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COMBINED CONVEX AND DIRECT SHOOTING OPTIMIZATION
FOR LOW-THRUST TRAJECTORY GENERATION WITH

ANALYTICAL THRUST PROFILE

Andrea C. Morelli *, Alessandro Morselli†, Carmine Giordano‡, and Francesco
Topputo§

Convex optimization for low-thrust trajectory generation guarantees high levels
of reliability while keeping the computational time low. However, it is affected
by one major disadvantage: constraints are only imposed and respected at the
collocation points. Outside of these points, the control commands must be in-
terpolated. Physical constraints on the thrust vector might therefore be violated.
Consequently, the output of the algorithm could not be used directly for future
autonomous guidance scenarios or for precise onground trajectory design. To ad-
dress the issue, we develop a fast and reliable double-layer algorithm that exploits
convex optimization to find a solution to the low-thrust trajectory optimization
problem and transforms its control output into a perfectly bang-off-bang thrust
profile where the thrust angles are expressed analytically using unique arbitrary-
order polynomials inside each thrust arc, as this ensures that physical thrust con-
straints are always respected. The proposed strategy would represent an accurate
and practical method for future autonomous guidance missions as well as for pre-
liminary onground trajectory design.

INTRODUCTION

Autonomous low-thrust spacecraft guidance implies solving an optimal control problem onboard.
This poses several challenges, as low-thrust trajectory optimization is a rather demanding task. Con-
vex optimization1 represents an interesting direct optimization approach because it provides high
levels of reliability while assuring little computational effort.2–4 It has recently been applied to
different aerospace-related problems,5, 6 including powered descent guidance7 and low-thrust tra-
jectory optimization.8, 9 Still, one major disadvantage of convex optimization is that, like all direct
collocation methods, it only provides the solution at the collocation points. This prevents the on-
board deployment of the solution coming from this optimization approach as is, because interpola-
tion between discretization points must be performed to obtain the solution at any time instant and
therefore the physical constraints may be violated, making the required thrust commands infeasible
or inaccurate. Moreover, since a finite number of discretization points is used, the switch on and
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off times of the thrust arcs might not be exactly defined, and this further complicates the usage of
convex optimization-based solutions in future hypothetical autonomous guidance scenarios.
We address the highlighted problems by proposing a double-layer algorithm that relies on convex
optimization and exploits a direct shooting method to regularize the thrust magnitude profile and
its angles such that the latter are expressed as unique arbitrary-order polynomials in each thrust arc
and the thrust on and off times are exactly defined. This second layer represents an approach for
low-thrust trajectory optimization problems similar to the strategy developed to transform impul-
sive maneuvers into finite-time ones.10 Some works have addressed the regularization problem for
direct trajectory optimization methods using the covector mapping theorem.11 In particular, Hoff-
mann and Topputo8 applied to convex optimization the approach developed by Agamawi et al.12

for general direct transcription optimization problems. Both approaches use pseudospectral meth-
ods and consist of solving the same optimization problem (at least) twice with modified or denser
discretization grids such that the thrust on and off times are accurately captured. Although these
works solve the issue of exactly capturing the bang-bang structure of the thrust profile, they do not
provide unique analytical expressions for the thrust angles in each thrust arc. Moreover, they are tai-
lored for pseudospectral methods as they can exploit the covector mapping theorem, although only
few discretization methods have this property. Finally, the aforementioned approaches result in (at
least) two optimizations of the whole problem, which is not ideal for future hypothetical onboard
applications as this may increase the computational burden of the guidance unit. Therefore, the
utmost advantages of the proposed method with respect to literature are: first, it offers a fast (when
compared to state-of-the-art direct and indirect methods) and reliable way to obtain near-optimal
solutions for the low-thrust spacecraft trajectory optimization problem with unique analytical ex-
pressions for the thrust variables inside each thrust arc. This is obtained by exploiting the solution
of the convex optimization-based layer to identify the thrust and coast arcs, and further only slightly
optimizing it. Secondly, our method introduces an analytical procedure based on simple physical
considerations to generate the initial guess for the switch on and off times of the thrust arcs. Finally,
the regularized thrust profile is found by re-optimizing only simpler parts of the initial problem,
thus ensuring a more reliable approach. We test the proposed algorithm in extensive simulations
considering an Earth to Venus transfer and using an Hermite–Simpson (HS) discretization9, 13 for
the convex optimization algorithm.

