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Abstract

The increasing number of objects in orbit is leading to more instances of close encounters between satellites and
debris. In this setting, Space Situational Awareness (SSA) plays a crucial role in establishing guidelines to ensure the
preservation of the current space environment and vital assets. One of these measures is the design of Collision Avoid-
ance Maneuvers (CAMs) to tackle potential conjunctions between a primary spacecraft and a secondary object. In the
state of the art, many works have analyzed impulsive and low-thrust CAM planning leveraging motion linearization
to speed up the solution process. However, the application of the Theory of Functional Connections (TFC) to address
this challenge remains largely unexplored in the literature. To fill this gap, this study investigates the design of CAM
through an Energy-Optimal Control Problem (EOCP), framed with the aid of TFC. The TFC methodology derives
the so-called constrained functionals that analytically satisfy the imposed constraints. By separating the set of con-
straints from the nonlinear system of Differential Equations (DEs), the TFC translates the Two-Point Boundary Value
Problem (TPBVP) into an unconstrained optimization problem. This paper aims to perform a comparison between
the TFC-based solution and a fully analytical approach applied to the linearized dynamics. Two strategies shape the
TFC CAM policy. On the one hand, the outer-loop approach solves the Lagrange multiplier by optimizing the TFC
solution with the terminal condition. On the other, the single-loop approach embeds the Lagrange multiplier in the set
of unknowns and the terminal condition acts as an additional loss function. The algorithm performance is evaluated
in terms of computational cost, accuracy, convergence, and the resulting impulse required to perform the maneuver.
The CAMs can be planned to meet different terminal conditions at the Time of Closest Approach (TCA), such as the
Miss Distance (MD) or the Square Mahalanobis Distance (SMD). The latter leverages Chan’s Probability of Colli-
sion (PoC) to set the safeguard limit and assumes constant covariances, short-term encounters, and a spherical object
approximation. Moreover, the dependence of the solution on the configuration parameters of the TFC algorithm, such
as the discretization of the domain, the number of basis functions, and the type of orthogonal polynomials (Chebyshev,
Legendre) is studied through several sensitivity analyses.

Keywords: Space Debris, Collision Avoidance Maneuver, Theory of Functional Connections, Optimal Control.

1. Introduction
Space debris overpopulation threatens to compromise

the space environment as a viable human resource. De-
spite the fact that very few events are associated with col-
lisions, it is expected that they will become the dominant
source of space debris in the future. Notably, the space
debris population would continue to increase even if no
more satellites were put into orbit since collisions between
the existing debris will continue to occur. As the number
of objects in space increases, so does the probability of
collision between them.

As part of the possible preventive actions, let us ex-
plore collision avoidance maneuvers, a countermeasure
that is of interest to this study. These maneuvers fall under
trajectory optimization, where the goal is to chart a path
that meets specific initial and terminal conditions while

minimizing relevant quantities, typically the amount of
fuel needed to perform the maneuver.

The study of optimizing low-thrust Collision Avoid-
ance Maneuvers (CAMs) is well-established. Gonzalo
et al. [1] developed a semi-analytical solution to max-
imize miss distance by utilizing average dynamics, as-
suming continuous tangential thrust. C. Bombardelli and
J. Hernando-Ayuso [2] tackle the optimal low-thrust col-
lision avoidance problem for two objects in circular or-
bits with constant thrust magnitude. Andrea De Vittori
et al. [3] derived a fully analytical approach for energy-
optimal CAMs leveraging motion linearization in both
Earth-centered inertial (ECI) and B-plane coordinates,
providing a good guess for the fuel-optimal solution.

The Theory of Functional Connections (TFC) has
been extensively applied in research on optimal control
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problems and astrodynamics. In [4], R. Furfaro and D.
Mortari introduce the use of TFC to solve Two-Point
Boundary Value Problems (TPBVPs) derived from indi-
rect optimal control methods. This pioneering applica-
tion addresses various optimal guidance issues, includ-
ing energy-efficient landings on planetary bodies with
fixed TFC loop times and fixed-time optimal intercepts
in target-interceptor scenarios. Schiassi et al. [5] present
a unified method for determining energy-optimal landing
trajectories on various planetary bodies, including plan-
ets, asteroids, and comets. In [6], H. Johnston and D.
Mortari apply the TFC to the perturbed Lambert’s prob-
lem. Their method starts with an unperturbed solution as a
baseline and incorporates perturbations using constrained
functionals. Johnston and Mortari [7] explore the applica-
tion of the TFC to perturbed orbit propagation, extending
from their work on Lambert’s problem. The study finds
that while TFC performs comparably to other techniques,
it is particularly well-suited for boundary-value problems.

This thesis explores the application of TFC to solve
the energy-optimal CAM problem, marking a significant
first step towards integrating multiple constraints into the
mission design. While traditional approaches have largely
focused on linearized models and analytical tools, this re-
search addresses the original nonlinear equations using a
numerical scheme framed via the TFC. By demonstrating
the capability to meet typical terminal conditions for re-
ducing collision risk in orbital encounters, this work lays
the groundwork for more advanced approaches. The per-
formance of the TFC-based strategy is then evaluated by
comparing it to the linear-analytical method introduced in
[3]. This comparison seeks to determine whether the non-
linear solutions significantly differ from the linear ones
and to assess the potential of TFC in this specific context.

2. Fundamental principles
This section seeks to provide a grasp of the essential

principles that lay the foundations of CAMs, including
the mathematical frameworks employed to approach the
problem.

The dynamical model employed to simulate the mo-
tion of an object orbiting the Earth is the so-called Re-
stricted Two-Body Problem (RTBP). Assuming that the
object’s mass is negligible compared to the Earth’s mass,
(m2 ≪ m1), the state-space equations describing the tra-
jectory of m2 in a reference frame (r.f.) centered at m1

are: ṙ = v

v̇ = − µ

r3
r

(2.1)

where µ = G (m1 +m2) ≈ Gm1 is the gravitational
parameter.

2.1 Conjunction definition

The state vectors of the centre of mass of the primary
and secondary objects respectively, expressed in a generic
r.f. R, are defined as xp = (rp,vp) and xs = (rs,vs). At
a generic time, the motion of each object is given by Eq.
(2.1). In this work, R denotes the ECI r.f.. The shape and
attitude of space objects, especially debris, are generally
difficult to assess. For this reason, the collision domain of
each body is modelled according to the spherical geome-
try hypothesis: Op and Os are regarded as spheres of radii
Rp and Rs respectively, centred in their centre of mass.

2.1.1 Short-term encounter

An encounter is considered short-term if the conjunc-
tion duration is negligible compared to the orbital period
of the objects involved. To evaluate such a condition, the
conjunction duration (tc) is defined according to [8], and
represents the time required for the primary object to cross
the 1σ relative position uncertainty ellipsoid in the η B-
plane direction (see Sect. 2.1.2) at Time of Closest Ap-
proach (TCA) (which corresponds to the relative velocity
direction) [9]:

tc =
2ση

∥vp − vs∥
(2.2)

Thus, considering tc and the primary orbital period, a
short-term encounter occurs when:

tc
Tp
≪ 1 (2.3)

2.1.2 B-plane reference frame

The use of a B-plane coordinate system is a convenient
method for conjunction analysis. The relative position be-
tween the objects, before and after performing a CAM, is
usually measured in terms of such r.f.

