
https://ietresearch.onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3Aa0f0146b-b4e6-4cf2-9a77-279c68029b40&url=https%3A%2F%2Fietresearch.onlinelibrary.wiley.com%2Fhub%2Fjournal%2F24682322%2Fhomepage%2Fcfp%3Futm_medium%3Ddisplay%26utm_source%3Ddartads%26utm_content%3DIET_ePDF_call_for_papers_feb23%26utm_term%3DCIT2&pubDoi=10.1049/cit2.12060&viewOrigin=offlinePdf

Received: 28 December 2020 - Revised: 18 May 2021 - Accepted: 5 July 2021 - CAAI Transactions on Intelligence TechnologyDOI: 10.1049/cit2.12060

REV I EW

Deep learning for time series forecasting: The electric load case

Alberto Gasparin1 | Slobodan Lukovic1 | Cesare Alippi1,2

1Faculty of Informatics, Università della Svizzera
Italiana, Lugano, Switzerland

2Department of Electronics, Information, and
Bioengineering, Politecnico di Milano, Milan, Italy

Correspondence

Alberto Gasparin, Faculty of Informatics, Università
della Svizzera Italiana, 6900 Lugano, Switzerland.
Email: alberto.gasparin@usi.ch

Funding information

Innosuisse – Schweizerische Agentur für
Innovationsförderung, Grant/Award Number:
1155002544

Abstract
Management and efficient operations in critical infrastructures such as smart grids take
huge advantage of accurate power load forecasting, which, due to its non‐linear nature,
remains a challenging task. Recently, deep learning has emerged in the machine learning
field achieving impressive performance in a vast range of tasks, from image classification
to machine translation. Applications of deep learning models to the electric load fore-
casting problem are gaining interest among researchers as well as the industry, but a
comprehensive and sound comparison among different—also traditional—architectures
is not yet available in the literature. This work aims at filling the gap by reviewing and
experimentally evaluating four real world datasets on the most recent trends in electric
load forecasting, by contrasting deep learning architectures on short‐term forecast (one‐
day‐ahead prediction). Specifically, the focus is on feedforward and recurrent neural
networks, sequence‐to‐sequence models and temporal convolutional neural networks
along with architectural variants, which are known in the signal processing community
but are novel to the load forecasting one.

KEYWORD S
deep learning, electric load forecasting, multi‐step ahead forecasting, smart grid, time‐series prediction

1 | INTRODUCTION

Smart grids aim at creating automated and efficient energy
delivery networks that improve power delivery reliability and
quality, along with network security, energy efficiency, and
demand‐side management aspects [1]. Modern power distri-
bution systems are supported by advanced monitoring in-
frastructures that produce immense amount of data, thus
enabling fine grained analytics and improved forecasting per-
formance. In particular, electric load forecasting emerges as a
critical task in the energy field, as it is of central relevance for a
number of power distributions tasks at different levels of the
grid. At the single‐household level, accurate load forecasting
can create savings opportunities while also help reduce the
energy footprint. At a higher level in the grid (i.e., looking at
the aggregated load from multiple households or buildings in
general) electric load forecasting is a fundamental tool for
power system operators as it provides support for different
decision‐making tasks such as the definition of better pricing

strategies, the reduction of maintenance cost, improved
demand‐side management and efficient electrical energy stor-
age management. Load forecasting is carried out at different
time horizons, ranging from milliseconds to years, depending
on the specific problem at hand.

Our main goal is to concisely review and assess the most
appropriate deep learning models that could be utilised in the
smart grid field specifically for load forecasting. In this work,
we focus on the day‐ahead prediction problem also referred to
in the literature as short‐term load forecasting (STLF) [2]. Since
deregulation of electric energy distribution and wide adoption
of renewables strongly affects daily market prices, STLF
emerges to be of fundamental importance for efficient power
supply [3]. Furthermore, we differentiate forecasting on the
granularity level at which it is applied. For instance, in an in-
dividual household scenario, load prediction is a rather difficult
task as power consumption patterns are highly volatile. Thus,
despite not being a very relevant task from the perspective of
smart grids, we consider it for the sake of testing the proposed

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2021 The Authors. CAAI Transactions on Intelligence Technology published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing
University of Technology.

CAAI Trans. Intell. Technol. 2022;7:1–25. wileyonlinelibrary.com/journal/cit2 - 1

https://doi.org/10.1049/cit2.12060
https://orcid.org/0000-0003-3350-3168
mailto:alberto.gasparin@usi.ch
https://orcid.org/0000-0003-3350-3168
https://ietresearch.onlinelibrary.wiley.com/journal/24682322
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fcit2.12060&domain=pdf&date_stamp=2021-09-22

models with challenging and noisy dynamics. On the contrary,
aggregated load consumption, that is, that associated with a
neighbourhood, a region, or even an entire state, is normally
easier to predict as the resulting signal exhibits slower dy-
namics. Still, the problem remains extremely relevant for the
industry as even a small—statistically sound—increase in
prediction accuracy can be translated into significant savings.

Historical power loads are time series affected by several
external time variant factors, such as weather conditions, human
activities, type of industrial processes, temporal and seasonal
characteristics, which make their predictions a challenging
problem. A large variety of prediction methods has been pro-
posed for electric load forecasting over the years, and only the
most relevant ones are reviewed in this survey. Autoregressive
moving average models (ARMA) were among the first model
families used in short‐term load forecasting [4, 5]. Soon they
were replaced by autoregressive‐integrated moving average
(ARIMA) and seasonal ARIMA models [6] to cope with time
variance often exhibited by load profiles. In order to include
exogenous variables like temperature into the forecasting
method, the autoregressive moving average model with eXog-
enous inputs (ARMAX) [7, 8] and the autoregressive‐integrated
moving average model with eXogenous inputs (ARIMAX) [9]
were introduced. The main shortcoming of these system
identification families is the linearity assumption for the system
being observed, a hypothesis that does not generally hold. In
order to solve this limitation, non‐linear models like feed‐
forward neural networks were proposed and became attrac-
tive for those scenarios exhibiting significant non‐linearity, as in
load forecasting tasks [3, 10–13]. The intrinsic sequential nature
of time series data was then exploited by considering sophisti-
cated techniques ranging from advanced feed‐forward archi-
tecture with residual connections [14] to convolutional
approaches [15, 16] and recurrent neural networks [17, 18] along
with their many variants such as the echo‐state network [18–20],
long short‐term memory [18, 21–23] and gated recurrent unit
[18, 24]. Moreover, some hybrid architectures have also been
proposed, aiming to capture the temporal dependencies in the
data with recurrent networks while performing a more general
feature extraction operation with convolutional layers [25, 26].

Different surveys address the load forecasting topic by
means of (not necessarily deep) neural networks. In [42], the
authors focus on the use of some deep learning architectures
for load forecasting. However, this review lacks a compre-
hensive comparative study of performance verified on com-
mon load forecasting benchmarks. The absence of valid cost‐
performance metric does not allow the report to make
conclusive statements. In [18], an exhaustive overview of
recurrent neural networks for short‐term load forecasting is
presented. The very detailed work considers one‐layer (not
deep) recurrent networks only. A comprehensive summary of
the most relevant research dealing with short‐term load fore-
casting (STLF) employing recurrent neural networks, con-
volutional neural networks and seq2seq models is presented in
Table 1. It emerges that most of the works have been per-
formed on different datasets, making it rather difficult—if not
impossible—to assess their absolute performance and,

consequently, recommend the best state of the art solutions for
load forecasting.

In this survey, we consider the most relevant—and
recent—deep architectures and contrast them—also not on
deep models—in terms of performance accuracy on open‐
source benchmarks. The considered architectures include
linear models, shallow and deep feed‐forward neural networks,
recurrent neural networks, sequence‐to‐sequence models and
temporal convolutional neural networks. The experimental
comparison is performed on four different real world datasets
that are representatives of two distinct scenarios. Three datasets
consider power consumption at an individual household level
with a signal characterised by high‐frequency components while
the last dataset takes into account aggregation of several
consumers.

Our contributions consist in the following:

� A comprehensive review. The survey provides a compre-
hensive investigation of deep learning architectures known
to the smart grid literature as well as novel recent ones
suitable for electric load forecasting.

� A multi‐step prediction strategy comparison for recurrent
neural networks: we study and compare how different pre-
diction strategies can be applied to recurrent neural net-
works. To the best of our knowledge, this work has not been
done yet for deep recurrent neural networks.

� A relevant performance assessment. To the best of our
knowledge, the present work provides the first systematic
experimental comparison of the most relevant deep learning
architectures for the electric load forecasting problems of
individual and aggregated electric demand. It should be noted
that the envisaged architectures are domain‐independent and,
as such, can be applied in different forecasting scenarios. In
order to make the experiments reproducible—a very impor-
tant aspect not rarely underestimated—all datasets used in this
survey, as well as the source code, are publicly available.

The rest of this work is organised as follows:
In Section 2, we formalise the forecasting problem along

with the notation that will be used in this work. In Section 3,
we introduce feed‐forward neural networks (FNNs) and the
main concepts relevant to the learning task. We also provide a
short review of the literature regarding the use of FNNs for
the load forecasting problem.

In Section 4, we sketch recurrent neural networks (RNNs)
and overview their most advanced architectures: long short‐
term memory and gated recurrent unit networks.

In Section 5, sequence‐to‐sequence architectures (seq2seq)
are discussed as a general improvement over recurrent neural
networks. We present both, simple and advanced models built
on the sequence‐to‐sequence paradigm.

In Section 6, convolutional neural networks are introduced,
and one of their most recent variants, the temporal convolu-
tional network (TCN), is presented as the state‐of‐the‐art
method for univariate time series prediction.

In Section 7, the real world datasets used for the models'
comparison are presented. For each dataset, we provide a

2 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

description of the preprocessing operations and the techniques
that have been used to validate the models' performance.

Finally, In Section 8, we draw conclusions based on
performance.

2 | PROBLEM DESCRIPTION

In basic multi‐step‐ahead electric load forecasting, a univariate
time series s¼ ½s½0�; s½1�…; s½T �� that spans through several
years is given. Input data are presented to the different pre-
dictive families of models as a regressor vector composed of
fixed time‐lagged data associated with a window size of length
nT , which slides over the time series. The size of the time
window is a hyperparameter whose optimal value has to be
identified on the data at hand. Given this fixed length view of
past values, a predictor f aims at forecasting the next nO values
of the time series. In this work, the forecasting problem is cast
into a supervised learning problem. As such, given the input

vector at discrete time t xt ¼ ½s½t − nT þ 1�;…; s½t�� ∈ IRnT ,
the forecasting problem requires to infer the next nO mea-
surements yt ¼ ½s½t þ 1�;…; s½t þ nO�� ∈ IRnO or a subset of it.
To ease the notation, we express the input and output vectors
in the reference system of the time window (relative time)
instead of the time series one (absolute time). By following this
approach, the input vector at discrete time t becomes xt ¼
½xt½0�;…; xt½nT − 1�� ∈ IRnT ; xt½i� ¼ s½iþ 1þ t − nT � and the
corresponding output vector is yt ¼ ½yt½nT − 1�;…;

yt½nT þ nO − 2�� ∈ IRnO . yt characterises the real output
values defined as yt½t� ¼ xt½tþ 1�; ∀t ∈ T . Similarly, we
denote as ŷt ¼ f ðxt; Θ̂Þ ∈ IRnO , the prediction vector provided
by a predictive model f whose parameters vector Θ has been
estimated by optimising a performance function.

Without loss of generality, in the remainder of the work, we
drop the subscript t from the inner elements of xt and yt. The
introduced notation, along with the sliding window approach,
is depicted in Figure 1.

TABLE 1 A summary of prior works that address the topic of electric load forecasting with deep learning models

Reference Predictive family of models Time horizon Exogenous variables Dataset (location)

[18] LSTM, GRU, ERNN, NARX, ESN D ‐ Rome, Italy

[18] LSTM, GRU, ERNN, NARX, ESN D T New England [27]

[28] ERNN H T, H, P, other* Palermo, Italy

[17] ERNN H T, W, H Hubli, India

[20] ESN 15 min to 1Y ‐ Sceaux, France [29]

[21] LSTM, NARX D ‐ Unknown

[22] LSTM D(?) C, TI Australia [30]

[23] LSTM 2W to 4M T, W, H, C, TI France

[31] LSTM 2D T, P, H, C, TI Unknown [32]

[24] GRU D T, C, other** Dongguan, China

[33] LSTM, seq2seq 60 H C, TI Sceaux, France [29]

[34] LSTM, seq2seq 12 H T, C, TI New England [35]

[36] seq2seq D ‐ USA

[37] seq2seq 0.5H, 4H, 10H T, W, H, C Unknown

[38] seq2seq + attention 1H, 4H, 10H, 1D ‐ Unknown

[15] CNN D C, TI USA

[16] CNN D C, TI Sceaux, France

[25] CNN + LSTM D T, C, TI North‐China

[26] CNN + LSTM D ‐ North‐Italy

[39] WaveNet‐like D ‐ France

[40] TCN D ‐ Portugal [41]

Abbreviations: CNN, Convolutional neural networks; ERNN, Elmann recurrent neural networks; GRU, Gated recurrent units; LSTM, long short‐term memory; TCN, temporal
convolutional network.
Dataset: the data source; a link is provided whenever available.
Time Horizon: H (hour), D (day), W (week), M (month), Y (year), ? (Not explicitly stated, thus, inferred from the text) Exogenous variables: T (temperature), W (wind speed), H
(humidity), P (pressure), C (calendar including date and holidays information), TI (time).
*Other input features were created for this dataset, **categorical weather information is used (e.g., sunny, cloudy).

