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Abstract

The problem of current estimation of switched power converters operating in continuous and discontinuous conduction modes
s considered. A method is presented for the direct design of an estimator without exact knowledge of the mathematical model
f the system. The structure of the proposed method is simpler than other approaches found in the literature, which use hybrid
r averaged models to represent the dynamics of the power converter in each operating mode. An algorithm implementation
sing parallel computation and dimensionality reduction techniques for improving the execution performance is described. The
ethod is demonstrated in the case of the pulse-width modulated SEPIC DC–DC converter, where simulation and experimental

esults are discussed. The proposed method shows better estimation results with respect to other well-known model-based and
ata-based approaches.
2023TheAuthor(s).PublishedbyElsevierB.V.onbehalfof InternationalAssociationforMathematicsandComputers inSimulation

IMACS). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: State estimation; Optimal filtering; Power conversion; Conduction modes; Dimensionality reduction

1. Introduction

In switched power converter applications, having accurate measurements of currents and voltages is required to
chieve high performance in control and monitoring tasks. In particular, current measurement is critical in different
eedback control strategies based on the design of separate current and voltage control loops. In this setting, special
ensing circuits are required.

The most common approach is to use current transformers to induce a current for measurement. This method
as good performance and is used in several industrial applications. However, the coil inductors are susceptible
o saturation at high switching frequencies [4]. Another approach involves indirect current measurement using the
oltage drop on a resistor. This method is simple but may have significant losses in high-power applications. For
nstance, in [11], a current sensor is integrated into a current-mode controller for a buck converter. Special CMOS
ircuitry is designed to measure the current using a resistive element. This approach couples the sensing circuit
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with the controller on the same chip, decreasing the flexibility of the design or its use with other control schemes.
Hall-effect sensors are a popular alternative for current measurement, showing good performance with low power
consumption. However, these sensors have high sensitivity to temperature drift and DC offset variation, requiring
the implementation of additional compensation mechanisms [4].

An alternative approach is to estimate the currents using observers instead of measuring them directly. The basic
bservation approach relies on the measurement of other signals and the availability of a mathematical model for the
ystem. With this information, the observer is able to make predictions on the system behavior, providing estimates
f the unmeasured states. The classic asymptotic observer structure consists of a prediction term using a simulation
f the system model subject to the measured inputs, and a correction term depending on the measured outputs.
he observer design problem consists of the assignment of the correction term gains to guarantee stability in the
stimation error [2]. Usually, an argument using Lyapunov functions is established to prove the observer’s stability.
or example, in [16], a current observer is proposed for a boost power factor correction (PFC) converter, where the
onlinear model is obtained using the averaging principle.

Most of the observers described in the literature for current estimation are based on average models for power
onverters operating in continuous conduction mode (CCM). However, under certain conditions, these converters
ay operate in discontinuous conduction modes (DCM). This may happen autonomously by sudden load changes or
ay be forced by the designer for efficiency reasons. Under DCM operation the system dynamics change, affecting

he performance of observers based on the average CCM model. In the case where both CCM and DCM are present,
ybrid observers [8] that simultaneously estimate the continuous and discrete states can be designed. However, these
bservers are hard to implement in a practical setting.

Existing works in the literature regarding the problem of observation in power converters operating in CCM and
CM rely on the availability of a mathematical model for the power converter and require using an estimator to
btain the operation mode at each time instant. For example, in [7], the design of a current observer for a PFC boost
onverter was presented based on an average model representing CCM and DCM. [20] considers observer-based
ontrol for a buck converter operating in CCM and DCM. The observer was based on the discrete-time LC filter
odel in CCM, and an integral compensation loop was included to correct the estimates when the system enters
CM. In [18], Luenberger-type switched observers were presented, and the observer gains for different operation
odes were obtained by solving a system of linear matrix inequalities.
We consider an alternative approach to the problem of current estimation in PWM converters operating in CCM

nd DCM. A data-based method is implemented for directly providing discrete-time estimates of the average
nductor current without requiring an estimator for the operating mode, and without formulating a complex

athematical model for the system. The estimates are computed from the history of recent measured inputs and
utputs, and from a dataset of measurements prepared from experiments performed on the system under different
perating conditions. The algorithm computes optimal error bounds on the estimated variable, yielding information
n the estimation accuracy under different operating conditions. The problem structure is exploited to obtain a
arallel algorithm implementation running on a graphics processing unit (GPU), and a dimensionality reduction
echnique is used to improve the execution performance. The resulting approach can be extended to full state
bservation by implementing separate estimators for each state variable.