First, let {x, y, z} be the axes of an inertial r.f. centred
at Op −Os impact point, called the encounter frame, such
that:

ux =
vp

∥vp∥
, uz =

vp × vs

∥vp × vs∥
, uy = uz × ux.

(2.4)
Considering the conjunction duration as a small inter-

val of time ∆t ≪ 1 around the impact event, the motion
of both objects can be assumed to be uniform rectilinear
with good approximation as per the short-term encounter
hypothesis. The B-plane is centred at the secondary object
Os, according to the formulation of [10]. In conjunction,
it lies perpendicular to the objects’ relative velocity vector
vp − vs, thus contains both of them at TCA.

The introduction of a new coordinate set b3D =
[ξ, η, ζ]⊤, in such r.f., is handy for all the subsequent
mathematical derivations. The unitary vectors are defined
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as follows:

uξ =
vp × vs

∥vp × vs∥
, uη =

vp − vs

∥vp − vs∥
, uζ = uξ × uη.

(2.5)
The unitary vectors define the rotation matrix from the

inertial r.f. to the B-plane:

R3D = [uξ, uη, uζ ]
⊤ (2.6)

Moreover, the projection on the η-axis is achieved by:

R2D = [uξ, uζ ]
⊤ (2.7)

2.1.3 Collision probability model

A probability constraint takes into account the pres-
ence of uncertainties in the knowledge of the objects’
state. In a short-term scenario, where the relative motion
follows a straight-line trajectory, the three-dimensional
Probability of Collision (PoC) is confined to the volume
of an infinite cylinder defined by the volume swept by a
sphere of radius RA = RP + RS centered at the primary
object. By performing integration along the entire extent
of this volume (i.e., the direction of the relative velocity
vector), PoC is described by a two-dimensional integral
in the encounter B-plane. This problem was originally
explored by Rice in [11]. As part of the overall solution
to the collision probability problem, Chan later developed
an absolutely convergent infinite series representation for
the Rician Integral. It depends on parameters like the ra-
dius of the circular cross-section, the displacement of the
circle from the Probability Density Function (PDF) cen-
ter, and the standard deviation of the Rician PDF:

PoC(u, v) = e−
v
2

M∑
m=0

vm

2mm!

[
1−e−u

2

m∑
k=0

uk

2kk!

]
(2.8)

where m ∈ N is the desired expansion order, u ∈ R+ is
the ratio of the impact cross-sectional area to the area of
the 1σ B-plane covariance ellipse:

u =
s2A

σξσζ

√
1− ρ2ξζ

(2.9)

and v ∈ R+ is the Square Mahalanobis Distance (SMD):

v = SMD = (rp − rs)
⊤R⊤

b,2DC
−1Rb,2D(rp − rs)

= b⊤
p C

−1bp

(2.10)
where rp, rs are the primary and secondary position at
conjunction, bp the relative position of the primary object
with respect to the secondary one in the B-plane r.f., and
C the associated covariance matrix:

Cξζ =

 σ2
ξ ρξζσξσζ

ρξζσξσζ σ2
ζ

 (2.11)

In this work, the expression is truncated to m = 3, as
done in [3].

2.2 Optimal control theory

The Optimal Control Problem (OCP) statement can
be condensed into the following necessary conditions (for
this problem):

min
u(t)

∫ tf

t0

ℓ(x(t),u(t), t) dt (2.12)

s.t.


ẋ(t) = f(x(t),u(t), t)

x(t0) = x(t0)

Ψ(x(tf ), tf ) = 0

Optimality consists in finding the unknown u∗(t) that
produces the response x∗(t) when plugged into the right-
hand side of the dynamic differential equations, such that
the evaluation ℓ(x∗(t),u∗(t), t) yields the minimum cost.

It is convenient to introduce the Hamiltonian function
associated with the OCP in Eq. (2.12), by adjoining the
right-hand side of the differential equations to the cost in-
tegrand as:

H(x(t),u(t),λ(t), t) =ℓ(x(t),u(t), t)

+ λ⊤(t)f(x(t),u(t), t)
(2.13)

with λ being the Lagrangian multiplier vector (also called
costate vector).

The OCP necessary conditions translate to the so-
called Euler-Lagrange equations, which can be formu-
lated using the Hamiltonian:

ẋ(t) =
∂H

∂λ

λ̇(t) = −∂H

∂x

0 =
∂H

∂u

(2.14a)

(2.14b)

(2.14c)

with conditions: 
Ψ(x(tf ), tf ) = 0

λ(tf ) = ν
∂Ψ

∂x(tf )

x(t0) = x0

(2.15a)

(2.15b)

(2.15c)

The system given by Eqs. (2.14) and (2.15) includes
a TPBVP, a Differential Algebraic Equation (DAE), and
a terminal condition. If Eq. (2.14c) can be solved to pro-
duce the relation u = u(x,λ, t), the system becomes a
pure TPBVP. However, Euler-Lagrange equations only
work with unbounded control. Pontryagin’s Maximum
Principle (PMP) [12] introduces the possibility of con-
straining the control to a set of admissible controls: u ∈
U . This formulation leads to a new set of Euler-Lagrange
equations. As a result, the third equation (2.14c) is re-
placed as follows:

0 =
∂H

∂u
=⇒ u = argmin

u∈U
H(x,λ,u, t) (2.16)
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2.3 Terminal conditions

The CAM problem is characterized by a terminal
equality constraint imposed at TCA. Such a condition can
be translated into a miss distance constraint or a probabil-
ity constraint depending on whether the state-correlated
uncertainties of the involved objects are negligible or not.
The terminal conditions can be generally formulated in
the following way:

Ψ(x(tf ), tf ) = (rpc − rsc)
⊤K(rpc − rsc)− δ2 = 0

(2.17)
where K and δ depend on the type of constraint:

MD: K = I δ2 = d2

(2.18)

BP MD: K = R⊤
b,2DRb,2D δ2 = d2B

(2.19)

SMD: K = R⊤
b,2DC

−1Rb,2D δ2 = d2M
(2.20)

The B-plane MD can also be tied to the isotropic PoC,
which is obtained by retaining only the first term of the
series (m = 0) in Eq. (2.8). The result is expressed as
[13]:

PoCiso = exp

{
ln

(
1− e−

R2
A

2σ2

)
− 1

2

d2B
σ∗2

}
(2.21)

where σ =
√
σξσζ , and σ∗ = max{σξ, σζ}. By solving

for dB in Eq. (2.21), the B-plane MD results as:

dB =

√√√√
2σ∗2 ln

(
1− e−

R2
A

2σ2

PoCiso

)
(2.22)

Chan’s formulation, in its direct form, lacks invertibil-
ity. However, according to [14] it is possible to derive
the SMD for a given PoC. The Mahalanobis distance is a
measure that represents how far a sample point is from the
mean of the distribution in terms of standard deviations.