PROBLEM STATEMENT

We consider the problem of finding the minimum-fuel trajectory of a spacecraft in motion around
a primary body and equipped with a low-thrust engine. The equations of motion (EoM) of such
spacecraft can be written as 

ṙ(t)

v̇(t)

ṁ(t)

 =


v(t)

−µ r(t)

∥r(t)∥32
+ T(t)

m(t)

− T (t)
Ispg0

 (1)

where r = [x, y, z]⊤, v = [vx, vy, vz]
⊤, and m are the position, velocity, and mass variables,

respectively. µ is the gravitational parameter of the primary body, T = [Tx, Ty, Tz]
⊤ is the thrust

vector (with T (t) being its euclidean norm), Isp is the specific impulse and g0 is the gravitational
acceleration of the Earth at sea level. As the dynamics in Eq. (1) are nonlinear and nonconvex, they
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have to be modified for the problem to be expressed in a convex form. According to literature,4, 14, 15

the convexified low-thrust trajectory optimization (LTO) problem reads

minimize
u(t)

− w(tf ) (2a)

subject to: ẋ(t) = f0(x̄(t)) +A(x̄(t)) (x(t)− x̄(t)) +Bu(t) (2b)

Γ(t) ≤ Tmaxe−w̄(t) (1− w(t) + w̄(t)) (2c)

∥τ (t)∥2 ≤ Γ(t) (2d)

∥x(t)− x̄(t)∥1 ≤ R (2e)

r(t0) = r0, v(t0) = v0, w(t0) = w0 (2f)

r(tf ) = rf , v(tf ) = vf (2g)

xl ≤ x ≤ xu, ul ≤ u ≤ uu. (2h)

x = [r;v;w] and u = [τx, τy, τz,Γ]
⊤ = [τ ; Γ] are the new state and control variables, respectively;

in particular, w(t) is the modified mass variable. t0 and tf are the initial and final transfer times.
Tmax is the maximum allowable thrust, and R is the radius of the trust region assuring that the
convexification of the problem is valid. In Eq. (2b), the term f0(x̄(t)) is the natural two-body
dynamics evaluated at the reference trajectory, and the matrices A and B are the jacobians of the
decoupled dynamics4 with respect to the state and control, respectively. The original optimal control
problem is solved through the sequential convex programming (SCP),2 an iterative technique that
considers a sequence of convex subproblems of the form (2a)–(2h).

The Thrust Regularization Problem

Once the LTO problem has been solved, the optimized control history is available. Regardless
of how many discretization points are used, being them a finite number, the thruster switch on and
off times might not be captured precisely by direct methods. On top of that, consider Eq. (2d): it
expresses the physical constraint on the thrust variables

√
τ2x(t) + τ2y (t) + τ2z (t) = Γ(t). Due to

discretization, it is only satisfied at the collocation points tj , with j = 1, . . . , N . In other words,
the aforementioned constraint defect is always under the SCP selected convergence threshold at
the collocation points, whereas it overcomes the threshold at the points where the thrust variables
are interpolated. Since we use the Hermite–Simpson discretization, the thrust variables are lin-
early interpolated in-between two nodes. According to our simulations, when an acceptable number
of collocation nodes N is used, the maximum constraint violation is approximately the 0.5 − 7%
(strongly depending on N itself) of the maximum available thrust, i.e., it is in the same order of
magnitude of the state-of-the-art low-thrust engines execution errors.16 This is undesirable, espe-
cially for future autonomous guidance missions: the guidance commands have to be as accurate
as possible, hopefully several orders of magnitude less than typical real-thrusters execution errors.
One may claim that the solution to this problem could be to increase the number of discretization
points; the correspondent CPU time, however, also increases significantly, in particular with an
higher derivative with respect to the decrease of the error’s one.
We address the aforementioned issues by formulating the so-called thrust regularization problem.
For all the thrust segments i (with i = 1, . . . , NT) that can be identified in the SCP solution of a
low-thrust space trajectory optimization problem, we want to find the exact switch on and off times
(t(i)ON and t