GASPARIN ET AL. - 3

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

In certain applications, we will additionally be provided
with extra d − 1 exogenous variables (e.g., the temperatures),
each of which represent a univariate time series aligned in
time with the data of electricity demand. In this scenario,
the components of the regressor vector become vectors,
that is, xt ¼ ½x½0�;…; x½nT − 1�� ∈ IRnT�d . Indeed, each
element of the input sequence is represented as x½t� ¼
½x½t�; z0½t�;…; zd−2½t�� ∈ IRd , where x½t� ∈ IR is the scalar load
measurement at time t, while zk½t� ∈ IR is the scalar value of
the kth exogenous feature.

The nomenclature used in this work is given in Table 2.

3 | FEED‐FORWARD NEURAL
NETWORKS

Feed‐forward neural networks (FNNs) are parametric model
families characterised by the universal function approxima-
tion property [43]. The computational architectures are
composed of a layered structure consisting of three main
building blocks: the input layer, the hidden layer(s) and the
output layer. The number of hidden layers (L > 1), de-
termines the depth of the network, while the size of each
layer, that is, the number nH ;ℓ of hidden units of the ℓ − th
layer defines its complexity in terms of neurons. FNNs
provide only direct forward connections between two
consecutive layers, each connection associated with a train-
able parameter; note that given the feed foward nature of
the computation, no recursive feedback is allowed (as it
happens instead in recurrent networks). More in detail, given
a vector x ∈ IRnT fed at the network input, the FNN's
computation can be expressed as

aℓ ¼WT
ℓhℓ−1 þ bℓ; ℓ¼ 1;…L ð1Þ

hℓ ¼ ϕℓðaℓÞ ð2Þ

where h0 ¼ xt ∈ IRnT and ŷt ¼ hL ∈ IRnO .
Each layer ℓ is characterised by its own parameters' matrix

Wℓ ∈ IRnH ;ℓ−1�nH;ℓ and bias vector bℓ ∈ IRnH ;ℓ . Hereafter, in
order to ease the notation, we incorporate the bias term in the
weight matrix, that is, Wℓ ¼ ½Wℓ; bℓ� and hℓ ¼ ½hℓ; 1�.
Θ¼ ½W1;…;WL� groups all the network's parameters.

Given a training set of N input–output vectors in the (xi,
yi) form, i¼ 1;…;N , the learning procedure aims at identi-
fying a suitable configuration of parameters Θ̂ that minimises a
loss function LðΘÞ evaluating the discrepancy between the
estimated values f ðxt;ΘÞ and the measurement yt:

Θ̂¼ arg min
Θ
LðΘÞ

The mean squared error,

LðΘÞ ¼
1
N

XN

t¼1
ðyt − f ðxt;ΘÞÞ2 ð3Þ

is a very popular loss function for time series prediction; not
rarely, a regularisation penalty term is introduced to guide the
minimisation (learning) procedure towards solution incorpo-
rating some wished property, for example, predictor smooth-
ness as well as mitigating occurrence of model overfitting.

LðΘÞ ¼
1
N

XN

t¼1
ðyt − f ðxt;ΘÞÞ2 þΩðΘÞ: ð4Þ

The most used regularisation scheme controlling model
complexity is the L2 regularisation ΩðΘÞ ¼ λ‖Θ‖2

2, being λ a
suitable hyperparameter controlling the intensity of the
regularisation.

As Equation (4) is not convex, the solution cannot be
obtained in a closed form with linear equation solvers or
convex optimisation techniques. Parameter estimation
(learning procedure) operates iteratively for example, by
leveraging on the gradient descent approach:

Θk ¼Θk−1 − η∇ΘLðΘÞ|Θ¼Θk−1 ð5Þ

where η is the learning rate and ∇ΘLðΘÞ the loss function
gradient with respect to Θ. Stochastic gradient descent,
RMSProp [44], Adagrad [45], Adam [46] are popular learning
procedures. The learning procedure yields estimate Θ̂¼Θk
associated with the predictive model f ðxt; Θ̂Þ.

Here, we consider deep FNNs to be the baseline
architectures.

In multi‐step‐ahead prediction, the output layer dimension
coincides with the forecasting horizon nO > 1. The dimension
of the input vector depends also on the presence of exogenous
variables; this aspect is further discussed in Section 7.

3.1 | FNNs' application for short‐term load
forecasting

The use of feed‐forward neural networks in short‐term load
forecasting dates back to the 90s. Authors in [11] propose a
shallow neural network with a single hidden layer to provide a
24‐h forecast using both load and temperature information. In
[10], one‐day‐ahead forecast is implemented using two
different prediction strategies: one network provides all 24
forecast values in a single shot (MIMO strategy) while another
single output network provides the day‐ahead prediction by
recursively feedbacking its last value estimate (recurrent strat-
egy). The recurrent strategy proves to be more efficient in
terms of both training time and forecasting accuracy. In [47],
the authors present a feed‐forward neural network to forecast
electric loads on a weekly basis. The sparsely connected feed‐
forward architecture receives the load time series, temperature
readings, as well as the (coded) time and day of the week. It is
shown that the extra information improves the forecast ac-
curacy compared to an ARIMA model trained on the same
task. [12] presents one of the first multi‐layer FNNs to forecast
the hourly load of a power system.

4 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

A detailed review concerning applications of artificial
neural networks in short‐term load forecasting can be found in
[3]. However, this survey dates back to the early 2000s and
does not discuss deep models. More recently, architectural
variants of feed‐forward neural networks have been used; for
example, in [14], a ResNet [48] inspired model is used to
provide day‐ahead forecast by leveraging on a very deep ar-
chitecture. The article shows a significant improvement on
aggregated load forecasting when compared to other (not
neural) regression models on different datasets.

4 | RECURRENT NEURAL NETWORKS

In this section, we overview recurrent neural networks and, in
particular, the Elmann Net architecture [49], long short‐term
memory [50] and the gated recurrent Unit [51] networks. Af-
terwards, we introduce deep recurrent neural networks and
discuss different strategies to perform multi‐step‐ahead fore-
casting. Finally, we present related work in short‐term load
forecasting that leverages on recurrent networks.

4.1 | Elmann RNNs

Elmann recurrent neural networks (ERNN) were proposed in
[49] to generalise feed‐forward neural networks for better
handling ordered data sequences like time series.

The reason behind the effectiveness of RNNs in dealing
with sequences of data is their ability to learn a compact rep-
resentation of the input sequence xt by means of a recurrent
function f that implements mapping:

h½t� ¼ f ðh½t − 1�; x½t�;ΘÞ ð6Þ

The architecture is depicted in Figure 2.
By expanding Equation (6) and given sequence

xt ¼ ½x½0�;…; x½nT − 1��, x½t� ∈ IRd the neural computation
satisfies the following equation:

a½t� ¼WTh½t − 1� þUTx½t� ð7Þ

h½t� ¼ ϕða½t�Þ ð8Þ

y½t� ¼ ψðVTh½t�Þ ð9Þ

whereW ∈ IRnH�nH , U ∈ IRd�nH , V ∈ IRnH�nO are the weight
matrices for hidden‐hidden, input‐hidden, and hidden‐output
connections, respectively, ϕð⋅Þ is an activation function
(generally the hyperbolic tangent one) and ψð⋅Þ is normally a
linear function. The computation of a single module in an
Elmann recurrent neural network is depicted in Figure 3.

It can be noted that an ERNN processes one element of
the sequence at a time, preserving its inherent temporal order.
After reading an element from the input sequence x½t� ∈ IRd ,
the network updates its internal state h½t� ∈ IRnH using both (a
transformation of) the latest state h½t − 1� and (a trans-
formation of) the current input (Equation 6). The described
process can be better visualised as an acyclic graph obtained
from the original cyclic graph (left side of Figure 2) via an
operation known as time unfolding (right side of Figure 2). It is
of fundamental importance to point out that all nodes in the
unfolded network share the same parameters, as they are just
replicas distributed over time.

F I GURE 1 A sliding windowed approach is used to frame the forecasting problem into a supervised machine learning problem. The target signal s is split
in multiple input output pairs ðxt; ytÞ ∀ t ∈ fnT; nTþ1;…;T − n0g

GASPARIN ET AL. - 5

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

The parameters of the network Θ¼ ½W;U;V� are usually
learnt via backpropagation through time (BPTT) [52, 53], a
generalised version of standard backpropagation. In order to
apply gradient‐based optimisation, the recurrent neural
network has to be transformed through the unfolding pro-
cedure shown in Figure 2. In this way, the network is converted
into a FNN having as many layers as time intervals in the input
sequence, and each layer is constrained to have the same weight
matrices. In practice, truncated backpropagation through time
[54] (TBPTT) (τb, τf) is used. The method processes an input
window of length nT one timestep at a time and runs BPTT
for τb timesteps every τf steps. Notice that having τb < nT
does not limit the memory capacity of the network as the
hidden state incorporates information taken from the whole
sequence. Despite that, setting τb to a very low number may
result in poor performance. In the literature, BPTT is
considered equivalent to TBPTT (τb ¼ nT , τf ¼ 1). In this
work, we used epoch‐wise truncated BPTT that is, TBPTT

(τb ¼ nT , τf ¼ nT) to indicate that the weights' update is
performed once a whole sequence has been processed.

Despite the model simplicity, Elmann RNNs are hard to
train due to the ineffectiveness of gradient (back)propagation.
In fact, it emerges that the propagation of the gradient is
effective for short‐term connections but is very likely to fail for
long‐term ones, when the gradient norm usually shrinks to
zero or diverges. These two behaviours are known as the
vanishing gradient and the exploding gradient problems
[55, 56] and are extensively studied in the machine learning
community.

4.2 | Long short‐term memory

Recurrent neural networks with long short‐term memory
(LSTM) were introduced to cope with the vanishing and ex-
ploding gradients' problems occurring in ERNNs and, more in
general, in standard RNNs [50]. LSTM networks maintain the
same topological structure of ERNN but differ in the
composition of the inner module—or cell.

Each LSTM cell has the same input and output as an
ordinary ERNN cell but, internally, it implements a gated
system that controls the neural information processing (see
Figures 3 and 4). The key feature of gated networks is their
ability to control the gradient flow by acting on the gate
values; this allows the learning procedure to tackle the
vanishing gradient problem, as LSTM can maintain its in-
ternal memory unaltered for long time intervals. Notice
from the equations below that the inner state of the
network results as a linear combination of the old state and
the new state (Equation 14). Part of the old state is pre-
served and flows forward while in the ERNN, the state
value is completely replaced at each timestep (Equation 8).
In detail, the neural computation is

i½t� ¼ ψ Wfh½t − 1� þUfx½t�ð Þ ð10Þ

f ½t� ¼ ψ Wih½t − 1� þUix½t�ð Þ ð11Þ

o½t� ¼ ψ Woh½t − 1� þUox½t�ð Þ ð12Þ

ec½t� ¼ ϕ Wch½t − 1� þUcx½t�ð Þ ð13Þ

TABLE 2 The nomenclature used in this work

Notation Description

nT Window size of the regressor vector

nO Time horizon of the forecast

d − 1 Number of exogenous variable

u Scalar value

u Vector/matrix

uT Vector/matrix transposed

⊙ Elementwise product

* Convolution operator

*d Dilated convolution operation

ℓ Index of the lth layer

xt Regressor vector at discrete time t (reference system: time series)
xt ∈ IRnT or xt ∈ IRnT�d

yt True output for the input sequence at time t (reference system:
time series) yt ∈ IRnO

ŷt Predicted output for the input sequence at time t (reference
system: time series) ŷt ∈ IRnO

x½t� Input vector of load and other features at time t (reference
system: time window) x½t� ∈ IR or x½t� ∈ IRd

y½t� Value of the load time series at time tþ 1 (reference system:
time window) y½t� ∈ IR

zt Exogenous features' vector at time t (reference system: time
series) zt ∈ IRnT�d−1

z½t� Exogenous features' vector at time t (reference system: time
window). z½t� ∈ IRd−1

h Hidden state vector

Θ Model's vector of parameters

nH Number of hidden neurons

F I GURE 2 (Left) A simple RNN with a single input. The black box
represents the delay operator which leads to Equation (6). (Right) The
network after unfolding. Note that the structure reminds that of a (deep)
feedforward neural network but, here, each layer is constrained to share the
same weights. hinit is the initial state of the network which is usually set to
zero

6 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

c½t� ¼ f ½t�⊙ c½t − 1� þ i½t� ⊙ ec½t� ð14Þ

h½t� ¼ o½t� ⊙ ϕðc½t�Þ ð15Þ

where Wf ;Wi;Wo;Wc ∈ IRnH�nH , Uf ;Ui;Uo;Uc ∈ IRnH�d

are parameters to be learnt, ⊙ is the Hadamard product, ψð⋅Þ is
generally a sigmoid activation while ϕð⋅Þ can be any non‐linear
one (hyperbolic tangent in the original paper). The cell state
c½t� encodes the—so far learnt—information from the input
sequence. At timestep t, the flow of information within the
unit is controlled by three elements called gates: the forget gate
f ½t� controls the cell state's content and changes it when
obsolete, the input gate i½t� controls which state value and how
much will be updated, ec½t�, finally the output gate o½t� produces
a filtered version of the cell state and serves it as the network's
output h½t� [57].

4.3 | Gated recurrent units

First introduced in [51], gated recurrent units (GRUs) are a
simplified variant of LSTM and, as such, belong to the
family of gated RNNs. GRUs distinguish themselves from
LSTMs for merging in one‐gate functionalities controlled by
the forget gate and the input gate. This kind of cell ends up
having just two gates, which results in a more parsimonious
architecture compared to LSTM that, instead, has three
gates.