2.4 Analytical energy-optimal CAM design

The Energy Optimal (EO) CAM design, which is the
central point of this work, is characterized by a low thrust
control policy that aims at minimizing the overall energy.
Based on [3], there exists a fully analytical solution to the
EO CAM problem, which mainly hinges on motion lin-
earization. This formulation adopts ECI coordinates and
free thrust direction, where the control is defined by the
acceleration vector u = [ux, uy, uz]

⊤.
Adapting the theory introduced in Sect. 2.2, the cost

function is defined as:

J =

∫ tf

t0

1

2
u⊤u dt (2.23)

and the terminal condition Ψ(r(tf ), tf ) = 0 can be gen-
erally set according to Eq. (2.17).

Further, the augmented cost function shifts to:

J̄ = νΨ(rf ) +

∫ tf

t0

{1

2
u⊤u+ λ⊤[ẋ− f(x,u)

]}
dt

(2.24)
where time dependencies have been omitted for the sake
of conciseness. The term ν ∈ R is the additional La-
grangian multiplier paired with the the terminal con-
straint, λ = [λr,λv]

⊤ ∈ R6 alludes to the costate vector,
and f ∈ R6 embeds the problem dynamics ẋ = f(x,u)
given by:ṙ = v

v̇ = − µ

r3
r+ u

ICs:

{
r(t0) = r0

v(t0) = v0

(2.25)

The resulting Hamiltonian is:

H =
1

2
u⊤u+ λ⊤

r v + λ⊤
v

(
− µ

r3
r+ u

)
(2.26)

The optimal control law results from the PMP as fol-
lows:

u = −λv (2.27)

Finally, following the formulation of Eqs. (2.14) and
Eqs. (2.15), the Euler-Lagrange equations read:

ṙ = v

v̇ = − µ

r3
r− λv

λ̇r =
µ

r3
λv −

3µr · λv

r5
r

λ̇v = −λr

BCs:



(rf − rs)
⊤K(rf − rs)− δ2 = 0

λr(tf ) = 2νK (rf − rs)

λv(tf ) = 0

r(t0) = r0

v(t0) = v0

(2.28)

Eq. (2.28) forms a TPBVP, which can be addressed
analytically by linearizing the dynamics around the nom-
inal uncontrolled Keplerian trajectory. The aim is to pin-
point the initial costates λr(t0) = λr0, λv(t0) = λv0 as
to reduce the TPBVP to an Initial Value Problem (IVP).
In [3], this is done by using the State Transition Ma-
trix (STM) Φ(t0, tf ), which maps initial state variations
into the corresponding final ones. The resulting equations
are:
λr0 =D−1[(I− 2νDB−1R⊤

2DC
−1R2D)

−1

(−2νDB−1R⊤
2DC

−1R2Drs + rp)− rp]

λv0 = −Φ−1
44 Φ43λr0

(2.29)

with B = Φ33 − Φ34Φ
−1
44 Φ43, and D = Φ13 −

Φ14Φ
−1
44 Φ43.

2.5 The Theory of Functional Connections: an overview
The TFC, introduced by D. Mortari [15], is a general-

ized interpolation scheme enabling functional interpola-
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tion. This provides the mathematical framework to gener-
ate functionals (functions of functions) that analytically
satisfy all imposed linear constraints and represent the
real-valued set of functions satisfying such constraints.
For a general introduction to the topic, including theoret-
ical background and examples of practical applications,
please consult [16].

One of the applications of the TFC framework is the
numerical solution of Differential Equations (DEs). In
general, the TFC method is planted between the two pre-
vious approaches (analytical and numerical), because it
solves the equations numerically while the constraints are
analytically embedded in the constrained functionals. The
conventional numerical methods (excluding IVP) must
explore the entire function space to identify a unique so-
lution. Conversely, the TFC method solves the problem in
the reverse order of the analytical approach. First, the can-
didate solution is approached by defining the constrained
functional, which represents a reduction of the function
space to a set of all the functions satisfying the Ordi-
nary Differential Equation (ODE)’s constraints. Then, the
codomain of the constrained functional is used to find the
unique solution of the ODE. That is to say, if the free
function g(x) is assumed to cover the function space of
the solution, then the constrained functional projects this
function into a reduced set of constraints. Overall, the po-
tential of the TFC framework to solve DEs lies in its abil-
ity to transform constrained problems into unconstrained
ones by deriving constrained functionals that inherently
satisfy the set of constraints. To further understand this
concept, let us consider a general ODE subject to n linear
constraints:

F
(
x, y,

dy

dx
,
d2y

dx2
, ...,

dny

dxn
,
)
= 0 (2.30)

By deriving the constrained functionals, the con-
straints of Eq. (2.30) are decoupled from the solution of
the ODE, which is transformed into:

F̃
(
x, g,

dg

dx
,
d2g

dx2
, ...,

dng

dxn
,
)
= 0 (2.31)

and the solution is obtained by finding the function g(x)
satisfying Eq. (2.31). The following sections elaborate on
the major steps to solve this new equation.

2.5.1 Defining the free function

The free function is defined within the so-called basis
domain, z. Since numerical bases are typically defined
in closed domains, it is essential to establish the mapping
between these basis domains and the ODE problem do-
main with some function z = z(x). Selecting a free func-
tion fundamentally involves identifying the best (differ-
entiable) function approximator. A linear combination of
orthogonal polynomials can be leveraged for their advan-
tageous numerical properties.

Since all functions are linear in their unknown coeffi-
cients ak, the general expansion can be expressed as:

g(x) = ξ⊤h(z) (2.32)

where ξ = {a0, ..., ak, ..., am−1}⊤ and h(z) is the vector
function of the m polynomials.

For the aforementioned orthogonal polynomials, the
basis domain is z ∈ [−1, 1], which may be different from
the problem domain x ∈ [x0, xf ]. Thus, both functions
can be linearly mapped using the following relations:

z = z0+
zf − z0
xf − x0

(x−x0) ←→ x = x0+
xf − x0

zf − z0
(z−z0)

(2.33)

The derivatives of g(x) are determined as:

dng

dxn
= ξ⊤

dnh(z)

dzn

(
dz

dx

)n

(2.34)

where, by using:

c :=
dz

dx
=

zf − z0
xf − x0

(2.35)

the expression of Eq. (2.34) can be simplified to:
dng

dxn
= cnξ⊤

dnh(z)

dzn
(2.36)

By defining the free function and its derivatives ac-
cording to Eqs. (2.32) and (2.34), respectively, the trans-
formed ODE derived in Eq. (2.31) reduces to:

F̃ (x, ξ) = 0 (2.37)

2.5.2 Domain discretization and loss vector

To solve for the unknown coefficients ξ numerically,
the problem domain (and thus the basis domain) must be
discretized. By doing so, Eq. (2.37) becomes a system
of algebraic equations, which can be linear or nonlinear,
depending on the original nature of Eq. (2.30). The new
problem can be described with the so-called loss vector at
the discretized points:

L(ξ) =
[
F̃ (x0, ξ) . . . F̃ (xk, ξ) . . . F̃ (xf , ξ)

]⊤
= 0

(2.38)

When using Chebyshev or Legendre orthogonal poly-
nomials, the discretization scheme involves more than
merely selecting uniformly spaced points. The opti-
mal approach in these cases is to use Chebyshev-Gauss-
Lobatto nodes (also known as Chebyshev nodes of the
second kind). This distribution results in a much slower
increase on the condition number of the matrix to be in-
verted in the Least Squares (LS) problem as the number of
basis functions, m, increases. For N + 1 domain points,
the nodes are calculated as:

zj = − cos

(
jπ

N

)
, for j = 0, 1, 2, ..., N (2.39)
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2.5.3 Least squares solution
In the case of a linear ODE, the constrained functional

and its derivatives appear linearly and consequently re-
main linear in the unknown ξ term. This leads to the fol-
lowing equation:

Aξ = b (2.40)

where matrix A is composed of a linear combination of
the terms linear in the unknown coefficients. In terms of
the loss function F̃ , A is simply the Jacobian of the loss
vector:

J =
∂L
∂ξ

=

[
∂F̃ (x0, ξ)

∂ξ
. . .

∂F̃ (xk, ξ)

∂ξ
. . .

∂F̃ (xf , ξ)

∂ξ

]⊤
(2.41)

which is independent of ξ, since L is linear in ξ. On the
other hand, vector b is simply the loss vector evaluated at
ξ = 0:

b = −L(0) =
[
F̃ (x0,0) . . . F̃ (xk,0) . . . F̃ (xf ,0)

]⊤
(2.42)

Finally, Eq. (2.40) becomes:

Jξ = −L(0) (2.43)

The solution to the linear problem posed by Eq. (2.43)
can be assessed directly using any LS method. However,
in the case of a nonlinear ODE, Eq. (2.38) is nonlinear
in ξ. A system of nonlinear algebraic equations must
be solved by an iterative LS method such as the Gauss-
Newton algorithm, where each iteration step is formulated
similarly to Eq. (2.43) as follows:

J(ξi)∆ξi = −L(ξi) (2.44)

and the update of ξ is given by:

ξi+1 = ξi +∆ξi (2.45)

The LS step ∆ξi can be computed from Eq. (2.44)
using any linear LS method. Additionally, it is necessary
to define the converge criterion for the iterative process.
This work considers the following stopping condition:

max[|L(ξ)|] < ϵ (2.46)

Overall, the distinction between solving a linear ver-
sus a nonlinear ODE is simplified to the difference be-
tween Eq. (2.43) and Eq. (2.44). The linear case requires
only one iteration, compared to the multiple iterations of
the nonlinear case.

3. The TFC applied to the energy-optimal CAM
This section demonstrates the application of the TFC

to solve the nonlinear EO CAM equations, illustrating
the practical implementation of the fundamental princi-
ples explored in the previous chapter.

3.1 Problem formulation with TFC
The nonlinear EO-CAM problem is stated by the set

of Euler-Lagrange equations and boundary conditions of

Eq. (2.28). Through the use of TFC, the linear constraints
can be embedded into the constrained functionals, thus the
first-order necessary conditions reduce to the following
loss functions, for i = 1, 2, 3:

Fri −→ ṙi − vi = 0

Fvi −→ v̇i +
µ

r3
ri + λvi = 0

Fλri
−→ λ̇ri −

µ

r3
λvi +

3µr · λv

r5
ri = 0

Fλvi
−→ λ̇vi + λri = 0

FNL −→ (rf − rs)
⊤K(rf − rs)− δ2 = 0

(3.1)

whith r =
√
|r1|2 + |r2|2 + |r3|2. It is important to

note that the last equation corresponds to the first bound-
ary condition of the original system. This constraint is
treated as an additional loss function due to its nonlinear
nature. Consequently, the constrained functionals are de-
rived from the remaining linear constraints, arranged such
that the constants are collected on one side:

Linear BCs:


ri(t0) = r0i
vi(t0) = v0i
2νKirs = 2νKir(tf )− λri(tf )

λvi(tf ) = 0
(3.2)

where Ki is the i-th row of the K matrix. It is crucial to
acknowledge that the third relation is a component con-
straint, i.e., a constraint involving several dependent vari-
ables, in this case: r1, r2, r3 and λri . The way to proceed
is to decide which constrained functional will embed the
component constraint. Theoretically, a valid constrained
functional will be produced regardless of which depen-
dent variable is chosen. Here, let us assign the component
constraint to λr.

Since each variable has only one associated constraint,
the general expression of the constrained functionals re-
sults as follows:

χi(t) = gχi(t) + ϕχ(t)ρχi (3.3)

for χ = r, v, λr, λv .
The projection functions are effortlessly derived as:

ρri(t, g
r
i (t)) = r0i − gri(t0)

ρvi(t, g
v
i (t)) = v0i − gvi(t0)

ρλri
(t, gλri

(t), gr1(t), gr2(t), gr3(t))

= 2νKi

(
rs − r(tf )

)
+ gλri

(tf )

ρλvi
(t, gλvi

(t)) = −gλvi
(tf )

(3.4)

The switching functions result from applying the def-
inition:

ϕχ(t) = s(t)αχ (3.5)

selecting the support function s(t) = 1 for all variables.
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Leveraging the scalar multiplication property of the con-
straint operator (see Chapter 3 of [16]), the expression
Cχ[ϕχ(t)] = 1 can be rewritten as:

αχCχ[s(t)] = 1 (3.6)

and the unknown coefficients are:

αr = 1 αv = 1 αλr = −1 αλv = 1 (3.7)

Finally, the constrained functionals are given by:

ri(t) = gri(t) +
(
r0i − gri(t0)

)
vi(t) = gvi(t) +

(
v0i − gvi(t0)

)
λri(t) = gλri

(t)− gλri
(tf ) + 2νKi

(
r(tf )− rs

)
λvi(t) = gλvi

(t)− gλvi
(tf )

(3.8)

According to the TFC mathematical framework, since
all the expressions in Eq. (3.8) have been derived using
s(t) = 1, the vector of polynomials dispenses with the
first term (degree 0) and thus is the same in all cases:
hχ(z) = h(z). Decomposing the free function and map-
ping the time-independent variable into the basis domain,
the constrained functionals and their first derivatives re-
sult as:

Position

ri(z) =
[
h(z)− h(z0)

]⊤
ξri + r0i

ṙi(z) =
[
chz(z)

]⊤
ξri

(3.9)

Velocity

vi(z) =
[
h(z)− h(z0)

]⊤
ξvi + v0i

v̇i(z) =
[
chz(z)

]⊤
ξvi

(3.10)

Position costate

λri(z) =
[
h(z)− h(zf )

]⊤
ξλri
− 2νKirs

+ 2ν
{
Ki1

([
h(zf )− h(z0)

]⊤
ξr1 + r01

)
+Ki2

([
h(zf )− h(z0)

]⊤
ξr2 + r02

)
+Ki3

([
h(zf )− h(z0)

]⊤
ξr3 + r03

)}
λ̇ri(z) =

[
chz(z)

]⊤
ξλri

(3.11)
Velocity costate

λvi(z) =
[
h(z)− h(zf )

]⊤
ξλvi

λ̇vi(z) =
[
chz(z)

]⊤
ξλvi

(3.12)

The TFC problem is defined by the system of Eq.
(3.1) and the constrained functionals of Eqs. (3.9), (3.10),
(3.11) and (3.12). It is evident that the problem is non-
linear since the unknowns appear nonlinearly in the sec-
ond, third and last equations of Eq. (3.1). Therefore, the
solution requires the application of the Non-Linear Least
Squares (NLLS) optimizer.