The paper is organized as follows: Section 2 presents the problem statement, Section 3 introduces the basic
oncepts of optimal filtering for state estimation and Section 4 presents the main contributions. Section 5 introduces
he case study of a SEPIC converter, where simulation and experimental results are presented. Finally, Section 6
ncludes a brief discussion of the results and some perspectives for future work.

. Problem statement

A switched power converter can be modeled by considering all possible circuit topologies obtained from the
ifferent conducting and blocking states of the semiconductor devices. These configurations are represented by a
ystem of switched linear differential–algebraic equations.

Pσ (t)ẋ(t) = Aσ (t)x(t) + Bσ (t)u(t) + Bxw(t) (1)
y(t) = Cσ (t)x(t) + Dσ (t)u(t) + Byw(t)

here x(t) ∈ Rnx is the state, u(t) ∈ Rnu the input and y(t) ∈ Rny is the output. The terms Bxw(t) and Byw(t)
orrespond to process and measurement noise, respectively. The system matrices P , A , B , C , D are selected
σ σ σ σ σ
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depending on the system mode σ (t) ∈ I , where I is a finite index set. Only one system mode is active at each time
instant, and it depends on the controlled s(t) and uncontrolled δ(t) switch states: σ (t) = g(s(t), δ(t)), s(t) ∈ {0, 1}

ns ,
(s) ∈ {0, 1}

nδ . The state of the uncontrolled switches depends on the system states and inputs: δ(t) = h(x(t),u(t)).
his interaction between the continuous and discrete variables in system (1) produces a hybrid dynamical system.

ssumption 1. The modes σ in system (1) are activated in sequence I = {1, 2, . . . , 2ns+nδ }, each with a duration
f dσT , where T is the total switching period.

Under Assumption 1, an average model approximation of system (1) can be obtained:

P̄ẋ(t) = Āx(t) + B̄u(t) + Bxw(t) (2)

y(t) = C̄x(t) + D̄u(t) + Byw(t)

ith M̄ =
∑

σ∈I dσMσ , M̄ ∈ {P̄, Ā, B̄, C̄, D̄}, Mσ ∈ {Pσ ,Aσ ,Bσ ,Cσ ,Dσ }. dσ corresponds to the proportion of the
otal switching period duration T that mode σ is active:

∑
σ∈I dσ = 1.

A difficulty in obtaining this model is that the mode transitions due to uncontrolled switching events cannot
e measured directly, but need to be estimated indirectly. An example of this approach is presented in [1] where
n adaptive control law is designed for the boost converter operating in DCM based on the computation of the
witching times for the sequence of modes, assuming exact knowledge of the system model. When no uncontrolled
witching events are present, the model in Eq. (2) corresponds to the classical average model commonly used in the
ontext of power converters. In the present approach, we have no knowledge of the system matrices of this model
ut instead assume that a dataset of input and output measurements is available.

roblem 1. Consider the system in Eq. (2). Assume matrices P̄, Ā, B̄, C̄, D̄, Bx , By are unknown. Based on
iscrete-time measurements of u, y and s, obtain discrete-time estimates x̂ of the unmeasured state x.

. Optimal filtering for state estimation of unknown systems

The following approach is based on the Set Membership (SM) framework for the identification of nonlinear
ystems [14,15,17]. While traditional identification methods require some a priori assumptions on the system class
linear, bilinear, polynomial, etc.), this approach does require less restrictive assumptions in the form of bounds on
he function gradients. Consider the discrete-time nonlinear system

xk+1 = F(xk,uk,dk, wk) (3)
yk = G(xk,uk,dk, wk)

here xk ∈ Rnx corresponds to the state, dk ∈ Rnd the controlled input, uk ∈ Rnu the uncontrolled input, yk ∈ Rny

he output and wk the noise. A causal estimator for xk ∈ xk is a function f mapping the past m measured values
or {d̃, ỹ, ũ} into an estimate x̂k :

x̂k = f (d̃k, ỹk, ũk, . . . , d̃k−m+1, ỹk−m+1, ũk−m+1). (4)

his estimator exists if system (3) is observable. The objective is to obtain a causal filter with a small estimation
rror xk − x̂k . The filter structure in this case corresponds to a nonlinear finite impulse response (NFIR). This method
s optimal in the sense of approximating a filter function f such that the worst-case estimation error is minimized.
his provides a means to compute not only the estimate but the tightest error bounds, allowing us to quantify

he uncertainty associated with the estimation process. One advantage of this method is that the considered NFIR
stimator is guaranteed to be bounded-input bounded-output (BIBO) stable.

ssumption 2.

