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• Transfer functions may depend on several
parameters, especially cockpit
configuration

• Can only be obtained experimentally,
from existing cockpit layouts: cost, time,
complexity

• What about simulating pilot biodynamics?
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Multibody model implemented in free, general purpose software MBDyn http://www.mbdyn.org

Each limb accounts for 6 rigid bodies:

• Scapula

• Clavicle

• Humerus

• Radius

• Ulna

• Hand

For a total of 36 degrees of freedom.

The hand is considered as a single rigid body, as it is
usually gripping the inceptor’s handle.

28 muscles are modeled for each limb.
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Multibody model implemented in free, general purpose software MBDyn http://www.mbdyn.org

Constraints:

• Scapulothoracic (ST): deformable, viscoelastic joint

• Sternoclavicular (SC): spherical joint (3)

• Acromioclavicular (AC): spherical joint (3)

• Glenhohumeral (GH): spherical joint (3)

• Humeroradial (HR): spherical joint (3)

• Humeroulnar (HU): revolute joint (5)

• Radioulnar (RU): point-on-line joint (2)

• Radiocarpal (RC): Cardano hinge (4)

13 degrees of freedom remain, per limb, after constraints
are enforced.
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Muscle Modeling: Hill-type 1D viscoelastic actuators:
muscle and tendon passive behaviors are considered
jointly in a Passive Elastic Element (PEE); pennation
angles and cross-bridge elasticity are disregarded (Zajac,
1989).

Force model by Pennestrì et al., 2008:

fm(x, v, a) = fm0 (f1(x)f2(v)a(t) + f3(x))

f1(x) = e(−40(x−0.95)4+(x−0.95)2)

f2(v) = 1.6
(

1− e(−1.1/(v−1)4+0.1/(v−1)2)
)

f3(x) = 1.3 tan−1 (0.1(x− 0.22)10
)
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Multibody model implemented in free, general purpose software MBDyn (http://www.mbdyn.org)
It accounts for 35 rigid bodies:

• head (1)

• cervical, thoracic and lumbar vertebrae (25)

• viscerae (8)

• the buttocks (1)

For a total of 210 unconstrained degrees of freedom.
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Algebraic Constraints:

• Intervertebral: lateral and antero-posterior relative displacements
constrained

• Vertebra-viscera: all relative rotations constrained

• Buttocks-Pelvis: all relative degrees of freedom except relative
vertical displacement and rotation about lateral axis

79 degrees of freedom remain after constraints are enforced.

Internal forces:

• Intervertebral: linear viscoelastic elements acting on relative axial

displacements, rotational viscoelastic elements acting on all relative

rotations;

• Vertebra-viscera: linear viscoelastic elements acting on all relative

displacements;

• Viscera-viscera: linear viscoelastic elements acting on all relative

displacements;

• Buttocks-Pelvis: 6D linear viscoelastic element acting on all relative

displacements/rotations;

(initial) Parameters values taken from literature (Kitazaki et al., 1997, Valentini

et al. 2016)
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Preprocessing:

1 generate geometrical and inertial properties of segments

2 define initial pose (static model)

Solution phases:

1 Inverse kinematics: penalty approach, focus on ergonomy

2 Inverse dynamics

3 Estimation of muscular activation: optimization seeking minimal total activation / minimal metabolic cost /
minimal total muscle force

4 Direct analysis: reflexive part of activation estimated and imposed, interaction with full vehicle model is
evaluated
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Since we operate in a virtual prototyping framework, we cannot rely
on subject specific definition of parameters.

The generation of the parameters is based on statistical models:

1 full ribcage model by Shi et al.

g = g +P ·C · f (1)

with f =
[

a s b g 1
]T

◮ a = age
◮ s = stature
◮ b = BMI
◮ g = gender

2 linear regression equations for segment lengths
(e.g. [Cheverud et al., 1990])

3 scaling equations for segments inertial parameters ([McConville
et al., 1980, Dumas et al., 2007])
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Imposed kinematics, from ergonomy and task-dependent considerations:

1 Head orientation (3 d.o.f)

2 C1 vertically aligned with Pelvis/First “non supported” thoracic vertebra (2 d.o.f)

The system is characterized by a high degree of kinematic redundancy.
Direct solution at position level, penalty approach.

ke
min Jp(x) =

1

2
(θ − θe)

T
Ke (θ − θe) + λ

Tφ+ µT (ψ(x)−α(t))

min Jv(ẋ) =
1

2
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T
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min Ja(ẍ) =
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/x

)

+ µT
(

ψ/xẍ
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The spine vertebra-vertebra internal elastic elements contribute to the total potential energy that is minimized during
the kinematics inversion.
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Baseline Activation

Once the kinematics is fully known, joint torques can be computed

c =
(

θ
+

/x

)T

(Mq̈− f)

Torques are, in turn, produced by a redundant set of muscle actuators. Therefore an optimization problem is solved,
seeking the related activations

min J(a) =
1

4
aT

(

aTW′a
)

a+
1

2
aTW′′a

s.t.

c =
(

θ
+

/x

)T

Bfm (x, v, a)

0 < ai < 1

However, matrix A =
(

θ
+

/x

)T

is rectangular and can be therefore decomposed, for example with SVD:

A = UΣVT =
[

U
] [

Σ O
]

[

VT
TAM

VT
TLAM

]

(2)

Highlighting the presence of Torque-Less Activation Modes.
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The baseline activation, directly depending on the torques required to perform a task, does not take into account the
impedance control of the Central Nervous System.