Upon analyzing the equations, it becomes clear that
the unknowns in this system include not only the coef-
ficients of the polynomial expressions, ξχi

, but also the
Lagrange multiplier, ν. Depending on the method used to
handle the latter, there are two main approaches to address
this problem: the Single-Loop Algorithm (SLA) and the
Double-Loop Algorithm (DLA). The first method only in-
volves the LS iterative loop to solve for all the unknowns
at the same time, that is, including ν, thus increasing the
search space. The second method features an outer iter-
ative loop that solves for ν by optimizing the residual of
the nonlinear loss function FNL. At each step, the candi-
date multiplier is inserted into the inner LS loop to solve
for the polynomial coefficients.

Particular attention should be given to problems in-
volving state vectors in dynamical systems, where some
components are derivatives of other components [17].
When formulating the problem elements using TFC, it
would be a mistake trying to merge the position r(t) and
velocity v(t) constrained functionals given in Eq. (3.8)
and assume that the first equation of the system in Eq.
(3.1) is redundant because the velocity will always be the
derivative of the position as per the following single con-
strained functional:

ri(t) = gri(t)+
(
r0i − gri(t0)

)
+(t− t0)

(
v0i − ġri(t0)

)
(3.13)

While this expression satisfies both initial constraints
for r(t) and v(t), it does not necessarily satisfy the dy-
namical equations obtained from the Hamiltonian formu-
lation given in Eq. (3.1). The same applies to the costates
and the relation given by the fourth equation of the sys-
tem.

3.2 Single-loop approach

The SLA involves ν and FNL in the LS optimization
process, treating the former as an unknown and the lat-
ter as an additional loss function. In this way, the set of
loss functions is given by Eq. (3.1) and the vector of un-
knowns:

Ξ =
[
ξ⊤r1 , ξ

⊤
r2 , ξ

⊤
r3 , ξ

⊤
v1 , ξ

⊤
v2 , ξ

⊤
v3 ,

ξ⊤λr1
, ξ⊤λr2

, ξ⊤λr3
, ξ⊤λv1

, ξ⊤λv2
, ξ⊤λv3

, ν
]⊤ (3.14)

of size (12m+ 1)× 1, with m being the number of poly-
nomials in h(z). Finally, the loss vector contains FNL,
which is defined at tf , and the rest of the loss functions
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are evaluated at the discretized domain points, as follows:

L =
[
F(t0,Ξ)

⊤ . . .F(tf ,Ξ)
⊤, FNL(Ξ)

]⊤
(3.15)

of size (12N + 1)× 1, where N is the number of domain
points and:

F(t,Ξ) =
[
Fr1 , Fr2 , Fr3 , Fv1 , Fv2 , Fv3 ,

Fλr1
, Fλr2

, Fλr3
, Fλv1

, Fλv2
, Fλv3

]⊤∣∣∣∣
(t,Ξ)

(3.16)
Finally, the loss Jacobian derived from Eq. (3.15) is a

(12N + 1)× (12m+ 1) matrix defined as follows:

J =
∂L
∂ξ

=

[
∂F(t0,Ξ)

∂ξ
. . .

∂F(tf ,Ξ)

∂ξ
,
∂FNL

∂ξ

]⊤
(3.17)

Once the loss vector and loss Jacobian are defined, the
solution can be addressed by applying NLLS in two main
different ways: by explicit implementation of the Gauss-
Newton algorithm defined in Eq. (2.44), and by means of
the lsqnonlin() MATLAB function:

• The Gauss-Newton iterative loop requires inverting
the loss Jacobian, which is typically not a square ma-
trix. This is achieved by considering the following
options:

1. pinv(): Moore-Penrose pseudo-inverse with
Singular Value Decomposition (SVD) decom-
position.

2. lsqminnorm(): which not only provides a solu-
tion that minimizes the value of ∥J(ξi)∆ξi +
L(ξi)∥ but also ∥∆ξi∥.

3. equilibrate(): to improve the condition number
of the problem by scaling A = (J(ξi)⊤J(ξi)).

• The lsqnonlin() MATLAB function is a NLLS solver
that finds the minimum of the sum of squares of the
residuals provided by the loss vector. This function
only requires the loss vector to compute the solution.

Since the system is nonlinear, one common step to all
the iterative methods described above is the initialization
of the unknowns by means of a first guess ξ0, such that
both the position and velocity are estimated to match the
state evolution of the ballistic trajectory, while the costates
and the Lagrangian multiplier are set equal to zero. The
position and velocity unknown coefficients, ξ0r and ξ0v re-
spectively, are defined through linear least squares fitting
using the unperturbed propagated trajectory along the do-
main points (rref (z),vref (z)), except for the initial con-
ditions, at z0, which are analytically satisfied by the con-

strained functionals. From Eqs. (3.9) and (3.10):

[
h(z1)− h(z0)

]⊤
...[

h(zk)− h(z0)
]⊤

...[
h(zf )− h(z0)

]⊤





a1
...

ak
...

am


︸ ︷︷ ︸

ξ0
ri

=



rrefi(z1)− r0i
...

rrefi(zk)− r0i
...

rrefi(zf )− r0i




[
h(z1)− h(z0)

]⊤
...[

h(zk)− h(z0)
]⊤

...[
h(zf )− h(z0)

]⊤





a1
...

ak
...

am


︸ ︷︷ ︸

ξ0
vi

=



vrefi(z1)− v0i
...

vrefi(zk)− v0i
...

vrefi(zf )− v0i


(3.18)

The linear systems of Eq. (3.18) can be solved in
one step using any of the methods described earlier, for
example, the lsqminnorm() function. The solutions for
i = 1, 2, 3 lead to the first estimation of the vector of un-
knowns:

ξ0 =
[
ξ0

⊤

r1 , ξ0
⊤

r2 , ξ0
⊤

r3 , ξ0
⊤

v1 , ξ
0⊤

v2 , ξ
0⊤

v3 , 0
⊤
(6m+1)×1

]⊤
(3.19)

Lastly, units are adjusted as an additional effort to
reduce the condition number of the LS problem. Mo-
tivated by the appearance of ∆t as the denominator of
c = ∆z/∆t in some components of the loss Jacobian,
time units are converted from seconds to hours. After
testing the problem conditioning improvement for sev-
eral unit conversions, including adimensionalization, this
proves to be one of the most optimal approaches to effec-
tively reduce the condition number of the matrix and thus
stabilize the solution convergence.

