := φ. Then,
the pair (Ψ′,Ψ) agrees with the definition of Nonlinear Kolmogorov n-width and it
also yields a perfect reconstruction of S. The first claim in the theorem follows.

Assume now that S is a p-manifold and let n < p. By definition, there exists a
bicontinuous map φ from the closed unit ball B := {x ∈ Rp, |x| ≤ 1} to a certain
compact subset U ⊆ S. Let

m := min
|x|=1

||φ(x)− φ(−x)||.

Due to compactness, the minimum is attained and thus m > 0 (recall that φ is
bijective). We now prove that δn(S) ≥ m/2, and therefore nmin(S) ≥ p. Let
Ψ′ : S → Rn and Ψ : Rn → V be continuous. We note that the composition
Ψ′ ◦ φ is continuous from B ⊂ Rp → Rn. Therefore, as n < p, by the Borsuk-Ulam
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theorem [10] we are granted the existence of a point x∗ ∈ B, |x∗| = 1, for which
Ψ′(φ(x∗)) = Ψ′(φ(−x∗)) =: z. It follows that,

sup
v∈S
||v −Ψ(Ψ′(v))|| ≥ sup

v∈U
||v −Ψ(Ψ′(v))|| = sup

x∈B
||φ(x)−Ψ(Ψ′(φ(x)))|| ≥

≥ max {||φ(x∗)−Ψ(Ψ′(φ(x∗)))||, ||φ(−x∗)−Ψ(Ψ′(φ(−x∗)))||} ≥

≥ 1

2
||φ(x∗)−Ψ(z)||+ 1

2
||φ(−x∗)−Ψ(z)|| ≥ 1

2
||φ(x∗)− φ(−x∗)|| ≥ m

2
,

and the proof is complete. �

We mention that, in the particular case of p-manifolds and under suitable smooth-
ness assumptions, the bounds in Theorem 2 can be sharpened to nmin(S) ≤ 2p or
even nmin(S) ≤ 2p− 1 in case p is not a power of 2. These are all consequences of
the so-called Whitney embedding theorem and a few of its variants. We do not dive
deeper into the matter but leave [65] as a reference for the interested reader. We
also note that the intrinsic dimension of S does not uniquely determine the value
of nmin(S). In particular, S may have topological dimension p but nmin(S) > p,
coherently with Theorem 2. In this respect, we report below two simple examples.

Example 1. Let V = R2 and S = {x ∈ V : |x| = 1} be the unit circle. Then, S is
a one-dimensional manifold but δ1(S) = 1 and nmin(S) = 2. To see this, consider
any pair of continuous maps Ψ′ : S → R and Ψ : R → R2. By the Borsuk-Ulam
theorem, there exists a point x ∈ S such that Ψ′(x) = Ψ′(−x). Therefore, being
|| · || = | · | the Euclidean norm,

sup
v∈S

||v−Ψ(Ψ′(v))|| ≥ max{|x−Ψ(Ψ′(x))|, | − x−Ψ(Ψ′(−x))|} ≥

≥ 1

2
(|x−Ψ(Ψ′(x))|+ | − x−Ψ(Ψ′(−x))|) ≥ 1

2
|x− (−x)| = 1.

As Ψ′ and Ψ are arbitrary, we conclude that δ1(S) ≥ 1. The equality is then
obtained by considering the case in which both Ψ′ and Ψ are identically zero.

Example 2. On the spatial domain Ω = (0, π), consider the boundary value prob-
lem 

u′′ = −u x ∈ Ω

u(0) = 10(2µ3 − 3µ2 + µ)

u′(π) = 1− 2|1− 2µ|,
where µ ∈ [0, 1] is a parameter. Let us then consider the solution manifold S =
{uµ}µ∈[0,1] as a subset of V = L2(Ω). Then, S is a 1-dimensional manifold but
its minimal latent dimension equals nmin(S) = 2. Indeed, explicitly expanding the
solutions reads

uµ(x) = 10(2µ3 − 3µ2 + µ) cosx+ (2|1− 2µ| − 1) sinx.

It is then clear that, up to scaling of the L2-norm, S can be isometrically identified
with the curve µ → (20µ3 − 30µ2 + 10µ, 2|1 − 2µ| − 1) in R2. But the latter
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Figure 1. Reference picture for Example
2, Section 2.1. In blue (dashed line), the

curve µ → (20µ3 − 30µ2 + 10µ, 2|1 −
2µ| − 1), for 0 ≤ µ ≤ 1; in red (straight
line), the unit circle. The two curves are

clearly homeomorphic.

curve is a compact manifold with positive nonlinear Kolmogorov 1-width, as it is
homeomorphic to the unit circle (see Figure 1 and Theorem 1).

Remark. Here we only considered the case of Hilbert spaces, which is the typical
framework used for elliptic PDEs. However, as mentioned in the proof of Theorem
2, many of the above ideas and results can be adapted to the more general context
of normed and Banach spaces.

2.2. Application to Parametrized PDEs. Let us now consider the case of a
PDE that depends on a vector of p parameters. We fix a parameter space Θ ⊂ Rp
and a Hilbert state space V . As before, for each µ ∈ Θ we denote the corresponding
PDE solution with uµ. Similarly, we define S = {uµ}µ∈Θ. Notice that we refer to S
as the solution manifold even though, in fact, it is not granted that S is a manifold
in the topological sense. This latter property can be recovered under additional
hypotheses on the parameter space and the parametric map.

We consider the problem of finding a low-dimensional representation of S by
means of nonlinear reduction. In particular, we wish to compress S as much as
possible without paying in terms of accuracy, which corresponds to working with
the minimal dimension nmin(S). To this end, we must take into account the fact that
the dimension of the parameter space Θ influences the low-dimensional structure
of S, in fact, the latter is ultimately defined in terms of p scalar parameters.

Parallel to this, one may also exploit the parameters as additional tools during
the dimensionality reduction process. This corresponds to replacing the solution
manifold with the augmented set SΘ := {(µ, uµ)}µ∈Θ ⊂ Rp × V , where µ appears
explicitly. The following Theorem provides some insights about both alternatives.

Theorem 3. Let µ → uµ be a map from a compact set Θ ⊂ Rp to some Hilbert
space V . Define the sets S := {uµ}µ∈Θ and SΘ := {(µ, uµ)}µ∈Θ. We have the
following:

a1) if the map µ→ uµ is Lipschitz continuous, then nmin(S) ≤ 2p+ 1.
a2) if there exists at least an internal point µ0 ∈ Θ where the correspondence

µ→ uµ is locally injective, then nmin(S) ≥ p.
a3) if the map µ → uµ is continuous and injective, then nmin(S) = nmin(Θ).

In particular, nmin(S) = p whenever Θ has nonempty interior.
b1) if the map µ→ uµ is continuous, then nmin(SΘ) = nmin(Θ). In particular,

nmin(SΘ) = p whenever Θ has nonempty interior.

Proof. For the sake of brevity, let us define the map u : Θ→ V as u(µ) := uµ.
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a1) Let dim(S) and dimH(S) be respectively the topological dimension (cover-
ing dimension) and the Hausdorff dimension of S. A result due to Sznirelman,
see Theorem 2.43 in [19], ensures that dim(S) ≤ dimH(S). Since u is Lip-
schitz, we also have dimH(S) = dimH(u(Θ)) ≤ dimH(Θ) ≤ p, as Θ ⊂ Rp
and dimH is known to be Lipschitz subinvariant. Thus dim(S) ≤ p and the
conclusion follows by Theorem 2 (notice that, since Θ is compact and u is
continuous, S is also compact).

a2) Let B ⊆ Θ be a closed ball centered at µ0 such that u|B , the restriction
of u to B, is injective. Then, u|B : B → u(B) is a continuous bijection
between compact metric spaces, which is enough to grant the existence and
the continuity of the inverse map u−1

|B . In particular, the sets B and u(B)

are homeomorphic and, by Theorem 1, p = nmin(B) = nmin(u(B)). Since
nmin(u(B)) ≤ nmin(S), this proves (a2).

a3) As in the proof of a2), we notice that u admits a continuous inverse and
is thus an homeomorphism between Θ and S (which are both compact).
Then, nmin(Θ) = nmin(S) by Theorem 1. Finally, if Θ has nonempty in-
terior, we may select a closed ball B ⊆ Θ and notice that p = nmin(B) ≤
nmin(Θ) ≤ p =⇒ nmin(Θ) = p.

b1) Define the Hilbert space Ṽ := Rp × V and the map U : Θ→ Ṽ as U(µ) :=
(µ, uµ). Then U is both continuous and injective. Thus, by a3) we have
nmin(Θ) = nmin(U(Θ)) = nmin(SΘ).

�

Remark. Theorem 3 holds for a generic Hilbert-valued map, meaning that the
correspondence µ→ uµ needs not to involve the solution of a PDE. Because of this
generality, some hypotheses cannot be weakened. For instance, one cannot replace
the requirement of Lipschitz continuity in statement (a1) with continuity, mainly
because of space-filling curves. As a counterexample, consider the Hilbert space of
real square summable sequences, V = `2. Then, by a straightforward application of
the Hahn–Mazurkiewicz theorem (see Theorem 3-30 in [34]), there exists a contin-
uous map from the unit interval to `2 whose image S is the so-called Hilbert cube,
informally S =

∏+∞
n=1[0, 1/n]. Therefore, being Θ := [0, 1] the parameter space, we

have a case in which p = 1 but nmin(S) = +∞. In fact, for each n ∈ N, the Hilbert
cube contains an homeomorphic copy of the n-dimensional unit cube In. Thus,
n = nmin(In) ≤ nmin(S) for all n ≥ 0 and so nmin(S) = +∞.

Before moving to the actual description of our Deep Learning approach, we con-
clude this Section with a practical application of the results we have presented so
far. In particular, we focus on the case of second order elliptic PDEs.

2.2.1. Second Order Elliptic PDEs. In order to state the main result, we first pro-
vide some notation. We denote by Ω a bounded domain in Rd and by · the scalar
product in Rd. For 1 ≤ q < +∞, we denote by Lq(Ω) the Lebesgue space of
q-integrable real-valued maps; when q = +∞, L∞(Ω) is defined as the Banach
space of essentially-bounded maps. Similarly, we define the spaces Lq(Ω,Rd) and
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Lq(Ω,Rd×d) in the Bochner sense, where Rd is considered with the Euclidean norm
| · | and Rd×d with the operator norm, |A|Rd×d := sup|ξ|=1 |Aξ|. Given k ∈ N,

1 ≤ q < +∞, we write W k,q(Ω) for the Sobolev space of all w ∈ Lq(Ω) that are

k-times weakly differentiable with derivatives in Lq(Ω). We use W k,q
0 (Ω) to denote

the subspace of all w ∈W k,q(Ω) that vanish on ∂Ω, and we write W−k,q(Ω) for the

dual space of W k,q
0 (Ω) with respect to the duality product 〈f, g〉 →

∫
Ω
fg. In order

to prescribe Dirichlet boundary data, we also make use of the Sobolev-Slobodeckij
spaces W s,q(∂Ω), where s > 0 is typically not an integer. All the aforementioned
spaces are considered with their usual norms, see e.g. [22].