The basic components of a GRU cell are outlined in
Figure 5, whereas the neural computation is controlled by:

u½t� ¼ ψ Wuh½t − 1� þUux½t�ð Þ ð16Þ

r½t� ¼ ψ Wrh½t − 1� þUrx½t�ð Þ ð17Þ

eh½t� ¼ ϕ Wc r½t� ⊙ h½t − 1�ð Þ þUcx½t�ð Þ ð18Þ

h½t� ¼ u½t�⊙ h½t − 1� þ 1 − u½t�ð Þ⊙ eh½t� ð19Þ

where Wu;Wr;Wc ∈ IRnH�nH , Uu;Ur;Uc ∈ IRnH�d are the
parameters to be learnt, ψð⋅Þ is generally a sigmoid activation,
while ϕð⋅Þ can be any kind of non‐linearity (in the original
work it was a hyperbolic tangent). u½t� and r½t� are the update
and reset gates, respectively. Several works in the natural lan-
guage processing community show that GRUs perform
comparably to LSTM but generally train faster due to their
lighter computation [58, 59].

4.4 | Deep recurrent neural networks

All recurrent architectures presented so far are characterised by
a single layer. In turn, this implies that the computation is
composed of an affine transformation followed by non‐
linearity. That said, the concept of depth in RNN is less
straightforward than in feedforward architectures. Indeed, the
latter ones become deep when the input is processed by a large
number of non‐linear transformations before generating the
output values. However, according to this definition, an
unfolded RNN is already a deep model given its multiple non‐
linear processing layers. That said, a deep multi‐level process-
ing can be applied to all the transition functions (input‐hidden,
hidden‐hidden, and hidden‐output) as there are no interme-
diate layers involved in these computations [60]. Deepness can
also be introduced in recurrent neural networks by stacking

F I GURE 3 A simple Elmann recurrent neural network block with one cell implementing Equation (7) and (8) once rewritten as matrix concatenation:
a½t� ¼ ½W;U�T½h½t − 1�; x½t��;h½t� ¼ φða½t�Þ, with ½W;U� ∈ IRðnHþdÞ�nH and ½h½t − 1�; x½t�� ∈ IRnHþd, Usually φ(⋅) is the hyperbolic tangent

GASPARIN ET AL. - 7

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

recurrent layers one on top of the other [61]. As this deep
architecture is more intriguing, in this work, we refer to it as
a Deep RNN. By iterating the RNN computation, the
function implemented by the deep architecture can be rep-
resented as

hℓ½t� ¼ f ðhℓ½t − 1�; hℓ−1½t�;ΘÞ ℓ¼ 1; 2;…;L ð20Þ

where hℓ½t� is the hidden state at timestep t for layer ℓ.
Notice that h0½t� ¼ x½t�. It has been empirically shown
that Deep RNNs better capture the temporal hierarchy
exhibited by time series then their shallow counterpart
[60, 62, 63]. Of course, hybrid architectures having
different layers—recurrent or not—can be considered as
well.

4.5 | Multi‐step prediction schemes

There are five different architecture‐independent strategies for
multi‐step‐ahead forecasting [64]:

4.5.1 | Recursive strategy (Rec)

A single model is trained to perform a one‐step‐ahead forecast
given the input sequence. Subsequently, during the operational
phase, the forecasted output is recursively fed back and
considered to be the correct one. By iterating this procedure
nO times, we generate the forecast values at time t þ nO. The
procedure is described in Algorithm 1, where x½1 :� is the input
vector without its first element while the vectorizeð⋅Þ pro-
cedure concatenates the scalar output y to the exogenous input
variables.

Algorithm 1 Recursive Strategy (Rec) for Multi‐Step
Forecasting

1: x ← xt
2: o ← empty list
3: k ← 1
4: while k < nO þ 1 do
5: o ← fðxÞ
6: o ← concatenateðo;oÞ
7: x ← concatenateðx½1 :�;vectorizeðoÞÞ
8: k ← kþ 1
9: end while
10: return o as ŷt

To summarise, the predictor f receives as input a vector x
of length nT and outputs a scalar value o.

4.5.2 | Direct strategy

Design a set of nO independent predictors f k; k¼ 1;…; nO,
each of which provides a forecast at time t þ k. Similar to the
recursive strategy, each predictor f k outputs a scalar value o,
but the input vector is the same for all the predictors. Algo-
rithm 2 details the procedure.

Algorithm 2 Direct Strategy for Multi‐step
Forecasting

1: x ← xt
2: o ← empty list
3: k ← 1
4: while k < nO þ 1 do

F I GURE 4 Long‐Short Term Memory block with one cell

8 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

5: o ← concatenateðo;fkðxÞÞ
6: k ← kþ 1
7: end while
8: return o as ŷt

4.5.3 | DirRec strategy

[65] is a combination of the above two strategies. Similar to the
direct approach, nO models are used, but here, each predictor
leverages on an enlarged input set, obtained by adding the
results of the forecast at the previous timestep. The procedure
is detailed in Algorithm 3.

Algorithm 3 Direct Strategy for Multi‐step
Forecasting

1: x ← xt
2: o ← empty list
3: k ← 1
4: while k < nO þ 1 do
5: o ← fkðxÞ
6: o ← concatenateðo;oÞ
7: x ← concatenateðx;vectorizeðoÞÞ
8: k ← kþ 1
9: end while
10: return o as ŷt

4.5.4 | MIMO strategy

Multiple input‐Multiple output [66], a single predictor f is
trained to forecast a whole output sequence of length nO in
one shot, that is, different from the previous cases, the output
of the model is not a scalar but a vector

ŷt ¼ f ðxtÞ

4.5.5 | DIRMO strategy

[67], represents a trade‐off between the direct strategy and
the MIMO strategy. It divides the nO steps forecasts into
smaller forecasting problems, each of which is of length s.
It follows that ⌈nO

s ⌉ predictors are used to solve the
problem.

Given the considerable computational demand required by
RNNs during training, we focus on multi‐step forecasting
strategies that are computationally cheaper, specifically, recur-
sive and MIMO strategies [64]. We will call them RNN‐Rec
and RNN‐MIMO.

Given the hidden state h½t� at timestep t, the hidden‐
output mapping is obtained through a fully connected
layer on top of the recurrent neural network. The objective
of this dense network is to learn the mapping between the
last state of the recurrent network, which represents a kind

F I GURE 5 Gated Recurrent Unit memory block with one cell

GASPARIN ET AL. - 9

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

of lossy summary of the task‐relevant aspect of the input
sequence and the output domain. This holds for all the
presented recurrent networks and is consistent with
Equation (9). In this work, RNN‐Rec and RNN‐MIMO
differ in the cardinality of the output domain, which is 1
for the former and nO for the latter, meaning that in
Equation (9) either V ∈ IRnH�1 or V ∈ IRnH�nO . The
objective function is

LðΘÞ ¼
1
nO

XnO−1

t¼0
ðy½t� − ŷ½t�Þ2 þΩðΘÞ ð21Þ

4.6 | RNNs' application for short‐term load
forecasting

In [17], an Elmann recurrent neural network is considered to
provide hourly load forecasts. The study also compares the
performance of the network when additional weather infor-
mation such as temperature and humidity are fed to the
model. The authors conclude that, as expected, the recurrent
network benefits from multi‐input data and, in particular,
weather ones. [28] makes use of ERNN to forecast house-
hold electric consumption obtained from a suburban area in
the neighbouring areas of Palermo (Italy). In addition to the
historical load measurements, the authors introduce several
features to enhance the model's predictive capabilities. Be-
sides the weather and the calendar information, a specific ad
hoc index was created to assess the influence of the use of
air conditioning equipment on the electricity demand. In
recent years, LSTMs have been adopted in short‐term load
forecasting, proving to be more effective than traditional
time series analysis methods. In [21], LSTM is shown to
outperform traditional forecasting methods as it is able to
exploit the long‐term dependencies in the time series to
forecast the day‐ahead load consumption. Several studies
proved to be successful in enhancing the recurrent neural
network capabilities by employing multivariate input data. In
[22], the authors propose a deep, LSTM‐based architecture
that uses past measurements of the whole household con-
sumption along with some measurements from selected ap-
pliances to forecast the consumption of the subsequent time
interval (i.e., a one‐step prediction). In [23], a LSTM‐based
network is trained using a multivariate input, which in-
cludes temperature, holiday/working day information, and
date and time information. Similarly, in [31], a power de-
mand forecasting model based on LSTM shows an accuracy
improvement compared to more traditional machine learning
techniques such as gradient boosting trees and support
vector regression.

GRUs have not been used much in the literature as
LSTM networks are often preferred. That said, the use of
GRU‐based networks is reported in [18], while a more recent
study [24] uses GRUs for the daily consumption forecast of
individual customers. Thus, investigating deep GRU‐based

architectures is a relevant scientific topic, also thanks to
their faster convergence and simpler structure compared to
LSTM [58].

Despite all these promising results, an extensive study of
recurrent neural networks [18], and in particular of ERNN,
LSTM, GRU, ESN [19] and NARX, concludes that none of
the investigated recurrent architectures manages to outper-
form the others in all considered experiments. Moreover, the
authors noticed that recurrent cells with gated mechanisms
like LSTM and GRU perform comparably well than much
simpler ERNN. This may indicate that in short‐term load
forecasting, the gating mechanism may be unnecessary; this
issue is further investigated—and evidence found—in the
present work.

As a final comment, we observe that good results have
been achieved in the past by using diversified computing ar-
chitectures and hand‐crafted features extracted from available
data streams. Readers might then perceive this forecasting
problem as solved and the exercise perform here purely aca-
demic. This is not true in several ways because (1) different
computing architectures expose different approximation abil-
ities. As such, for a given problem, one should test different
non‐linear families and identify the optimal one. (2) Huge data
availability allows us to consider more complex—deep—
architectures that can even tackle both fast and slow dy-
namics within the same model. The approximation error, i.e.,
the discrepancy between the unknown dynamics describing
the power consumption and those provided by the approxi-
mating one reduces. (3) From (2), it should be noted that even
a very small (statistically sound) improvement in forecasting
accuracy has a huge monetary and market impact—not to
mention the sustainability asset. (4) Moreover, many dated
papers suffer from inaccuracies in presenting the forecast
performance as statistically sound assessments (e.g., K‐fold
cross‐validation and statistical tests) have not been consid-
ered. (5) Finally, some deep learning architectures naturally
learn in the first computational layers the best features solving
the problem; this is an extra value that does not require any
more handcraft feature design. That said, valuable handcraft
features can always be taken into account and integrated with
automatically extracted ones to further favour the inference
performance.

5 | SEQUENCE‐TO‐SEQUENCE
MODELS

Sequence‐to‐sequence (seq2seq) architectures [68] or encoder–
decoder models [51] were initially designed to solve RNNs'
inability to produce output sequences of arbitrary length. The
architecture was first used in neural machine translation
[51, 69, 70] but has emerged as the golden standard in different
fields such as speech recognition [62, 71, 72] and image
captioning [73].

The core idea of this general framework is to employ two
networks resulting in an encoder–decoder architecture. The

10 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

first neural network (possibly deep) f—the encoder—reads the
input sequence xt ∈ IRnT�d of length nT one timestep at a
time; the computation generates a, generally lossy, fixed
dimensional vector representation of it c¼ f ðxt;Θf Þ,
c ∈ IRd0 . This embedded representation is named context and
can be the last hidden state of the encoder or a function of it.
Then, a second neural network g—the decoder—learns how to
produce the output sequence ŷt ∈ IRnO given the context
vector, that is, ŷ¼ gðc;ΘgÞ. The schematics of the whole ar-
chitecture is depicted in Figure 6.

The encoder and the decoder modules are generally two
recurrent neural networks trained together to minimise the
objective function:

LðΘÞ ¼
XnO−1

t¼0
ðy½t� − ŷ½t�Þ2 þΩðΘÞ; Θ¼ ½Θf ;Θg� ð22Þ

ŷ½t� ¼ gðy½t − 1�; h½t − 1�; c;ΘÞ ð23Þ

where ŷ½t� is the decoder's estimate at time t, y½t� is the real
measurement, h½t − 1� is the decoder's last state, c is the
context vector from the encoder, x is the input sequence and
ΩðΘÞ the regularisation term. The training procedure for this
type of architecture is called teacher forcing [74]. As shown in
Figure 6 and explained in Equation (23), during training, the
decoder's input at time t is the ground‐truth value y½t − 1�,
which is then used to generate the next state h½t� and, then, the
estimate ŷ½t�. During inference, the true values are unavailable
and replaced by the estimates:

ŷ½t� ¼ gðŷ½t − 1�; h½t − 1�; c;ΘÞ: ð24Þ

This discrepancy between training and testing results in er-
rors accumulating over time during inference. In the literature,
this problem is often referred to as exposure bias [75]. Several
solutions have been proposed to address this problem; in [76],
the authors present scheduled sampling, a curriculum learning
strategy that gradually changes the training process by switching
the decoder's inputs from ground‐truth values to the model's
predictions. The professor forcing algorithm, introduced in [77],
uses an adversarial framework to encourage the dynamics of the
recurrent network to be the same both at training and opera-
tional (test) time. Finally, in recent years, reinforcement learning
methods have been adopted to train sequence‐to‐sequence
models; a comprehensive review is presented in [78].

In this work, we investigate two sequence‐to‐sequence ar-
chitectures, one trained via teacher forcing (TF) and one using
self‐generated (SG) samples. The former is characterised by
Equation (23) during training while Equation (24) is used
during prediction. The latter architecture adopts Equation (24)
both for training and prediction. The decoder's dynamics are
summarised in Figure 7. It is clear that the two training pro-
cedures differ in the decoder's input source: ground‐truth
values in teacher forcing, estimated values in self‐generated
training.