3.3 Double-loop approach

The DLA splits the optimization process into two dif-
ferent steps. Unlike in the SLA, here ν and FNL are sep-
arated from the LS optimization process in an attempt to
reduce the complexity of such iterative loop in terms of
search space and residuals. In this case, FNL serves as
the residual of the fsolve() MATLAB solver, which also
requires a first guess of the Lagrangian multiplier, ν0. At
the k-th iteration, the inner LS iterative loop is solved us-
ing the corresponding estimation νk. However, this time
the TFC problem is defined by the set of loss functions
given in Eq. (3.1) except for FNL, and the following vec-
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tor of unknowns:

Ξ =
[
ξ⊤r1 , ξ

⊤
r2 , ξ

⊤
r3 , ξ

⊤
v1 , ξ

⊤
v2 , ξ

⊤
v3 ,

ξ⊤λr1
, ξ⊤λr2

, ξ⊤λr3
, ξ⊤λv1

, ξ⊤λv2
, ξ⊤λv3

]⊤ (3.20)

of size 12m× 1. The loss vector is:

L =
[
F(t0,Ξ)

⊤ . . .F(tk,Ξ)
⊤ . . .F(tf ,Ξ)

⊤
]⊤

(3.21)

of size 12N × 1, where F(t,Ξ) is given in Eq. (3.16).
In this case, the loss Jacobian is a 12N × 12m matrix

defined as follows:

J =
∂L
∂ξ

=

[
∂F(t0,Ξ)

∂ξ
. . .

∂F(tk,Ξ)

∂ξ
. . .

∂F(tf ,Ξ)

∂ξ

]⊤
(3.22)

The inner loop of DLA can be solved by applying any
of the NLLS methods described for SLA in Sect. 3.2.

4. Results
The following tests have been implemented in MAT-

LAB R2023b and run on OMEN Laptop 15-en1xxx lap-
top (CPU: AMD Ryzen 7 5800H of 3201 MHz, GPU:
NVIDIA GeForce RTX 3060). The conjunction scenario
studied in this chapter, called LEOH2HMD, is a real en-
counter developed for the Electrocam project sponsored
by the European Space Agency (ESA) and provided by
GMV, where both primary and secondary objects orbit the
Low Earth Orbit (LEO) region. This scenario is charac-
terized in Tables 4-1 and 4-2.

Table 4-1. LEOH2HMD conjunction characterization.

Conjunction Data Message

MD 48.1 m

PoC 0.107

TCA 2020-02-03 T02:24:00.003140

Pos. uncert. ∼ 10− 102 m

Vel. uncert. ∼ 0.1 m/s

Table 4-2. LEOH2HMD orbital parameters of the pri-
mary and secondary objects.

Element Primary Secondary

a [m] 7.552e3 7.575e3

e [-] 0.0012 0.0100

i [deg] 87.92 89.38

Ω [deg] 1.94 179.03

ω [deg] 127.52 112.63

θ [deg] 5.11 294.68

Table 4-3 lists the configuration parameters employed
in each test (identified by the section heading numbering).
The notation var indicates the parameters evaluated (var-
ied) during the sensitivity analyses. In summary: ∆θ is
the true anomaly, N is the number of domain points, m
is the number of basis functions, and ϵ is the convergence
tolerance used in NLLS. Moreover, "poly" denotes the
type of orthogonal polynomials employed.

Table 4-3. Testing configuration.

4.1.1 4.1.2 4.2.1 4.2.2 4.2.3 4.3 4.4

∆θ 0.1 : 0.05 : 2 0.2 : 0.2 : 8

N [30,90] [30,200]

m [20,60] [20,150]

ϵ 1e−9 var 1e−5

poly Chebyshev var Chebyshev

4.1 TFC: strategy comparison
This section aims to identify the most computation-

ally efficient TFC approach. The primary strategies for
addressing the TFC solution are the SLA and the DLA.
Both require applying NLLS: to the single loop in the
former and to the inner loop in the latter. As outlined
in Sect. 3.2, the main candidates to tackle this optimiza-
tion are the Gauss-Newton method and the lsqnonlin()
MATLAB function, with the former supporting multiple
solvers. The first step is to identify the best choice to max-
imize convergence for the Gauss-Newton method. Next,
the best NLLS solver is determined by testing both Gauss-
Newton and lsqnonlin() in SLA. The selected method is
then implemented in the inner loop of DLA for the final
comparison between SLA and DLA. Four tests are car-
ried out, one per terminal condition. The results illustrate
the computational cost expressed as a function of the true
anomaly.

Both N and m are defined as linear functions of θ to
adapt the problem’s complexity to the true anomaly. For
scenarios with minimal maneuver anticipation, fewer re-
sources are sufficient. Although increasing these values
generally leads to more robust solutions, it also signifi-
cantly increases processing time. Conversely, as maneu-
ver anticipation increases, the problem domain expands,
requiring larger values of N to resize the domain dis-
cretization and larger values of m to enhance the solution
accuracy. Both the lower and upper values are selected
to ensure system convergence for the minimum and max-
imum true anomalies while keeping the values as low as
possible. However, in some instances, the algorithm may
fail to converge to a solution. If this occurs, it is assumed
that the values of N and m are insufficient, and the op-
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timization process is restarted with the maximum values.
If convergence is still not achieved, it is concluded that
convergence is unattainable, regardless of the TFC con-
figuration.

4.1.1 Gauss-Newton solver
The Gauss-Newton solver for the NLLS problem

adopts three possible implementations in this study: pinv
(pseudoinverse with SVD), lsqminnorm (pseudoinverse
with Complete Orthogonal Decomposition (COD)), and
equilibrate (scaling to reduce the condition number). The
results are obtained using SLA. Fig. 4-1 includes four
diagrams, each corresponding to a different terminal con-
dition. On average, the lsqminnorm() function demon-
strates the best computational performance, especially as
the complexity of the problem increases. This trend high-
lights its superior robustness in handling more demanding
cases. Table 4-4 summarizes their success rates in terms
of achieving convergence. Both pinv() and lsqminnorm()
present the best ratio with a 100 % of success, followed
by scale() with the 98.7 %.

(a) MD = 0.15 km (b) BP MD = 0.15 km

(c) PoCiso = 1e−06 (d) PoC = 1e−06

pinv          lsqminnorm          scale

Fig. 4-1. Computational cost of the Gauss-Newton
solvers for each terminal condition.

Table 4-4. Convergence success rate [%] of the Gauss-
Newton solvers.