We define the sets of all admissible conductivity tensor-fields and transport fields,
respectively Σ(Ω) ⊂ L∞(Ω,Rd×d) and B(Ω) ⊂ L∞(Ω,Rd×d), as follows. We let
σ ∈ Σ(Ω) if and only if it is uniformly elliptic, that is, there exists ε > 0 such that
for almost all x ∈ Ω one has σ(x)ξ ·ξ ≥ ε|ξ|2 for all ξ ∈ Rd. We let b ∈ B(Ω) if and
only if it is differentiable and divergence free, that is, b ∈ C1(Ω,Rd) and div(b) = 0
in Ω. We endow both Σ(Ω) and B(Ω) with the infinity norm || · ||∞. We are now
able to state the following.

Theorem 4. Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary, and let
Θ ⊂ Rp be a compact subset with nonempty interior. Let q ≥ 2d/(d + 2) be finite,
and define the conjugate exponent q′ := q/(q − 1). Moreover, let µ → σµ ∈ Σ(Ω),

µ → bµ ∈ B(Ω), µ → fµ ∈ W−1,q′(Ω) be parameter dependent coefficients and

µ → gµ ∈ W 1/q′,q(∂Ω) boundary data. For each µ ∈ Θ, we define uµ ∈ W 1,q(Ω)
as the unique solution to the following second order elliptic PDE

u ∈W 1,q(Ω) :

u|∂Ω = gµ and

∫
Ω

σµ∇u · ∇w +

∫
Ω

(bµ · ∇u)w =

∫
Ω

fµw ∀w ∈W 1,q′

0 (Ω),

Consider the solution manifold S := {uµ}µ∈Θ as a subset of V := L2(Ω). The
following hold true:

i) if the dependence of σµ, bµ, fµ, gµ on µ is Lipschitz continuous, then
nmin(S) ≤ 2p+ 1.

ii) if σµ, bµ, fµ, gµ depend continuously on µ and the solution map µ→ uµ
is one-to-one, then nmin(S) = p.

Additionally, let SΘ := {(µ, uµ)}µ∈Θ ⊂ Rd × V be the augmented manifold. Then:

iii) if σµ, bµ, fµ, gµ depend continuously on µ, then nmin(SΘ) = p.

Proof. First of all, we notice that if the data σµ, bµ, fµ, gµ depend continuously on
µ, then so does uµ ∈ W 1,q(Ω). This is easily proven by composition (cf. Lemma
C.2 in the Appendix). Also, the compactness of Θ implies that of the subsets

{σµ}µ∈Θ ⊂ Σ(Ω), {bµ}µ∈Θ ⊂ B(Ω),

{fµ}µ∈Θ ⊂W−1,q′(Ω), {gµ}µ∈Θ ⊂W 1/q′,q(∂Ω).

Therefore, whenever the coefficients and the boundary data are Lipschitz continu-
ous in µ, so is the solution map Θ → W 1,q(Ω) (by composition, cf. Lemma C.2).
Finally, since q ≥ 2d/(d+ 2), we have the embedding W 1,q(Ω) ↪→ L2(Ω) according
to classical Sobolev inequalities (cf. Theorem 5.4 in [1]). In particular, all the
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aforementioned properties are preserved if we consider the parametric map as tak-
ing values in V := L2(Ω). Statements (i), (ii) and (iii) now directly follow from
Theorem 3. �

Remark. In Theorem 4, the PDE is firstly solved in the Banach space W 1,q(Ω)
and the solution manifold is then embedded in the Hilbert space L2(Ω). This
construction allows for a large spectrum of PDEs where the solution uµ may exhibit
singularities. A remarkable example is found for the dimensions d = 2, 3, where
singular forces such as Dirac delta functions produce solutions uµ /∈ H1(Ω) :=
W 1,2(Ω) [12]. In these cases, the above Theorem still applies, e.g. with q′ = 4
and q = 4/3 (cf. Morrey embedding). Nevertheless, we shall point out that in the
Hilbert case, q′ = q = 2, it is possible to restrict the state space to V = H1(Ω) ⊂
L2(Ω). Note also that in this case the condition q ≥ 2d/(d + 2) is redundant as
it is trivially satisfied for any d ≥ 1, coherently with the fact that H1(Ω) always
embeds in L2(Ω).

3. Learning the Solution Manifold by means of Neural Networks

We now present our Deep-Learning approach to Reduced Order Modelling (DL-
ROM). After a brief recap on deep feedforward neural networks, Section 3.1, we
move to the actual description of the DL-ROM, where we discuss both its theo-
retical and numerical properties (Section 3.2). Then, respectively in Sections 3.2.1
and 3.2.2, we dive deeper into the design choices for the nonlinear dimensionality
reduction and the approximation of the reduced map.

3.1. Neural Networks. Neural networks are nonlinear universal approximators
that have recently gained a lot of popularity in several fields such as Machine
Learning, Statistics and Approximation Theory. The fundamental building block
of a neural network is the layer. Given two state spaces V1 := Rn1 , V2 := Rn2 and a
scalar-valued function ρ : R→ R, a layer L with activation ρ is a map L : V1 → V2

of the form
L(v) = ρ (Wv + b) ,

where W ∈ Rn2×n1 and b ∈ Rn2 are respectively the weights and biases of the layer.
Notice that, as Wv + b is n2-dimensional, the operation Wv + b → ρ (Wv + b)
is intended componentwise.

Deep neural networks are defined through the composition of multiple layers.
More precisely, a DNN with l ≥ 0 hidden layers is a map of the form

Φ = Ll+1 ◦ Ll... ◦ L1,

where each Li is a layer. The layers Li : Rni → Rni+1 , for i = 1, .., l, are called
hidden layers, while Ll+1 is the output layer. The latter is sometimes assumed to
have no activation, as in [40, 60]. We refer to l as to the depth of the network.
When l = 1, the adjective deep is usually dropped and Φ is said to be shallow. Note
that we also allow for the degenerate case l = 0, where the NN actually reduces
to the output layer. This is somewhat unusual, but it will help us in making the
notation lighter. Finally, we say that Φ has activation function ρ, or equivalently
that Φ is a ρ-DNN, if all of its (hidden) layers share that same activation.

The practical implementation of a neural networks is usually done as follows. At
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Figure 2. Workflow in the DL-ROM approach. The whole process consists

of three neural networks, Ψ′, Ψ and φ. First, the autoencoder Ψ ◦ Ψ′ is
trained over several high-fidelity snapshots in order to learn an approximation

of the identity operator over the solution manifold (step 1). In this way, the

encoder provides a low-dimensional representation of the FOM solutions, from
uhµ ∈ RNh to unµ := Ψ′(uhµ) ∈ Rn. At this point, the third network, φ, is

trained to learn the map µ→ unµ (step 2). Finally, the composition Φ := Ψ◦φ
defines the DL-ROM approximation of the parameter-to-state map.

first, one designs the NN architecture. This corresponds to choosing (i) the depth
l, (ii) the number of neurons within each layer Li, i.e. the output dimension ni+1,
and (iii) suitable constraints on the weights and biases. Among other things, the
latter is what makes the difference between dense layers (no constraints on W)
and convolutional layers (W is sparse and multiple values are shared), which heav-
ily impacts on the network complexity [28]. The second step regards the network
training. There, the weights and biases are tuned and optimized according to a
suitable loss function. The optimization is typically performed using gradient de-
scent algorithms [61]. To measure the network complexity, we count its degrees
of freedom, that is the number of scalar parameters that are actually optimized
during the training. Therefore, the contribution of each layer Li depends on the
corresponding type. For dense layers it is (ni+1)ni+1, while it can be substantially
lower in sparse and convolutional layers.

3.2. Deep-Learning based Reduced Order Model. We are given a parameter
space Θ ⊂ Rp, a parameter dependent PDE and a high-fidelity FOM µ → uhµ ∈
RNh . Our purpose is to approximate the solution map by means of a suitable neural
network Φ : Rp → RNh . For the sake of simplicity, through the whole section, we
make the following assumption.

Assumption 2. All DNNs use the same activation function ρ : R → R for the
hidden layers, where ρ is Lipschitz continuous and not a polynomial. The parameter
space Θ is compact and the parametric map µ→ uhµ is continuous.

A typical activation function satisfying the above requirements is the so-called α-
leaky ReLU, i.e. ρ(x) = x1[0,+∞)(x) + αx1(−∞,0)(x) where α > 0 is fixed. In
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order to build Φ, we mimic the two steps paradigm of the Reduced Basis method,
yielding the workflow depicted in Figure 2. This corresponds to introducing the
three networks below,

Ψ′ : RNh → Rn, Ψ : Rn → RNh

φ : Rp → Rn.
The first two, respectively the encoder Ψ′ and the decoder Ψ, serve for the nonlinear
dimensionality reduction of the solution manifold Sh := {uhµ}µ∈Θ ⊂ RNh , which we
map onto Rn. According to our previous analysis, we set the latent dimension to
be n := nmin(Sh). As discussed in Theorem 3, this often translates to n ≤ 2p+ 1,
resulting in a massive reduction whenever p � Nh. The purpose of the third
network is to approximate the reduced parametric map Rp 3 µ→ Ψ′(uhµ) ∈ Rn, so
that the final ROM is obtained by composition of φ and Ψ.

At the very end, the role of the encoder Ψ′ is only auxiliary as the DL-ROM
ultimately results in a single network Φ := Ψ ◦ φ. However, we believe that our
construction significantly facilitates the practical problem of designing the architec-
tures. This is because the three networks have very different purposes. Ψ′ and Ψ
are required to learn the intrinsic characteristics of the solutions, so their complex-
ity is related to the richness of the solution manifold and the geometrical properties
of the solutions. Conversely, φ needs to understand the interplay between solutions
and parameters, which can result in a very complicated relation even if the solution
manifold is fairly simple (e.g. linear). As the design of DNN architectures is still far
from obvious, we believe that this perspective can be of help in practical implemen-
tations. Nonetheless, this splitting of the ROM also allows for a few considerations
on the numerical errors, that we discuss below.

We notice that, due to assumption (2), all the networks in the DL-ROM pipeline
are Lipschitz continuous. Also, without loss of generality, we can assume that Ψ has
a Lipschitz constant equal to 1. In fact, for any C > 0, the maps Ψ̃′(x) := CΨ′(x)

and Ψ̃(x) := Ψ(x/C) define the same autoencoder as Ψ′ and Ψ. As a consequence,
the worst-case approximation error of the DL-ROM

EA := sup
µ∈Θ
||uhµ −Ψ(φ(µ))||,

can be bounded as EA ≤ ER + EP , the latter being respectively the reconstruction
error and the parametric error,

ER := sup
uh∈Sh

||uh −Ψ(Ψ′(uh))||, EP := sup
µ∈Θ
|Ψ′(uhµ)− φ(µ)|.

where | · | is the Euclidean norm, while we recall that || · || comes from the metric
originally chosen over the state space Vh ⊂ V . In fact,

sup
µ∈Θ
||uhµ −Ψ(φ(µ))|| ≤ sup

µ∈Θ
||uhµ −Ψ(Ψ′(uhµ))||+ sup

µ∈Θ
||Ψ(Ψ′(uhµ))−Ψ(φ(µ))|| ≤

≤ sup
uh∈Sh

||uh −Ψ(Ψ′(uh))||+ sup
µ∈Θ
|Ψ′(uhµ)− φ(µ)|.