5.1 | seq2seq application for short‐term load
forecasting

Only recently, seq2seq models have been adopted in short‐
term load forecasting. In [33], a LSTM‐based encoder–
decoder model is shown to produce superior performance
compared to the standard LSTM. In [79], the authors introduce
an adaptation of RNN‐based sequence‐to‐sequence architec-
tures for time series forecasting of electrical loads to demon-
strate its better performance with respect to a suite of models
ranging from standard RNNs to classical time series tech-
niques. The authors in [37] provide a similar empirical proof of
the superior performance provided by sequence‐to‐sequence
model when compared to standard deep neural network.
Moreover, the study also suggests that using LSTM or GRU
cells within the seq2seq architecture shell provides better re-
sults when compared against the Elmann unit. More recent
studies in the field also consider an additional attention
mechanism to the sequence‐to‐sequence model [38], which
provides a more effective modelling of long‐term temporal
sequences while not requiring incredibly long input. The
attention mechanism has been shown to provide good results
in multi‐step‐ahead load forecasting both with univariate and
multivariate time series [36].

6 | CONVOLUTIONAL NEURAL
NETWORKS

Convolutional neural networks (CNNs) [80] are a family of
neural networks designed to work with data that can be
structured in a grid‐like topology. CNNs were originally used
on two‐dimensional and three‐dimensional images, but they
are also suitable for one‐dimensional data such as univariate
time series. Once recognised as a very efficient solution for
image recognition and classification [48, 81–83], CNNs have
experienced wide adoption in many different computer vision
tasks [84–88]. Moreover, sequence modelling tasks, such as
short‐term electric load forecasting, have been mainly
addressed with recurrent neural networks, but recent research
indicates that convolutional networks can also attain state‐of‐
the‐art performance in several applications including audio
generation [89], machine translation [90] and time series pre-
diction [91].

As the name suggests, these kind of networks are based on
a discrete convolution operator that produces an output
feature map f by sliding a kernel w over the input x.

Each element in the output feature map is obtained by
summing up the result of the element‐wise multiplication be-
tween the input patch (i.e., a slice of the input having the same
dimensionality as the kernel) and the kernel. The number of
kernels (filters) M used in a convolutional layer determines the
depth of the output volume (i.e., the number of output feature
maps). To control the other spatial dimensions of the output
feature maps, two hyperparameters are used: stride and
padding. Stride represents the distance between two consec-
utive input patches and can be defined for each direction of

GASPARIN ET AL. - 11

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

motion. Padding refers to the possibility of implicitly
enlarging the inputs by adding (usually) zeros at the borders
to control the output size. Indeed, without padding, the
dimensionality of the output would be reduced after each
convolutional layer.

Considering a 1‐D time series x ∈ IRnT and a one‐
dimensional kernel w ∈ IRk, the ith element of the convolu-
tion between x and w is

f ðiÞ ¼ ðx �wÞðiÞ ¼
Xk−1

j¼0

xði − jÞwðjÞ ð25Þ

with f ∈ IRnT−kþ1 if no zero‐padding is used, otherwise the
padding matches the input dimensionality, that is, f ∈ IRnT .
Equation (25) is referred to as the one‐dimensional input case
but can be easily extended to multi‐dimensional inputs (e.g.,
images, where x ∈ IRW�H�D) [92]. The reason behind the
success of these networks can be summarised in the following
four points:

� Local connectivity: each hidden neuron is connected to a
subset of input neurons that are close to each other (ac-
cording to a specific spatio–temporal metric). This property
allows the network to drastically reduce the number of pa-
rameters to learn (with respect to a fully connected network)
and facilitate computations.

� Parameter sharing: the weights used to compute the output
neurons in a feature map are the same so that the same
kernel is used for each location. This allows to reduce the
number of parameters to learn.

� Translation equivariance: the network is robust to an
eventual shifting of its input.

� Features free: these architectures free the designer from
selecting and extracting handcraft features—a hard problem
per se—as they are automatically extracted by the first learnt
processing layers of the CNN.

In our work, we focus on a convolutional architecture
inspired by Wavenet [89], a fully probabilistic and autore-
gressive model used for generating raw audio waveforms and
extended to time series prediction tasks [91].

To the best of the authors' knowledge, this architecture has
never been proposed to forecast electric load. A recent
empirical comparison between temporal convolutional net-
works and recurrent networks has been carried out in [93] on
tasks such as polymorphic music and charter‐sequence‐level
modelling. The authors were the first to use the name tem-
poral convolutional networks (TCNs) to indicate convolutional
networks that are autoregressive, able to process sequences of
arbitrary length and output a sequence of the same length. To
achieve the above, the network has to employ causal (dilated)
convolutions, and residual connections should be used to
handle a very long history size.

6.1 | Dilated causal convolution

Being TCNs, a family of autoregressive models, the estimated
value at time t must depend only on past samples and not on
future ones (Figure 8). To achieve this behaviour in a con-
volutional neural network, the standard convolution operator is
replaced by causal convolution. Moreover, zero‐padding of
length (filter size – 1) is added to ensure that each layer has the
same length of the input layer. To further enhance the network
capabilities, dilated causal convolutions (DCCs) are used,
allowing to increase the receptive field of the network (i.e., the
number of input neurons to which the filter is applied) and its
ability to learn long‐term dependencies in the time series (see
Figure 9). Given a one‐dimensional input x ∈ IRnT , and a
kernel w ∈ IRk, a dilated convolution output using a dilation
factor d becomes

f ðiÞ ¼ ðx �d wÞðiÞ ¼
Xk−1

j¼0
xði − djÞwðjÞ ð26Þ

F I GURE 6 seq2seq (Encoder‐Decoder) architecture with a general Recurrent Neural network both for the encoder and the decoder networks. Assuming a
Teacher Forcing training process, the solid lines in the decoder represent the training phase while the dotted lines depict the values path during prediction

12 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

This is a major advantage with respect to simple causal
convolutions, as in the latter case the receptive field r grows
linearly with the depth of the network r ¼ kðL − 1Þ, while with
dilated convolutions the dependence is exponential r ¼ 2L−1k,
ensuring that a much larger history size is used by the network.

6.2 | Residual connections

Despite the implementation of dilated convolution, the
CNN still needs a large number of layers to learn the dy-
namics of the inputs. Moreover, the performance often
degrades with the increase of the network depth. The
degradation problem has been first addressed in [48], where
the authors propose a deep residual learning framework.
The authors observe that for a L‐layers network with a
training error ϵ, inserting k extra layers on top of it should
either leave the error unchanged or improve it. Indeed, in
the worst case scenario, the new k stacked non‐linear layers
should learn the identity mapping y¼HðxÞ ¼ x, where x is
the output of the network having L layers and y is the
output of the network with Lþ k layers. Although almost
trivial, in practice, neural networks experience problems in
learning this identity mapping. The proposed solution sug-
gests that these stacked layers fit a residual mapping
FðxÞ ¼ HðxÞ − x instead of the desired one, HðxÞ. The
original mapping is recast into FðxÞ þ x, which is realised
by feed‐forward neural networks with shortcut connections;
in this way, the identity mapping is learnt by simply driving
the weights of the stacked layers to zero.

By means of the two aforementioned principles, the
temporal convolutional network is able to exploit a large
history size in an efficient manner. Indeed, as observed in
[93], these models present several computational advantages
compared to RNNs. In fact, they have lower memory re-
quirements during training and the predictions for later
timesteps are not done sequentially but can be computed in
parallel exploiting parameter sharing. Moreover, TCNs'

training is much more stable than that involving RNNs,
allowing to avoid the exploding/vanishing gradient problem.
For all of the above, TCNs have demonstrated to be a
promising area of research for time series prediction prob-
lems, and here, we aim to assess their forecasting perfor-
mance with respect to state‐of‐the‐art models in short‐term
load forecasting. The architecture used in our work is
depicted in Figure 10, which is, except for some minor
modifications, the network structure detailed in [91]. In the
first layer of the network, we process separately the load
information and, when available, the exogenous information
such as temperature readings. Later, the results will be
concatenated together and processed by a deep residual
network with L layers. Each layer consists of a residual
block with 1‐D DCC, a rectified linear unit (ReLU) activa-
tion and finally dropout to prevent overfitting. The output
layer consists of 1 � 1 convolution, which allows the
network to output a one‐dimensional vector y ∈ IRnT having
the same dimensionality as the input vector x. To approach
multi‐step forecasting, we adopt a MIMO strategy.

6.3 | CNNs and TCNs' application for
short‐term load forecasting

In the short‐term load forecasting relevant literature, CNNs
have not been studied to a large extent. Indeed, until
recently, these models were not considered for any time
series‐related problem. Still, several works tried to address
the topic; in [15], a deep convolutional neural network
model named DeepEnergy is presented. The proposed
network is inspired by the first architectures used in
ImageNet challenge (e.g. [81]), alternating convolutional and
pooling layers, halving the width of the feature map after
each step. According to the provided experimental results,
DeepEnergy can precisely predict energy load in the next
three days, outperforming five other machine learning al-
gorithms including LSTM and FNN. In [16], a CNN is

F I GURE 7 (Left) decoder with ground‐truth inputs (Teacher Forcing). (Right) Decoder with self‐generated inputs

GASPARIN ET AL. - 13

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

compared to recurrent and feed‐forward approaches,
showing promising results on a benchmark dataset. In [25],
a hybrid approach involving both convolutional and
recurrent architectures is presented. The authors integrate
different input sources and use convolutional layers to
extract meaningful features from the historic load while the
recurrent network's main task is to learn the system's dy-
namics. The model is evaluated on a large dataset con-
taining hourly loads from a city in North China and is
compared with a three‐layer feed‐forward neural network. A
different hybrid approach is presented in [26]; the authors
process the load information in parallel with a CNN and
an LSTM. The features generated by the two networks are
then used as an input for a final prediction network (fully
connected) in charge of forecasting the day‐ahead load.
More recently, temporal convolutional networks have also
started to be used and show very promising results indeed.
In [39], a modified encoder–decoder architecture based on
WaveNet is proposed. The authors performed careful
testing of their model against the state‐of‐the‐art power
consumption data coming from the French grid. TCNs
have been also used in probabilistic frameworks [40] to
estimate probability densities in both parametric and non‐
parametric settings. The authors showed the superior per-
formance of their method in both probabilistic forecasting
and point estimates.

7 | PERFORMANCE ASSESSMENT

In this section, we perform evaluation and assessment of all
the presented architectures. The testing is carried out by
means of five use cases that are based on three different
datasets. As said in the introduction, our goal is to directly
compare and assess relevant deep learning models on
standardised publicly available benchmarks so as to fully
support experiment reproducibility; also, the designed code

is free and has been made available to researchers and
practitioners.1

We first introduce the performance metrics that we
considered for both network optimisation and testing, then
describe the datasets that have been used and finally we discuss
the results.

7.1 | Performance metrics

The efficiency of the considered architectures has been
measured and quantified using widely adopted error metrics.
Specifically, we adopted the root mean squared error (RMSE)
and the mean absolute error (MAE):

RMSE¼

ffi

1
N

XN−1

i¼0

1
nO

XnO−1

t¼0
ðŷi½t� − yi½t�Þ

2

v
u
u
t

MAE¼
1
N

XN−1

i¼0

1
nO

XnO−1

t¼0
∣ŷi½t� − yi½t�∣

where N is the number of input–output pairs provided to the
model in the course of testing, yi½t� and ŷi½t�, respectively, are the
real load values and the estimated load values at time t for sample
i (i.e. the i − th time window). 〈⋅〉 is the mean operator, ‖ ⋅ ‖2 is
the Euclidean L2 norm, while ‖ ⋅ ‖1 is the L1 norm. y ∈ IRnO

and ŷ ∈ IRnO are the real load values and the estimated load
values for one sample, respectively. Still, a more intuitive and
indicative interpretation of the prediction efficiency of the esti-
mators can be expressed by the normalised root mean squared
error, which, different from the above two metrics, is indepen-
dent from the scale of the data:

NRMSE% ¼
RMSE

ymax − ymin
⋅ 100

where ymax and ymin are the maximum and minimum value of
the training dataset, respectively. In order to quantify the
proportion of variance in the target that is explained by the
forecasting methods, we also consider the R2 index:

R2 ¼
1
N

XN−1

i¼0
1 −

RSS
TSS

� �

RSS¼
1
nO

XnO

t
ðŷi½t� − yi½t�Þ

2 TSS¼
1
nO

XnO

t
ðyi½t� − �yiÞ

2

where �yi ¼
1
nO

PnO

t
yi½t�

All considered models have been implemented in Keras
2.12 [94] with Tensorflow [95] as backend. The experiments
are executed on a Linux cluster with an Intel(R) Xeon(R) Silver
CPU and an Nvidia Titan XP.

F I GURE 8 A three layers convolutional neural network with causal
convolution (no dilation), the receptive field r is 4

1
https://github.com/albertogaspar/dts

14 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/albertogaspar/dts

7.2 | Use case I, II and III (individual
households)

In this scenario, we aim at testing and validating the usability of
the considered models in the case of inputs with very chal-
lenging and noisy dynamics. The first use case considers the
individual household electric power consumption dataset
(IHEPC), which contains 2.07 M measurements of electric
power consumption for a single house located in Sceaux (7 km
of Paris, France). Measurements are collected every minute
between December 2006 and November 2010 (47 months)
[29]. In this study, we focus on predicting the ‘Global active
power’ parameter. Nearly 1.25% of measurements are missing,
still, all the available ones come with timestamps. We recon-
struct the missing values using the mean power consumption
for the corresponding time slot across the different years of
measurements. In order to have a unified approach, we have
decided to resample the dataset using a sampling rate of

15 min, which is a widely adopted standard in modern smart
metre technologies. In Table 3, the sample size is outlined for
each dataset.

