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3
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Abstract. We introduce a notion of good cohomology for multiple lines
in P

3 and we classify multiple lines with good cohomology up to multi-
plicity 4. In particular, we show that the family of space curves of degree
d, not lying on a surface of degree < d, and of maximal arithmetic genus
is not irreducible already for d = 4 and d = 5.
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1. Introduction

By a space curve we mean a locally Cohen–Macaulay purely one dimensional
subscheme of P3, the projective space over an algebraically closed field. Thus
a curve is allowed to have several irreducible components and a nonreduced
scheme structure, but it cannot have zero-dimensional components—neither
isolated nor embedded. The most important invariants of a space curve C
are its arithmetic genus g(C) = 1 − χOC , which does not depend on the
embedding of C in P

3; its degree deg(C), which is defined through the Hilbert
polynomial χ (OC(n)) = ndeg(C) + 1 − g(C) and depends on the invertible
sheaf OC(1), but not on the sections of OC(1) that define the embedding of
C in P

3; and the minimum degree s(C) of a surface that contains C, which
does depend on the embedding in P

3. The maximum genus problem for space
curves asks to determine the most basic relation between these invariants,
that is, what is the maximum arithmetic genus P (d, s) of a space curve of
degree d in P

3 that is not contained in a surface of degree < s—there is a huge
literature on the maximum genus problem for smooth space curves, but we
will not be concerned with smooth curves in this paper. The problem makes
sense for pairs of integers (d, s) satisfying 1 ≤ s ≤ d because there exists a
space curve of degree d that is not contained in a surface of degree < s if and
only if d ≥ s ≥ 1.
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We now survey what is known about the maximum genus problem for
(locally Cohen–Macaulay) space curves. Beorchia [2] proved a bound B(d, s)
for the maximum genus if the characteristic of the ground field is zero, and
proved the bound is sharp if s ≤ 4; later the author [7] gave a different proof
of this bound valid in any characteristic.

Theorem 1.1. ([2,7]) Let C be a curve in P
3 of degree d and genus g. Assume

that C is not contained in any surface of degree < s. Then d ≥ s and

g ≤ B(d, s) =

{
(s − 1)d + 1 − (

s+2
3

)
, if s ≤ d ≤ 2s,(

d−s
2

) − (
s−1
3

)
, if d ≥ 2s + 1.

(�)

To prove sharpness one needs to construct, for each pair d ≥ s, a curve
of genus B(d, s) not lying on a surface of degree < s. The case d = s is crucial
because, if P (s−1, s−1) = B(s−1, s−1), it follows that P (d, s) = B(d, s) for
every d ≥ 2s − 1—see [3]. The aim of this paper is to propose a framework
for the classification of curves achieving the maximum genus B(d, d) in the
basic case deg(C) = s(C) = d, together with the computation of the first few
relevant examples; even for d = 4 this seems to be new.

One first observes that curves of degree d are always contained in sur-
faces of degree d, and that those that do not lie on a surface of degree < d are
supported on either one line or two disjoint lines—see Proposition 3.1 below.
It is, therefore, necessary to study curves supported on a line L in P

3. We
denote by Ld the (d−1)th neighborhood of L in P

3: the ideal sheaf of Ld is
the dth power Id

L of the ideal sheaf of L. Any degree d curve C supported on
L, for short a d-uple line, is contained in Ld, and such a curve does not lie on
a surface of degree s < d if and only if H0

(IC(d−1)
)

= H0
(Id

L(d−1)
)

as the
latter vector space vanishes. It is clear how to strengthen this requirement to
deal with the fact that the support of a curve of maximum genus in the case
d = s may consists of two disjoint lines, rather than only one.

Definition 1.2. Fix integers d ≥ 1 and � ≥ 0. We say that a degree d curve C
supported on a line L is a Cd,� if

• the genus of C is

g(Cd,�) = B(d, d) − �

(
d

2

)
= −(d − 1) −

(
d

3

)
− �

(
d

2

)
• the only surfaces of degree � + d − 1 containing C are those containing

the entire neighborhood Ld of L as well:

H0
(IC(� + d − 1)

)
= H0

(Id
L(� + d − 1)

)
.