1. Functions F, G are unknown.
2. The system is n-step observable [17].
3. The noise wk is unknown but known to be bounded in lp-norm.
4. A dataset D = {d̃k, ỹk, ũk, x̃k, k = 1, 2, . . . , N } is available, where x̃k = xk + ξk is the noise corrupted

measurement of x , with ξ the unknown but bounded measurement noise.
k k

3
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Consider the filter x̂k = f (ϕ̃k) where the regressor ϕ̃k = [d̃m
k ; ỹm

k ; ũm
k ] corresponds to a column vector concate-

nation of the m most recent measured values {d̃, ỹ, ũ}. The learning process allows us to find an approximation f̂
of the unknown optimal filter f 0 (see definition 2 in [15]) using the dataset D. Let us assume that the filter function
f belongs to the set:

F(γ ) =
{

f ∈ C1
:
 f ′(ϕ)

 ≤ γ,∀ϕ ∈ Φ
}

(5)

where f ′ is the gradient of f and Φ ⊆ R(nd+ny+nu )m is the regressor domain. Given a set of N samples of x̃i , ϕ̃i ,
the feasible filter set (FFS) is defined as:

F F S .
=

{
f ∈ F(γ ) :

⏐⏐x̃i − f (ϕ̃i )
⏐⏐ ≤ ε, i = 1, . . . , N

}
. (6)

This set corresponds to the smallest set containing f 0, or equivalently, the set of all systems consistent with prior
information and measured data. The problem here consists of learning the values for parameters γ and ε such that
the set F F S is not empty. The worst-case bounds for the estimation are given by:

f (ϕ̃k) = min
i=1,...,N

(
x̃i + ε + γ

ϕ̃k − ϕ̃i

)
, (7a)

f (ϕ̃k) = max
i=1,...,N

(
x̃i − ε − γ

ϕ̃k − ϕ̃i

)
. (7b)

he following result is useful for checking the validity of a priori data:

Theorem 1.

1. A necessary condition for the F F S to be non-empty is f
(
ϕ̃i

)
≥ x̃i − ε, i = 1, . . . , N.

2. A sufficient condition for the F F S to be non-empty is f
(
ϕ̃i

)
> x̃i − ε, i = 1, . . . , N.

roof. See [14]. □

Using these conditions, the values γ and ε can be learned from the training dataset. A procedure for achieving
his is presented in [14]. In summary, for each ε value we can find a boundary value γ ∗ separating the region where
F F S = ∅ from the region where F F S ̸= ∅. Therefore, if an estimate for ε is available, it is reasonable to choose

as a slightly higher value than γ ∗(ε). Using these parameters, the direct filter (DF) is defined in terms of the
ptimal tightest bounds in Eqs. (7) as:

x̂k = fc
(
ϕ̃k

) .
=

1
2

[
f
(
ϕ̃k

)
+ f

(
ϕ̃k

)]
. (8)

4. Main result

4.1. Current estimation for power converters operating in CCM and DCM

The approach introduced in the previous section is used to design a discrete-time estimator for average current
in power converters operating in CCM and DCM. This approach does not require knowledge of the operation mode
because the changes in dynamic behavior are encoded in the dataset when transitions occur between CCM and
DCM.

Let us assume that the averaged power converter model operating in CCM and DCM is represented by the
discrete-time unknown model in Eq. (3), where xk is the state (inductor currents and capacitor voltages), dk the

uty cycle of the PWM signals controlling the switching devices, uk the uncontrolled measured input voltage, yk the
easured output voltage and xk an unmeasured unknown state variable. Also, let us assume that the nonlinearities

ssociated with CCM–DCM transitions are represented by the nonlinear functions F, G in Eq. (3). Algorithm 1
specifies the offline procedure for learning the parameters γ and ϵ required to design a direct filter for current
estimation in power converters operating in CCM and DCM.

A sufficient number of experiments must be performed to prepare the dataset D. The design of these experiments
equires special considerations to obtain a sufficiently informative dataset [13]. Once a dataset D is available and
he parameters γ and ε have been obtained, the filter estimates are computed online using algorithm 2.
4
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Algorithm 1: Direct filter design (offline)
Result: D, γ , ε

. Design random test signals d̃(t), ũ(t) for driving the power converter to operate under varied conditions
(CCM and DCM)

2. Measure ỹ(t), x̃(t). The sampling time should be sufficiently high to obtain detailed waveforms of the
switching behavior