We remark that both ER and EP can be made arbitrarily small. In fact, as proven
by Pinkus back in 1999 [56], DNNs are dense in the space of continuous functions
defined over compact domains (note that here our assumption on ρ is crucial).
Therefore, since Θ is compact and µ → Ψ′(uhµ) is continuous, the parametric
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error can become as small as possible. Similarly, the reconstruction error can get
closer and closer to the limit value δn(Sh) = 0. In fact, we can approximate the
reconstruction provided by any two continuous maps Ψ′∗ : Sh → Rn and Ψ∗ : Rn →
RNh using DNNs. To see this, fix any ε > 0 and let V := Ψ∗(Sh) be the embedded
solution manifold. Since V is compact, the aforementioned density result ensures
the existence of some DNN Ψ that approximates Ψ∗ over V upto an error of ε.
Similarly, there exists a DNN Ψ′ that approximates Ψ′∗ over Sh upto an error of
ε/C, where C > 0 is the Lipschitz constant of Ψ. Then, for any uh ∈ Sh one has

||uh −Ψ(Ψ′(uh))|| ≤

≤ ||uh−Ψ∗(Ψ
′
∗(u

h))||+ ||Ψ∗(Ψ′∗(uh))−Ψ(Ψ′∗(u
h))||+ ||Ψ(Ψ′∗(u

h))−Ψ(Ψ′(uh))|| ≤

≤ ||uh −Ψ∗(Ψ
′
∗(u

h))||+ ε+ C|Ψ′∗(uh))−Ψ′(uh)| ≤

≤ ||uh −Ψ∗(Ψ
′
∗(u

h))||+ 2ε.

This shows that ER can reach the limit value δn(Sh). In particular, thanks to our
design choice of letting n = nmin(Sh), the reconstruction error can get arbitrarily
close to zero.

In general, all the above reasoning suggests a two step approach where we first
train the autoencoder Ψ ◦ Ψ′ and then the reduced map φ. Nevertheless, before
studying the two steps of the DL-ROM separately, some analysis of the networks
complexity is needed. In fact, while the DL-ROM can reach any level of accuracy,
the size of the networks involved may grow quickly, making their optimization
problematic. The result below provides a first answer to such question.

Theorem 5. Under Assumption 2, let ρ be the ReLU activation function. Assume
that the map µ→ uhµ is Lipschitz continuous for some constant L > 0, and that the

infimum in (4) is attained, i.e. there exists two continuous maps Ψ′∗ : RNh → Rn
and Ψ∗ : Rn → RNh such that

Ψ∗(Ψ
′
∗(u)) = u ∀u ∈ Sh.

Additionally, assume that Ψ′∗ and Ψ∗ are s-times differentiable, s ≥ 2, and have
bounded derivatives. Let

C1 = sup
|α|≤s

sup
u∈RNh

|DαΨ′∗(u)|, C2 = sup
|α|≤s

sup
ν∈Rn

||DαΨ∗(ν)||.

For any 0 < ε < 1, let m ∈ N be the first integer for which dm(Sh) < ε. Then, for
some constant c = c(Θ, L, C1, C2, p, n, s), there exists a DL-ROM with a decoder Ψ
having at most

i) cm1+n/(s−1)ε−n/(s−1) log(m/ε) +mNh active weights
ii) c log(m/ε) layers

and a reduced map φ having at most

iii) cε−p log(1/ε) active weights
iv) c log(1/ε) layers

such that the approximation error satisfies EA < 2ε.

Proof. Let V := Ψ′∗(Sh) ⊂ Rn be the embedded solution manifold. The latter is
a compact subset of diameter at most diam(V) ≤ LC1diam(Θ). Let m be as in
the Theorem. Then there exists an orthonormal matrix V ∈ RNh×m such that
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||u−VVTu|| < ε for all u ∈ Sh. Define F : Rn → Rm as F (ν) := VTΨ∗(ν). Then
F is s-times differentiable and

sup
ν∈V
|DαF (ν)| ≤ sup

ν∈V
||DαΨ∗(ν)|| ≤ C2,

for any multi-index α with 0 ≤ |α| ≤ s. In particular, as a direct consequence of
Theorem 4.1 in [29], there exists a ReLU DNN ψ : Rn → Rm of depth at most
C log(m/ε) and active weights at most mC(mε)−n/(s−1) log(m/ε) such that for all
j = 1, . . . ,m one has

sup
ν∈V
|Fj(ν)− ψj(ν)| ≤ ε

2m
, ess sup

ν, ν′∈V

|(Fj − ψj)(ν)− (Fj − ψj)(ν′)|
|ν − ν′|

≤ ε

2m

where C > 0 is a constant depending on C2, n, s and diam(V) (thus on Θ, L and
C1), wherease Fj and ψj are the jth components of the two vector-valued maps.
In particular, we also have a control on the Lipschitz constant of ψ, which we can
bound by C2 + ε/(2m) ≤ C2 + 1. We now define the decoder DNN Ψ(ν) := Vψ(ν)
as a network with no activation on the output layer, so that for any ν ∈ V we have

||Ψ∗(ν)−Ψ(ν)|| ≤ ||Ψ∗(ν)−VVTΨ∗(ν)||+ ||VVTΨ∗(ν)−Ψ(ν)|| ≤

≤ ε+ |F (ν)− ψ(ν)| ≤ 3

2
ε

as Ψ∗(ν) ∈ Sh. Clearly, Ψ has the same depth of ψ up to one layer, and it comes
with mNh additional weights. Define now φ∗ : Rp → Rn as φ∗(µ) := Ψ′∗(u

h
µ). Then

φ∗ is Lipschitz continuous with constant at most equal to LC1 and is bounded in
norm by C1. Thus, we can apply again Theorem 4.1 in [29], this time with respect
to the infinity norm, to obtain a DNN φ : Rp → Rn such that for all µ ∈ Θ

|φ∗,j(µ)− φj(µ)| < ε

2n(C2 + 1)
∀j = 1, . . . , n

where φ has at most nC̃(nC2ε)
−p log(nC2/ε) weights and at most C̃ log(nC2/ε)

layers, C̃ being a constant only dependent on Θ, L and C1. In particular, if we let
C̃ absorb the dependence with respect to n and C2, and we set c := max{C, C̃},
then the architectures of Ψ and φ satisfy the claimed requirements. Finally, we
note that uhµ = Ψ∗(Ψ

′
∗(u

h
µ)) = Ψ∗(φ∗(µ)), due to our hypothesis on the perfect

embedding. Therefore, the approximation error for the DL-ROM with decoder Ψ
and reduced map φ is bounded by

EA ≤ sup
µ∈Θ
||Ψ∗(φ∗(µ))−Ψ(φ∗(µ))||+ sup

µ∈Θ
||Ψ(φ∗(µ))−Ψ(φ(µ))|| ≤

≤ sup
ν∈V
||Ψ∗(ν)−Ψ(ν)||+ (C2 + 1) sup

µ∈Θ
|φ∗(µ)− φ(µ)| ≤

≤ 3

2
ε+ (C2 + 1)

ε

2(C2 + 1)
= 2ε.

�

Theorem 5 suggests that the DL-ROM approach can take advantage of intrinsic
regularities in the solution manifold, even if the parameter-to-solution map is just
Lipschitz continuous. This situation reflects the case in which although the solutions
depend in a complicated way with respect to the parameters, the solution operator
has good analytical properties. For instance, it is known that the solution operator
of elliptic PDEs is analytic with respect to the coefficients [3, 35]. Thus, we can
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think of µ→ φ(µ) as a change of coordinates that enables a smooth description of
the solutions.

Secondly, we note that an important role is played by the parameter m. This
is in agreement with other results in the literature, see e.g. Theorem 4.3 in [40],
and it suggests a link between the DL-ROM complexity and the linear Kolmogorov
m-width. We may interpret m as an equivalent linear dimension: in fact, the DL-
ROM accuracy in Theorem 5 is roughly equivalent to the optimal one achievable via
projections on m-dimensional subspaces. In this sense, we can think of m as being
the number of modes in a Reduced Basis approach or, analogously, the number of
trunk nets in a DeepONet based ROM [46, 49]. In the case of DL-ROMs, the value of
m does not affect the latent dimension but has an impact on the DNNs complexity:
the slower dm(Sh) decays, the more degrees of freedom in the DNN architecture
and, consequently, the higher the number of training snapshots required for the
optimization. Conversely, if the linear width decays mildly, then a mix of linear
and nonlinear reduction may be an interesting choice, as in the recently proposed
POD-DL-ROM approach [24].

Nevertheless, we mention that the complexity bounds for the decoder are subop-
timal in the way they include the FOM dimension Nh. In fact, the extra contribute
mNh comes from the choice of considering the state space Vh as consisting of vec-
tors rather than functions. In particular, we expect that better estimates can be
found if the solutions are smooth with respect to the space variable x ∈ Ω. This
goes in favor of architectures that explicitly account for space dependency, such as
convolutional layers, or even mesh-free approaches, such as DeepONets.

3.2.1. Dimensionality reduction. We propose two alternative ways for compressing
the solution manifold. The first one is completely unsupervised, in the sense that
it only operates on the solutions irrespectively of the parameter values, and it is
based on the use of autoencoders. The second one is a variation of the previous
where we explicitly include µ in the encoding process. We detail them below.

Autoencoder approach. According to the reasoning in Section 3.2, we let n :=
nmin(Sh) and we introduce two DNN architectures, an encoder Ψ′ : RNh → Rn
and a decoder Ψ : Rn → RNh , which we design as follows. In principle, the encoder
can be very simple, as its only purpose is to provide a different representation for
each solution. The hard job is left to the decoder that needs to perform the re-
construction. In this sense, a plain design choice can be Ψ′(u) := ρ (Wu + b), i.e.
to use a degenerate architecture with no hidden layers. Conversely, designing the
decoder requires a little extra caution. If Ω is an hypercube, a good choice is to em-
ploy dense layers at the beginning and conclude with a block of convolutional layers
as done in [24, 44]. This allows the decoder to account for spatial correlations and
be sufficiently expressive without growing too much in complexity. Indeed, convo-
lutional layers have been proven to be very effective in image reconstruction tasks,
and we see a clear analogy with our setting when Ω is an hypercube. More com-
plicated geometries may require different strategies, but the terminal part of the
decoder should still consist of sparse layers of some sort (such as those in Graph
Convolutional Networks [59]). The expressiveness of the decoder may be increased
in several ways. Empirically, we see that interesting results can be obtained for
fixed depths but varying number of channels in the convolutional layers.
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Once the architecture has been fixed, we optimize the autoencoder by minimizing
the loss function below

Loss(Ψ′,Ψ) =
1

Ntrain

Ntrain∑
i=1

L(uhµi
, Ψ(Ψ′(uhµi

))),

where L is a suitable measure of discrepancy. A classical choice is to consider
squared errors, L(y, ŷ) = ||y − ŷ||2, in order to favor differentiability of the loss
function. However, other metrics, such as relative errors L(y, ŷ) = ||y − ŷ||/||y||,
can be used as well. The minimization of the loss function is handled via stochastic
gradient descent, mainly using batching strategies and first order optimizers.