In particular, a Cd,0 is a d-uple line of genus B(d, d) that does not lie
on a surface of degree < d, and the existence of a Cd,0 implies sharpness of
Beorchia’s bound P (d, d) = B(d, d). But the definition is tailored so that,
for each 1 ≤ k ≤ d − 1, if C and D are respectively a Ck,d−k and a Cd−k,k

whose supports are disjoint lines, then the union of C and D is a also a curve
of maximum genus, that is, a curve satisfying deg(C) = d, s(C) = d and
g(C) = B(d, d).
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It was originally an idea of Beorchia, see [3], that one should construct
curves of maximum genus as Cd,0 for d ≡ 2 modulo 3, and adding a line
to a Cd−1,1 when d ≡ 0 modulo 3, or a suitable double line to a Cd−2,2

when d ≡ 1 modulo 3. Thus the problem of sharpness of the bound B(d, d)
is reduced to constructing d-lines with good cohomological properties when
d ≡ 2 modulo 3, and this construction in [3] is reduced to an algebraic
statement [3, Conjecture B on p. 142]. Sammartano and the author [6] are
completing the proof of this Conjecture under the additional hypothesis the
ground field has characteristic zero, thus showing the existence of curves Cd,�

for every d ≡ 2 modulo 3 and proving sharpness of Beorchia’s bound in the
case s = d.

The main contribution of this paper is to show there are other compo-
nents of curves of maximum genus B(d, d) by giving examples of curves Cd,�

in cases d = 3 and d = 4. As a consequence, we show that the family of space
curves satisfying deg(C) = d, s(C) = d and g(C) = B(d, d) is not irreducible
and contains curves that are scheme theoretically very different from the one
constructed in [3]. We hope this will be useful for the problem of sharpness
of Beorchia’s bound in the intermediate range s + 1 ≤ d ≤ 2s, as curves of
maximum genus in that range have to be constructed adding a plane curve
to a curve satisfying deg(C) = s, s(C) = s and g(C) = B(s, s) [7].

Our main theorem is the classification of the curves Cd,� for d ≤ 4. For
this we need the notion of quasiprimitive multiple structure introduced in [1],
a notion that we review in Sect. 2. A quasiprimitive d-line has an invariant,
called type, that is a string of d−1 integers (a; b2, . . . , bd−1). A quasiprimitive
d-line is primitive if b2 = . . . = bd−1 = 0, so that for a primitive d-line the
type is a single integer a. It is trivial to note that a line is a C1,� for any � ≥ 0,
and a double line is a C2,� if and only if it has genus −1 − �, or, equivalently,
it is a primitive double line of type a = �. In Sect. 5 we classify Cd,�’s for
d = 3 and d = 4 proving

Theorem 1.3. 1. A triple line is a C3,� if and only if it is quasiprimitive of
type (�; 1). The family of C3,� curves is irreducible of dimension 5�+12.

2. A quadruple line is a C4,� if and only if it is a general quasiprimitive
quadruple line of type (�; 2, 2). The family of C4,� curves is irreducible
of dimension 9� + 21.

Unfortunately, for d ≥ 5 we don’t have a classification. What we can say
in general is that a Cd,� is a quasiprimitive d-uple line of type (a; b2, . . . , bd−1)
where � ≤ a ≤ � + �d−2

3 �. When d ≡ 2 modulo 3, a strategy for constructing
a primitive Cd,� of type a = � + d−2

3 is proposed in [3], and a proof that
this works when the ground field has characteristic zero is being written up
[6]. But we do not know even for d = 5 whether the quasiprimitive type is
determined for a C5,0 or whether the family of C5,0’s is irreducible.

As an application of Theorem 1.3 we can show in the last section of the
paper that the family of degree d curves of maximum genus B(d, d) that do
not lie on a surface of degree < d is not irreducible already for d = 4 and 5.
Specifically
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Theorem 1.4. 1. The family of quadruple lines of maximum genus B(4, 4) =
−7 not lying on a cubic surface is not irreducible. It contains

• the 22-dimensional irreducible family whose general member is the
disjoint union of two double lines of genus −3;

• the 21-dimensional family whose general member is the disjoint
union of a line and a C3,1;

the closures of these two families are different components of the Hilbert
scheme H4,−7 parametrizing space curve of degree 4 and genus −7

2. The family of quintuple lines of maximum genus B(5, 5) = −14 not lying
on a quartic surface is not irreducible. It contains

• the 30-dimensional irreducible family whose general member is a
general primitive quintuple line of type a = 1;

• the 34-dimensional family whose general member is the disjoint
union of a line and a general C4,1;

• the 35-dimensional family whose general member is the disjoint
union of a C3,2 and a C2,3;

and there are no containment between the closures of these 3 families
in the Hilbert scheme H5,−14.

2. Quasiprimitive Multiple Lines in P
3

By the term d-uple line we will mean a (locally Cohen–Macaulay) curve in
P
3 that has degree d and whose support is a line. The notion of quasiprimi-

tive multiplicity structure on a smooth curve was introduced by Banica and
Forster [1, § 3]; we recall what it means in our context.

Let C be a d-uple line with support L. Denote by Cj the subscheme
of C obtained by removing the embedded points from C ∩ Lj—as in the
introduction, Lj is the infinitesimal neighborhood of L in P

3 defined by Ij
L.