3. Compute ȳ(t) = average(ỹ(t)), x̄(t) = average(x̃(t)), with average(·) a non-causal filter
4. Obtain ỹk = resample(ȳ(t), Ts), x̃k = resample(x̄(t), Ts), d̃k = resample(d̃(t), Ts),
ũk = resample(ũ(t), Ts), with Ts a sample time sufficiently small to capture the low frequency behavior of
the system
. Prepare dataset D = {ϕ̃i , x̃i , i = 1, 2, . . . , N } using d̃k , ỹk , ũk , x̃k

6. Take ε = ∥x̃(t) − x̄(t)∥∞

7. Take γ ∗
= min γ , subject to f (ϕ̃i ) > x̃i − ε, i = 1, . . . , N (sufficient condition in Theorem 1 [15])

Algorithm 2: Current estimation for power converters (online)
Data: D, γ , ε

esult: x̂k

hile true do
1. Measure d̃k , ỹk , ũk

2. Construct the regressor ϕ̃k

3. Compute the optimal tightest bounds f (ϕ̃k), f (ϕ̃k) using Eqs. (7), with ϕ̃i , x̃i available in dataset D
4. Compute the DF estimate x̂k using Eq. (8);

nd

4.2. Parallel implementation of the DF estimator

In practice, obtaining the tightest upper and lower bounds in Eqs. (7) requires computing at each sample time
the distance between the measured regressor ϕ̃k with respect to each of the regressors ϕ̃i , i = 1, . . . , N in the

ataset. This computation can become prohibitively expensive as the number of regressors in the dataset grows. To
ddress this problem, [6] proposed an approximation of the optimal filter fc by computing the DF estimates on a
rid defined over the regressor space. The estimates are stored in a look-up table, reducing the computation speed
t the cost of a decrease in estimation accuracy. The problem with this approach is that increasing the regressor
ength m exponentially increases the amount of memory required to store the resulting look-up table.

In this work we propose an alternative approach: we exploit the direct filter algorithm structure to obtain a
arallel implementation that can be efficiently executed using concurrent processing units, such as those available
n graphical processing units (GPUs).

Notice that the most expensive task in algorithm 2 is step 3: computing the optimal tightest bounds f (ϕ̃k), f (ϕ̃k).
This step can be broken up into basic operations to be executed independently over large amounts of data, allowing
a parallel implementation. This implementation was achieved using CUDA (Compute Unified Device Architecture),
a framework for general-purpose GPU programming [19] created by NVIDIA. In this framework, the parallel tasks
are known as kernels, which are executed simultaneously over thousands of concurrent threads. Three kernels were
implemented for each iteration of algorithm 2:

1. ψ j
i = (ϕ̃ j

k − ϕ̃
j
i )2, i = 1, . . . , N , j = 1, . . . , 3m.

2. ∆i =

√∑3m
j=1 ψ

j
i , f i = ṽi + ε + γ∆i , f

i
= ṽi − ε − γ∆i .

3. f = mini=1,...,N ( f i ), f = maxi=1,...,N ( f
i
).

The first kernel computes, at each sample time k, the squared difference between the j th element in the regressor
˜ and the j th element in each regressor ϕ̃ in the dataset. This computation is performed independently by
k i

5
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3m N threads. The second kernel computes the sum of the squared differences using a parallel reduction using
N concurrent threads. The third kernel computes the minimum and maximum values also as parallel reductions
sing N concurrent threads. Notice that these kernels compute the 2-norm of the regressor difference, but other
orms can be similarly implemented.

.3. PCA dimensionality reduction in regressor datasets

Principal Component Analysis (PCA) [10] is a technique used in many image processing and machine learning
pplications. It is used in the present context to reduce the regressor lengths in the DF datasets. The method considers
he regressors as 3m-dimensional vectors and finds a change of basis that maps them into a new space where the
omponents are ranked according to the amount of information they contain. This is achieved by constructing
he covariance matrix of the regressor dataset and computing its eigenvalues and eigenvectors. The eigenvectors
orrespond to the independent directions where the variability of the data is maximized. The associated eigenvalues
rovide a measure of the information contents for each of these directions and provide a way to rank them. The
imensionality reduction is achieved by taking a subset of the eigenvectors associated with most of the information
ontent and using them to map the original regressors into a lower dimensional space. This mapping is performed
ffline on the regressor dataset and online on the measured regressor.