Transcoder-decoder approach. As an alternative, we also propose a different archi-
tecture where the encoder is replaced with a transcoder Ψ′µ : Rp × RNh → Rn.
The idea is to facilitate the encoding by making explicitly use of the parameters,
so that different solutions are more likely to have different latent representations.
This is clearly linked with Theorem 3.b1, and has the advantage of always enabling
a maximal reduction, as we can now set n = p = nmin({µ,uhµ}µ∈Θ). We define the

decoder exactly as before, so that uhµ ≈ Ψ(Ψ′µ(µ,uhµ)). We refer to the combined ar-
chitecture, Ψ◦Ψ′µ, as to a transcoder-decoder. In practice, the transcoder-decoder is
analogous to an autoencoder but has p additional neurons in the input layer, which
is where we pass the parameters. To design the architectures, we follow the same
rule of thumb as before. In general, we give more weight to the decoder, where
we employ deep convolutional networks, while we use lighter architectures for the
transcoder. For instance, in the limit case of 0-depth, the latter becomes of the form
Ψ′µ(µ,u) = ρ (W′µ+ Wu + b). During the offline stage, the transcoder-decoder
is trained over the snapshots by minimizing the loss function below,

Loss(Ψ′µ,Ψ) =
1

Ntrain

Ntrain∑
i=1

L(uhµi
, Ψ(Ψ′µ(µi,u

h
µi

))),

where L is as before. The two approaches, autoencoder and transcoder-decoder,
adopt different perspectives and provide different advantages. The first one is com-
pletely based on the solution manifold, so it is likely to reflect intrinsic properties
of Sh. On the other hand, the transcoder-decoder ensures a maximal compression,
the latent dimension being always equal to p. In particular, the latent coordinates
can be seen as an alternative parametrization of the solution manifold. In this
sense, we say that Ψ′µ performs a transcoding.

3.2.2. Approximation of the reduced map. The second step in the DL-ROM pipeline
is to approximate the reduced map Rp 3 µ→ unµ ∈ Rn, where either unµ := Ψ′(uhµ)

or unµ := Ψ′µ(µ,uhµ), depending on the adopted approach. As we noted in Section

3.2, the reduced map is continuous, as it is given by the composition of µ → uhµ
and Ψ′ (resp. Ψ′µ), hence it can be approximated uniformly by some ρ-DNN φ :
Rp → Rn. In general, we do not impose a particular structure on φ, rather we use
a generic fully connected network with dense layers. To design the architecture in
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terms of number of layers and neurons, we rely on Theorem 5 and on the underlying
theoretical results available in the literature, e.g. [9, 17, 30, 54, 55, 64].

Algorithm 1: DL-ROM training.

Input : Training snapshots {µi,uhµi
}Ni=1, reduced dimension n, optimizers

Optimizer1, Optimizer2, number(s) of epochs E1, E2, batch
size(s) S1, S2, encoding type useparameters (boolean),
discrepancy measures L1, L2.

Output: Neural network Φ approximating the parametric map.

Ψ′0,Ψ0 ← Initialize encoder/transcoder and decoder with latent dimension n
e← 0 Initialize epochs counter
B1 ← N/S1 // number of batches
if useparameters then

vi ← [µi,u
h
µi

] // transcoder case

else
vi ← uhµi

// encoder case

end

while e < E1 do

shuffle training data {vi,uhµi
}Ni=1;

for m = 1 : B1 do

vbatch ← [v(m−1)S1+1, ..,vmS1
]

ubatch ← [uhµ(m−1)S1+1
, ..,uhµmS1

]

loss ← 1
S1

∑S1

i=1 L1

(
ubatch
i ,ΨeB1+m−1(Ψ′eB1+m−1(vbatch

i ))
)

Ψ′eB1+m,ΨeB1+m ← Optimizer1(loss,Ψ′eB1+m−1,ΨeB1+m−1)

end
e← e+ 1

end

φ0 ← Initialize reduced map DNN
e← 0 Reset epochs counter
B2 ← N/S2 // number of batches
unµi
← Ψ′(vi) // define training data for φ

while e < E2 do

shuffle training data {µi,unµi
}Ni=1;

for m = 1 : B2 do

µbatch ← [µ(m−1)S2+1, ..,µmS2
]

un,batch ← [unµ(m−1)S2+1
, ..,unµmS2

]

loss ← 1
S2

∑S2

i=1 L2

(
un,batch
i , φeB2+m−1(µbatch

i )
)

φeB2+m ← Optimizer2(loss, φeB2+m−1)
end
e← e+ 1

end

Φ← ΨE1B1 ◦ φE2B2

return Φ
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In order to train φ we minimize the objective function below

Loss(φ) =
1

Ntrain

Ntrain∑
i=1

L(unµi
, φ(µi))

where, once again, L is some discrepancy measure (this time having inputs in
Rn×Rn). Notice that the optimization of the above only involves φ, as the weights
and biases of Ψ′ (resp. Ψ′µ) are frozen.

At the end of the whole process, which we summarized in Algorithm 1, we let
Φ := Ψ ◦ φ. Now the DL-ROM is fully operational, and for each new µ ∈ Θ we
can approximate online the corresponding solution Φ(µ) ≈ uhµ almost effortlessly,
with very little computational cost. Also, the model can be efficiently evaluated on
multiple parameter values simultaneously. In fact, as DNNs are ultimately based on
elementary linear algebra, it possible to stack together multiple parameter vectors
M = [µ1, . . . ,µl] in a single matrix and directly return the corresponding list of
ROM approximations Φ(M) ≈ [uh1 , . . . ,u

h
l ].

Remark. We mention that, in the case n = p, an interesting alternative for φ could
be provided by the so-called ODE-nets [13]. In fact, if the reduced map happens
to be injective, then Θ and {unµ}µ∈Θ define two homeomorphic sets of coordi-
nates. Even though homeomorphisms can be approximated by classical DNNs, we
note that fully connected unconstrained networks can easily result in noninvertible
models. In this sense, an alternative architecture which ensures the existence and
continuity of φ−1 would be appealing. ODE-nets enjoys such property and have
been proven to be universal approximators for homeomorphisms [68]. However, the
development and implementation of ODE-nets is still in its infancy so we did not
investigate this further.

4. Numerical experiments

We now present some numerical results obtained with our DL-ROM approach.
So far, neural networks have shown remarkable performances in the approximation
of the parametric map at least in those contexts where classical POD-based methods
succeed, e.g. [7, 26]. There is now an increasing interest in understanding how and if
NNs can be of help in more challenging situations. In the case of transport problems,
some theoretical and numerical results are now appearing in the literature, see
respectively [41] and [24].

Here, we focus on parameter dependent second order elliptic PDEs. The first
test case concerns an advection-diffusion problem with a singular source term. The
PDE depends on 7 scalar parameters which affect the equation both in a linear and
nonlinear fashion. We consider two variants of the same problem, one of which is
transport-dominated. As second test case, we consider a stochastic Poisson equa-
tion. The main difference with respect to the previous case is that the equation is
parametrized by a stochastic process, and the PDE formally depends on an infinite-
dimensional parameter. In order to apply the DL-ROM approach, we consider a
suitable truncation of the Karhunen–Loève expansion of the stochastic process.
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In all our experiments we consider V = L2(Ω) as state space, and we quantify
the ROM performance via the Mean Relative Error (MRE)

(5) Eµ∼P

[
||uhµ − Φ(µ)||L2(Ω)

||uhµ||L2(Ω)

]
,

where Φ = Ψ ◦ φ is the DL-ROM network, and P is some probability measure
defined over the parameter space Θ. We estimate (5) with a Monte Carlo average
computed over 1000 unseen snapshots (test set). To evaluate whether there is a
gap in performance between training and testing, we also compute the MREs over
the training set. For an easier comparison, in all our experiments, we fix the latter
to have size Ntrain = 9000.

All our experiments were implemented in Python 3 and ran over GPUs. Specif-
ically, we used the FEniCS library1 to run the FOM and obtain the high-fidelity
snapshots, while the construction and the training of the DL-ROM was handled in
Pytorch2.

4.1. Stationary advection-diffusion with singular source.

4.1.1. Problem definition. On the spatial domain Ω = (0, 1)2, we define the sub-
domains {Ωi}4i=0 as in Figure 3. We consider the following parameter dependent
PDE in weak form

1

10

∫
Ω0

∇u · ∇w +

4∑
i=1

∫
Ωi

µi∇u · ∇w + C

∫
Ω

(
cosµ5

∂u

∂x1
w + sinµ5

∂u

∂x2
w

)
=

= w(µ6, µ7) ∀w ∈ C∞0 (Ω)

with Dirichlet boundary condition u|Ω = 1. The above corresponds to a stationary

advection-diffusion equation where: the conductivity field σµ := 0.1 +
∑4
i=1 µi1Ωi

is piecewise constant with values that change parametrically within the circular
subdomains; the transport field bµ := (C cosµ5, C sinµ5) has a parametrized direc-
tion while it is uniform in space and has a fixed intensity C > 0; finally, the source
term fµ is a Dirac delta located at the parameter dependent coordinates (µ6, µ7).
Globally, the PDE depends on 7 parameters that we consider to be varying in the
parameter space Θ = [0, 1]4 × [0, 2π] × [0.1, 0.9]2, which we endow with a uniform
probability distribution P. We note that the PDE does not admit solutions in
H1(Ω) because of the singularity introduced by the Dirac delta. Nevertheless, the
variational problem is well-posed in the Banach space W 1,4/3(Ω) ↪→ L2(Ω), see e.g.
[12]. We are hence allowed to consider the solution manifold S := {uµ}µ∈Θ as a
subset of the Hilbert space L2(Ω).

We analyze two different settings. In the first case we fix the transport field
intensity to be C = 0.5, so that the diffusion and the advection act over the same
scale. Then, we consider a transport-dominated case where C = 40.

1https://fenicsproject.org/
2https://pytorch.org/
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Figure 3. Decomposition of the unit

square Ω = (0, 1)2 according to the

conventions adopted in the first numer-
ical experiment, Section 4.1.

4.1.2. Discretization and Full Order Model. As FOM, we employ Lagrange piece-
wise linear finite elements over a triangular mesh. Prior to the discretization, we
provide a Gaussian approximation of the Dirac delta as

f εµ(x1, x2) :=
1

2πε2
exp

(
−(x1 − µ6)2 − (x2 − µ7)2

2ε2

)
.

We shall write uεµ for the solutions of this smoothed problem and Sε for the corre-
sponding solution manifold. We see that the following claim holds (for the details
see the Appendix, Section B)

Claim 1. supµ∈Θ ||uµ − uεµ||L2(Ω) → 0 as ε→ 0.

In particular, Sε approximates S uniformly. From here on, we shall fix ε = 1/420
and formally replace S with Sε. Next, we discretize the variational problem through
P1-Finite Elements over a triangular mesh. Using the classical estimates from the
FEM theory, e.g. [58], it is not hard to see that Assumption 1 is satisfied within
the state space L2(Ω). Here, we fix the mesh size to be h = 1/210, which results in
a high-fidelity space Vh ∼= RNh of dimension Nh = 44521. We exploit the FOM to
generate respectively Ntrain = 9000 and Ntest = 1000 random snapshots.