MD BP MD PoCiso PoC Total

pinv 97.4 100 100 97.4 98.7

lsqminnorm 97.4 100 100 97.4 98.7

scale 97.4 92.3 89.7 87.1 91.6

4.1.2 NLLS solver: Gauss-Newton vs lsqnonlin

The previous test revealed the lsqminnorm() function
to be the most efficient choice for integrating the Gauss-
Newton solver. In this test, the performance of the can-
didate NLLS solvers is compared to determine the best
option. Fig. 4-2 proves that Gauss-Newton is the fastest
NLLS solver in SLA compared to lsqnonlin(). As a result,
Gauss-Newton is also used as the solver for the inner loop
of DLA. Finally, when comparing both algorithms, SLA
consistently demonstrates superior computational perfor-
mance, especially as problem complexity increases. The
reason why DLA does not improve the performance of
SLA despite simplifying the equations by moving ν and
FNL to the outer loop is that the inner system remains
nonlinear in terms of the unknown coefficients ξ. The
additional computational effort introduced by the fsolve()
function is not even countervailed. Table 4-5 summarizes
their success rates in terms of achieving convergence. The
DLA presents the best ratio with 100 % of success, closely
followed by SLA with 98.7 %.

(a) MD = 0.15 km (b) BP MD = 0.15 km

(c) PoCiso = 1e−06 (d) PoC = 1e−06

SLA (Gauss-Newton)          SLA (lsqnonlin)          DLA (Gauss-Newton)

Fig. 4-2. Computational cost of the cadidate algorithms
for each terminal condition.

Table 4-5. Convergence success rate [%] of the candidate
algorithms.

MD BP MD PoCiso PoC Total

SLA (G-N) 97.4 100 100 97.4 98.7

DLA (G-N) 100 100 100 100 100
SLA
(lsqnonlin) 87.1 86.8 82.0 100 88.9
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4.2 TFC: sensitivity analyses
In the previous section, various algorithms are eval-

uated based solely on their computational performance.
The SLA with the Gauss-Newton solver, utilizing the
lsqminnorm() function, is identified as the most efficient
TFC approach, due to its superior time efficiency and a
convergence success rate that is nearly 100%. This sec-
tion offers a detailed examination of the results through a
series of sensitivity analyses.

4.2.1 Orthogonal polynomials
This test evaluates the absolute error of solutions for

the same conjunction using both Chebyshev and Legendre
polynomials across a range of true anomalies. Addition-
ally, it records the number of iterations needed for each
method to converge.

Figure 4-3 illustrates the error associated with each
terminal condition as a function of maneuver anticipa-
tion. This metric is calculated by determining the absolute
difference between the imposed constraint and the actual
value obtained. It is important to note that the real value
is not derived directly from the TFC solution. Although
the solution convergence ensures that the residual of the
condition, namely FNL, is below the known tolerance
epsilon, the real value is instead obtained by propagat-
ing the initial conditions provided by TFC to the TCA.
This allows to analyse how effectively the initial condi-
tions achieve the desired outcomes when integrating the
dynamics of Eq. (3.1). The error increases by several or-
ders of magnitude with the true anomaly, although it is
still acceptable if compared to the uncertainty levels.

(a) MD = 0.15 km (b) BP MD = 0.15 km

(c) PoCiso = 1e−06 (d) PoC = 1e−06

Chebyshev conv          Legendre conv          Legendre no conv

Fig. 4-3. Absolute error in the terminal condition using
Chebyshev and Legendre polynomials.

Figure 4-4 illustrates the number of iterations required
for convergence in each scenario. For low values of true
anomaly, both Chebyshev and Legendre polynomials con-
verge in the same number of steps (denoted in yellow to
enhance visibility where results overlap). However, as the
true anomaly grows, the convergence performance of Leg-
endre polynomials deteriorates, often reaching the maxi-
mum iteration limit and thus failing to converge.

(a) MD = 0.15 km (b) BP MD = 0.15 km

(c) PoCiso = 1e−06 (d) PoC = 1e−06

Chebyshev conv          Legendre conv          Legendre no conv
Both conv

Fig. 4-4. Iterations to converge using Chebyshev and Leg-
endre polynomials.

Tables 4-6 and 4-7 present a summary of the results,
focusing on convergence success rates and Mean Abso-
lute Errors (MAEs). While Chebyshev polynomials show
slightly better MAE results, their performance is signif-
icantly superior in terms of convergence. As the true
anomaly increases, Legendre polynomials experience in-
stances of non-convergence. However, the error values for
both types of polynomials remain similar even in those
cases. Based on this analysis, Chebyshev polynomials
emerge as a superior choice over Legendre polynomials
for solving the problem. They not only demonstrate more
consistent convergence but also maintain accuracy across
various scenarios, making them the preferred option for
selecting the orthogonal polynomial type.

Table 4-6. Convergence success rate [%] for each poly-
nomial type.

MD BP MD PoCiso PoC Total

Che 100 100 100 100 100

Leg 82.5 85 82.5 80 82.5
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Table 4-7. MAE for each polynomial type.

MD BP MD PoCiso PoC

Che 1.3e−8 km 7.3e−11 km 2.7e−14 2.1e−14
Leg 1.2e−8 km 1.1e−10 km 2.9e−14 2.2e−14

4.2.2 Terminal condition

In this analysis, the focus is on the value of the termi-
nal condition. Based on the conclusions drawn from the
previous analysis, Chebyshev polynomials are selected as
the orthogonal polynomial type for this study. The fol-
lowing figures only display solutions where convergence
is achieved.

Fig. 4-5 shows that the results are consistent across
all cases in terms of absolute error at TCA, demonstrating
the algorithm’s reliability.

0.1 km          0.12 km          0.14 km          0.16 km          0.18 km          0.2 km
MD & B-plane MD =

PoCiso & PoC =
1e-4          1e-5          1e-6          1e-7          1e-8

Fig. 4-5. Absolute error for multiple terminal conditions.

Figure 4-6 illustrates the number of iterations needed
for convergence in each scenario. To enhance visibility
where some results overlap, a slight jitter effect is applied
to the dots. The vertical axis is divided into regions cor-
responding to specific integer iteration counts, allowing
for clear distinction between coincident results. Interest-
ingly, larger true anomalies typically require the same or
fewer iterations for convergence compared to smaller true
anomalies. The exception is the miss distance scenario,
where more iterations are necessary as true anomaly in-
creases. Tables 4-8 and 4-9 present a summary of the re-
sults, focusing on convergence success rates and MAEs.

0.1 km          0.12 km          0.14 km          0.16 km          0.18 km          0.2 km
MD & B-plane MD =

PoCiso & PoC =
1e-4          1e-5          1e-6          1e-7          1e-8

Fig. 4-6. Iterations to converge for multiple terminal con-
ditions.

Table 4-8. MAE for MD [1e−08 km] and B-plane MD
[1e−10 km].

δ [km] 0.1 0.12 0.14 0.16 0.18 0.20

MD 0.85 0.82 0.87 0.81 0.64 1.74

BP MD 1.70 1.06 0.51 0.43 0.55 0.89

Table 4-9. MAE for PoCiso [1e−12] and PoC [1e−12].