Consider the dataset D formed by 3m-dimensional column vectors ϕ̃i . Organize the N vectors into a matrix
˜ ∈ R3 m×N . The goal is to find a linear transformation Ω̃ = Z⊺Φ̃ with Z ∈ R3 m×l , such that the reduced-
dimension regressors in Ω̃ ∈ Rl×N describe the data with less variables: l < 3m. Algorithm 3 presents the general
approach to obtain the reduced-size dataset Ω̃ and the transformation matrix Z using the covariance method. Notice
that the parameter ζ refers to the relative information content of the principal components compared to the complete
dataset. A rule of thumb to choose this value is ζ = 0.9. The columns in matrix Ω̃ represent reduced-size vectors
of the columns in Φ̃. The same transformation is used online to map the regressor ϕ̃k measured at time k into the
ower-dimensional space: ω̃k = Z⊺ϕ̃k .

Algorithm 3: PCA Dataset Preparation
Data: D

esult: Z , O
1. Organize the regressors ϕ̃i in dataset D into matrix Φ̃ ∈ R3m×N .
2. Compute the empirical mean u ∈ R3m×1 with u j =

1
N

∑N
i=1 Φ̃i j .

. Subtract the deviations from the mean: B = Φ̃ − uh, where h ∈ R1×N
= [1, 1, . . . , 1].

. Compute the covariance matrix C =
1

N−1 B B⊺.
. Compute eigenvectors V ∈ R3m×3m and eigenvalues D ∈ R3m×1 of covariance matrix C .
. Sort the eigenvectors V in decreasing order of associated eigenvalues and save them in matrix Vs .
. Compute the cumulative eigenvalues g j =

∑ j
i=1 Di for j = 1, . . . , 3m.

. Choose l as the smallest integer such that gl/g3m >= ζ .

. Select the first l columns of Vs and save them as matrix Z .
0. Compute the matrix of reduced-size regressors as Ω̃ = Z⊺Φ̃.
1. Save the columns of matrix Ω̃ = [ω̃1, ω̃2, . . . , ω̃N ] in the new dataset O = {(ω̃i , ṽi ), i = 1, 2, . . . , N }.

5. Application example: SEPIC converter

Consider the DC–DC single-ended primary inductor converter (SEPIC) presented in Fig. 1. We used a PWM
ignal with a controlled duty cycle to drive the converter in open loop. The state vector is x =

[
IL1 , VC1 , IL2 , VC2

]⊺.
he switched linear model of the SEPIC converter in Eq. (1) has the following matrices:

As(t),δ(t) =

⎡⎢⎢⎣
−RL1 − βRL2 s − 1 0 sδ − δ

1 − s sδ s − sδ sδ
β −s β − RL2(s + δ − sδ) δ − sδ

⎤⎥⎥⎦ ,

δ − sδ 0 −δ −1/Ro

6
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Fig. 1. Schematic diagram of the SEPIC converter.

Bs(t),δ(t) =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ ,Ps(t),δ(t) =

⎡⎢⎢⎣
L1 0 βL1 0
0 (1 − sδ)C1 0 0
0 0 (s + δ − sδ)L2 0
0 sδC1 0 C2

⎤⎥⎥⎦ ,
Cs(t),δ(t) =

[
0 0 0 1

]
,Ds(t),δ(t) = 0,

here s(t) ∈ {0, 1} is the binary signal that controls the switching of the MOSFET, δ(t) ∈ {0, 1} is a binary
ariable that represents the uncontrolled diode state and β = (1 − s)(1 − δ). RL1, RL2 are the equivalent internal
nductor resistances and Ro is the load resistance. Table 1 shows the parameters used for the SEPIC converter in
he simulation and experimental tests.

In CCM operation, the MOSFET and the diode are activated complementarily (i.e. s = 1, δ = 0 and
= 0, δ = 1). In this case, the off-diagonal elements in matrix Ps(t),δ(t) become zero, and the diagonal corresponds

o the storage element values. The resulting model in Eq. (1) corresponds to a system of linear differential equations.
In DCM operation the MOSFET and diode simultaneously turn on or off, depending on the type of discontinuity

i.e. s = 0, δ = 0 or s = 1, δ = 1). In this case, the matrix Ps(t),δ(t) has nonzero elements in the off-diagonal,
nd one of the differential equations becomes an algebraic equation. For example, when the SEPIC converter is in
iscontinuous inductor current mode (DICM), the MOSFET and diode are turned off (s = 0, δ = 0). In this mode,
oth inductors are connected in series, forcing them to have the same current value. The equivalent inductance
etermines the dynamics throughout the discontinuous mode, and the system has three state variables: ILeq , VC1
nd VC2 . In discontinuous capacitor voltage mode (DCVM) the MOSFET and diode are turned on at the same time
s = 1, δ = 1), forcing both capacitors in a parallel configuration, yielding a system with three state variables: VCeq ,