4.1.3. DL-ROM design and training. In the construction of the DL-ROM, we do
not make a distinction between the case of mild and strong advection, respectively
C = 0.5 and C = 40. In this way, we can see more clearly whether the intensity of
the transport field affects the ROM performance. For the dimensionality reduction,
we explore both the two alternatives presented in Section 3.2.1. For the autoen-
coder, we choose to consider the original solution manifold as a reference for the
latent dimension, thus we let n := nmin(S). Thanks to Theorem 3, the claim below
holds true.

Claim 2. nmin(S) = p = 7.

The proof is straightforward and we leave the details to the Appendix, Section
B. Note that in this way, regardless of the encoding strategy, we are fixing the re-
duced dimension to be n = 7. Since Nh = 44521, this corresponds to a compression
of almost 99.98%.

The networks architectures are detailed in Tables 1.a, 1.b (encoding step) and
Table 1.c (decoding step). The encoder and the transcoder are particularly light,
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Table 1. Architectures for the Advection-Diffusion problem (Section 4.1).
Tables (a) and (b) refer to the encoder and transcoder, respectively. Table (c)

reports the decoder architecture. Here Transp. Conv. = Transposed Convo-

lutional, denotes those sparse layers whose linear part is described in terms
of 2D transposed convolutions. Therein, the input and output dimensions are

written in the form channels× height× width, as each vector is reshaped in

a 3D tensor. The hyperparameters kernel (which stands for kernel size) and
stride determine the characteristics of the transposed convolution. For a more

detailed explanation we refer to the Pytorch library documentation. Note that,
up to reshaping, the output has dimension 1 · 211 · 211 = Nh. The network

architecture is given in terms of a hyperparameter m ∈ N, through which we

tune the decoder complexity. Table (d) refers to the change of coordinates
DNN, φ. All networks and layers use the 0.1-leaky ReLU activation.

a) Ψ′ b) Ψ′
µ

Layer Input Output dof

Dense 44521 7 311654

Layer Input Output dof

Dense 44528 7 311703

c) Ψ

Layer Input Output Kernel Stride dof

Dense 7 288m - - 2304m

Transp. Conv. 8m× 6 × 6 4m× 20 × 20 10 2 3200m2 + 4m

Transp. Conv. 4m× 20 × 20 2m× 48 × 48 10 2 800m2 + 2m

Transp. Conv. 2m× 48 × 48 m× 102 × 102 8 2 128m2 +m

Transp. Conv. m× 102 × 102 1 × 211 × 211 9 2 81m+ 1

d) φ

Layer Input Output dof

Dense 7 1024 7168

Dense 1024 512 524288

Dense 512 256 131072

Dense 256 7 1792

as they actually consist of a single dense layer. In contrast, Ψ is far more complex,
with a depth of l = 4. The proposed architecture is closely related to the ones
adopted in [24, 44], upto to some specifics dictated by the problem itself (namely
the fact the high-fidelity mesh consists of a 211× 211 square). The decoder makes
use of transposed convolutional layers, choice that is mainly motivated by two rea-
sons: (i) convolutional layers correspond to sparse operators, and are more easy to
deal with in the case of high-dimensional data, (ii) 2D convolutions best describe
spatially localized behaviors so they are a natural choice when the data itself is
defined on a spatial domain. We shall also remark that the decoder architecture
is given in terms of a hyperparameter m ∈ N, m > 0, which controls the number
of channels in the convolutional layers. This was done in order to investigate how
the network complexity impacts the reconstruction error, and allows for a direct
comparison with linear methods such as the POD. We analyze the performance of
the networks for different values of m separately, namely m = 4, 8, 16, 32.

Prior to training, the networks are initialized differently depending on the encod-
ing type. In the autoencoder case, we initialize both Ψ′ and Ψ accordingly to the
(Gaussian) He initialization [32]. Conversely, we initialize the transcoder in such a
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Figure 4. Error decay in terms of network complexity for the Advection-

Diffusion problem (Section 4.1). Plots are reported in loglog scale. Case
C = 0.5 on the left, C = 40 on the right. Lines are drawn by considering the

least-square fit log MRE ≈ β0 + β1 log dof. Dashed-lines are used for training

errors and straight lines for test errors. In the case of autoencoders (AE, in
red) and transcoder-decoders (TD, in green) the reported MREs correspond

to the architectures in Table 1 with m = 4, 8, 16, 32. POD-projection errors

are reported in blue. POD degrees of freedom (dof) are computed as nNh and
correspond to the number of entries in the projection matrix V. Note that for

POD the reduced dimension increases as the complexity grows. Conversely, the
DL-ROM approach considers heavier and heavier networks, but the reduced

dimension is always fixed to n = p = 7.

way that Ψ′µ(µ, uµ) = µ. This is equivalent to using the parameters as first guess for
the intrinsic coordinates: then, during the training, and depending on the decoder
needs, Ψ′µ will have the possibility of finding other representations. As discrepancy

measure for the loss function, we use squared errors, L(y, ŷ) = ||y− ŷ||2. We train
the autoencoder (resp. transcoder-decoder) using the AdamW optimizer [45], with
learning-rate 10−4, weight-decay 10−2, moments coefficients β1 = 0.99, β2 = 0.999
and adjustment ε = 10−8. We perform the gradient descent using batches of 50
and for a total of 1000 epochs. At the end of this first training session, we pick the
best performing architecture and continue the construction of the DL-ROM from
there.

Table 1.d reports the architecture for our third network, φ. We initialize φ using
the He initialization and proceed with its training accordingly to Section 3.2.2. We
consider again a loss function based on square errors, and we perform the gradient
descent using the same optimizer as before, only changing the learning rate to 10−3.

4.1.4. Numerical results. Figure 4 reports the results limited to the dimensional-
ity reduction, that is the first step in the DL-ROM pipeline. There, we compare
the performance of autoencoders, transcoder-decoders and POD in terms of model
complexity. In general, regardless of whether C = 0.5 or C = 40, both nonlinear
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C Data MRE Equivalent POD modes

0.5 Train 1.05% 428

0.5 Test 2.01% 164

40 Train 0.31% more than 1000

40 Test 1.23% 316

Table 2. DL-ROM performance for the Advection-Diffusion problem (Section

4.1). The final model Φ := Ψ(φ) was constructed by choosing the decoder
with highest performance (cf. Figure 4). Equivalent POD modes = minimum

number of POD-modes needed by any POD-based ROM to outperform the

DL-ROM.

methods show interesting results, with training errors close or below 1%. Unsur-
prisingly, as the networks grow in complexity, the gap between training and test
errors becomes larger, highlighting the need for more samples and a tendency to-
wards overfitting (see the autoencoder in case C = 40). Still, transcoders seem to
mitigate this phenomenon, possibly because they provide more information in the
latent space.

For POD, the degrees of freedom are defined as the number of entries in the
projection matrix V, while the errors are computed as ||u−VVTu||/||u|| (relative
projection error). In particular, the MREs reported in Figure 4 provide a lower-
bound for all POD-based ROMs. Interestingly, all the curves show a similar trend.
This goes to support our conjecture that the decoder complexity may be linked with
the Kolmogorov n-width (Section 3.2). More precisely, linear methods can improve
the accuracy by adding ∆n modes, i.e. ∆nNh degrees of freedom, but they also
have to increase the ROM dimension. Conversely, in the DL-ROM approach, we
can obtain a similar boost by investing the same degrees of freedom in the decoder,
without having to modify the latent dimension. This is in agreement with Theorem
5, where we proved that O(m1+n/(s−1) log(m)) active weights are sufficient for the
decoder to match the accuracy of any projection method with m modes. Of note, if
we assume the solution manifold to be infinitely smooth and we let s→ +∞, then
we may conjecture the decoder complexity to behave as O(m log(m)). As matter of
fact, this is what we observe in the picture, at least for the training errors. In fact,
if the red lines were to be perfectly parallel to the blue ones, that would reflect a
scenario in which the decoder complexity grows as O(m).

On the same time, Figure 4 goes to show that the upper bounds in Theorem 5 are
suboptimal. In fact, both in the case of mild and strong advection, the nonlinear
reduction is able to outperform POD with fewer degrees of freedom, i.e. without
the extra contribute mNh in the decoder. We believe that this achievement is made
possible by the use of convolutional layers, but this is yet to be made formal.

Let us now move to the actual approximation of the parametric map. To this
end, we trained our third network φ on the basis of the best performing transcoder-
decoder (m = 32). Numerical results for the complete DL-ROM Φ := Ψ ◦ φ are in
Table 2 and Figure 5. In general, the results are satisfactory, with test errors near
2%. Both in the case of mild and strong advection, we note that POD-based ROMs
require more than 300 modes to achieve the same accuracy. This makes intrusive
ROMs, such as POD-Galerkin, too expensive to be used online. Conversely, the DL-
ROM approach provides an appealing alternative. Indeed, while the whole offline
stage took around 4 hours, the model is extremely fast when used online: solving
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a) Case C = 0.5, b) Case C = 40

Figure 5. DL-ROM results for the Advection-Diffusion problem (Section 4.1).
Panels (a) and (b) respectively refer to the case of mild and strong advection.

In both cases, the picture shows two examples extracted from the test set (one

for each row) and compares the high-fidelity solution (first column) with the
DL-ROM approximation (second column).

the PDE for 1000 different values of the parameters (simultaneously) requires less
than 2 milliseconds on GPU.

4.2. Stochastic Poisson equation.

4.2.1. Problem definition. On the spatial domain Ω = (0, 1)2, we consider a Gauss-
ian process W with constant mean w = − log(10) and covariance kernel Cov(x,y) =
10exp(−4|x−y|2). The latter is used to model the stochastic Poisson equation be-
low, {

−div
(
eW (ω)∇u

)
= |x|2 in Ω,

u = 0 on ∂Ω.

Here, for each event ω, the map W (ω) : Ω→ R denotes the corresponding path of
the stochastic process W . The above problem can be seen as a parameter dependent
PDE that depends on (countably) infinite many parameters. To see this, we recall

that there exist positive real numbers
{√

λi
}+∞
i=1

, orthonormal functions {ζi}+∞i=1 ⊂
L2(Ω) and independent standard gaussians {Xi}+∞i=0 such that

W = w +

+∞∑
i=1

√
λiXiζi

almost surely. The latter is the so-called Karhunen-Loève expansion of W . We
assume the λi coefficients to be nonincreasing in i. In order to cast the problem
into our framework, we approximateW by truncating the aforementioned expansion
at some index k. More precisely, we define Θ := Rk and W k

µ as
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Figure 6. Normalized eigenvalues decay for the covariance matrices of the

parameters, i.e. the random field Wµ, and the solutions uµ. The eigenvalues
are normalized with respect to the total variance of the two fields, so that their

cumulative sum converges to 1. The y-axis is reported in logarithmic scale.

Note that the solutions are sampled by considering the truncated field Wk
µ as

parameter.

W k
µ(x) := w +

k∑
i=1

√
λiµiζi(x).

Thanks to the usual continuity results and the convergence ensured by the Karhunen-
Loève expansion, the impact of this substitution on the PDE can be made arbitrar-
ily small with k. We note that, by construction, the probability distribution to be
considered over the parameter space is the Gaussian distribution P of density

G(µ) := (2π)
−k/2

e−
1
2 |µ|

2

.

4.2.2. Discretization and Full Order Model. On Ω we define a triangular mesh of
size h = 10−2, over which we construct the high-fidelity space of piecewise linear
Finite Elements Vh. The corresponding FOM dimension is Nh = 10121. To ap-
proximate the Karhunen-Loève expansion of W , we project and solve over Vh the
following eigenvalue problem.∫

Ω

Cov(x,y)ζi(y)dy = λiζi(x).