The Cohen–Macaulay filtration of C is:

L = C1 ⊂ C2 ⊂ · · · ⊂ Ck = C (2.1)

where k, 1 ≤ k ≤ d, is the smallest integer such that C ⊂ Lk. The quotients
Lj = ICj

/ICj+1 are vector bundles on L and d = deg(C) = 1 +
∑

rank Lj .
The natural inclusions ICi

ICj
⊂ ICi+j

induce generically surjective multipli-
cation maps Li ⊗ Lj → Li+j and in particular we obtain generic surjections
Lj
1 → Lj .

A multiple line C is quasiprimitive if it has generically embedding di-
mension two. This is the case if and only if rank L1 = 1, or, equivalently,
C does not contain the first infinitesimal neighborhood L2 of its support L,
so that the first filtrant C2 has degree 2 (and Cj degree j for each j). If C

is quasiprimitive, then the generic surjections Lj
1 → Lj of invertible sheaves

yield effective divisors Dj such that Lj
∼= Lj

1(Dj); the multiplication maps
show that Di + Dj ≤ Di+j .

For a quasiprimitive d-uple line C in P
3, we define the type σ(C) =

(a; b2, . . . , bd−1) of C setting a = deg(L1) and bj = deg(Dj); it is convenient
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to set b1 = 0 so that the inequalities

bi + bj ≤ bi+j

hold for every i, j ≥ 1 such that i + j ≤ d − 1.
Finally, a d-uple line C is called primitive if it has embedding dimension

two everywhere. This is the case if and only if Lj
∼= Lj

1 for every 1 ≤ j ≤ d−1,
so b2 = . . . = bd−1 = 0 and the type of C simplifies to the single integer
a = deg(L1).

Proposition 2.1. (Genus of a quasiprimitive multiple line) Let C be a quasiprim-
itive multiple line of type (a; b2, . . . , bd−1) in P

3. Then a ≥ −1 and

g(C) = −(d − 1) − a

2
d(d − 1) −

d−1∑
j=2

bj (2.2)

Proof. Let L be the support of C. The inequality a ≥ −1 follows from
the fact that IL,C2

∼= OL(a) is a quotient of the conormal bundle IL,L2
∼=

OL(−1)
⊕ OL(−1). By definition of the type, ICj ,Cj+1

∼= OL(ja + bj). The
formula for the genus follows from the fact that g(C) = χ(IC). �

We next compute the dimension of the irreducible family of primitive
d-uple lines of a given type a ≥ 0. Let C be a primitive d-structure of type
a on the line L in P

3. Given a subscheme X ⊂ P
3 we denote by the symbol

CX = IX/I2
X its conormal sheaf. Then [1] there exists an exact sequence

0 −→ OL(da) τ−→ CC ⊗ OL −→ CL −→ OL −→ 0 (2.3)

The morphism τ is induced by the inclusion Id
L ↪→ IC via the isomorphism

OL(de) ∼= Id
L/Id−1

L IC2 . If a ≥ 0, it follows that

CC ⊗ OL
∼= OL(da) ⊕ OL(−a − 2). (2.4)

By [1, Proposition 2.3] the set of primitive d + 1-structures C̃ that
contain C is parametrized by the set of retractions β : CC ⊗ OL −→ OL(da)
of τ ; the correspondence is given by IC̃/ILIC = Ker(β). Therefore, if a ≥ 0,
the set of such C̃’s is parametrized by the set of splittings of

0 −→ OL(da) τ−→ OL(da) ⊕ OL(−a − 2) −→ OL(−a − 2) −→ 0;

hence, by an affine space of dimension (d + 1)a + 3. With a little extra effort
one can check that the set PL(d; a) of primitive d structures on L of type a is
an algebraic affine bundle over PL(d−1; a), hence inductively that PL(d; a)
is a smooth variety of dimension

(2a + 3) + (3a + 3) + · · · + (da + 3) =
a

2
(d2 + d − 2) + 3(d − 1)

= (d − 1)(3 +
a

2
(d + 2)).

If we let the line L vary as well, we obtain

dim P(d; a) =
a

2
(d − 1)(d + 2) + 3d + 1. (2.5)

This is an interesting number as primitive d-uple line are usually the generic
point of a component of the Hilbert scheme parametrizing curves of degree
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d—see [4,5] for the first relevant examples. When d = 2 we recover the
easy and well know fact that double lines of type a ≥ 0, that is, of genus
−a − 1 ≤ −1, form an irreducible family of dimension 2a + 7, which is a
component of the Hilbert scheme if a ≥ 1.