IL1 , IL2 . Using the averaging principle, s(t) and δ(t) can be redefined as continuous variables in the interval [0, 1]
epresenting the duty cycle of PWM signals with a sufficiently high constant frequency fPWM. These duty cycles
ill represent the period fraction that each switching device is active. In this model, we assume there is a way to
easure or estimate the uncontrolled state of the diode.
The design of an observer for estimating the state variables in this hybrid model is not an easy task. Therefore, we

se the approach introduced in Section 4 to design direct filters for estimating the current IL1k from sampled noisy
easurements of the input voltage uk = Ek , the output voltage yk = VC2k and from knowledge of the controlled
WM duty cycle dk . A dataset D is obtained by applying an amplitude-modulated pseudo-random binary signal
APRBS) to the duty cycle input of the SEPIC converter in open loop and measuring the output voltage while
aintaining a constant input voltage.
The APRB signal maintains a random constant value throughout a given dwell time Td . We randomly generate

he signals by defining minimum and maximum dwell times Td,min, Td,max for both the training and test datasets.
ssuming a constant load resistance Ro, the duty cycle boundary value d̄ separating the CCM and DCM operating

egions can be computed by static analysis [12], using Eq. (9). We compute this value to show more clearly whenever
ransitions between CCM and DCM occur, as shown in Figs. 4 and 6. The minimum and maximum levels of the
uty cycle signal applied to the converter are selected in a wide range to force operation in both CCM and DCM
egions.

d̄ = 1 −
2 f pwm L1L2

= 0.2756 (9)

Ro(L1 + L2)

7
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Table 1
Parameters used in the simulation and experimental tests.

Converter Parameters

SEPIC E = 20 V, L1 = 2.3 mH, C1 = 190 µF,
L2 = 330 µH, C2 = 190 µF, RL1 = 2.134 �,
RL2 = 0.234 �, Ro = 22 �, f pwm = 20 kHz

Fig. 2. Block diagram for the current estimator in the case of the SEPIC converter.

To obtain the results presented in the following subsections, we first acquired the detailed converter current and
voltage waveforms for the designed APRB signals. These signals are then averaged and resampled at a sufficiently
high rate frs to capture the low-frequency behavior of the converter. We applied a scaling scheme to the regressor
dataset as described in [14] to improve the estimation performance. Additionally, we used principal component
analysis (PCA) to map the regressors to a lower dimensional space, reducing the computational cost. Fig. 2 presents
a block diagram showing the SEPIC converter, its measured signals and the direct filter estimator.

5.1. Simulation results

A detailed noiseless simulation of the SEPIC converter is run and all the variables are sampled at fs = 1 MSa/s,
and then averaged and resampled at frs = 5 kSa/s. Multiple direct filters are designed and tested for different
regressor lengths m and dataset sizes N .

We developed two different direct filter implementations. The base case direct filter estimator described by Eq. (8)
s DF. The direct filter with PCA-reduced dataset (DFPCA) implements the same estimator, but uses a dataset
ormed by regressors with reduced dimension, obtained using the procedure described in Section 4.3. We compared
he performance of DF and DFPCA to other estimation approaches: extended Kalman filter (EKF), particle filter
PF), and neural networks (NN). For the model-based approaches (EKF, PF), we used the nonlinear average model
f the SEPIC converter. The PF computes the evolution of 50 particles using Euler’s method for 10 subintervals on
ach sample step. For the data-based approaches (DF, DFPCA, NN) a dataset with N = 10000 regressors and total

regressor length 3 m = 60 was obtained from simulation. We used this dataset to learn the parameters (ε, γ ) for
the DF and to train a feed-forward neural network with 3m inputs and 1 output. After some tests, we achieved the

est performance with 30 neurons in the hidden layer.
8
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Table 2
Constant duty cycle periods in the training and test APRB signals for different
datasets.

Dataset Training Test

Td,min Td,max Td,min Td,max

DS1 5 ms 5 ms 10 ms 10 ms
DS2 10 ms 10 ms 20 ms 20 ms
DS3 5 ms 10 ms 10 ms 20 ms
DS4 5 ms 10 ms 10 ms 30 ms

We prepared four different datasets (DS1, DS2, DS3, DS4) using several minimum and maximum dwell times
or the APRB signal, specified in Table 2. For each dataset, we prepared 20 different test runs. Fig. 3 shows the
erformance of the estimators for these datasets, using as error measures the relative absolute error (RAE), root
elative square error (RRSE), and relative worst-case error defined as:

RAE = 100∥x − x̂∥1/∥x − x̄∥1,

RRSE = 100∥x − x̂∥2/∥x − x̄∥2,

RWCE = 100∥x − x̂∥∞/∥x − x̄∥∞,

here x corresponds to the measured signal, x̄ the average, and x̂ the estimate. These error measures quantify
several properties of each estimator: RAE indicates the mean deviation, RRSE penalizes the outliers, and RWCE
indicates the maximum deviation.