In particular, we compute the first k eigenvalues λi and corresponding eigenfunc-
tions ζi ∈ Vh for which

0.9 ≤
∑k
i=1 λi∑+∞
i=1 λi

=
1

10

k∑
i=1

λi,

where the last equality is easily deduced by the covariance kernel, as
∑+∞
i=1 λi =∫

Ω
Cov(x,x)dx =

∫
[0,1]2

10dx = 10. Figure 6 shows how the normalized eigenvalues
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λk/10 decay with k. This procedure results in the choice of the truncation index
k = 38. From a statistical point of view, we say that W k

µ explains at least 90% of
the variability in W . We run the FOM to generate respectively Ntrain = 9000 and
Ntest = 1000 snapshots, where the parameter values are sampled from Θ indepen-
dently and accordingly to a k-variate standard Gaussian distribution.

4.2.3. DL-ROM design. We note that, in this case, the parameter space Θ is not
compact, as it is unbounded. Nevertheless, since Θ has finite measure with respect
to P, it is straightforward to adapt the reasoning in Section 3.2 to this context. For
instance, the error defined in (5) can be made arbitrarily small provided that Φ is
sufficiently accurate within some compact subdomain ΘM := {µ ∈ Rp s.t. |µ| <
M}. A more in depth discussion on the regularity of the parametric map in the
case of stochastic coefficients can be found in [3].

For the dimensionality reduction, we employ a transcoder-decoder. This is to
ensure a maximal compression, as the number of parameters is already mildly large.
The network topology is reported in Tables 3.a, 3.b. Coherently with the chosen
approach, we fix the reduced dimension to be n := k = p = 38. In general, the
architecture is very similar to those considered in Section 4.1, the only difference
being in the specifics of the convolutional layers.

As before, we adopt the He initialization for the decoder while we force the initial
state of the transcoder to behave as Ψ′µ(µ, uµ) = µ. We train Ψ◦Ψ′µ using stochastic
gradient descent with minibatches of size 10 and for a total of 1200 epochs. In this
case, we observe that snapshots come in rather different scales when compared one
another. For this reason, we choose to define the loss function in terms of relative
errors, L(y, ŷ) := ||y − ŷ||/||y||. To optimize the latter we employ the Adamax
optimizer [37], with default parameters and learning rate of 10−3. Here, the choice
of Adamax over AdamW is motivated by the fact that the former is known to be
more stable.

Table 3.c reports the architecture for reduced map network, φ. We train φ using
the Adamax optimizer with batch size 50 and learning rate 5e-3, for a total of 5000
epochs. Here also we use relative errors as discrepancy measures. The whole offline
stage of the DL-ROM took around 4 hours.

4.2.4. Numerical results. The dimensionality reduction is satisfactory, with mean
relative errors of 1.10% and 2.57% respectively on the training and test sets. Con-
versely, the approximation of the reduced map was more challenging, see Table 4
and Figure 7. While the final model is able to approximate the parameter-to-state
map with an error of 4.69% over the training set, the inaccuracy increases to 12.50%
on the test set. This is a situation in which the solution manifold is relatively simple
(even linear subspaces provide good approximations, cf. Figure 6), but the param-
eter dependency is complicated. Therefore, while 9000 snapshots are sufficient for
the training the transcoder-decoder, they are not enough for φ to generalize well.
Another reason is that the parameter space is very large, and φ has to face the
curse of dimensionality. Possible ways to overcome this drawback without having
to generate more samples would be to exploit low-discrepancy sequences, as in [49],
or use physics-informed approaches at the reduced level, as in [14].
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Table 3. Architectures for the Stochastic Poisson equation (Section 4.2).
Tables (a) and (b) together describe the transcoder-decoder, while (c) concerns

the change of coordinates map φ. All layers are considered with the 0.1-leaky

ReLU activation.

a) Ψ′
µ

Layer Input Output dof

Dense 10239 38 389120

b) Ψ

Layer Input Output Kernel Stride dof

Dense 38 18432 - - 718848

Transp. Conv. 512 × 6 × 6 256 × 12 × 12 2 2 524544

Transp. Conv. 256 × 12 × 12 128 × 24 × 24 2 2 131200

Transp. Conv. 128 × 24 × 24 64 × 48 × 48 2 2 32832

Transp. Conv. 64 × 48 × 48 1 × 101 × 101 7 2 3137

c) φ

Layer Input Output dof

Dense 7 1024 7168

Dense 1024 512 524288

Dense 512 256 131072

Dense 256 7 1792

Data MRE Equivalent POD modes

Train 4.69% 39

Test 12.50% 17

Table 4. DL-ROM performance for the Stochastic Poisson problem (Section
4.2). Equivalent POD modes = minimum number of POD-modes needed by
any POD-based ROM to outperform the DL-ROM.

4.3. Some final remarks.

4.3.1. On the choice of the latent dimension. In all our experiments, the reduced
dimension was equal to the number of parameters, that is n = p. For the Advection-
Diffusion problem, this was motivated by the fact that nmin(S) = p. Conversely,
for the stochastic Poisson equation, we fixed n = p due to our design choice of using
a transcoder-decoder. However, this is not always the case. In fact, as we argued
in Section 2, it is possible that nmin(S) > p, in which case the autoencoder latent
dimension should exceed the number of parameters. As an example, consider the
following boundary value problem,

(6)

{
−∆u+ 10 (cosµ, sinµ) · ∇u = 10e−100|x−x0| in Ω

u = 0 on ∂Ω,
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Relative error: 5.90% Relative error: 23.30% Relative error: 4.19%

Figure 7. DL-ROM results for the Stochastic Poisson equation (Section 4.2).

The picture shows three examples coming from the test set. The first row
reports the high-fidelity solutions, while the second row displays the corre-

sponding DL-ROM approximations. Relative errors are also reported.

where Ω := (0, 1)2, x0 := (0.5, 0.5) and µ ∈ Θ := [0, 2π]. In this case, p = 1
but nmin(S) = 2. In fact, it is not hard to see that the solution manifold S is
homeomorphic to the unit circle. Therefore, the DL-ROM approach requires an
autoencoder with latent dimension n = 2. In Figure 8 we have summarized the
results obtained with this design choice for this particular problem. We do not
report the network architectures, as that is not the focus of our discussion here.

We note that the low-dimensional representation of S is given by a curve in R2,
coherently with the fact that φ : R → R2. It is interesting to see that the DL-
ROM representation of S actually resembles a circle. We also note that the curve
φ(Θ) ⊂ R2 is not smooth. This is not caused by the PDE itself, which is very
regular, by rather by the use of the ReLU activation for φ.

For the sake of completeness, we mention that: for this example, we considered
the same FOM as in Section 4.2; we trained and tested the DL-ROM respectively
over 900 and 100 snapshots; the model reported average relative errors below 2%
both on the training and test set; the offline stage took around 10 minutes on GPU.

4.3.2. On alternative Deep Learning approaches. The Reduced Order Modelling lit-
erature is becoming more and more flourishing, with a large variety of techniques
being developed. It is thus important to understand how the DL-ROM approach re-
lates to other Deep Learning based ROMs. In particular, we would like to comment
on those alternative strategies that are significantly different in spirit.

One approach, is to directly approximate the correspondence (µ,x) → uµ(x)
using a single DNN, namely Φ : Rp+d → R. This has the advantage of yield-
ing a mesh-free ROM that can be trained on pointwise observations. Also, since
Φ is scalar-valued, light architectures are expected to be sufficiently expressive.
However, this approach has a few drawbacks. In fact, if uµ is not highly regular
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Figure 8. Low-dimensional
representation of the solution

manifold for problem (6),

Section 4.3.1. Each point on
the curve φ(Θ) ⊂ R2 corre-

sponds to a given solution of

the parametrized PDE. The
picture also shows the recon-

structions Ψ(φ(µ)) obtained

for different values of µ ∈ Θ.

with respect to x, e.g. not Lipschitz, then one may require a very deep (or large)
architecture to obtain reliable approximations, and thus many samples too. For
example, we have tested this approach on the Advection-Diffusion problem using a
scalar-valued architecture with 7 hidden layers of constant width (50 neurons). We
have used the same snapshots available for the DL-ROM, where each high-fidelity
solution now contributed with a total of Nh observations. Despite all our efforts,
we were unable to obtain a sufficiently accurate network, as we always obtained
relative errors above 20% (both for the training and test sets). We believe that
the main drawback is given by the singular source, which generates high gradi-
ents in the PDE solution. We also mention that, despite the light architecture,
training Φ was quite expensive. In fact, each computation of the squared error
||uhµ − Φ(µ, ·)||2L2(Ω) required Nh evaluations of the DNN. Even though these can

be computed in parallel by stacking all quadrature nodes in a single matrix, the
cost of the backpropagation step increases substantially, as keeping track of all the
gradients becomes challenging.

An alternative strategy is given by DeepONets [46], which are now becoming
very popular. DeepONets are primarily employed for learning operators in infinite
dimensions, but they have a natural adaptation to the case of finite-dimensional
parameters. In fact, the first step in the DeepONet pipeline is to encode the input
through p sensors, which allows us to formally recast the problem into one with p
scalar parameters. With this set up, DeepONets are still a mesh-free approach, but
they consider an approximation of the form uµ(x) = Ψ(x) ·φ(µ), where · is the dot
product, while Ψ : Rd → Rn and φ : Rp → Rn are two neural networks, respectively
called the trunk net and the branch net. The main advantages of DeepONets are the
following. First of all, as they are intrinsically mesh-free, it is possible to train them
on sparse pointwise data. Secondly, as they decouple the dependency between µ
and x, it is possible to bound their complexity and to estimate their generalization
capabilities in ways that are specific to this approach, see e.g. [42]. Finally, due to
their original construction, they can be a natural choice when the input parameters
are actually sensor observations of some functional input. However, DeepONets
have their limitations as well. In fact, despite sharing some terminology with the
DL-ROM approach, such as encoder and decoder, they ultimately rely on a linear
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strategy for representing solutions. To this end, let {xi}Nh
i=1 be the nodes in the high-

fidelity mesh. Then, the DeepONet approximation over these vertices is Vφ(µ),
where V := [Ψ(x1), . . . ,Ψ(xNh

)]T ∈ RNh×n. As a consequence, the choice of n
is subject to the behavior of the linear Kolmogorov n-width. For instance, to
match the DL-ROM accuracy in the Advection-Diffusion problem with C = 40,
a DeepONet architecture would require n ≥ 300, which may hinder its actual
implementation. Also, due to the poor regularity with respect to the x variable,
training Ψ may be a challenging task.

Conversely, the DL-ROM approach treats solutions as single objects, uhµ ∈ Vh.
While this clearly results in a loss of information, the space dependency of solutions
can be partially recovered by interchanging nonlocal and local operators (respec-
tively, dense and convolutional layers) in the ROM pipeline. Finally, thanks to
the use of nonlinear reduction techniques, the DL-ROM can overcome some of the
difficulties implied by the Kolmogorov n-width. Of course, though, our approach
has some limitations too. First of all, it is mesh-constrained, as it is bounded to
the existence of a high-fidelity model. Secondly, it mostly relies on convolutional
layers, which makes it less obvious to adapt the current implementation to non-
cubic domains. Finally, the approach was originally designed for the case p� Nh.
Even though infinite-dimensional parameters spaces can be handled as in Section
4.2, better strategies may be available.