By a similar argument Nollet [4, Corollary 2.6] proves that the family
P(3; a; b) of quasiprimitive triple lines of type (a; b) with a ≥ 0 is irreducible
of dimension

dim P(3; a; b) = 5a + 2b + 10 (2.6)

and one can prove, more generally, that the family P(d; a; 0, . . . , 0, b) of
quasiprimitive d-lines of type (a; 0, . . . , 0, b), with a ≥ 0, is irreducible of
dimension

dim P(d; a; 0, . . . , 0, b) =
a

2
(d − 1)(d + 2) + 3d + 2b + 1. (2.7)

With some extra effort Nollet and the author [5, Proposition 2.3] prove
that the family P(d; a; b, c) of quasiprimitive 4-lines of type (a; b, c), with
a ≥ 0, is irreducible of dimension

dim P(d; a; b, c) = 9a + 2b + 2c + 13 (2.8)

The extra effort goes into proving [5, Lemma 2.2] that, for a quasiprimitive
triple line C of type (a; b) with a ≥ 0 supported on the line L, the restriction of
the conormal sheaf CC ⊗OL has torsion, and modulo torsion is isomorphic to
OL(3a+b)⊕OL(−a−b−2). A similar argument works for a quasiprimitive d-
line C of type (a; 0, . . . , 0, b), with a ≥ 0 and shows CC ⊗OL modulo torsion is
isomorphic to OL(da+b)⊕OL(−a−b−2). We can then prove the irreducibility
of the family of quasiprimitive d-uple lines of type (a; 0, . . . , 0, b, c), with a ≥
0, and compute its dimension:

dim P(d; a; 0, . . . , 0, b, c) = dimP(d−1; a; 0, . . . , 0, b) + da + 2c + 3 (2.9)

3. Rough Classification of Curves with s(C) = deg(C)

The following proposition is easy and certainly well known [8], Remark 6.8,
but we include a proof for the convenience of the reader:

Proposition 3.1. For a space curve C, the inequality s(C) ≤ deg(C) holds; if
s(C) = deg(C), then

1. every subcurve D ⊆ C also satisfies s(D) = deg(D);
2. the curve Cred is either a line or the disjoint union of two lines, and on

each line in its support C has the structure of a quasiprimitive multiple
line satisfying a ≥ 0 (here a = deg(L1) is the first integer appearing in
the type of C).

Proof. The inequality s(C) ≤ deg(C) is proven for example in [7]. Suppose
from now on that s(C) = deg(C). If D ⊆ C and S is a surface of degree s(D)
containing D, there is an exact sequence

0 → IE(−s(D)) → IC → IC∩S,S → 0,
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where E, the subscheme of C residual to C ∩S, is a locally Cohen–Macaulay
curve of degree

deg(E) = deg(C) − deg(C ∩ S) ≤ deg(C) − deg(D).

Hence, s(E) ≤ deg(C) − deg(D). On the other hand, by the above exact
sequence s(C) ≤ s(E) + s(D), therefore, s(C) ≤ deg(C) − deg(D) + s(D).
This together, with the hypothesis s(C) = deg(C), implies deg(D) ≤ s(D),
hence equality must hold.

For an irreducible and reduced curve D, the equality s(D) = deg(D)
can hold only if D is a line—cf. [7, Proposition 3.2]. Note that C cannot
contain the union D of two lines meeting at one point because such a D has
s(D) = 1 < deg(D). Thus, the support of C is a union of disjoint lines. Since
the union of 3 disjoint lines lies on a quadric surface, the support of C consists
of at most two lines. Since the first infinitesimal neighborhood of a line in P

3

has degree 3 and is contained in a quadric surface, it cannot be contained in
C, so C has a quasiprimitive structure on each line in its support. Finally,
since any degree 2 subcurve of C is not contained in a plane while a double
line of type −1 is contained in a plane, we must have a ≥ 0. �

4. Multiple Lines with Good Cohomological Properties

Fix homogeneous coordinates x, y, z, w on P
3 so that L is the line of equations

x = y = 0. The projection π : Ld → L from the line M of equations z = w = 0
corresponds to the inclusion of coordinate rings

H0
∗ (OL) = k[z, w] ∼= k[x, y, z, w]/(x, y) ↪→ k[x, y, z, w]/(x, y)d ∼= H0

∗ (OLd
).

From the isomorphism of k[z, w]-modules

H0
∗ (OLd

) =
k[x, y, z, w]

(xd, xd−1y, . . . , yd)
∼=

d−1⊕
i=0

(k[z, w](−i))⊕(i+1) (4.1)

it follows

π∗OLd
∼=

d−1⊕
i=0

(OL(−i))⊕(i+1)
. (4.2)

Proposition 4.1. Let C be a curve of degree d supported on the line L, and
let π : Ld → L denote the projection from a line M disjoint from L. Fix an
integer � ≥ 0. The following conditions are equivalent

1. the genus of C is

g(C) = −(d − 1) −
(

d

3

)
− �

(
d

2

)
= B(d, d) − �

(
d

2

)
and

H0
(IC(� + d − 1)

)
= H0

(Id
L(� + d − 1)

)
.