For all datasets, the model-based estimators have worse performance than the data-based ones. The cause is
their dependence on the nonlinear average model that does not provide a good approximation of the switched
linear system, particularly during transients and DCM operation. In the case of the data-based estimators, NN
has better performance than DF and DFPCA in all datasets because the parameter γ in the DF represents global
worst-case bounds on partial derivatives of the approximated function, while the NN locally approximates them.
Notice that in most cases, the DFPCA estimate is slightly worse than the DF because the regressor mapping into a
lower-dimensional space implies a certain amount of information is lost.

Fig. 4 shows a small section of a particular test run, comparing the estimates for all the implemented methods
with the switching input current IL1 and its average, shown in light and dark gray, respectively. Notice that the
model-based approaches (EKF, PF) exhibit noticeable oscillations during transitions from CCM to DCM. These
oscillations cause the high 2-norm and ∞-norm errors for these estimators. Estimates from EKF and PF also
have an offset during steady-state operation. Fig. 4(a) shows the upper and lower bounds ( f , f ) for DF and
DFPCA estimates, using dashed lines. Notice that the distance between these bounds grows during transients,
which indicates an increase in estimation uncertainty under these conditions. Fig. 4(b) shows the detail of a CCM
to DCM transition, where the switched current IL1 exhibits the typical discontinuous waveform. The DF and
DFPCA estimators correctly track the change in the average current during the transition from the symmetric to the
asymmetric waveform.

5.2. Experimental results

We executed multiple runs by applying different APRB duty cycle signals in open loop to the SEPIC converter
experimental test bench and measuring all the variables with an oscilloscope at fs = 2 MSa/s. Then we resampled
he acquired signals at frs = 4 KSa/s. We used algorithm 1 to prepare four different regressor datasets with the

Td,min, Td,max values presented in Table 2. For each dataset, we prepared N = 10000 training regressors with a total
ength of 3 m = 60 using five 500 ms captures. We also prepared 20 test signals using three 500 ms captures for
ach. We designed all the estimators using the same criteria discussed in the previous subsection.

Fig. 5 shows the performance comparison for all the implemented estimators. Notice that the data-based
stimators (DF, DFPCA, NN) perform better than the model-based ones (EKF, PF). However, the performance of the
N estimator is worse than the DF and DFPCA estimators. In particular, the RWCE measure for NN is considerably
orse than the others, indicating the presence of high amplitude outliers. Fig. 6 shows large amounts of noise for
9
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Fig. 3. Simulation results: estimation error (mean ± stdev, 20 test runs of 1.5 s each) for direct filter (DF), direct filter with PCA dataset
DFPCA), neural networks (NN), extended Kalman filter (EKF) and particle filter (PF) with 4 different datasets (m = 20, N = 10000,
= 0.1292).

he NN estimate. The DF and DFPCA estimators show better noise rejection than all the other estimators. Fig. 6(a)
hows the detail of the upper and lower bounds ( f c, f

c
) for DF and DFPCA. Notice that the noise increases the

estimation uncertainty, but DF and DFPCA give better estimates of the average current. Fig. 6(b) shows the DF and
DFPCA estimates tracking the average current during a transition from CCM to DCM.

Let us remark that the DF in this example takes as the only uncontrolled input ut
= E corresponding to the

input voltage. If load disturbances were present, the estimation performance would decrease. However, we could
define the load resistance as another uncontrolled input ut

= [E, R0], allowing the DF to give estimates under input
and load disturbances. This scenario requires including in the dataset D the typical load disturbance scenarios the
system could be subject to.

5.3. Estimation performance for the parallel implementation

Table 3 shows the estimation performance results of the DF and DFPCA estimators using the four experimental
datasets available. We show the mean estimation performance loss of the DFPCA compared to the DF for the
three error measures. The table shows the average execution time of one iteration of algorithm 2 for two different
implementations: CPU running the DF estimator sequentially and GPU running the parallel implementation of the
DFPCA estimator. The hardware used for these tests is the Nvidia Jetson TX2, using one of the four available
ARM Cortex-A57 CPU cores running at 2.0 GHz and the Pascal GPU running at 1.12 GHz. The speedup of the
GPU+PCA implementation compared to the base CPU case is also shown.