δ 1e−4 1e−5 1e−6 1e−7 1e−8

PoCiso 2.6593 0.2842 0.0261 0.0020 0.0002

PoC 2.0269 0.1436 0.0160 0.0020 0.0001

4.2.3 Convergence tolerance

This test focuses on the convergence tolerance to stop
the NLLS iterative loop. Convergence is achieved in all
instances, so success rate results are not included.

In general, as observed in Figs. 4-7 and 4-8, lower
tolerance levels generally require fewer iterations but lead
to larger errors. Interestingly, increasing the tolerance to
1e−05 produces results comparable to those at 1e−09.
However, at higher tolerances, such as 1e−04 and 1e−03,
the errors increase significantly by several orders of mag-
nitude. An exception to this trend is the PoC terminal con-
dition, which consistently shows similar results in both
error and iteration counts across all tolerance levels.
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(a) MD = 0.15 km (b) B-plane MD = 0.15 km

(c) PoCiso = 1e−06 (d) PoC = 1e−06

1e-9          1e-8          1e-7          1e-6          1e-5          1e-4          1e-3

Fig. 4-7. Absolute error for multiple convergence toler-
ances.

(a) MD = 0.15 km (b) B-plane MD = 0.15 km

(c) PoCiso = 1e−06 (d) PoC = 1e−06

0.1 km          0.12 km          0.14 km          0.16 km          0.18 km          0.2 km
MD & B-plane MD =

PoCiso & PoC =
1e-4          1e-5          1e-6          1e-7          1e-8

Fig. 4-8. Iterations to converge for multiple convergence
tolerances.

4.3 TFC: case study
This section presents an analysis of the results ob-

tained by applying TFC to a specific CAM problem. Con-
vergence is achieved in all samples.

Fig. 4-9 shows the B-plane landing position of the pri-
mary object after performing the maneuver. This position
depends on the anticipation time before the TCA. In all
scenarios, the final position falls within the ellipse defined
for a PoC of 1× 10−6. However, the exact position varies
around the ellipse based on the true anomaly considered in
each case. The unperturbed final position of the primary
is also represented, in order to compare the effect of the
maneuver. The unperturbed final position of the primary
object is also shown for comparison.
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Fig. 4-9. Landing position on B-plane after CAM.

To verify the optimality of a solution to an au-
tonomous problem, it is essential to ensure that the Hamil-
tonian remains constant over time, as required by the
Euler-Lagrange equations. Figure 4-10 demonstrates this
by plotting the MAE of H(t) relative to its mean value.
As shown, all results stay below 2e−10, indicating that
all solutions are indeed optimal.

Fig. 4-10. MAE of Hamiltonian with respect to its mean
value.

4.4 Comparative study
This section is devoted to compare the performance of

TFC with the analytical approach detailed in Sect. 2.4.
As discussed in [3], the analytical formulation leads to a
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fourth-degree polynomial in ν, yielding four valid solu-
tions. By solving for ν, the initial conditions can be deter-
mined and then propagated to evaluate the final outcomes.
The optimal solution is identified by integrating the con-
trol policy (acceleration) over time, selecting the one with
the minimum total change in velocity ∆v. Unlike this an-
alytical approach, TFC does not explicitly provide all four
solutions but rather converges to a single one of them. The
specific solution depends on the initial conditions and pa-
rameters used in the problem setup. Figure 4-11 demon-
strates that while TFC consistently converges to a valid
solution, it does not always yield the most optimal one.

Fig. 4-11. Total change in velocity of the maneuver: com-
parison

Fig. 4-12 provides a comparative analysis of the com-
putational cost between the two approaches. The analyti-
cal solutions outperforms the TFC ones by an entire order
of magnitude for lower true anomaly values and by two
orders of magnitude as the true anomaly increases. This
result highlights the efficiency advantage of the analyti-
cal method, particularly as the complexity of the problem
grows.

Fig. 4-12. Time spent to compute the solutions using TFC
and the analytical approach.

In contrast, as shown in Fig. 4-13, the TFC approach
yields a significantly lower error in the actual PoC at TCA
after propagating the solutions, despite its higher compu-
tational cost. Nevertheless, the errors produced by the an-
alytical results remain well within acceptable limits.

Fig. 4-13. Error in the terminal condition (PoC = 1e−6)
using TFC and the analytical approach.

5. Conclusions
The research demonstrates that TFC is a viable

method for solving the nonlinear differential equations de-
rived from applying optimal control theory to the CAM
problem. A key insight from the development process
is that the condition number of the optimization prob-
lem is significantly influenced by the choice of time units,
which, in turn, affects the loss Jacobian components. To
address this, all algorithms were implemented using hours
instead of seconds, which proved to enhance stability.

Among the various strategies explored, the SLA with
the Gauss-Newton solver, specifically using the lsqmin-
norm() function, stands out as the most efficient in terms
of both computational cost and convergence success rate.
Conversely, the DLA did not provide substantial improve-
ments, as the simplifications it introduces do not effec-
tively linearize the equations.

Sensitivity analyses revealed that Chebyshev polyno-
mials are superior to Legendre polynomials for this appli-
cation, offering better performance and robustness. This
robustness is particularly evident when varying the termi-
nal condition values and solving the NLLS iterative loop
at low tolerance levels. The TFC method not only meets
the terminal constraint at TCA with acceptable accuracy
but also produces solutions that satisfy the optimality con-
dition of autonomous problems, demonstrated by a con-
stant Hamiltonian over time.

However, the comparative study highlighted two main
drawbacks of the TFC approach. First, solution conver-
gence in TFC is highly dependent on the initial guesses
and problem configuration parameters, making it difficult
to consistently identify the most impulse-efficient control
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law. In contrast, the analytical method provides all four
possible solutions, enabling a direct comparison of total
velocity change to select the most optimal solution. Sec-
ond, TFC has a significantly higher computational cost,
with times ranging from one to two orders of magnitude
longer than the analytical method, depending on the ma-
neuver anticipation. This difference is primarily due to
the extensive resource demands of the NLLS solver, par-
ticularly the lsqminnorm() function, which accounts for
more than 80% of the total computation time (as identi-
fied by the MATLAB profiler tool). Despite these chal-
lenges, TFC successfully produces valid solutions within
an acceptable timeframe and achieves a lower error in
the terminal condition compared to the analytical method.
To further enhance the performance of TFC, future work
could focus on optimizing the code by implementing the
NLLS solver in a faster programming language, such as
C, and exploring alternative optimization techniques.

The main potential of TFC is given by the possibility
of incorporating additional constraints that do not have
an analytical solution, offering a more flexible approach
than traditional analytical methods. The approach devel-
oped in this study can be expanded or adapted to embed
additional constraints within a more comprehensive tra-
jectory mission design, potentially integrating CAM into
an all-in-one solution in case of a likely conjunction, for
instance, considering the return to the original orbit or ac-
counting for eclipses to prevent the spacecraft from thrust-
ing during shadowed portions of the orbit.
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