5. Conclusions

We developed a novel deep learning approach for reduced order modelling of
parameter dependent PDEs, here termed DL-ROM, where the solution map is ap-
proximated by a deep neural network Φ. Our construction is based on the use of
autoencoders, which we employ as a nonlinear alternative to other reduction tech-
niques such as the POD. In the DL-ROM approach, we choose the latent dimension
to be the smallest one granting arbitrary accuracy. The value of such dimension
was investigated in detail in Section 2. There, we proved some theoretical results,
respectively Theorem 3 and Theorem 4, that can be used as guidelines for practi-
cal applications. Further insights on the potential of the DL-ROM approach were
discussed in Theorem 5, Section 3.2. There, we provided explicit error estimates
that were later confirmed via empirical evidence (cf. Section 4.1).

The results obtained in our experiments are promising. The DL-ROM appears
to be a captivating alternative to traditional ROMs, especially in challenging sit-
uations where linear models fail. Our first test case, Section 4.1, shows that the
method is able to handle transport-dominated problems and that it behaves well in
the presence of singularities. Good results are also obtained for high-dimensional
parameter spaces, Section 4.2, even though it becomes harder to handle the gen-
eralization error. The latter can be either improved by increasing the number of
training samples or by including physical terms in the loss function. While we wish
to investigate this further in future works, we acknowledge that multiple researchers
are now working on this topic, e.g. [48, 63].

In principle, being completely nonintrusive and data-driven, the proposed ap-
proach can be readily applied to nonlinear PDEs and more complicated systems.
Also, at the cost of treating time as an additional parameter, as in [24], one may ex-
tend the DL-ROM approach to time dependent problems. However, some changes
have to be made in order to extrapolate over time, for instance by enforcing those
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properties that are typical of dynamical systems (e.g. the existence of underlying
semi-groups). We leave all these considerations for future works.

We conclude with a few comments on the computational cost. While the offline
stage is clearly expensive, our design choices allow for a significant reduction in
the model complexity, which results in architectures that are easier to train (cf.
e.g. [24, 26]). Nevertheless, the DL-ROM is extremely fast when used online. This
makes the method suited for demanding tasks with multiple queries, as the ones
typical of sensitivity analysis, uncertainty quantification and multiscale methods.

Appendix A. An example of slow decay in the Kolmogorov n-width

Example A.1. Let Ω := (−2, 2). For any x0 ∈ Ω, let δx0
be the Dirac delta

distribution centered at x0. Consider the 2-dimensional parameter space Θ :=
{µ = (µ1, µ2) ∈ [−1, 1] × [0, 1] | − 1 ≤ µ1 − µ2 ≤ µ1 + µ2 ≤ 1}, together with the
differential problem below{

−u′′ = 2δµ1 − δµ1−µ2 − δµ1+µ2 x ∈ Ω

u(−2) = u(2) = 0

For each µ ∈ Θ, the corresponding solution uµ is a piecewise linear function with
support given by [µ1−µ2, µ1 +µ2]. In particular, uµ is a hat function with a peak
of height µ2 at x = µ1. Also, by direct calculation,

||uµ||L2(Ω) =

√
2

3
µ3

2.

Let now S := {uµ}µ∈Θ ⊂ V := L2(Ω) and fix any positive n ∈ N. It is then easy
to see that the functions

vi,n := u(−1+ i
n−

1
2n ,

1
2n ), i = 1, ..., 2n

are mutually orthogonal in L2(Ω). As a consequence, the Kolmogorov n-width of
S satisfies

dn(S) ≥ dn({vi,n}2ni=1) =

= dn

({
||vi,n||−1

L2(Ω)vi,n

}2n

i=1

)
||vi,n||L2(Ω) =

1√
2
||vi,n||L2(Ω) =

1

2
√

6
n−3/2,

where the second last equality follows by noticing that the set {||vi,n||−1
L2(Ω)vi,n}

2n
i=1

is isometric to the canonical basis of R2n (see [53]).
Therefore, dn(S) decays with a rate of at most n−3/2, which is relatively slow

when compared to the ideal case where the parametric map is analytic and the
Kolmogorov n-width is known to decay exponentially, dn(S) ∼ e−γn.

Appendix B. Proof of the Claims in Section 4

Proof of Claim 1. Let µ ∈ Θ. For the sake of brevity, define xµ := (µ6, µ7) ∈ Ω.

We shall recall that, by Morrey’s embedding theorem [22], we have W 1,4
0 (Ω) ↪→
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C0,1/2(Ω), the latter being the space of 1/2-Hölder maps. As a consequence, for

any w ∈W 1,4
0 (Ω), we have∣∣∣∣w(xµ)−

∫
Ω

fµ(z)εw(z)dz

∣∣∣∣ =

∣∣∣∣∫
Ω

(w(xµ)− w(z))f εµ(z)dz

∣∣∣∣ ≤
≤
∫

Ω

|w(xµ)− w(z)|f εµ(z)dz ≤ C ′||w||W 1,4
0 (Ω)

∫
R2

|xµ − z|1/2f εµ(z)dz

for a constant C ′ > 0 independent on both w and µ. The change of variables
y := (z− xµ)/ε then yields∣∣∣∣w(xµ)−

∫
Ω

fµ(z)εw(z)dz

∣∣∣∣ ≤ .. ≤ C ′||w||W 1,4
0 (Ω)ε

1/2

∫
R2

|y|1/2G(y)dy

where G is the probability density of the standard normal distribution in R2. By
passing at the supremum over w with ||w||W 1,4

0 (Ω) = 1 and µ ∈ Θ we get

sup
µ∈Θ
||fµ − f εµ||W−1,4(Ω) ≤ C ′′ε1/2

for some constant C ′′ > 0. By classical stability estimates for elliptic PDEs, see e.g.
Lemma C.1, we then have supµ∈Θ ||uµ−uεµ||W 1,4/3(Ω) ≤ 10C ′′ε1/2, as σµ(x) ≥ 10−1

for all µ ∈ Θ. Up to the embedding the solution manifold in L2(Ω), the claim now
follows. �

Proof of Claim 2. The idea is to re-parametrize the solution manifold, as the
given parametrization suffers from the lack of injectivity. In fact, both µ5 = 0 and
µ5 = 2π return the same advective field (and we cannot exclude one extreme, or Θ
would lose its compactness). To do so, let S1 be the unit circle in R2. We define
the hypercylinder Θ′ := [0, 1]4 × S1 × [0.1, 0.9]2. We will adopt a seven component
notation as before, even though Θ′ ⊂ R8, as µ5 ∈ S1 is now 2-dimensional. We
re-parametrize the coefficients of the PDE in terms of this new coordinates in the
obvious way, especially for σµ′ and fµ′ . For the advective field we let bµ′ := µ5.
We shall now prove that: (i) the new parameter space satisfies nmin(Θ′) = 7, (ii)
the new parametric map µ′ → uµ′ is continuous and (iii) injective. Claim 2 then
follows by Theorem 3.

Proof that nmin(Θ′) = 7. Consider the map φ : Θ′ → R7 given by

φ(µ′) = (µ′5(1 + µ′1), µ′2, µ
′
3, µ

′
4, µ

′
6, µ

′
7).

Then the image φ(Θ′) = {z ∈ R2 : 1 ≤ |z| ≤ 2} × [0, 1]3 × [0.1, 0.9]2 ⊂ R7 has
nonempty interior. In particular, nmin(φ(Θ′)) = 7. Since φ clearly admits a con-
tinuous inverse, φ−1 : φ(Θ′)→ Θ′, we conclude that nmin(Θ′) = 7.

Proof that the parametric map µ′ → uµ′ is continuous. Clearly σµ′ and bµ′ de-

pend continuously on µ′. Using again the embedding W 1,4
0 (Ω) ↪→ C0,1/2(Ω) as in

the proof of Claim 1, it is also easy to see that the map µ′ → fµ′ is Θ′ →W−1,4(Ω)
Hölder continuous. By composition (see Lemma C.2), we then obtain the continu-
ity of the parametric map.

Proof that the parametric map µ′ → uµ′ is injective. Let µ′,µ′′ ∈ Θ′ and as-

sume that u ∈W 1,4/3(Ω) is a solution for both parameters, that is u = uµ′ = uµ′′ .
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Classical results on inner regularity of solutions to elliptic PDEs ensure that uµ′ is
locally H1 at all points except at the location of the Dirac delta fµ′ . The analogue
holds for uµ′′ , so clearly it must be µ′6 = µ′′6 and µ′7 = µ′′7 in order for the solutions
to coincide. Next, let w ∈ C∞0 (Ω0) and extend it to zero on Ω \Ω0. Using w as test
function for the equations of both µ′ and µ′′ and then subtracting term by term
yields

C

∫
Ω0

(bµ′ − bµ′′) · ∇uw = 0.

As w is arbitrary, it follows that∇u is orthogonal to (bµ′−bµ′′) on Ω0. In particular,
if bµ′ 6= bµ′′ , then u must be constant along the direction (bµ′ − bµ′′) within Ω0.
But, because of the boundary conditions, this would make u identically constant
near at least one edge of ∂Ω. However, this is a contradiction. In fact, u|∂Ω ≡ 1,
thus classical maximum principles ensure that u > 1 a.e. in Ω (see e.g. Lemma
C.3). It follows that bµ′ = bµ′′ and so µ′5 = µ′′5 . We now notice that, by subtracting
the equations for µ′ and µ′′, we have

4∑
i=1

(µ′i − µ′′i )

∫
Ωi

∇u · ∇w = 0 ∀w ∈ C∞0 (Ω).

Fix any i ∈ {1, 2, 3, 4} and let v ∈ C∞(Ωi). Define w ∈ C∞(Ωi) to be any of
the strong solutions to the PDE −∆w = v with homogeneous Neumann boundary
condition on ∂Ωi. Since the subdomains are clearly separated, it is possible to
extend w on the whole domain Ω so that w is still smooth but also vanishes on ∂Ω
and on Ωj for all j 6= i. Using such w in the last identity above and integrating by
parts yields

0 = (µ′i − µ′′i )

∫
Ωi

∇u · ∇w = (µ′i − µ′′i )

∫
Ωi

u(−∆w) = (µ′i − µ′′i )

∫
Ωi

uv.

Now assume that µ′i 6= µ′′i . Then
∫

Ωi
uv = 0 for all v ∈ C∞(Ωi) =⇒ u|Ωi

≡ 0,

contradiction. Then µ′i = µ′′i and thus µ′ = µ′′, as claimed. �

Appendix C. Auxiliary results on Partial Differential Equations

Lemma C.1. Let (V, ||·||V ) and (W, ||·||W ) be two Banach spaces, with W reflexive.
Let (W ∗, || · ||∗) be the dual space of W and define (B(V,W ), ||| · |||) as the normed
space of bounded bilinear forms V ×W → R, where

|||a||| := sup
||v||V =1
||w||W =1

|a(v, w)|.