Notice that when we applied PCA to all datasets, the estimation performance loss was less than 2% of the
absolute error. On the other hand, the algorithm implementation in the GPU using PCA allowed us to increase
the computation speed more than six times. The estimation rate achieved was close to 4 kHz, corresponding to
the sample time of the experimental dataset. These results show that using the reduced dimension datasets in GPU
provides a computation speed gain that outweighs the estimation losses and provides a feasible implementation
of the DF algorithm for real-time applications. However, the experiments performed did not use a real-time

operating system (RTOS) but a general-purpose operating system (GPOS). Consequently, we observed some jitter

10
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Fig. 4. Simulation results (top to bottom): Duty cycle d (blue) and CCM–DCM boundary d̄ (red). Output voltage y = VC2. Input voltage
u = 20 V. Input current IL1 estimate with direct filter (DF), direct filter with PCA dataset (DFPCA), neural networks (NN), extended Kalman
filter (EKF), and particle filter (PF). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

in the estimates produced by the DF algorithm. This behavior may render the proposed method infeasible in
applications where the satisfaction of hard deterministic timing constraints is required. Development of real-time
GPU applications for control systems requires additional considerations [9].

The code implementing the DF algorithm is open-source and is available in an online repository [dataset] [3]. It
includes several datasets to test the algorithm with different regressor lengths and dataset sizes.

6. Conclusion and perspectives

We presented a method for the design of estimators without exact knowledge of the system model. We used
this approach in the context of current estimation in power converters working in both CCM and DCM. Because
of drastic dynamic changes in the system behavior when traversing the boundary between CCM and DCM, the
average model does not provide a good approximation. This method can be used in PWM power converters and is
demonstrated in the case of the SEPIC DC–DC converter. Simulation and experimental results have been presented,
11
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Fig. 5. Experimental results: estimation error (mean ± stdev, 20 test runs of 1.5 s each) for direct filter (DF), direct filter with PCA dataset
(DFPCA), neural networks (NN), extended Kalman filter (EKF), and particle filter (PF) with 4 different datasets (m = 20, N = 10000,
ε = 0.1292).

Table 3
Comparison of computational performance between DF and DFPCA implementations in CPU and GPU
using PCA reduced dataset. N = 10 000, regressor length in original dataset 3 m = 60, regressor length
in PCA reduced dataset = 13.

Dataset Mean estimation perf. loss (%) Aver. exec. time (ms)/speedup

RAE RRSE RWCE CPU GPU+PCA

DS1 1.5446 1.6832 3.0170 1.6410 0.2419/6.7847X
DS2 0.2641 0.8726 4.0489 1.6445 0.2434/6.7577X
DS3 0.6703 0.1592 6.4868 1.6491 0.2437/6.7660X
DS4 0.4993 0.7582 1.9521 1.6428 0.2443/6.7235X

showing that this approach provides good estimation results compared to other model-based and data-based methods.
Also, we show that a real-time implementation of the direct filter algorithm is feasible on an embedded system by
exploiting its parallel structure to run it on a GPU and applying PCA to reduce the size of the datasets.

Future extensions of this work involve improving the computational performance of the GPU implementation
ith additional configurations on the Jetson embedded system such as power model, clock frequencies, CPU core

solation, memory locks, and also applying a real-time patch to the Linux kernel (PREEMPT-RT) to improve the
eterminism compared to the stock Linux kernel. Additional improvements can be obtained with the implementation
f persistent CUDA kernels to reduce the overhead of kernel launch at each sample time [5]. Regarding the power
onverter, we are interested in analyzing the dependence of the estimation performance on the parameter space
m, N ) for different converter topologies where DCM is present.

We consider important to investigate the performance of the proposed estimator in the case of converters with
onlinear loads. Also, we would like to compare the estimator performance with respect to different current sensors
n terms of offset, drift, etc. Finally, a more detailed investigation of the estimation performance loss caused by
he mapping to a lower-dimensional regressor space would provide a better understanding of the advantage of
pplying the PCA technique in this context. An alternative compression scheme could be considered to reduce the
12
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Fig. 6. Experimental results (top to bottom): Duty cycle d (blue) and CCM–DCM boundary d̄ (red). Output voltage y = VC2. Input current
IL1 estimate with direct filter (DF), direct filter with PCA dataset (DFPCA), neural networks (NN), extended Kalman Filter (EKF) and
article filter (PF). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)

egressor size, decreasing the computational cost. This would allow us to evaluate if a real-time implementation on
microcontroller such as the TI C2000 is feasible.
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