In this use case, we performed the forecasting using
only historical load values as relevant exogenous variables
were not available. The right side of Figure 11 depicts the
average weekly electric consumption. As expected, it can be
observed that the highest consumption is registered in the
morning and evening periods of the day when the occu-
pancy of resident houses is high. Moreover, the average
load profile over a week clearly shows that weekdays are
similar while weekends present a different trend of
consumption.

The figure shows that the data are characterised by high
variance. The prediction task consists in forecasting the electric
load for the next day, that is, 96 timesteps ahead.

In order to assess the performance of the architectures,
we hold out a portion of the data that denotes our test set

C
onv1D

Conv1D (1x1)

Conv1D (1x1)

Conv1D (1x1)

C
onv1D

D
ropout

R
eLU +

+

+ ◌̂...

L

D
ropout

R
eLU

+

...

F I GURE 1 0 Temporal convolutional network Architecture. xt is the vector of historical loads along with the exogenous features for the time window
indexes from 0 to nT, zt is the vector of exogenous variables related to the last nO indexes of the time window (when available), ŷt is the output vector. Residual
Blocks are composed by a 1D Dilated Causal Convolution, a ReLU activation and Dropout. The square box represents a concatenation between (transformed)
exogenous features and (transformed) historical loads

F I GURE 9 A three layers convolutional neural network with dilated causal convolutions. The dilation factor d grows on each layer by a factor of two and
the kernel size k is 2, thus the output neuron is influenced by eight input neurons, that is,, the history size is 8

GASPARIN ET AL. - 15

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

and comprises the last year of measurements. The remaining
measurements are repeatedly divided in two sets, keeping
aside a month of data every five months. This process al-
lows us to build a training set and a validation set on which
different hyperparameter configurations can be evaluated.
Only the best performing configuration is later evaluated on
the test set.

The second and third use cases consider the data
coming from the smart metring electricity customer behav-
iour trials (CBTs), which took place during 2009 and 2010
with over 5000 Irish homes and businesses participating
[96]. The data are collected and made available by the
Commission for Energy Regulation (CER), which is the
regulator for the electricity and natural gas sectors in
Ireland. Since we are interested in evaluating the perfor-
mance of our model on a single household, we selected 2 m
(2113 and 4088) that, by showing a different consumption
profile, become reference instances of the household class.
In this way, reproducibility of results is granted; yet, some
variability is considered. More household instances can be
indeed considered but are outside the scope of this work.
In this use case, as with the previous one, we performed
the forecasting using only historical load values as no
exogenous information is available. The forecasting horizon
is still one day and the preprocessing method and the
model selection criteria used are also the same. We report
the average weekly electric consumption in Figure 12 for
both considered metres. By looking at these images, we can
immediately notice that both metres display high variance
compared to use case I. In particular, metre 4088 presents
a huge difference between its mean and median, which
anticipates that prediction for this use case would be
challenging.

7.3 | Use cases IV and V (aggregated load)

As the accurate consumption forecast of an area (e.g., sup-
plied by a feeder, substation or even entire town) represents a
very relevant problem in smart grids, in our assessment, we
devote special attention to this scenario. We believe that the
main contribution of our work to research and industry
practice can actually be related to providing a clear insight
into the usability of the proposed models to such issues. The
other two use cases are based on the GEFCom2014 dataset
[35], which was made available for an online forecasting
competition that lasted between August 2015 and December
2015. The dataset contains 60.6k hourly measurements of
(aggregated) electric power consumption collected by ISO
New England between January 2005 and December 2011.
Different from the dataset analysed before, temperature
values are also available and are used by the different archi-
tectures to enhance their prediction performance. In partic-
ular, the input variables used for forecasting the subsequent
nO at timestep t include several previous load measurements,
the temperature measurements for the previous timesteps
registered by 25 different stations, hour, day, month and year

of the measurements. We apply standard normalisation to
load and temperature measurements while for other variables
we simply apply one‐hot encoding, that is, we code infor-
mation in K‐dimensional vector in which one of the elements
equals 1, and all others equal 0 [97]. On the right side of
Figure 11, we observe the average load and data dispersion
on a weekly basis. Compared to IHEPC and CERs, the load
profiles here look much more regular. This meets intuitive
expectations as the load measurements in the previous
datasets come from a single household; thus, the randomness
introduced by the user behaviour has a more remarkable
impact on the results. On the contrary, the load information
in GEFCom2014 comes from the aggregation of the data
provided by several different smart metres; clustered data
exhibits a more stable and regular pattern. The main task of
these use cases, as well the previous one, consists in fore-
casting the electric load for the next day, that is, 24 timesteps
ahead. The hyperparameters' optimisation and the final score
for the models follow the same guidelines provided for use
cases I, II and III; the number of points for each subset is
described in Table 3.

7.4 | Results

The compared architectures are the ones presented in the
previous sections with one exception. In fact, we have
additionally considered a deeper variant of a feed‐forward
neural network with residual connections, which is named
DFNN in this work. In accordance with [98], we have
employed a 2‐shortcut network, that is, the input undergoes
two affine transformations each followed by a non‐linearity
before being summed to the original values. For regularisa-
tion purposes, we have included dropout and batch nor-
malisation [99] in each residual block. We have additionally
inserted this model in the results' comparison as it repre-
sents an evolution of standard feed‐forward neural networks,
which is expected to better handle highly complex time
series data.

Moreover, to allow comparison between deep learning
models and standard time series analysis technique, we addi-
tionally consider an ARIMA model in the experimental eval-
uation (AR, ARMA or ARMAX models are not worth
considering here as none of the considered time series is
stationary).

TABLE 3 Sample size of training, validation and test sets for each
dataset

Dataset Train Test

IHEPC 103,301 35,040

CER – 2113 21,406 4320

CER – 4088 21,406 4320

GEFCom2014 44,640 8928

Abbreviation: CER, Commission for Energy Regulation.

16 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Table 4 summarises the best configurations found
through grid search for each model and use case. For all
datasets, we experimented different input sequences of
length nT . Finally, we used a window size of four days,
which has been found to be the best trade‐off between
performance and memory requirements. The output
sequence length nO is fixed to one day. For each model,
we identified the optimal number of stacked layers in the
network L, the number of hidden units per layer nH , the
regularisation coefficient λ (L2 regularisation) and the
dropout rate pd . Moreover, for TCN, we additionally tuned
the width k of the convolutional kernel and the number of
filters applied at each layer M (i.e., the depth of each
output volume after the convolution operation). The dila-
tion factor is increased exponentially with the depth of the
network, that is, d ¼ 2ℓ with ℓ being the ℓ − th layer of
the network.

Tables 5 to 7 summarise the test scores of the pre-
sented architectures obtained for the IHEPC dataset, the
CER dataset with metre id 2113 and the one with metre id
4088, respectively. Certain similarities among networks
trained for different use cases can be spotted out already at
this stage. In particular, we observe that all models exploit
a small number of neurons. This is not usual in deep
learning but—at least for recurrent architectures—is
consistent with [18].

Among recurrent neural networks, we observe that, in
general, the MIMO strategy outperforms the recursive one in
this multi‐step prediction task. This is reasonable in the

individual household scenario. Indeed, the recursive strategy,
different from the MIMO one, is highly sensitive to error
accumulation, which, in a highly volatile time series as the ones
addressed here, results in a very inaccurate forecast. Among
the MIMO models, we observe that in some cases (see
Table 5) gated networks perform slightly better than the simple
Elmann network, but this is not a common pattern among the
investigated datasets. Thus, for customer‐level load fore-
casting, there is no sufficient evidence to claim the superiority
of gated systems. In general, we notice that all models, except
the RNNs trained with a recursive strategy, achieve compara-
ble performance and none really stands out. It is interesting to
comment that recurrent networks outperform sequence‐to‐
sequence architectures, which are supposed to better model
complex temporal dynamics like the one exhibited by the
residential load curve. Nevertheless, by observing the perfor-
mance of recurrent networks trained with the recursive strat-
egy, this behaviour is less surprising. In fact, compared with
the aggregated load profiles, the load curve belonging to a
single smart metre is way more volatile and sensitive to
customer behaviour. For this reason, leveraging geographical
and socio‐economic features that characterise the area where
the user lives may allow deep networks to generate better
predictions. The statement above is valid for the IHEPC
dataset and CER – 2113, while for CER – 4088 the described
behaviours are less evident. This comes from the last use case
being dominated by noise, and as such, being hardly predict-
able. On the contrary, metre 2113 and IHEPC have more
predictable patterns and indeed, by looking at the results tables

F I GURE 1 2 Weekly statistics for the electric load reported by smart metres 2113 (right) and 4088 (left) in the commission for energy regulation dataset.
The bold line is the mean curve, the dotted line is the median and the green area covers one standard deviation from the mean

F I GURE 1 1 Weekly statistics for the electric load in the whole IHEPC (Left) and GEFCom2014 datasets (right). The bold line is the mean curve, the
dotted line is the median and the green area covers one standard deviation from the mean

GASPARIN ET AL. - 17

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

one can immediately notice how models' performance are
distributed on a much wider range. For use cases I and II a
classical method like ARIMA is easily outperformed by all
considered deep learning techniques. Once again, this is not
true for use case III for reasons explained above. For visual-
isation purposes, we compare all the models' performance for
IHEPC. On the left side of Figure 13, we outline a single‐day
prediction scenario while on the right side of Figure 13, we
quantify the differences between the best predictor (the GRU‐
MIMO) and the actual measurements; the thinner the line, the
closer the prediction to the true data. Furthermore, in this
figure, we concatenate multiple day predictions to have a wider
time span and evaluate the model predictive capabilities. We
observe that the model is able to generate a prediction that
correctly models the general trend of the load curve but fails to

predict steep peaks. This might come from the design choice
of using MSE as the optimisation metric, which could
discourage deep models from predicting high peaks as large
errors are hugely penalised, and therefore, predicting a lower
and smoother function results in better performance according
to this metric. Alternatively, some of the peaks may simply
represent noise due to a particular user behaviour and are thus
unpredictable by definition.

The load curve of the second dataset (GEFCom2014)
results from the aggregation of several different load pro-
files producing a smoother load curve when compared with
the individual load case. Hyperparameters' optimisation and
the final score for the models can be found in Table 4.

Table 8 and Table 9 show the experimental results obtained
by the models in two different scenarios. In the former case,

TABLE 4 Best configurations found via grid search for all dataset used

Hyperparameters Dataset FNN DFNN TCN

ERNN LSTM GRU seq2seq

Rec MIMO Rec MIMO Rec MIMO TF SG

L IHPEC 3 6 8 3 1 2 1 2 1 1 1

CER – 2113 3 3 6 2 2 3 1 3 3 1 1

CER – 4088 2 2 6 1 4 1 1 1 2 1 1

GEFCOM 1 6 6 4 4 4 2 4 1 2 1

GEFCOMexog 1 6 8 2 1 4 1 2 2 2 3

nH IHPEC 256 ‐ 128x2 50 ‐ 10 30 20 20 10 50 30 50

CER – 2113 50 50 ‐ 10 10 10 10 10 10 10 10

CER – 4088 20 10 ‐ 15 10 15 10 10 15 10 10

GEFCOM 60 30 ‐ 20 50 15 20 30 20 10 50

GEFCOMexog 60 30 ‐ 10 30 30 50 10 15 20 20‐15‐10

λ IHPEC 0.001 0.0005 0.005 0.001 0.001 0.001 0.001 0.001 0.0005 0.01 0.01

CER – 2113 0.001 0.001 0.01 0.005 0.001 0.005 0.001 0.005 0.001 0.01 0.01

CER – 4088 0.001 0.005 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.01 0.01

GEFCOM 0.01 0.0005 0.01 0.01 0.0005 0.001 0.001 0.01 0.0005 0.01 0.01

GEFCOMexog 0.005 0.0005 0.005 0.0005 0.001 0.0005 0.0005 0.001 0.01 0.001 0.01

pdrop IHPEC 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2

CER – 2113 0.1 0.2 0.1 0.2 0.2 0.1 0.1 0.2 0.0 0.2 0.1

CER – 4088 0.2 0.2 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.1

GEFCOM 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1

GEFCOMexog 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0

k, M IHPEC ‐ ‐ 2, 32 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

CER – 2113 ‐ ‐ 2, 8 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

CER – 4088 ‐ ‐ 2, 8 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

GEFCOM ‐ ‐ 2, 16 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

GEFCOMexog ‐ ‐ 2, 64 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

Abbreviations: CER, Commission for Energy Regulation; DFNN, deeper variant of a feed‐forward neural network; ERNN, Elmann recurrent neural networks; FNN, feed‐forward
neural network; GRU, Gated recurrent units; LSTM, long short‐term memory; MIMO, Multiple input‐Multiple output; SG, self‐generated; TCN, temporal convolutional network; TF,
teacher forcing.

18 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

only load values were provided to the models while in the latter
scenario the input vector has been augmented with the exog-
enous features described before. Compared to the previous
dataset, this time series exhibits a much more regular pattern;
as such we expect the prediction task to be easier. Indeed, we
can observe a major improvement in terms of performance
across all the models.

As already noted in [22, 100], the prediction accuracy in-
creases significantly when the forecasting task is carried out on
a smooth load curve (resulting from the aggregation of many
individual consumers).