Let Bc(V,W ) ⊂ B(V,W ) be the subset of coercive bounded bilinear forms, i.e.
a ∈ B(V,W ) for which

λ(a) := inf
||v||V =1

sup
||w||W =1

|a(v, w)| > 0, and inf
||w||W =1

sup
||v||V =1

|a(v, w)| > 0.

Then,

i) λ is B(V,W )→ R continuous

ii) For each a ∈ Bc(V,W ) and F ∈ W ∗ there exists a unique u = ua,F ∈
V such that a(v, w) = F (w) for all w ∈ W . Furthermore, u depends
continuously on both a and F . In particular:
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(7) ||ua,F − ua′,F ′ ||V ≤
1

λ(a)

(
||F − F ′||∗ +

1

λ(a′)
|||a− a′||| · ||F ′||∗

)
for all a, a′ ∈ Bc(V,W ) and F, F ′ ∈W ∗.

Proof. i) Let a, a′ ∈ B(V,W ). For every v ∈ V and w ∈W with ||v||V = ||w||W = 1
we have

a(v, w) = a′(v, w) + (a− a′)(v, w) ≤ |a′(v, w)|+ |||a− a′|||.

Since the above holds for both w and −w, we actually have |a(v, w)| ≤ |a′(v, w)|+
|||a−a′|||, and thus λ(a) ≤ λ(a′)+ |||a−a′|||. As the situation is symmetric in a and
a′, it follows that |λ(a)−λ(a′)| ≤ |||a−a′|||. In particular, λ is Lipschitz-continuous.

ii) Given a ∈ Bc(V,W ) and F ∈ W ∗, the existence and uniqueness of ua,F follow
from a Banach space version of the Lions-Lax-Milgram theorem (see Lemma 3.1. in
[35]). Furthermore, one also has the stability estimate ||ua,F ||V ≤ (λ(a))−1||F ||∗.

To get the inequality in (7), let a, a′ ∈ B(V,W ), F, F ′ ∈ W ∗ and u := ua,F ,
u′ := ua′,F ′ . Then a(u,w) = F (w) and a′(u′, w) = F ′(w) for all w ∈ V . We
subtract these two identities to get

a(u,w)− a′(u′, w) = F (w)− F ′(w)

=⇒ a(u− u′, w) = (F − F ′)(w) + (a′ − a)(u′, w).

It follows that, for all w ∈W , one has a(u−u′, w) ≤ ||F −F ′||∗||w||W + |||a′−a||| ·
||u′||V ||w||W . By linearity, using both w and −w, we conclude that

|a(u− u′, w)| ≤ ||F − F ′||∗||w||W + |||a− a′||| · ||u′||V ||w||W ∀w ∈W.

In particular, passing at the supremum over ||w||W = 1 yields

λ(a)||u− u′||V ≤ ||F − F ′||∗ + |||a− a′||| · ||u′||V .

Now, we may apply the stability estimate for ||u′||V and divide by λ(a) to get (7).
Finally the latter, together with (i), shows that u′ → u as soon as a′ → a and
F ′ → F . �

For the next Lemma, we consider the notation introduced in Section 2.2.1.

Lemma C.2. Let Ω ⊂ Rd be a bounded domain. Let 1 < q < +∞ and define the
conjugate exponent q′ := (q− 1)−1q. For each σ ∈ Σ(Ω), b ∈ B(Ω), f ∈W−1,q′(Ω)

and g ∈ W 1/q′,q(∂Ω) let u = uσ,b,f,g be the unique solution to the following varia-
tional problem

u ∈W 1,q(Ω) :

u|∂Ω = g and

∫
Ω

σ∇u · ∇w +

∫
Ω

(b · ∇u)w =

∫
Ω

fw ∀w ∈W 1,q′

0 (Ω).

Then, the solution map (σ, b, f, g) → uσ,b,f,g is: (i) continuous, (ii) Lipschitz
continuous on all compact subsets.
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Proof. Before moving the actual proof, we shall recall that there exists a bounded
linear operator T : W 1/q′,q(∂Ω) → W 1,q(Ω) for which Tg|∂Ω = g, namely a right-

inverse of the trace operator (see [51]). In particular, there exists a constant C̃ > 0

such that ||Tg||W 1,q(Ω) ≤ C̃||g||W 1/q′,q(∂Ω).

For the sake of brevity, we let V := W 1,q
0 (Ω), W := W 1,q′

0 and define W ∗ as the

dual space of W 1,q′

0 endowed with the operator norm. As in Lemma C.1, we also let
B(V,W ) be the collection of all bounded bilinear maps V ×W → R equipped with
the corresponding operator norm. Similarly, we define Bc(V,W ) to be the subset
of coercive bounded bilinear maps. We introduce the following operators:

A : L∞(Ω,Rd×d)× L∞(Ω,Rd) −→ B(V,W )

(σ, b) −→ aσ,b := A(σ, b),

F : L∞(Ω,Rd×d)× L∞(Ω,Rd)×W−1,q′(Ω)×W 1/q′,q(∂Ω) −→ W ∗

(σ, b, f, g) −→ Fσ,b,f,g := F(σ, b, f, g),

where,

aσ,b(v, w) :=

∫
Ω

σ∇v · ∇w +

∫
Ω

(b · ∇v)w,

Fσ,b,f,g(w) :=

∫
Ω

σ∇Tg · ∇w +

∫
Ω

(b · Tg)w +

∫
Ω

fw.

We claim that:

1) The operator A is linear and continuous. Also, aσ,b ∈ Bc(V,W ) for all
choices of σ ∈ Σ(Ω) and b ∈ B(Ω).

2) The operator F continuous. Also, it is Lipschitz continuous when restricted
to any compact subset of its domain.

We shall now prove these claims. First of all, let C > 0 be the Poincàre constant
for the domain Ω and the exponent q′. Then, it is straightforward to see that

|aσ,b(v, w)| ≤ ||σ||L∞(Ω,Rd×d)||v||W 1,q
0 (Ω)||w||W 1,q′

0 (Ω)

+ C||b||L∞(Ω,Rd)||v||W 1,q
0 (Ω)||w||W 1,q′

0 (Ω)
,

for all v ∈ V and w ∈ W . In particular, A is both linear and bounded, thus
continuous. Let now σ ∈ Σ(Ω), b ∈ B(Ω) and define ε = ε(σ) > 0 to be the
ellipticity constant of σ. We notice that if ϕ ∈ C∞0 (Ω), then ϕ is both an element
of V and W . Also, integrating by parts yields

aσ,b(ϕ,ϕ) =

∫
Ω

σ∇ϕ · ∇ϕ+

∫
Ω

b · (ϕ∇ϕ) ≥

≥ ε||ϕ||W 1,q
0 (Ω)||ϕ||W 1,q′

0 (Ω)
+

∫
Ω

b · ∇
(

1

2
ϕ2

)
=

= ε||ϕ||W 1,q
0 (Ω)||ϕ||W 1,q′

0 (Ω)
− 1

2

∫
Ω

div(b)ϕ2 =

= ε||ϕ||W 1,q
0 (Ω)||ϕ||W 1,q′

0 (Ω)
,
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as b is divergence free. It follows that for each ϕ ∈ C∞0 (Ω) with ϕ 6= 0

sup
ψ∈C∞0 (Ω)

||ψ||
W

1,q′
0 (Ω)

=1

|aσ,b(ϕ,ψ)| ≥ aσ,b
(
ϕ, ||ϕ||−1

W 1,q′
0 (Ω)

ϕ

)
≥ ε||ϕ||W 1,q

0 (Ω)

and, similarly,

sup
ψ∈C∞0 (Ω)

||ψ||
W

1,q
0 (Ω)

=1

|aσ,b(ψ,ϕ)| ≥ aσ,b
(
||ϕ||−1

W 1,q
0 (Ω)

ϕ,ϕ
)
≥ ε||ϕ||

W 1,q′
0 (Ω)

.

Since aσ,b is continuous and C∞0 (Ω) is both dense in V and W , by the above we
conclude that aσ,b ∈ Bc(V,W ). This proves claim (1).

We now move to (2). For each σ, b, f, g and w ∈W we have

|Fσ,b,f,g(w)| ≤ ||σ||L∞(Ω,Rd×d)||Tg||W 1,q(Ω)||w||W 1,q′
0 (Ω)

+ C||b||L∞(Ω,Rd)||Tg||W 1,q(Ω)||w||W 1,q′
0 (Ω)

+ ||f ||W−1,q′ (Ω)||w||W 1,q′
0 (Ω)

.

In particular, for all w ∈W with unitary norm,

|Fσ,b,f,g(w)| ≤ C̃||g||W 1/q′,q(∂Ω)

(
||σ||L∞(Ω,Rd×d) + C||b||L∞(Ω,Rd)

)
+ ||f ||W−1,q′ (Ω).

From here, arguing by linearity easily yields (2).

Finally, for each σ ∈ Σ(Ω), b ∈ B(Ω), f ∈W−1,q′(Ω), g ∈W 1/q′,q(∂Ω) let ũσ,b,f,g ∈
V = W 1,q

0 (Ω) be the unique solution to the variational problem

aσ,b,f,g(ũ, w) = Fσ,b,f,g(w) ∀w ∈W.

At this regard, we notice that W = W 1,q′

0 (Ω) is reflexive, in fact 1 < q < +∞
implies 1 < q′ < +∞. Therefore, by Lemma C.1, we know that ũσ,b,f,g exists
unique and it depends continuously (by composition) on (σ, b, f, g). Furthermore,
as clear from inequality (7) in Lemma C.1, the correspondence (σ, b, f, g)→ ũσ,b,f,g
is Lipschitz continuous on every compact subset of the product space Σ(Ω)×B(Ω)×
W−1,q′(Ω)×W 1/q′,q(∂Ω). This is easily deduced by the properties of A and F as
well as by the fact that compactness is preserved under continuous transformations.
Finally, we notice that

uσ,b,f,g = ũσ,b,f,g + Tg.

The conclusion follows. �

Lemma C.3. Consider the context and notation in Lemma C.2. If g ≡ c ∈ R and
f > 0 in the distributional sense, then u > c a.e. in Ω.

Proof. This simply derives from maximum principles. We first prove the case c = 0.
Let η ∈ C∞0 (Ω) be such that η > 0 everywhere in Ω. Let w ∈ H1

0 (Ω) be the solution
to the following adjoint variational problem:∫

Ω

σT∇w · ∇v −
∫

Ω

(b · ∇w)v =

∫
Ω

ηv ∀v ∈ C∞0 (Ω).

Within this regular case, the classical maximum principle states w > maxw|Ω = 0

in Ω, see e.g. Theorem 2 in [15]. Now we notice that w ∈W 1,q′

0 (Ω), as the PDE also
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admits a unique solution in that space. Thus, by density, we are allowed to consider
u as test function for w and viceversa. Doing so and subtracting the equations for
u and w yields ∫

Ω

ηu =

∫
Ω

fw,

since σ∇u · ∇w = σT∇w · ∇u and the advective terms cancel out using the inte-
gration by parts formula (recall that b is divergence free while both u and w vanish
on ∂Ω). The above shows that

∫
Ω
ηu > 0, as the right hand side is positive by

hypothesis. As η was arbitrary, we conclude that u > 0 a.e. in Ω. Let now c 6= 0.
It is elementary to see that u = c + u0, where u0 solves the variational problem
with homogenous boundary conditions. The conclusion follows. �
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