(i)
OFF, respectively) and to express the thrust angles with polynomials of arbitrary order p,
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such that the variables Tx, Ty, and Tz can be described with analytical expressions of the form

T(i)(t) =

T
(i)
x (t)

T
(i)
y (t)

T
(i)
z (t)

 = Tmax

cos [β(i)(t)] cos [α(i)(t)]

cos [β(i)(t)] sin [α(i)(t)]

sin [β(i)(t)]

 , (3)

where

α(t) = a0 + a1t+ · · ·+ apt
p (4a)

β(t) = b0 + b1t+ · · ·+ bpt
p (4b)

are the thrust angles defined as in Figure 1.

T(t)

x

y

z

Figure 1: Definition of thrust angles α(t) and β(t).

METHODOLOGY

Figure 4 summarizes the main steps of the proposed approach. As the SCP algorithm does not
consist in the innovative part of this work, it will not be described in details in the next sections. The
interested reader can refer to previous works for a thorough description of the resolution strategy
used for the problem in Eqs. (2).8, 9, 17 The SCP algorithm can either converge (when the maximum
constraints violation is below a certain threshold εSCP such that 0 < εSCP ≪ 1) or stop without
having found a feasible solution. In order to understand the potential of the proposed double-
layer approach, we perform the thrust regularization procedure even in the cases for which the SCP
algorithm did not fully converge. In other words, the direct shooting optimization is executed even
when the maximum constraint violation is lower than a certain other threshold εTR > εSCP.

Thrust Arcs Identification

In order to perform the thrust regularization procedure, the thrust arcs of the SCP algorithm
solution must be identified, as a different shooting optimization is run for each of them. With the
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Figure 2: Flowchart of the proposed approach.

expression thrust arcs identification we refer to the process of defining the switch on and off times
t
(i)
1 and t

(i)
2 of each thrust arc i = 1, . . . , NT. Note that the times t

(i)
1 and t

(i)
2 are not exactly

defined, as the SCP algorithm is a direct method and therefore it is extremely unlikely that the
switching points are placed exactly at a discretization node. Consequently, we consider a threshold
εT under which the thrust magnitude is considered to be 0. As a result, the times t

(i)
1 and t

(i)
2

are artificially defined as the instants when the thrust magnitude becomes higher or lower than the
selected threshold, respectively. The outcome of the described process is a thrust mask, uniquely
defined by the parameters t(i)1 and t

(i)
2 , and NT.

Initial Guess Generation

Let us now indicate with t
(i)
ON and t

(i)
OFF the optimized values for the switch on and off times

associated with the thrust arc i (as found by the shooting method). The direct shooting method
requires an initial guess for these times, as well as for the coefficients of the polynomials that
describe the thrust angles and the SCP algorithm does not directly provide any initial guess for the
thrust angles coefficients. Therefore, we construct a new and more accurate initial guess for the
shooting method considering the following assumptions. For each thrust arc i,

1) the total change of spacecraft velocity ∆V
(i)

SCP as obtained from the SCP algorithm, computed
as

∆V
(i)

SCP =

∫ t
(i)
2

t
(i)
1

Γ(t) dt, (5)

must be equal to the total change of the spacecraft’s velocity ∆V (i) associated with the initial
guess thrust profile, such that

∆V (i) =

∫ t
(i)
b

t
(i)
a

Γ(t) dt = ∆V
(i)

SCP, (6)
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where t
(i)
a and t

(i)
b are the switch on and off times of the thrust arc i associated with the new

initial guess.

2) the barycentric time t(i)SCP of the SCP solution, defined as

t(i)SCP =

∫ t
(i)
2

t
(i)
1

tΓ(t) dt

∫ t
(i)
2

t
(i)
1

Γ(t) dt

, (7)

must be equal to the barycentric time t(i)c associated with the thrust profile of the new initial
guess.

3) The thrust magnitude is always equal to the maximum value Tmax.