Two contributions are introduced for this purpose:

1 TLAMs: a linear combination bVTLAM is sought by solving

min J(b) =
1

2
bTW′′′b

s.t.

0 < ai < 1

2 reflexive activation: linearized, quasi-steady approximation of this contribution is introduced:

ar = kp

(

x

x0

−
xref

x0

)

+ kd

(

ẋ

v0

)

The total activation, for all muscles, therefore is (calling a0 the baseline contribution):

a = a0 +KTLAMVTLAMb+ ar
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EXPERIMENTAL ACTIVITIES

Experimental Activities 46
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Test Campaign:

• facility: Leonardo Helicopters Division fixed-base helicopter flight simulator AWARE

• tested scenario: medium weight helicopter (AW169/AW129) deck landing on frigate ship (Bergamini class)

• pilot: experienced, ex-navy test pilot

descent,

decrease GS

to match ship’s

(hover alongside)

(straight-in)

400 ft, 50 kn

50 ft

ship GS

LDP

Objectives:

1 identify typical muscular activation patterns

2 search for correlation perceived and measured pilot workload and task difficulty

3 validate and improve pilot biomechanical (multibody) models
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Motion Capture

System composed by 8 NIR cameras that
capture the motion of 9 reflective markers:

1 sternum (manubrium)

2 R acromion

3 R lateral elbow

4 R medial wrist

5 L acromion

6 L lateral elbow

7 L medial elbow

8 L lateral wrist

9 L medial wrist
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EMG measurements

6 Electromiography sensors:

1 L Anterior Deltoid

2 L Posterior Deltoid

3 L Biceps Brachii

4 L Triceps Brachii

5 L Wrist Flexor

6 L Wrist Extensor
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Statistical Parameter Mapping (SPM) analysis: individual muscles EMG activity vs Bedford score
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Statistical Parameter Mapping (SPM) analysis: average EMG activity of limb section vs Bedford score
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Statistial Parameter Mapping (SPM) analysis: difference of EMG activity of limb section vs Bedford score
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Linear regression on average EMG activity in correlated time window vs Bedford score
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Modeling fallbacks:

1. choice and weighting of objective function in baseline activation computation

J(a0) =
1

4
aT0

(

aT0 F0a0
)

a0 +
1

2
aT0 F0a0

2. choice of TLAMs that favours activation level increase in forearm muscles

J(b) =
1

2
bTF0b

3. use of time-to-target (Padfield, 2011) concepts in gain scheduling for TLAMs and reflexive contributions to
activation

a = a0 +K(τ) (VTLAMb+ ar)
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BDFTs estimated with multibody model:

Collective BDFT
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THE RPC TESTBED @DAER
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RPC Test-bed: composed by:

1 a 6-DOF Motion Platform System (MPS) Bosch
eMotion 1500;
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RPC Test-bed: composed by:

1 a 6-DOF Motion Platform System (MPS) Bosch
eMotion 1500;

2 a customized measurement system;
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RPC Test-bed: composed by:

1 a 6-DOF Motion Platform System (MPS) Bosch
eMotion 1500;

2 a customized measurement system;

3 a reconfigurable cockpit mock-up.
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The pilot-vehicle system is excited by a pseudo-random
waveform in the frequency band [1, 7.5] hertz with limited
RMS acceleration level:

• 1m s−2 for the vertical axis acceleration z̈(t);

• 0.5m s−2 for the lateral axis acceleration ÿ(t);

• 1.5m s−2 for the longitudinal axis acceleration ẍ(t);

while the pilot is asked to perform a simple tracking task.
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Mean and standard deviation of the identified frequency
and damping at different longitudinal cyclic lever position.
Input longitudinal acceleration. Output: longitudinal cyclic
rotation.

Mean and standard deviation of the identified frequency
and damping at different lateral cyclic lever position. Input:
lateral acceleration. Output: lateral cyclic rotation.
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Mean and standard deviation of the identified frequency
and damping at different collective lever position using
light short collective (1.21 kg, 350mm) stick. Input: vertical
acceleration Z̈. Output: collective rotation δ.

Mean and standard deviation of the identified frequency
and damping at different collective lever position using
heavy, long collective. (3.03 kg, 800mm) Input: vertical
acceleration Z̈. Output: collective rotation δ.
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Conclusions

• Understanding of PVI & A/RPC

• Modeling of pilot’s BDFT and NMA

• Understanding of aeroelastic RPC phenomena

• Biomechanical pilot modeling

• Correlation with experiments
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Conclusions

• Understanding of PVI & A/RPC

• Modeling of pilot’s BDFT and NMA

• Understanding of aeroelastic RPC phenomena

• Biomechanical pilot modeling

• Correlation with experiments

Future work

• Biomechanical modeling for BDFT/NMA prediction
of novel configurations

• Evolve RPC testbed into RPC-capable Flight Sim

• Develop design guidelines for RPC-free
configurations
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