2. the genus of C is g(C) = B(d, d) − �
(
d
2

)
and H1

(IC(� + d − 1)
)

= 0.

3. the sheaf π∗IC,Ld
is isomorphic to (OL(−d − �))⊕ d(d−1)

2 .
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Proof. If C has degree d and genus B(d, d) − �
(
d
2

)
= g(Cd,�), then the rank

and the degree of the locally free sheaf E = π∗IC,Ld
are the same as those of

OL(−d−�)⊕ d(d−1)
2 . Thus E ∼= OL(−d−�)⊕ d(d−1)

2 if and only if h0E(�+d−1) =
0, which is equivalent to h1E(� + d − 1) = 0 because χE(� + d − 1) = 0. As
h1ILd

(� + d − 1) = h2ILd
(� + d − 1) = 0, these vanishings are equivalent to

those in the statement. �

Definition 4.2. Given a pair of integers d ≥ 1 and � ≥ 0, we say that a d-line
is a Cd,� if it satisfies the equivalent conditions of Proposition 4.1.

Note that a Cd,0 is a curve of degree d, not lying on a surface of degree < d, of
maximum genus B(d, d): if a Cd,0 exists for a given d, then Beorchia’s bound
B(d, d) is sharp.

A line is a C1,� for every �. A double line of genus −� − 1 < 0 is a C2,�,
and conversely. Indeed, all non planar double lines arise as follows—see for
example [4]: take a smooth surface S containing L of degree � + 2 ≥ 2 and
let C be the divisor 2L on S. By adjunction

IL,C
∼= OS(−L) ⊗ OL

∼= OL(deg(S) − 2)) = OL(�).

From the exact sequence

0 → IC,L2 → IL,L2 → IL,C
∼= OL(�) → 0,

we see

IC,L2
∼= OL(−� − 2),

that is, C is a C2,�. Since IL,C
∼= OL(�), the double line C is primitive of

type a = � ≥ 0.
To analyze higher degree cases, we introduce an intermediate notion.

Definition 4.3. Given integers d ≥ 1 and � ≥ 0, we say that a d-uple line C
satisfies condition Cd,l if

h0(IC,Ld
(� + d − 1)) = 0 (Cd,l)

or, equivalently, H0
(IC(n)

)
= H0

(Id
L(n)

)
for every n ≤ � + d − 1.

For � = 0, the condition Cd,0 means simply that C is not contained in
any surface of degree < d, but for � > 0 the condition Cd,� is stronger as it
says that the only surface containing C of degree up to � + d − 1 are those
containing the whole infinitesimal neighborhood Ld. By Proposition 4.6, a
Cd,� is a d-uple line of maximum genus among those satisfying condition
Cd,l. Note that a double line C of type a, that is, of genus −a − 1, satisfies
condition C2,l if and only if a ≥ � because IC,L2

∼= OL(−a − 2).

Lemma 4.4. If C satisfies condition Cd,l and D ⊂ C is a locally Cohen–
Macaulay subcurve of degree k, then D satisfies condition Ck,l.

Proof. This follows from Id−k
L ID ⊆ IC . �

Remark 4.5. Unfortunately, it is not true that a degree k subcurve D of a
Cd,� is a Ck,�; the point of the previous lemma is that at least D satisfies
condition Ck,l.
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A Cd,�, assuming it exists, has maximum genus among degree d multiple
lines whose ideal agrees with that of Ld up to degree � + d − 1:

Proposition 4.6. Suppose C is d-uple line with support L. If � ≥ 0 and

H0
(IC(n)

)
= H0

(Id
L(n)

)
for n ≤ � + d − 1,

then g(C) ≤ −(d − 1) −
(

d

3

)
− �

(
d

2

)
.

Proof. By hypothesis, H0
(IC(d−1)

)
= 0, hence C is a curve of degree d that

does not lie on a surface of degree < d. It follows H1
(OC(n)

)
= 0 for n ≥ −1

by [7, Proposition 3.2]. Hence,

d(� + d − 1) + 1 − g(C) = h0(OC(� + d − 1))

≥ h0(OP3(� + d − 1)) − h0(Id
L(� + d − 1))

which is equivalent to g(C) ≤ g(Cd,�) because

d(� + d − 1) + 1 − g(Cd,�) = h0(OP3(� + d − 1)) − h0(Id
L(� + d − 1)).