From the aforementioned considerations, a system of equations can be derived and solved, where
the only unknowns are t

(i)
a and t

(i)
b , i.e., the most accurate initial guesses for the times t

(i)
ON and

t
(i)
OFF. Once the initial guess for the thrust on and off times has been defined, the initial guess for

the thrust angles coefficients must be taken care of. First, the thrust variables of the SCP algorithm
[τx, τy, τz,Γ] are transformed into the canonical thrust variables14 [Tx, Ty.Tz, ∥T∥2]; after that, a
change of coordinates is performed to obtain the values of the thrust angles at the SCP collocation
points. Finally, a least-square polynomial interpolation is executed to obtain the coefficients of the
thrust angles polynomials.

Direct Shooting Optimization

Figure 3 shows the scheme of the comparison between the thrust profile as obtained by the SCP
algorithm and the regularized thrust profile. The red filled circles represent the thrust magnitude at
the nodal points (recall that in the HS discretization, the thrust variables are interpolated linearly in
each trajectory segment). The previously-defined instants t(i)1 , t(i)ON, t(i)OFF, and t

(i)
2 identify three time

intervals. The idea of the proposed strategy is summarized in the following point and performed for
each thrust arc.

• First, starting from the spacecraft state as found by the SCP algorithm and correspondent to
the time t

(i)
1 , the natural spacecraft dynamics is propagated from t

(i)
1 to t

(i)
ON;

• then, the low-thrust dynamics in Eq. (1) with the regularized thrust variables is propagated
from t

(i)
ON to t

(i)
OFF;

• finally, the natural dynamics is further propagated from t
(i)
OFF to t

(i)
2 ;

• the algorithm stops when the spacecraft state at time t
(i)
2 as obtained by the shooting method

is equal (up to a predefined user-selected threshold) to the spacecraft state at time t
(i)
2 as

computed by the SCP algorithm.

Therefore, the idea at the basis of our approach is to impose that the spacecraft state before and after
each thrust arc is the same before and after the thrust regularization procedure. This is eventually
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done by adjusting the values for the true switch on and off times as well as the values for the thrust
angles coefficients. Note that the procedure is executed separately for each thrust arc; this means
that the user can choose whether to perform the regularization for the whole thrust profile or not.
As already previously mentioned, this is of great advantage when considering future hypothetical
autonomous guidance mission scenarios, as the computational burden of the simple SCP algorithm
is only slightly increased.
Figure 4 summarizes the strategy. In the flowchart, k indicates the shooting algorithm iterations,
and a(i) and b(i) are vectors collecting the thrust angles coefficients α(t) and β(t), respectively.
Moreover, ∆s indicates the elapsed time since the beginning of the optimization, and εST, smax, and
kmax are the constraints, elapsed time, and iterations thresholds. In fact, to limit the overall duration
of the computation, each shooting optimization terminates when either the constraints are satisfied
or a maximum number of solver iterations or elapsed time overcome a certain threshold.

Time

 Thrust

Figure 3: Comparison of SCP (black solid line) and regularized (blue dashed line) thrust profiles.

NUMERICAL SIMULATIONS

The performance of the proposed algorithm is assessed in several simulations where we want
to regularize the entire thrust profile. The Earth-Venus transfer is considered as test case. Table 1
shows the transfer parameters. The normalization factors are LU = 1 Astronomical Unit for position
variables and VU =

√
µ/LU for velocities.

To address the quality of the proposed algorithm, we perform the following analysis. We select
different number of discretization nodes and we run 100 simulations for each of them, providing
the SCP algorithm with simple, perturbed cubic interpolation-based initial guesses.4 The objective
of the analysis is to compare the convergence, the obtained final mass, and the CPU time required
by the simple SCP algorithm and the shooting method procedure. As previously stated, we run the
thrust regularization strategy even in the cases for which the SCP algorithm is close to convergence
after a maximum number of iterations but still did not satisfy the convergence criteria. This is to
check whether the proposed methodology can increase the convergence of the standard SCP. Table
2 presents the values for all the parameters of the proposed approach.
To assess whether the SCP algorithm or thrust regularization return a feasible solution, the follow-
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Figure 4: Flowchart of the proposed approach.