We can observe that, in general, all models except ARIMA
and plain FNNs benefit from the presence of exogenous
variables. When exogenous variables are adopted, we notice a

TABLE 5 Individual household electric
power consumption dataset results

RMSE MAE NRMSE R2

FNN 0:76� 0:01 0:53� 0:01 10:02� 0:17 0:250� 0:026

DFNN 0:75� 0:01 0:53� 0:01 9:90� 0:05 0:269� 0:007

TCN 0:76� 0:01 0:54� 0:00 10:07� 0:11 0:245� 0:017

ERNN MIMO 0:79� 0:00 0:56� 0:00 10:33� 0:08 0:201� 0:012

Rec 0:88� 0:02 0:69� 0:03 11:61� 0:29 0:001� 0:039

LSTM MIMO 0:75� 0:00 0:53� 0:00 9:85� 0:04 0:276� 0:006

Rec 0:84� 0:06 0:60� 0:07 11:06� 0:74 0:085� 0:125

GRU MIMO 0:75� 0:00 0:52� 0:00 9:83� 0:03 0:279� 0:004

Rec 0:89� 0:02 0:70� 0:02 11:64� 0:23 0:00� 0:04

seq2seq TF 0:78� 0:01 0:57� 0:02 10:22� 0:17 0:221� 0:026

SG 0:76� 0:01 0:53� 0:01 10:00� 0:14 0:253� 0:03

ARIMA 1:22� 0:00 1:49� 0:00 11:3� 0:00 0:057� 0:00

Note: Each model's mean score (� one standard deviation) comes from 10 repeated training processes.
Abbreviations: ARIMA, autoregressive‐integrated moving average; DFNN, deeper variant of a feed‐forward neural network;
ERNN, Elmann recurrent neural networks; FNN, feed‐forward neural network; GRU, Gated recurrent units; LSTM, long
short‐term memory; MAE, mean absolute error; MIMO, Multiple input‐Multiple output; RMSE, root mean squared error;
SG, self‐generated; TCN, temporal convolutional network; TF, teacher forcing.

TABLE 6 CER results (metre 2113)
RMSE MAE NRMSE R2

FNN 0:34� 0:00 0:22� 0:00 10:39� 0:00 0:137� 0:001

DFNN 0:34� 0:00 0:22� 0:00 10:41� 0:00 0:134� 0:002

TCN 0:33� 0:00 0:21� 0:00 10:15� 0:02 0:175� 0:004

ERNN MIMO 0:35� 0:00 0:23� 0:00 10:47� 0:04 0:123� 0:007

Rec 0:37� 0:00 0:27� 0:01 11:20� 0:05 −0:003� 0:009

LSTM MIMO 0:35� 0:00 0:24� 0:00 10:60� 0:05 0:100� 0:009

Rec 0:37� 0:00 0:27� 0:01 11:21� 0:07 −0:004� 0:011

GRU MIMO 0:35� 0:00 0:24� 0:00 10:57� 0:10 0:105� 0:017

Rec 0:37� 0:00 0:28� 0:01 11:28� 0:09 −0:017� 0:016

seq2seq TF 0:38� 0:01 0:29� 0:01 11:43� 0:17 −0:046� 0:031

SG 0:37� 0:00 0:26� 0:00 11:12� 0:00 0:011� 0:00

ARIMA 0:37� 0:00 0:26� 0:00 11:40� 0:00 −0:029� 0:00

Note: Each model's mean score (� one standard deviation) comes from 10 repeated training processes.
Abbreviations: ARIMA, autoregressive‐integrated moving average; DFNN, deeper variant of a feed‐forward neural network;
ERNN, Elmann recurrent neural networks; FNN, feed‐forward neural network; GRU, Gated recurrent units; LSTM, long
short‐term memory; MAE, mean absolute error; MIMO, Multiple input‐Multiple output; RMSE, root mean squared error;
SG, self‐generated; TCN, temporal convolutional network; TF, teacher forcing.

GASPARIN ET AL. - 19

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

major improvement by RNNs trained with the recursive
strategy, which outperform MIMO ones. This increase in ac-
curacy can be attributed to a better capacity of leveraging the
exogenous time series of temperatures to yield a better load
forecast. Moreover, RNNs with the MIMO strategy gain
negligible improvement compared to their performance when
no extra feature is provided. This kind of architectures use a
feed‐forward neural network to map their final hidden state to
a sequence of nO values, that is, the estimates. Exogenous
variables are elaborated directly by this FNN, which, as
observed above, have problems in handling both load data and
extra information. Consequently, a better way of injecting
exogenous variables in the MIMO recurrent network needs to
be found in order to provide a boost in prediction

performance comparable to the one achieved by employing the
recursive strategy.

For reasons that are similar to those discussed above,
sequence‐to‐sequence models trained via teacher forcing
(seq2seq‐TF) experienced improvement when exogenous fea-
tures were used. Still, seq2seq models trained in the free‐
running mode (seq2seq‐SG) proves to be a valid alternative
to standard seq2seq‐TF producing high quality predictions in all
use cases. The absence of a discrepancy between training and
inference in terms of data generating distribution shows to be
an advantage as seq2seq‐SG is less sensitive to noise and error
propagation.

Finally, we notice that TCNs perform well in all the pre-
sented use cases. Considering their lower memory

TABLE 7 CER results (metre 4088)
RMSE MAE NRMSE R2

FNN 0:44� 0:00 0:23� 0:00 9:06� 0:00 0:079� 0:00

DFNN 0:44� 0:00 0:23� 0:00 9:07� 0:00 0:077� 0:00

TCN 0:44� 0:00 0:23� 0:00 9:09� 0:02 0:074� 0:004

ERNN MIMO 0:45� 0:01 0:24� 0:01 9:25� 0:14 0:040� 0:028

Rec 0:47� 0:00 0:28� 0:02 8:95� 1:22 −0:008� 0:009

LSTM MIMO 0:45� 0:00 0:23� 0:00 9:07� 0:01 0:078� 0:003

Rec 0:46� 0:00 0:26� 0:02 9:43� 0:02 0:003� 0:0:004

GRU MIMO 0:44� 0:00 0:23� 0:00 9:06� 0:01 0:078� 0:003

Rec 0:47� 0:02 0:28� 0:03 9:66� 0:49 −0:050� 0:111

seq2seq TF 0:46� 0:01 0:28� 0:02 9:37� 0:10 0:014� 0:022

SG 0:45� 0:01 0:28� 0:01 9:17� 0:02 0:079� 0:00

ARIMA 0:46� 0:00 0:25� 0:00 9:4� 0:00 0:010� 0:00

Note: Each model's mean score (� one standard deviation) comes from 10 repeated training processes
Abbreviations: ARIMA, autoregressive‐integrated moving average; DFNN, deeper variant of a feed‐forward neural
network; ERNN, Elmann recurrent neural networks; FNN, feed‐forward neural network; GRU, Gated recurrent units;
LSTM, long short‐term memory; MAE, mean absolute error; MIMO, Multiple input‐Multiple output; RMSE, root mean
squared error; SG, self‐generated; TCN, temporal convolutional network; TF, teacher forcing.

F I GURE 1 3 (Right) Predictive performance of all the models on a single day for IHEPC dataset. The left portion of the image shows (part of) the
measurements used as input while the right side with multiple lines represents the different predictions. (Left) Difference between the best model's predictions
(gated recurrent units‐multiple input‐multiple output) and the actual measurements. The thinner the line the closer the prediction is to the true data

20 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

requirements in the training process along with their inherent
parallelism, this type of networks represents a promising
alternative to recurrent neural networks for short‐term load
forecasting.

As a final note, we can observe that the ARIMA model is
outperformed by all other approaches. This confirms that, also
for aggregated load consumption, deep learning approaches

are much more effective than classical techniques due to the
presence of non‐linearities.

The prediction results are presented in the same fashion
as the previous use case in Figure 14. Observe that, in
general, all considered models are able to produce reason-
able estimates as sudden picks in consumption are
smoothed. Therefore, predictors greatly improve their

TABLE 8 GEFCom2014 results
without any exogenous variable. Each model's
mean score (� one standard deviation) comes
from 10 repeated training processes

RMSE MAE NRMSE R2

FNN 21:1� 2:5 15:5� 2:1 7:01� 0:82 0:833� 0:041

DFNN 22:4� 6:2 17:1� 6:2 7:44� 2:01 0:801� 0:124

TCN 17:2� 0:1 11:5� 0:1 5:71� 0:14 0:891� 0:00

ERNN MIMO 18:0� 0:3 11:9� 0:4 5:99� 0:11 0:879� 0:046

Rec 27:0� 2:3 20:7� 2:5 8:95� 0:78 0:732� 0:046

LSTM MIMO 19:5� 0:5 13:7� 0:6 6:47� 0:18 0:861� 0:007

Rec 25:6� 2:2 18:4� 1:3 8:52� 0:72 0:757� 0:041

GRU MIMO 19:0� 0:2 13:1� 0:3 6:29� 0:07 0:868� 0:003

Rec 26:7� 3:3 19:8� 3:1 8:85� 1:09 0:737� 0:064

seq2seq TF 21:5� 2:1 15:4� 1:9 7:13� 0:69 0:829� 0:034

SG 17:1� 0:2 11:3� 0:2 5:67� 0:06 0:893� 0:002

ARIMA 30:1� 0:0 22:6� 0:0 10:00� 0:00 0:660� 0:00

Abbreviations: ARIMA, autoregressive‐integrated moving average; DFNN, deeper variant of a feed‐forward neural network;
ERNN, Elmann recurrent neural networks; FNN, feed‐forward neural network; GRU, Gated recurrent units; LSTM, long
short‐term memory; MAE, mean absolute error; MIMO, Multiple input‐Multiple output; RMSE, root mean squared error;
SG, self‐generated; TCN, temporal convolutional network; TF, teacher forcing.

TABLE 9 GEFCom2014 results with
exogenous variables

RMSE MAE NRMSE R2

FNN 27:9� 2:8 20:8� 2:4 9:28� 0:93 0:709� 0:062

DFNN 23:0� 1:2 15:6� 0:7 7:62� 0:41 0:805� 0:021

TCN 15:4� 1:5 8:6� 1:7 5:00� 0:22 0:917� 0:007

ERNN MIMO 17:9� 0:3 11:7� 0:3 5:94� 0:01 0:883� 0:004

Rec 14:7� 1:0 8:6� 1:0 4:88� 0:19 0:925� 0:005

LSTM MIMO 18:1� 1:3 12:1� 1:3 6:01� 0:42 0:877� 0:018

Rec 13:8� 0:6 7:5� 0:3 4:59� 0:18 0:930� 0:006

GRU MIMO 17:8� 0:2 11:7� 0:2 5:93� 0:07 0:882� 0:002

Rec 16:7� 0:5 10:0� 0:6 5:54� 0:15 0:898� 0:006

seq2seq TF 14:3� 1:0 8:5� 0:9 4:74� 0:32 0:924� 0:014

SG 15:9� 1:8 9:8� 1:8 5:28� 0:60 0:907� 0:021

ARIMA 36:5� 0:0 26:7� 0:0 12:10� 0:00 0:503� 0:00

Note: Each model's mean score (� one standard deviation) comes from 10 repeated training processes
Abbreviations: ARIMA, autoregressive‐integrated moving average; DFNN, deeper variant of a feed‐forward neural network;
ERNN, Elmann recurrent neural networks; FNN, feed‐forward neural network; GRU, Gated recurrent units; LSTM, long
short‐term memory; MAE, mean absolute error; MIMO, Multiple input‐Multiple output; RMSE, root mean squared error;
SG, self‐generated; TCN, temporal convolutional network; TF, teacher forcing.

GASPARIN ET AL. - 21

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

accuracy when predicting day‐ahead values for the aggre-
gated load curves with respect to an individual household
scenario.

8 | CONCLUSIONS

In this work, we have surveyed and experimentally evalu-
ated the most relevant deep learning models applied to the
short‐term load forecasting problem, paving the way for
standardised assessment and identification of the most
optimal solutions in this field. The focus has been given to
the three main families of models, namely, recurrent neural
networks, sequence‐to‐sequence architectures and recently
developed temporal convolutional neural networks. An
architectural description along with a technical discussion
on how multi‐step ahead forecasting is achieved, has been
provided for each considered model. Moreover, different
forecasting strategies are discussed and evaluated, identifying
advantages and drawbacks for each of them. The evaluation
has been carried out on five real‐world use cases that refer
to two distinct scenarios for load forecasting. Indeed, three
use cases deal with datasets coming from a single house-
hold characterised by noisy dynamics while the other two
tackle the prediction of a load curve that represents
aggregated metres, dispersed over a wide area of the grid.
Our findings concerning the application of recurrent neural
networks to short‐term load forecasting, show that the
simple ERNN performs comparably to gated networks
such as GRU and LSTM when adopted in aggregated load
forecasting. Thus, the less costly alternative provided by
ERNN may represent the most effective solution in this
scenario as it allows to reduce the training time without
remarkable impact on prediction accuracy. A similar
conclusion may be drawn for a single‐household electric
load forecasting, where only in one use case gated net-
works prove to be superior to Elmann ones. Sequence‐to‐
sequence models have demonstrated to be quite efficient in
load forecasting tasks even though they seem to fail in

outperforming RNNs. In general, we can claim that seq2-
seq architectures do not represent a golden standard in
load forecasting as they do in other domains such as
natural language processing. In addition, regarding this
family of architectures, we have observed that teacher
forcing may not represent the best solution for training
seq2seq models on short‐term load forecasting tasks.
Despite being harder in terms of convergence, free‐running
models learn to handle their own errors, avoiding the
discrepancy between training and testing that is a well‐
known issue for teacher forcing. It turns out to be
worth the effort to further investigate the capabilities of
seq2seq models trained with intermediate solutions such as
professor forcing. Finally, we evaluated the recently devel-
oped temporal convolutional neural networks, which
demonstrated convincing performance when applied to load
forecasting tasks. Therefore, we strongly believe that the
adoption of these networks for sequence modelling in the
considered field is very promising (especially for aggregated
loads) and might even introduce a significant advance in
this area that is emerging as important for future smart
grid development. We also comment that short‐term load
forecasting at the customer level has proved to be an
extremely challenging task for deep learning models as well.
As a future direction in this specific topic, we are inter-
ested in exploiting time series correlation to learn a single
model for multiple metres that exhibits similar behaviour.
Our preliminary results are promising [101] and we believe
that such an approach may provide considerable improve-
ment in the field compared to the approach presented here.
We hope that the presented work as well as the open
sourcing of a library for short‐term load forecasting may
stimulate other authors to contribute to the research in the
field.