�
In [3, p. 141], with a different terminology, it is noted that one could

prove sharpness of Beorchia’s bound in the case d = s by constructing curves
Cd,� for all d ≡ 2 modulo 3 and � = 0, 1, 2: indeed for d ≡ 2 modulo 3, a Cd,0

has genus B(d, d); when d ≡ 0 modulo 3 the disjoint union of a line and a
Cd−1,1 has genus B(d, d); finally, when d ≡ 1 modulo 3 the disjoint union of a
Cd−2,2 and a double line of genus 1−d has genus B(d, d). We introduced the
notion of a Cd,� to formalize and generalize this remark as follows:

Proposition 4.7. Suppose 1 ≤ k ≤ d − 1 and C and D are, respectively, a
Ck,d−k and Cd−k,k whose supports are disjoint. Then the disjoint union of C
and D is a curve of degree d and genus B(d, d) that does not lie on a surface
of degree d − 1.

Proof. A direct calculation shows

g(C ∪ D) = g(Ck,d−k) + g(Cd−k,k) − 1 = B(d, d).

Thus, we only need to show that C ∪ D is not contained in a surface of
degree < d. By way of contradiction, suppose F is the equation of a degree
d−1 surface S containing C ∪ D. We can assume the support of C is the
line of equations x = y = 0 and the support of D is the line z = w = 0.
By assumption, the polynomial F must lie in (x, y)k because C ⊂ S and in
(z, w)d−k because D ⊂ S, but this contradicts deg(F ) = d − 1. �

A d-uple line C that is a Cd,� is quasiprimitive, and there are some
obvious numerical constraints on the type of C:

Proposition 4.8. Suppose d ≥ 2 and C is a Cd,�. Then C is quasiprimitive.
If the type of C is (a; b2, . . . , bd−1), then � ≤ a ≤ � + �d−2

3 � and
d−1∑
j=2

bj + (a − �)
(

d

2

)
=

(
d

3

)
.
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In particular, if C is primitive, then d ≡ 2 modulo 3 and a = � + d−2
3 .

Proof. If d-uple line C is a Cd,�, then in particular it does not lie on a surface
of degree < d, hence it is quasiprimitive. By Lemma 4.4 the double line C2

contained in C satisfies condition C2,� and has type a, hence a ≥ �.
Comparing the genus of a Cd,� with the formula for the genus of a

quasiprimitive multiple line, we obtain the equality:

a

(
d

2

)
+

d−1∑
j=2

bj = �

(
d

2

)
+

(
d

3

)
.

If C is primitive, that is, all the bj ’s are zero, it follows d ≡ 2 modulo 3 and
a = � + d−2

3 . For an arbitrary C, the integers bj ’s are nonnegative, and the
above equality implies a ≤ � + �d−2

3 �. �

5. Examples of Low Degree

Triple lines have been studied by Nollet [4]. In particular, he shows that the
set of quasiprimitive triple lines of type (a; b) with a, b ≥ 0 is nonempty and
irreducible of dimension 5a + 2b + 10 [4, Corollary 2.6].

Proposition 5.1. (Triple lines) Fix an integer � ≥ 0. A triple line C satisfies
condition C3,l if and only if it is quasiprimitive of type (a; b) and either a = �
and b ≥ 1, or a ≥ � + 1. Furthermore, C is a C3,� if and only if a = � and
b = 1. In particular, the family of C3,� curves is irreducible of dimension
5� + 12.

Proof. If C satisfies condition C3,l, then C is quasiprimitive because it does
not lie on a surface of degree 2. Suppose the type of C is (a; b). Then C
contains a unique double line C2, IL,C2

∼= OL(a), IC2,C
∼= OL(2a + b). By

Lemma 4.4 the double line C2 satisfies condition C2,l, therefore, a ≥ �. Con-
sider the exact sequence of OL-modules

0 → IC

ILIC2

→ IC2

ILIC2

→ OL(2a + b) → 0.

As IC2
ILIC2

∼= OL(2a) ⊕ OL(−2 − a), we conclude IC

ILIC2

∼= OL(−2 − a − b).
Then note that there is an obviously surjective map of OL-modules

α : IL,L2 ⊗ IC2,L2 → ILIC2

I3
L

The sheaf on the left is isomorphic to OL(−3 − a)⊕2, while the sheaf on
the right is locally free of rank two, thus α must be an isomorphism and
ILIC2

I3
L

∼= OL(−3 − a)⊕2. Finally, from the exact sequence

0 → ILIC2

I3
L

→ IC,L3 → IC

ILIC2

→ 0

we conclude π∗IC,L3
∼= OL(−3 − a)⊕2 ⊕ OL(−2 − a − b) so that C satisfies

condition C3,l if and only if either a = � and b ≥ 1 or a ≥ � + 1, and C is a
C3,� if and only if it has type (�; 1). �
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The case of quadruple lines is more difficult because the type of a
quasiprimitive quadruple line C does not determine its postulation, that is,
the sequence n �→ h0(IC(n)). We show that a quadruple line is a C4,� if and
only if it is a sufficiently general quasiprimitive quadruple line of type (�; 2, 2).