Table 1: Simulation values for the Earth–Venus transfer.18

Parameter Earth–Venus

r0, LU [0.97083220, 0.23758440,−1.67106× 10−6]⊤

v0, VU [−0.25453902, 0.96865497, 1.50402× 10−5]⊤

m0, kg 1500
rf , LU [−0.32771780, 0.63891720, 0.02765929]⊤

vf , VU [−1.05087702,−0.54356747, 0.05320953]⊤

mf , kg free
Tmax, N 0.33
Isp, s 3800
tf , days 1000

ing converge criterion is used: we propagate the equations of motion in Eq. (1) with the obtained
controls and we check whether both the conditions∥∥rprop(tf )− rf

∥∥ < 1000 km (8a)∥∥vprop(tf )− vf

∥∥ < 1m/s (8b)

are respected, where (·)prop indicates te propagated dynamics. This is because we want to under-
stand whether the obtained solution would be good enough to be run onboard to get the spacecraft
to the target celestial body. The selected threshold values are deemed acceptable for this kind of
analysis, considering the long times of flight of the selected transfer.
Note that in the case of the SCP solution, we want to use physically feasible controls at any time
instant (recall that the constraint in Eq. (2d) is not respected outside of the collocation points).
Therefore, we integrate the dynamics with the obtained values of [Tx, Ty, Tz] and we define the

thrust magnitude as ∥T∥2 =
√
T 2
x + T 2

y + T 2
z at each time step. We refer to this set of thrust vari-
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Table 2: Parameters for the thrust regularization algorithm.

Parameter Value

Shooting convergence threshold εST 1× 10−11

Thrust threshold εT 1× 10−6

Elapsed optimization time threshold smax, s 5
Max. shooting iters. kmax 10
α and β polynomials order p 2
SCP convergence threshold εSCP 1× 10−6

Thrust regularization flag threshold εST 1× 10−4

Table 3: Convergence results for the Earth-Venus transfer.

Nodes Conv. SCP alg., % Conv. SCP integr., % Conv. shoot., %

100 32.0 0.0 53.0
150 26.0 0.0 44.0
200 21.0 0.0 43.0

ables as feasible controls.
Table 3 presents the convergence results. The column Conv. SCP alg. refers to the cases for which
the SCP algorithm’s convergence criteria in Ref.4 were satisfied (i.e., maximum violation of the
constraints at the nodes under a predefined threshold εSCP as reported in Table 2), whereas the col-
umn Conv. SCP integr. refers to the criteria in Eqs. (8). Results show an undisputed superiority of
the thrust regularization procedure in combination with SCP with respect to simply using the SCP
algorithm. Notably, in none of the cases the SCP algorithm was able to ensure a final error lower
than the desired threshold when feasible controls are considered. Therefore, if directly executed, the
solution coming from SCP would soon result in large displacements from the planned trajectories.
Simulations also highlight how the optimality of the post-processed solution is not significantly af-
fected (the difference is < 1% with respect to the initial spacecraft mass).
Moreover, the CPU time required by the regularization procedure is only a fraction of the overall
time (usually in the order of 10 − 15%), which is almost always lower than 1 minute on an Intel
Core i7-10510U CPU @ 1.80GHz. Once again, this aspect proves that the implemented strategy
does not substantially increase the computational burden of the simple SCP algorithm. On top of
that, also consider that in autonomous guidance scenarios, only the first portion of the thrust profile
is actually executed as a new reference trajectory to follow would be computed again after naviga-
tion operations are performed. Consequently, the computational impact of the thrust regularization
is even lower with respect to what has been said few lines above.
Finally, Fig. 5 shows an example of regularized thrust profile. Although the SCP profiles poorly
capture the bang-off-bang structure due to the small number of nodes, the regularization procedure
was successfully completed.
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Figure 5: Comparison of thrust profiles as obtained by the SCP algorithm with 50 nodes and after
regularization for the Earth-Venus transfer.

CONCLUSIONS

This work presents a double-layer algorithm based on convex optimization to obtain precise and
regularized thrust commands for low-thrust spacecraft transfers. It locates in the context of the
research aimed to shift flight-related tasks such as spacecraft guidance directly onboard. Results
show that the proposed approach is efficient both in terms of convergence and required computa-
tional time.
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