ACKNOWLEDGEMENTS
This project is carried out within the frame of the Swiss Centre
for Competence in Energy Research on the Future Swiss
Electrical Infrastructure (SCCER‐FURIES) with the financial

F I GURE 1 4 (Right) Predictive performance of all the models on a single day for GEFCom2014 dataset. The left portion of the image shows (part of) the
measurements used as input while the right side with multiple lines represents the different predictions. (Left) Difference between the best model's predictions
(long short‐term memory‐Rec) and the actual measurements. The thinner the line the closer the prediction to the true data

22 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

support of the Swiss Innovation Agency (Innosuisse – SCCER
program).

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are derived
from the following resources available in the public
domain: https://archive.ics.uci.edu/ml/datasets/individual
+household+electric+power+consumption, http://blog.
drhongtao.com/2017/03/gefcom2014‐load‐forecasting‐data.
html, https://www.ucd.ie/issda/data/commissionforenergyr
egulationcer/. Restrictions apply to the availability of
these data, which were used under licence for this study.

ORCID
Alberto Gasparin https://orcid.org/0000-0003-3350-3168

REFERENCES
1. Fang, X., et al.: Smart grid – the new and improved power grid: a

survey. IEEE Commun. Surv. Tutorials. 14(4), 944–980 (2012)
2. Almeshaiei, E., Soltan, H.: A methodology for electric power load

forecasting. Alexandria Eng. J. 50(2), 137–144. (2011). http://www.
sciencedirect.com/science/article/pii/S1110016811000330

3. Hippert, H.S., Pedreira, C.E., Souza, R.C.: Neural networks for short‐
term load forecasting: a review and evaluation. IEEE Trans Power
Syst. 16(1), 44–55 (2001)

4. Chen, J.‐F., Wang, W.‐M., Huang, C.‐M.: Analysis of an adaptive time‐
series autoregressive moving‐average (ARMA) model for short‐term
load forecasting. Elec. Power Syst. Res. 34(3), 187–196 (1995)

5. Huang, S.‐J., Shih, K.‐R.: Short‐term load forecasting via arma model
identification including non‐Gaussian process considerations. IEEE
Trans. Power Syst. 18(2), 673–679 (2003)

6. Hagan, M.T., Behr, S.M.: The time series approach to short term load
forecasting. IEEE Trans. Power Syst. 2(3), 785–791 (1987)

7. Huang, C.‐M., Huang, C.‐J., Wang, M.‐L.: A particle swarm optimiza-
tion to identifying the ARMAX model for short‐term load forecasting.
IEEE Trans. Power Syst. 20(2), 1126–1133 (2005)

8. Yang, H.‐T., Huang, C.‐M., Huang, C.‐L.: Identification of ARMAX
model for short term load forecasting: an evolutionary programming
approach. In: Power Industry Computer Application Conference, 1995,
pp. 325–330. IEEE (1995)

9. Newsham, G.R., Birt, B.J.: Building‐level occupancy data to improve
arima‐based electricity use forecasts. In: Proceedings of the 2nd ACM
Workshop on Embedded Sensing Systems for Energy‐efficiency in
Building, pp. 13–18. Zurich (2010)

10. Lee, K.Y., Cha, Y.T., Park, J.H.: Short‐term load forecasting using an
artificial neural network. IEEE Trans. Power Syst. 7(1), 124–132
(1992)

11. Park, D.C., et al.: Electric load forecasting using an artificial neural
network. IEEE Trans. Power Syst. 6(2), 442–449 (1991)

12. Srinivasan, D., Liew, A., Chang, C.: A neural network short‐term load
forecaster. Elec. Power Syst. Res. 28(3), 227–234. (1994). http://www.
sciencedirect.com/science/article/pii/037877969490037X

13. Drezga, I., Rahman, S.: Short‐term load forecasting with local ANN
predictors. IEEE Trans. Power Syst. 14(3), 844–850 (1999)

14. Chen, K., et al.: Short‐term load forecasting with deep residual net-
works. IEEE Trans. Smart Grid. 10(4), 3943–3952 (2018)

15. Kuo, P.‐H., Huang, C.‐J.: A high precision artificial neural networks
model for short‐term energy load forecasting. Energies. 11(1), 213.
(2018). http://www.mdpi.com/1996‐1073/11/1/213

16. Amarasinghe, K., Marino, D.L., Manic, M.: Deep neural networks for
energy load forecasting. In: 2017 IEEE 26th International Sympo-
sium on Industrial Electronics (ISIE), pp. 1483–1488. June Edin-
burgh (2017)

17. Nayaka, S., Yelamali, A., Byahatti, K.: Electricity short term load
forecasting using Elman recurrent neural network. In: 2010 Interna-
tional Conference on Advances in Recent Technologies in Communi-
cation and Computing, vol. 11, pp. 351–354. Kottayam (2010)

18. Bianchi, F.M., et al.: Recurrent Neural Networks for Short‐Term Load
Forecasting: An Overview and Comparative Analysis SpringerBriefs in
Computer Science, 1 st edn. Spirnger International Publishing (2017).
https://www.springer.com/gp/book/9783319703374

19. Bianchi, F.M., et al.: Short‐term electric load forecasting using echo
state networks and PCA decomposition. IEEE Access. 3, 1931–1943
(2015)

20. Mocanu, E., et al.: Deep learning for estimating building energy con-
sumption. Sustain. Energy Grids Networks. 6, 91–99 (2016)

21. Zheng, J., et al.: Electric load forecasting in smart grids using long‐
short‐term‐memory based recurrent neural network. In: 2017 51st
Annual Conference on Information Sciences and Systems (CISS),
pp. 1–6. IEEE Baltimore (2017)

22. Kong, W., et al.: Short‐term residential load forecasting based on LSTM
recurrent neural network. IEEE Trans. Smart Grid. 10, 841–851 (2017)

23. Bouktif, S., et al.: Optimal deep learning LSTM model for electric load
forecasting using feature selection and genetic algorithm: comparison
with machine learning approaches. Energies. 11(7), 1636 (2018)

24. Wang, Y., et al.: Short‐term load forecasting with multi‐source data
using gated recurrent unit neural networks. Energies. 11, 1138 (2018)

25. He, W.: Load forecasting via deep neural networks. Procedia Comput.
Sci. 122, pp. 308–314. (2017). http://www.sciencedirect.com/science/
article/pii/S1877050917326170

26. Tian, C., et al.: A deep neural network model for short‐term load
forecast based on long short‐term memory network and convolutional
neural network. Energies. 11, 3493 (2018)

27. Hong, T., Pinson, P., Fan, S.: Global energy forecasting competition
2012. Int. J. Forecast. 30(2), 357–363. (2014). http://www.sciencedirect.
com/science/article/pii/S0169207013000745

28. Marvuglia, A., Messineo, A.: Using recurrent artificial neural networks
to forecast household electricity consumption. Energy Procedia. 14,
pp. 45–55. (2012). http://www.sciencedirect.com/science/article/pii/
S1876610211043116

29. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository.
http://archive.ics.uci.edu/ml (2017). Accessed 15 Sept 2021

30. Smart grid, smart city, Australian govern, Australia, Canberray. http://
www.industry.gov.au/ENERGY/PROGRAMMES/SMARTGRIDS
MARTCITY/Pages/default.aspx. Accessed 15 Sept 2021

31. Cheng, Y., et al.: PowerLSTM: power demand forecasting using long
short‐term memory neural network. In: Cong, G., et al. (eds.) Advanced
Data Mining and Applications, pp. 727–740. Springer International
Publishing, Cham (2017)

32. Umass smart dataset. (2017). http://traces.cs.umass.edu/index.php/
Smart/Smart. Accessed 15 Sept 2021

33. Marino, D.L., Amarasinghe, K., Manic, M.: Building energy load fore-
casting using deep neural networks. In: Industrial Electronics Society,
IECON 2016‐42nd Annual Conference of the IEEE, pp. 7046–7051.
IEEE Florence (2016)

34. Wilms, H., Cupelli, M., Monti, A.: Combining auto‐regression with exog-
enous variables in sequence‐to‐sequence recurrent neural networks for
short‐term load forecasting. In: 2018 IEEE 16th International Conference
on Industrial Informatics (INDIN), pp. 673–679. IEEE Porto (2018)

35. Hong, T., et al.: Probabilistic energy forecasting: global energy fore-
casting competition 2014 and beyond. Int. J. Forecast. 32(3), 896–913.
(2016). http://www.sciencedirect.com/science/article/pii/S016920701
6000133

36. Jin, X.‐B., et al.: Deep‐learning forecasting method for electric power
load via attention‐based encoder‐decoder with Bayesian optimization.
Energies. 14(6), 1596 (2021)

37. Sehovac, L., Nesen, C., Grolinger, K.: Forecasting building energy
consumption with deep learning: a sequence to sequence approach. In:
2019 IEEE International Congress on Internet of Things (ICIOT),
pp. 108–116. Milan (2019)

GASPARIN ET AL. - 23

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://archive.ics.uci.edu/ml/datasets/individual%2Bhousehold%2Belectric%2Bpower%2Bconsumption
https://archive.ics.uci.edu/ml/datasets/individual%2Bhousehold%2Belectric%2Bpower%2Bconsumption
http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html
http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html
http://blog.drhongtao.com/2017/03/gefcom2014-load-forecasting-data.html
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://orcid.org/0000-0003-3350-3168
https://orcid.org/0000-0003-3350-3168
http://www.sciencedirect.com/science/article/pii/S1110016811000330
http://www.sciencedirect.com/science/article/pii/S1110016811000330
http://www.sciencedirect.com/science/article/pii/037877969490037X
http://www.sciencedirect.com/science/article/pii/037877969490037X
http://www.mdpi.com/1996-1073/11/1/213
https://www.springer.com/gp/book/9783319703374
http://www.sciencedirect.com/science/article/pii/S1877050917326170
http://www.sciencedirect.com/science/article/pii/S1877050917326170
http://www.sciencedirect.com/science/article/pii/S0169207013000745
http://www.sciencedirect.com/science/article/pii/S0169207013000745
http://www.sciencedirect.com/science/article/pii/S1876610211043116
http://www.sciencedirect.com/science/article/pii/S1876610211043116
http://archive.ics.uci.edu/ml
http://www.industry.gov.au/ENERGY/PROGRAMMES/SMARTGRIDSMARTCITY/Pages/default.aspx
http://www.industry.gov.au/ENERGY/PROGRAMMES/SMARTGRIDSMARTCITY/Pages/default.aspx
http://www.industry.gov.au/ENERGY/PROGRAMMES/SMARTGRIDSMARTCITY/Pages/default.aspx
http://traces.cs.umass.edu/index.php/Smart/Smart
http://traces.cs.umass.edu/index.php/Smart/Smart
http://www.sciencedirect.com/science/article/pii/S0169207016000133
http://www.sciencedirect.com/science/article/pii/S0169207016000133
https://orcid.org/0000-0003-3350-3168

38. Sehovac, L., Grolinger, K.: Deep learning for load forecasting: sequence
to sequence recurrent neural networks with attention. IEEE Access. 8,
36411–36426 (2020)

39. Dorado Rueda, F., Durán Suárez, J., del Real Torres, A.: Short‐term load
forecasting using encoder‐decoder wavenet: application to the French
grid. Energies. 14(9), 2524 (2021)

40. Chen, Y., et al.: Probabilistic forecasting with temporal convolutional
neural network. Neurocomputing. 399, 491–501 (2020)

41. Trindade, A.: ElectricityLoadDiagrams20112014 data set. https://
archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014#
(2015). Accessed 15 Sept 2021

42. Almalaq, A., Edwards, G.: A review of deep learning methods applied
on load forecasting. In: 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA), pp. 511–516. Cancun
Dec 2017

43. Csáji, B.C.: Approximation with artificial neural networks. Faculty of
Sciences, vol. 24, p. 7. Etvs Lornd University, Hungary (2001)

44. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine
learning. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf. Accessed 15 Sept 2021

45. Zeiler, M.D.: Adadelta: an adaptive learning rate method. vol. 1212,
pp. 12. (2012)

46. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In:
Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning
Representations, ICLR 2015, San Diego. 7–9 May 2015. http://arxiv.
org/abs/1412.6980

47. Chen, S., Yu, D., Moghaddamjo, A.: Weather sensitive short‐term load
forecasting using nonfully connected artificial neural network. IEEE
Trans. Power Syst. 3, 8 (1992)

48. He, K., et al.: Deep residual learning for image recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, pp. 770–778. Las Vegas. 27–30 June 2016. https://doi.
org/10.1109/CVPR.2016.90

49. Elman, J.L.: Finding structure in time. Cognit. Sci. 14(2), 179–211
(1990)

50. Hochreiter, S., Schmidhuber, J.: Long short‐term memory. Neural
Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.
8.1735