Theorem 5.2. (Quadruple lines) If a quadruple line C satisfies condition
C4,l, then C is quasiprimitive of type (a; b2, b3) and either a = � and b2 ≥ 2,
or a ≥ � + 1.

Furthermore, if a quadruple line C is a C4,�, then C is quasiprimitive
of type (�; 2, 2); and a sufficiently general quasiprimitive quadruple line of
type (�; 2, 2) is a C4,�. Such curves form a nonempty irreducible family of
dimension 9� + 21.

Proof. Quadruple lines have been studied in [5]. In particular, the dimension
of the family of quasiprimitive quadruple lines of type (a; b, c) is computed
in [5, Proposition 2.3]) and we summarized the argument on page 6. Let C
be a quasiprimitive 4-uple line of type (a; b2, b3). Then C contains a unique
double line C2 and a unique triple line C3, and

IL,C2
∼= OL(a), IC2,C3

∼= OL(2a + b2), IC3,C
∼= OL(3a + b3).

If C satisfies condition C4,l, then C is quasiprimitive and C3 satisfies condition
C3,l, hence by 5.1 either a = � and b2 ≥ 1 or a ≥ � + 1.

It remains to exclude the case a = � and b2 = 1. By [5, Lemma 2.2], if
one defines J = ILIC3 +I2

C2
, then IC3/J ∼= OL(3a+ b2)⊕OL(−a− b2 − 2).

When b2 = 1, it follows h0((IC3/J )(a + 3)) = 4a + 6. On the other hand, by
the proof of 5.1, π∗IC3,L3

∼= OL(−3 − a)⊕3 hence

h0(IC3(a + 3)) = h0(IL4(a + 3)) + 4(a + 1) + 3.

Now suppose a = � and let p = d + � − 1 = a + 3: then

h0(IC(p)) ≥ h0(J (p)) ≥ h0(IC3(p)) − h0((IC3/J )(p)) = h0(IL4(p)) + 1.

We conclude that C does not satisfy condition C4,l when a = � and b2 = 1.
Now suppose C is a C4,�, then looking at the genus C we see C must

be quasiprimitive of type (�; 2, 2). Let us show that a sufficiently general
quasiprimitive quadruple line C of type (�; 2, 2) is a C4,�.

Using the same notation as above, in this case IC3,C
∼= OL(3a + 2) and

IC3/J ∼= OL(3a + 2) ⊕ OL(−a − 4), hence IC/J ∼= OL(−a − 4), thus it is
enough to show that, for a general choice of C3, the sheaf F = π∗J /I4

L is
isomorphic to OL(−a − 4)⊕5. To prove this, we recall Nollet’s description [4]
of the ideal of a quasiprimitive 3-line C3 of type (a; 2): there exist forms

• f, g ∈ k[z, w] of degree a + 1 with no common zero;
• p, q ∈ k[z, w] of degree 2 and 3a + 4 respectively, with no common zero;
• r, s, t ∈ k[z, w] of degree a + 2 such that q = rf2 + sfg + tg2;

such that
(i) in the exact sequence

0 → IC3

ILIC2

→ IC2

ILIC2

∼= OL(2a) ⊕ OL(−a−2) → IC2,C3
∼= OL(2a + 2) → 0
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the last map is given by [p, q];
(ii) the homogeneous ideal of C3 is

IC3 = I3L+ < xF, yF,G >

where F = xg − yf and G = pF − rx2 − sxy − ty2.

Let H1 = xG and H2 = yG, and consider the map β of OL-modules

E = OL(−2a−4) ⊕ OL(−a−5)⊕2 ⊕ OL(−a−4)⊕3 β−→ G = π∗
IC3

I4
L

that sends the generators of E to the classes of F 2, H1, H2, x2F ,xyF , y2F ; as
all these polynomials are in I2C + ILIC3 , the map β factors through the inclu-
sion F = π∗J /I4

L ↪→ G. By the proof of Proposition 5.1 π∗
IC3
I3
L

is isomorphic
to OL(−a − 3)⊕2 ⊕ OL(−a − 4), and so

G = π∗
IC3

I4
L

∼= OL(−3)⊕4 ⊕ OL(−a−3)⊕2 ⊕ OL(−a−4)

with generators corresponding to x3, x2y, xy2, y3, xF , yF and G. With
respect to the chosen basis, the matrix of β : E → G is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −r 0 g 0 0
0 −s −r −f g 0
0 −t −s 0 −f g
0 0 −t 0 0 −f
g p 0 0 0 0

−f 0 p 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Generically, the map β has rank 5 as one can see for example by computing the
5×5 minors of its matrix. On the other hand, the section [p,−g, f,−r,−s,−t]T

of H0(E(2a + 6)) is in the kernel of H0(β(2a+6)) by a direct check or because

pF 2 − gH1 + fH2 − rx2F − sxyF − ty2F = 0.

As f and g have no common zeros on L, we conclude that the kernel of β is
isomorphic to OL(−2a − 6). As we have already observed, the image of β is
contained in F = π∗J /I4

L hence we have an exact sequence

0 → OL(−2a − 6) → E β→ F .

Finally, from the exact sequence 0 → J
I4

L

→ IC3

I4
L

→ IC3

J → 0 we compute

that F = π∗J /I4
L has the same rank 5 and the same degree −5a − 20 as the

image of β, hence E β→ F is surjective.
We can now show that F ∼= OL(−a − 4)⊕5 if C3 is general. As F is

locally free of the same rank and degree as OL(−a − 4)⊕5, it is enough to
prove H0F∨(−a − 5) = 0. Dualizing and twisting the above exact sequence
we obtain

0 → F∨(−a − 5) → OL(−1)⊕3 ⊕ O⊕2
L ⊕ OL(a − 1) → OL(a + 1) → 0.
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Thus, what we need is that the map

H0O⊕2
L ⊕ H0OL(a − 1)

[f,−g,p]→ H0OL(a + 1)

be injective. Now this is certainly the case is f , g and p are chosen general,
as it is injective if we choose f = za+1, g = wa+1 and p = zw. �

6. Families of Maximum Genus Curves of Low Degree

To summarize, the curves Cd,� of which we know existence are:

1. when d = 3, quasiprimitive multiple lines of type (�; 1)—this paper,
Proposition 5.1;

2. when d = 4, quasiprimitive multiple lines of type (�; 2, 2)—this paper,
Theorem 5.2;

3. when d = 3m − 1 ≤ 119, primitive multiple lines of type a = � + d−2
3 —

these are constructed in [3], with the aid of Macaulay2 for m ≥ 4; at
least in characteristic zero, in [6] we will show how to extend this result
to all degrees d ≡ 2 modulo 3.

One would be tempted to guess from these examples that the family of Cd,�’s
supported on a line L is irreducible, but there might be counterexamples
already for d = 5: I do not know if there are quasiprimitive quintuple lines
of type (0; 2, 2, 6) or of type (0; 2, 3, 5) that do not lie on a quartic surface,
or whether, if they exist, they lie in the closure of the family of primitive 5
lines of type a = 1.

We close the paper enumerating the known examples of degree d curves
of maximum genus B(d, d) not lying on surfaces of degree < d for small d,
thereby proving Theorem 1.4 in the introduction.

For d = 2, the maximum genus B(2, 2) is −1 and every curve of degree 2
and g = −1 is not contained in a plane; the 7 dimensional irreducible family
of double lines of genus −1, that is of C2,0’s, is contained in the closure of the
family of two disjoint lines, which is the general member of the 8 dimensional
Hilbert scheme H2,−1.

For d = 3, the maximum genus B(3, 3) is −3; Proposition 4.7 provides
two irreducible families of degree 3 curves of maximum genus −3 not lying
on a quadric: the 12 dimensional family of quasiprimitive triple lines of type
(0; 1), and the 13 dimensional family whose general member is the disjoint
union of a line and a double line of genus −2; the first family is in the closure
of the second by [4, Proposition 3.3].

For d = 4, the family of quadruple lines of maximum genus B(4, 4) = −7
not lying on a cubic surface is not irreducible. It contains by Proposition 4.7

• the 22-dimensional irreducible family F1 whose general member is the
disjoint union of two double lines of genus −3;

• the 21-dimensional family F2 whose general member is the disjoint union
of a line and a quasiprimitive triple line of type (1; 1);

• the 21-dimensional family F3 whose general member is a general quasiprim-
itive quadruple line of type (0; 2, 2).
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It is clear the second family F2 cannot be in the closure of family F1, and the
closure of these two families are in fact a component of the Hilbert scheme
H4,−7 by [5, Theorem 6.2], while the family F3 is in the closure of F1 by [5,
Proposition 3.3].

For d = 5, the family of quintuple lines of maximum genus B(5, 5) = −14
not lying on a quartic surface is not irreducible. It contains

• the 35-dimensional irreducible family G1 whose general member is the
disjoint union of a C3,2 and a C2,3;

• the 34-dimensional irreducible family G2 whose general member is the
disjoint union of a line and a general C4,1;

• the 30-dimensional irreducible family G3 whose general member is a
general primitive quintuple line of type a = 1.

and there are no containment between the closures of these 3 families in the
Hilbert scheme H5,−14: one reason for which G3 is not in the closure of G1

or G2 is that its general member is a curve that has embedding dimension
two at each of its points, a property that does not hold for any curve in G1

and G2.
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