51. Cho, K., et al.: Learning phrase representations using RNN encoder‐
decoder for statistical machine translation. In: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, A meeting of SIGDAT, a Special Interest
Group of the ACL, pp. 1724–1734. Doha. 25–29 Oct 2014. http://
aclweb.org/anthology/D/D14/D14‐1179.pdf

52. Werbos, P.J.: Backpropagation through time: what it does and how to do
it. In: Proceedings of the IEEE. vol. 78, pp. 1550 –1560 (1990). http://
doi.org/10.1109/5.58337

53. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Parallel distributed pro-
cessing: Explorations in the microstructure of cognition, In: Rumelhart
D.E., McClelland J.L., C. PDP Research Group (eds.) ch. Learning
Internal Representations by Error Propagation, vol. 1, pp. 318–362.
MIT Press, Cambridge. (1986). http://dl.acm.org/citation.cfm?
id=104279.104293

54. Williams, R.J., Peng, J.: An efficient gradient‐based algorithm for on‐line
training of recurrent network trajectories. Neural Comput. 2, 490–501
(1998)

55. Bengio, Y., Simard, P., Frasconi, P.: Learning long‐term dependencies
with gradient descent is difficult. Trans. Neur. Netw. 5(2), 157–166
(1994). https://doi.org/10.1109/72.279181

56. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training
recurrent neural networks. In: Proceedings of the 30th International
Conference on International Conference on Machine Learning – vol.
28, pp. III–1310–III–1318. JMLR.org. Atlanta (2013). http://dl.acm.
org/citation.cfm?id=3042817.3043083

57. Greff, K., et al.: LSTM: a search space odyssey. IEEE Trans. Neural
Network. Learn. Syst. 28(10), 2222–2232 (2017)

58. Chung, J., et al.: Empirical evaluation of gated recurrent neural networks
on sequence modeling. CoRR, vol. abs/1412.3555 (2014)

59. Yin, W., et al.: Comparative study of cnn and rnn for natural language
processing. arXiv preprint arXiv:1702.01923 (2017)

60. Pascanu, R., et al.: How to construct deep recurrent neural networks. In:
Proceedings of the Second International Conference on Learning
Representations (ICLR 2014) Banff (2014)

61. Schmidhuber, J.: Learning complex, extended sequences using the
principle of history compression. Neural Comput. 4(2), 234–242 (1992).
https://doi.org/10.1162/neco.1992.4.2.234

62. Graves, A., Mohamed, A.‐R., Hinton, G.: Speech recognition with deep
recurrent neural networks. In: 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 6645–6649. Vancouver
(2013)

63. Hermans, M., Schrauwen, B.: Training and analysing deep recurrent
neural networks. In: Burges, C.J.C., et al. (eds.) Advances in Neural
Information Processing Systems 26, pp. 190–198. Curran Associates,
Inc. Lake Tahoe (2013). http://papers.nips.cc/paper/5166‐training‐
and‐analysing‐deep‐recurrent‐neural‐networks.pdf

64. Taieb, S.B., et al.: A review and comparison of strategies for multi‐step
ahead time series forecasting based on the NN5 forecasting competi-
tion. Expert Syst. Appl. 39(8), 7067–7083. (2012). http://www.
sciencedirect.com/science/article/pii/S0957417412000528

65. Sorjamaa, A., Lendasse, A.: Time series prediction using dirrec strategy.
In: European Symposium on Artificial Neural Networks, vol. 6(01),
pp. 143–148. Bruges (2006)

66. Bontempi, G.: Long term time series prediction with multi‐input multi‐
output local learning. In: Proceedings of the 2nd European Symposium
on Time Series Prediction (TSP) ESTSP08 (2008)

67. Taieb, S.B., et al.: Long‐term prediction of time series by combining
direct and mimo strategies. In: 2009 International Joint Conference on
Neural Networks, pp. 3054–3061. (2009)

68. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with
neural networks. In: Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing
Systems 2014, pp. 3104–3112. Montreal. 8–13 Dec 2014. http://papers.
nips.cc/paper/5346‐sequence‐to‐sequence‐learning‐with‐neural‐networks

69. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation
by jointly learning to align and translate. CoRR, vol. abs/1409.0473
(2014)

70. Wu, Y., et al.: Google's neural machine translation system: Bridging the
gap between human and machine translation, arXiv preprint
arXiv:1609.08144 (2016)

71. Chorowski, J.K., et al.: Attention‐based models for speech recognition.
In: Cortes, C., et al. (eds.) Advances in Neural Information Processing
Systems 28, pp. 577–585. Curran Associates, Inc. Montreal (2015).
http://papers.nips.cc/paper/5847‐attention‐based‐models‐for‐speech‐
recognition.pdf

72. Bahdanau, D., et al.: End‐to‐end attention‐based large vocabulary
speech recognition. In: 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4945–4949.
Lujiazui, Mar (2016)

73. Xu, K., et al.: Show, attend and tell: neural image caption generation
with visual attention. In: Bach, F., Blei, D. (eds.) Proceedings of the
32nd International Conference on Machine Learning, vol. 37,
pp. 2048–2057. PMLR, Lille. (2015). http://proceedings.mlr.press/
v37/xuc15.html

74. Williams, R.J., Zipser, D.: A learning algorithm for continually running
fully recurrent neural networks. Neural Comput. 1, 270–280 (1989)

75. Ranzato, M., et al.: Sequence level training with recurrent neural net-
works. In: Bengio, Y., LeCun, Y. (eds.) 4th International Conference on
Learning Representations, ICLR 2016, San Juan. 2–4 May 2016. http://
arxiv.org/abs/1511.06732

76. Bengio, S., et al.: Scheduled sampling for sequence prediction with
recurrent neural networks. In: Proceedings of the 28th International
Conference on Neural Information Processing Systems – vol. 1,
pp. 1171–1179. MIT Press, Cambridge. (2015). http://dl.acm.org/
citation.cfm?id=2969239.2969370

77. Lamb, A., et al.: Professor forcing: a new algorithm for training
recurrent networks. In: NIPS Barcelona (2016)

24 - GASPARIN ET AL.

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014%23
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014%23
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://aclweb.org/anthology/D/D14/D14-1179.pdf
http://aclweb.org/anthology/D/D14/D14-1179.pdf
http://dx.doi.org/10.1109/5.58337
http://dx.doi.org/10.1109/5.58337
http://dl.acm.org/citation.cfm?Fid=04279.104293
http://dl.acm.org/citation.cfm?Fid=04279.104293
https://doi.org/10.1109/72.279181
http://dl.acm.org/citation.cfm?id=3042817.3043083
http://dl.acm.org/citation.cfm?id=3042817.3043083
https://doi.org/10.1162/neco.1992.4.2.234
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
http://www.sciencedirect.com/science/article/pii/S0957417412000528
http://www.sciencedirect.com/science/article/pii/S0957417412000528
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks
http://papers.nips.cc/paper/5847-attention-based-models-for-speech-recognition.pdf
http://papers.nips.cc/paper/5847-attention-based-models-for-speech-recognition.pdf
http://proceedings.mlr.press/v37/xuc15.html
http://proceedings.mlr.press/v37/xuc15.html
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
http://dl.acm.org/citation.cfm%3Fid%3D2969239.2969370
http://dl.acm.org/citation.cfm%3Fid%3D2969239.2969370

78. Keneshloo, Y., et al.: Deep reinforcement learning for sequence‐to‐
sequence models. IEEE Trans. Neural Network. Learn. Syst. 31(7),
2469–2489 (2020)

79. Wilms, H., Cupelli, M., Monti, A.: Combining auto‐regression with
exogenous variables in sequence‐to‐sequence recurrent neural networks
for short‐term load forecasting. In: 2018 IEEE 16th International
Conference on Industrial Informatics (INDIN), pp. 673‐679. https://
doi.org/10.1109/INDIN.2018.8471953

80. Lecun, Y., et al.: Gradient‐based learning applied to document recog-
nition. Proc. IEEE. 86, 2278–2324 (1998)

81. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with
deep convolutional neural networks. In: Pereira, F., et al. (eds.) Ad-
vances in Neural Information Processing Systems 25, pp. 1097–1105.
Curran Associates, Inc. Lake Tahoe (2012). http://papers.nips.cc/
paper/4824‐imagenet‐classification‐with‐deep‐convolutional‐neural‐net
works.pdf

82. Simonyan, K., Zisserman, A.: Very deep convolutional networks for
large‐scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd In-
ternational Conference on Learning Representations, ICLR 2015, San
Diego. 7–9 May 2015. http://arxiv.org/abs/1409.1556

83. Szegedy, C., et al.: Going deeper with convolutions. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
Boston (2015)

84. Girshick, R.: Fast R‐CNN. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 1440–1448. Santiago (2015)

85. Ren, S., et al.: Faster R‐CNN: towards real‐time object detection with
region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99. Montreal (2015)

86. Jaderberg,M., et al.: Spatial transformer networks. In: Advances inNeural
Information Processing Systems, pp. 2017–2025. Montreal (2015)

87. Dahl, R., Norouzi, M., Shlens, J.: Pixel recursive super resolution. In:
2017 IEEE International Conference on Computer Vision (ICCV),
pp. 5449–5458. Venezia (2017)

88. Ledig, C., et al.: Photo‐realistic single image super‐resolution using a gener-
ative adversarial network. In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 105–114. IEEE Honolulu (2017)

89. van den Oord, A., et al.: A generative model for raw audio. Arxiv.
(2016). https://arxiv.org/abs/1609.03499

90. Gehring, J., et al.: Convolutional sequence to sequence learning. In:
Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International
Conference on Machine Learning, vol. 70, pp. 1243–1252. Sydney, 06–
11 Aug 2017. http://proceedings.mlr.press/v70/gehring17a.html

91. Borovykh, A., Bohte, S., Oosterlee, K.: Conditional time series fore-
casting with convolutional neural networks. In: Lecture Notes in
Computer Science/Lecture Notes in Artificial Intelligence, pp. 729–730.
Sept (2017)

92. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep
learning. CoRR, vol. abs/160307285. (2016). http://arxiv.org/abs/
1603.07285

93. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271 (2018)

94. Chollet, F., et al.: Keras. (2015). https://github.com/fchollet/keras
95. Abadi, M., et al.: TensorFlow: large‐scale machine learning on hetero-

geneous systems. Software available from tensorflow.org. (2015).
https://www.tensorflow.org/

96. Commission for Energy Regulation (CER). Cer smart metering project ‐
electricity customer behaviour trial, 2009‐2010. 1st edn. Irish Social
Science Data Archive. SN: 0012‐00. (2012). https://www.ucd.ie/issda/
data/commissionforenergyregulationcer/

97. Bishop, C.M.: Pattern recognition and machine learning (information
Science and Statistics). Springer‐Verlag, Berlin (2006)

98. Li, S., et al.: Demystifying Resnet. arXiv preprint arXiv:1611.01186
(2016)

99. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network
training by reducing internal covariate shift, pp. 448–456. (2015).
http://jmlr.org/proceedings/papers/v37/ioffe15.pdf

100. Marinescu, A., et al.: Residential electrical demand forecasting in very
small scale: an evaluation of forecasting methods. In: 2013 2nd Inter-
national Workshop on Software Engineering Challenges for the Smart
Grid (SE4SG), pp. 25–32. San Francisco May (2013)

101. Cini, A., Lukovic, S., Alippi, C.: Cluster‐based aggregate load forecasting
with deep neural networks. In: 2020 International Joint Conference on
Neural Networks (IJCNN) (to be published). IEEE Glasgow (2020)

How to cite this article: Gasparin, A., Lukovic, S.,
Alippi, C.: Deep learning for time series forecasting: the
electric load case. CAAI Trans. Intell. Technol. 7(1),
1–25 (2022). https://doi.org/10.1049/cit2.12060

GASPARIN ET AL. - 25

 24682322, 2022, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cit2.12060 by B

iblioteca universitaria di L
ugano, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/INDIN.2018.8471953
https://doi.org/10.1109/INDIN.2018.8471953
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1609.03499
http://proceedings.mlr.press/v70/gehring17a.html
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1603.07285
https://github.com/fchollet/keras
https://www.tensorflow.org/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
https://www.ucd.ie/issda/data/commissionforenergyregulationcer/
http://jmlr.org/proceedings/papers/v37/ioffe15.pdf
https://doi.org/10.1049/cit2.12060

	Deep learning for time series forecasting: The electric load case
	1 | INTRODUCTION
	2 | PROBLEM DESCRIPTION
	3 | FEED‐FORWARD NEURAL NETWORKS
	3.1 | FNNs' application for short‐term load forecasting

	4 | RECURRENT NEURAL NETWORKS
	4.1 | Elmann RNNs
	4.2 | Long short‐term memory
	4.3 | Gated recurrent units
	4.4 | Deep recurrent neural networks
	4.5 | Multi‐step prediction schemes
	4.5.1 | Recursive strategy (Rec)
	4.5.2 | Direct strategy
	4.5.3 | DirRec strategy
	4.5.4 | MIMO strategy
	4.5.5 | DIRMO strategy

	4.6 | RNNs' application for short‐term load forecasting

	5 | SEQUENCE‐TO‐SEQUENCE MODELS
	5.1 | seq2seq application for short‐term load forecasting

	6 | CONVOLUTIONAL NEURAL NETWORKS
	6.1 | Dilated causal convolution
	6.2 | Residual connections
	6.3 | CNNs and TCNs' application for short‐term load forecasting

	7 | PERFORMANCE ASSESSMENT
	7.1 | Performance metrics
	7.2 | Use case I, II and III (individual households)
	7.3 | Use cases IV and V (aggregated load)
	7.4 | Results

	8 | CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT

