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Generative Adversarial Networks With AdaBoost
Ensemble Learning for Anomaly Detection in

High-Speed Train Automatic Doors
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Abstract— Due to the scarcity of abnormal condition data in
components of transportation systems, only normal condition
data are typically used to train models for anomaly detection.
One of the main challenges is the difficulty of properly repre-
senting the data distribution which is typically non-smooth, high-
dimensional and on a manifold. This work develops an anomaly
detection model based on an Auto-Encoder (AE) formed by the
generator of a Generative Adversarial Network (GAN) and an
auxiliary encoder to capture the sophisticated data structure. The
reconstruction error of the AE is, then, used as anomaly score
to detect anomalies. Additionally, an adaptive noise is added to
the data to make easier the GAN optimization, an AdaBoost-
based ensemble learning scheme is used to improve detection
performance and a new approach for setting the hyperparameters
of the AE-GAN model based on the derivation of a lower bound
of the Jensen-Shannon divergence between generator and normal
condition data distributions is developed. The method has been
applied to synthetic and real data collected from automatic doors
of high-speed trains.

Index Terms— High-speed train automatic door, anomaly
detection, high dimensional time series, manifold distribution,
generative adversarial networks, AdaBoost ensemble learning.

I. INTRODUCTION

ANOMALY detection aims at identifying novel and unex-
pected patterns within the data collected [1]. It plays a

critical role in several industrial domains, such as network
intrusion detection [2], transportation monitoring [3], video
anomalous behavior recognition [4] and anomaly detection

Manuscript received 16 June 2021; revised 11 January 2022 and 28 June
2022; accepted 8 August 2022. Date of publication 29 September 2022; date of
current version 5 December 2022. The work of Mingjing Xu was supported in
part by the China Scholarship Council under Grant 201606420061. The work
of Piero Baraldi was supported in part by the European project RECET4RAIL
and in part by the call BRIC-2018 of the National Institute for Insur-
ance against Accidents at Work—INAIL “Smart maintenance of industrial
plants and civil structures by 4.0 monitoring technologies and prognostic
approaches—MAC4PRO. The work of Enrico Zio was supported by the
call BRIC-2018 of the National Institute for Insurance against Accidents at
Work—INAIL “Smart maintenance of industrial plants and civil structures
by 4.0 monitoring technologies and prognostic approaches—MAC4PRO.
The Associate Editor for this article was M. Zhou. (Corresponding author:
Piero Baraldi.)

Mingjing Xu and Piero Baraldi are with the Department of Energy,
Politecnico di Milano, 20156 Milan, Italy (e-mail: piero.baraldi@polimi.it).

Xuefei Lu is with the SKEMA Business School, Université Côte d’Azur,
92150 Paris, France.

Enrico Zio is with the Department of Energy, Politecnico di Milano, 20156
Milan, Italy, also with Centre for Research on Risk and Crises (CRC), MINES
ParisTech, PSL Research University, 06904 Sophia Antipolis, France, and also
with Aramis Srl, 20121 Milan, Italy.

Digital Object Identifier 10.1109/TITS.2022.3203871

in transportation systems. These latter applications are made
possible by the fact that sensors measure a variety of sig-
nals for the control operation and monitoring of behavior
of critical components of transportation systems can allow
improving the efficiency of operation and reducing the cost
of maintenance. Anomaly detection approaches are typically
categorized as supervised, unsupervised and one-class classi-
fication [5]. Supervised methods require the availability of a
sufficient number of signal measurements labelled with the
information on the component health state, i.e. normal or
anomalous. They typically face the problems of dealing with
imbalanced datasets, being abnormal condition data typically
rare and of the variability of the operating conditions which
causes major modifications to the data distributions. In [6],
noise-filtered and under-sampling methods are combined to
address the issue of imbalanced data. In [7], the ‘TrAdaBoost’
method, which extends the classical AdaBoost method to
deal with the situation in which data distributions change
due to variations of operating conditions using a domain
transform method is proposed. Unsupervised methods do not
need labelled data, but they typically assume that i) a sufficient
number of patterns collected in both normal and anomalous
conditions is available, ii) anomalous condition patterns are
sufficiently dissimilar to normal condition patterns to allow
discriminating them [8]. On the other hand, in many industrial
applications anomalous conditions are rare and changes in
operating and environmental conditions cause variations of the
measured signals that are larger than the variations caused
by the onset of a degradation of a component, at least
at the early stages after its occurrence. For this reason,
this work considers detection methods based on one-class
classification [9], which are trained on a dataset containing
only normal condition patterns. Examples of classification
methods applied to the one-class classification problems are:
Support Vector Machines (SVMs) [10], nearest neighbor-based
methods [11], statistical-based models [12] and Deep Learning
based (DL) [13]. One-Class SVM (OC-SVM) defines a kernel
to identify the region that fits the distribution of the normal
condition data. Then, if a test pattern falls out of the learned
region, it is declared as anomalous. A method which integrates
Support Vector Data Description (Deep-SVDD) with a deep
feature extraction for anomaly detection has been developed
in [14] and applied to image benchmark datasets. Nearest
neighbors-based methods use properly defined measures of
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dissimilarity among patterns and assume that normal condition
data are located in dense neighborhoods, whereas anomalies
are far from their closest neighbors [15]. For example, the
Auto Associative Kernel Regression (AAKR) method has been
used to detect anomalous conditions in an energy production
plant in [16]. The method is based on the reconstruction of the
test pattern as a weighted sum of normal condition patterns,
where the weights are proportional to the patterns similarity
to the test pattern. Two similarity measures based on the
Euclidean distance have been introduced in [16] and [17].
Then, if the reconstruction error exceeds an alarm threshold,
the test pattern is identified as abnormal. Statistics-based
methods, such as Gaussian Mixture Models (GMMs) statistics,
construct probabilistic models describing the normal condition
patterns. Then, an anomaly is detected if the likelihood of
occurrence of the test pattern is lower than a predefined
threshold [12]. For example, in [18] a novel multiscale drift
detection test is proposed to solve the classification problem
when data distributions change over time. In [19], novel
outlier detection strategy, based on SetMembership Filtering
model is developed to identify measurements corrupted by
outliers. A deep generative model stacked with multiple
GMM-layers has been proposed to detect abnormal events
in video surveillance [20]. Deep learning-based anomaly
detection methods have recently gained a lot of attention due
to their ability of effectively learning the characteristics of
complex data, such as multivariate time series, and the flex-
ibility of designing problem-specific loss functions. In [21],
a pairwise Gaussian loss function is developed to address the
problem of intra-class compactness and successfully applied
to synthetic data. In [22], a full-center loss function is used
to improve the separability of features in fraud detection.
In [23], a method combining auto-encoders, which extracts
nonlinear features, and backpropogation to obtain a fault
diagnosis index is developed and applied to a benchmark
case. These deep learning-based methods assume that small
reconstruction errors are achieved for normal condition data,
whereas large reconstruction errors are obtained for anomalous
condition patterns [24]. However, detecting anomalies using
conventional deep learning methods, such as RNNs, Auto-
Encoders and hybrid DNNs, can be challenging due to the
long-term time dependency and cross correlation among time
series [25].

Generative Adversarial Network (GAN) is a deep learning
method which consists of a generator and a discriminator,
where the generator is trained to reproduce the training data
distribution and the discriminator provides the probability of a
new pattern coming from the same training [26]. GANs have
been shown able to learn dataset with complex structure, e.g.,
spheres or torus manifolds [27], and of reproduce real data
distribution for data augmentation [28]. GAN-based anomaly
detection techniques were first proposed for medical image
analysis [29]. In the transport field, a data augmentation
method has been developed for synthesizing anomalies of the
minority classes in lane detection specifically. A GAN is
used to learn the distribution of anomalous condition patterns,
and generate synthetic anomalies, which are, then, used to
train a supervised anomaly detection model [3]. A limitation

of the method is that it cannot be used when abnormal
condition patterns are completely missing. In [24], a deep one-
class classifier formed by an auto-encoder and a discriminator
trained in an adversarial way is developed. In [30], GAN and
Variational Auto-Encoder(VAE) are combined to synthesize
auxiliary positive patterns in a problem of predicting lung
cancer.

In this context, the objective of the present work is to
develop a methodology for detecting anomalies in components
behaviour using measurements collected from components
of critical systems of transportation systems. To this aim,
we develop an Auto-Encoder aided GAN (AE-GAN) which
allow associating an anomaly score to the multidimensional
signal time series. The GAN is trained to obtain a generator
which reproduces the distribution of normal condition patterns,
i.e. time slices of multivariate time series. Then, the encoder
and the trained generator form an Auto-Encoder, which is
trained to minimize the reconstruction errors of normal con-
dition patterns. Finally, to improve the detection performance,
an ensemble of anomaly detectors is developed by adapting
the AdaBoost ensemble learning scheme. A test pattern is
identified as anomalous if the reconstruction of the ensemble
of Auto-Encoders error is larger than a certain threshold.
Two different AE-GANs variants are considered in this work:
variant a) sets up a dedicated AE-GAN for every time slice
of the multivariate time series, whereas variant b) sets up a
single universal AE-GAN to be applied to all time slices.

A synthetic case study concerning three complex distrib-
utions of normal condition patterns, e.g. Cone, Two Sphere
and Bowl distributions, to used to verify the performance of
the AE-GAN. Then, the developed method is applied to a
real-world industrial case study concerning automatic doors
of high speed trains. Notice that failures of automatic doors
are a cause of unavailability of high-speed train that has
recently attracted the attention of the main stakeholders of
the transportation systems. The performance of the proposed
method has been compared to six state-of-the-art anomaly
detection techniques including OC-SVM, AAKR, GMM and
deep-learning based AE, VAE- and Deep SVDD algorithms.

The contributions of this work are: 1) a combined frame-
work of AE and GAN is developed to identify anomalous
patterns in the situation, common in transportation systems,
in which abnormal condition data are not available and normal
condition data are characterized by complex distributions, e.g.
with manifold support; 2) the lower bound of Jensen-Shannon
(JS) divergence is used to guide the setting of the AE-GAN
hyper-parameters; 3) an adaptive noise is added to the input
data in case of non-smooth data distributions; 4) The use of
the Adaboost algorithm has allowed to extend the AE-GAN to
treat multidimensional long-term time series data.

The remaining of the paper is organized as follows:
Section II states the problem and illustrates the work objec-
tives; Section III introduces the background and preliminaries
of the proposed methodology and Section IV specializes the
proposed methodology of anomaly detection for long-term
multivariate time series; Section V introduces the numerical
synthetic case study with three complex distributions and the
real-world industrial case study of the automatic doors in high
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speed trains, and then discusses the results obtained; finally,
some conclusions and remarks are given in Section VI.

II. PROBLEM STATEMENT

We consider Nnor components operating in normal condi-
tions. For each component, N f features related to its health
condition are measured during operation. The N f × L matrix,
Xr , r = 1, . . . , Nnor , contains the time series of length L
collected during component operation in normal conditions.
The aim of this work is to build an anomaly detection model to
identify the normal/abnormal health state of a test component
given the N f -dimensional time series X test measured during
its operation. Notice that the situation in which only normal
condition data are available is common in many applications of
transportation systems involving, for example, safety critical
or newly designed components.

III. PRELIMINARIES AND BACKGROUND

A. Generative Adversarial Networks

Let X ⊆ R
Nx be the space of the training data whose

distribution is pdata. A GAN consists of a generator and a
discriminator, where the generator is a multilayer perceptron
aiming at generating patterns from the same distribution of the
training data and the discriminator is a multilayer perceptron
aiming at providing the probability that a test pattern x comes
from the same data distribution [26].

The generator G (z; θG) : Z → X with associated para-
meters θG maps a latent variable z from the latent space
Z ⊆ R

Nz to the data space of the patterns X ⊆ R
Nx . The

entries of the latent variable z, z ∈ Z are independent among
them and follow a standard Gaussian distribution N (0, 1). The
discriminator D (x; θD) : X → [0, 1] with associated para-
meters θD discriminates whether a test pattern x belongs to x
(true) or is generated by the generator (fake) by estimating the
probability that x comes from the true data distribution pdata.
The generator G is trained to approximate pdata, whereas the
discriminator D is trained to distinguish the training patterns
from the patterns generated by G. Mathematically, the GAN
is trained by conducting a minmax optimization with loss
function F(θD, θG):

min
θG

max
θD

F(θD, θG) = Ex∼pdata

[
logD (x;θD)

]
+Ez∼pz [log(1− D(G (z;θG) ; θD))]

(1)

where pz (z) is the prior probability distribution function of
the latent variable z.

B. Auto-Encoders

An Auto-Encoder is a neural network composed of an
encoder and a generator, trained to replicate its input data [31].
The encoder maps the data space X into the latent space
Z , whereas the generator reconstructs the input data from
the latent variable z. A typical form of an encoder E is a
composition of a nonlinear activation function f and an affine
transformation: E (x; θE ) = f (W E x+bE ), where the parame-
ters θE = {W E , bE } are the weight matrix W E of size Nz×Nx

and the offset vector bE of dimension Nz . The generator G
maps back the resulting latent variable z into the reconstructed
Nx -dimensional vector x̂. Its typical form is similar to E :
G (z; θG) = fG (W G z + bG), where the parameters θG =
{W G , bG} are weight matrix of size Nx × Nz and the offset
vector bG of dimension Nx ; fG is nonlinear activation func-
tion, e.g. tanh(·). The Auto-Encoder is trained by minimizing
the reconstruction error Lrec , which quantifies the expected
distance between the input vector x and its reconstruction
x̂: Lrec = Ex∈X �x − x̂�2 = Ex∈X �x − G(E(x))�2, where
‘�·�’ denotes the L2 norm.

C. AdaBoost Ensemble Learning

AdaBoost is an ensemble learning algorithm which con-
structs a classifier as a linear combination of several weak
classifiers [32]. In practice, the output of the boosted classifier
is the weighted sum of the outputs of the weak classifiers.
AdaBoost is adaptive in the sense that subsequent weak
learners are tweaked in favor of those instances misclassified
by previous classifiers.

For a two-class classification task, suppose that there
are N training patterns x1,. . . ,xi ,. . . ,xN with target labels
l1, . . . , li , . . . l N , li ∈ {−1, 1}. The AdaBoost algorithm builds
an ensembled classifier H : x → {−1, 1} by linearly
combining the base classifiers ht : x → {−1, 1}:

H (x) = sgn

(
T∑

t=1

αt ht (x)

)
(2)

where ht denotes the t-th base classifier, αt the weight assigned
to ht and T the number of base classifiers.

D. Adam Optimization

The Adam optimization algorithm is an extension of the
stochastic gradient descent algorithm [33]. It combines the
advantages of a) Adaptive Gradient Algorithm (AdaGrad),
which uses a per-parameter learning rate to improve its per-
formances on problems with sparse gradients and b) Root
Mean Square Propagation (RMSProp), which iteratively adapts
the parameter learning rates on the basis of how quickly
the gradients of the weights is changing, to improve its
performance in non-stationary problems.

IV. ANOMALY DETECTION METHODOLOGY MODEL

A. Base Anomaly Detector With Auto Encoder Aided
Generative Adversarial Networks (AE-GAN)

The proposed anomaly detector is based on the use of a GAN
to reconstruct the expected signal behavior in normal condi-
tions, from which the reconstruction error can be obtained and
used to discriminate normal from abnormal condition patterns.
Its development requires: 1) training the GAN model on
normal condition patterns for reproducing the distribution of
the normal condition data and 2) training the AE to reconstruct
the expected signal behavior in normal conditions.

In 1), the GAN is trained to minimize the Jensen Shannon
Divergence J SD(pG�pXnor ), where Xnor denotes the set
of patterns collected from components operating in normal
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conditions, pXnor their probability distribution and pG the
generated pattern probability distribution. Notice that if the
GAN generator were perfectly trained, then J SD(pG�pXnor )
would converge to 0 [34]. Let θG = {W G , bG} and θD =
{W D, bD} denote the generator and discriminator parameters,
respectively. Similarly to the AutoEncoder (Section III-B), the
discriminator D is formulated as: D (x; θD) = fD(W D x+bD)
where W D is a Nz × Nx weight matrix, bD is an offset
vector of dimensionality Nz and fD is the nonlinear activation
function, e.g. fD = sigmoid(·). For the purpose of anomaly
detection, we set pdata = pXnor and pz as a Gaussian
distribution N (0, 1) of independent variables and we address
the minmax problem of Equation (1).

Before the optimization of the generator parameter θG , the
discriminator parameter θ∗D(θG) is set by using a gradient
optimization method based on Adam (Section III):

θ
(k)
D = θ

(k−1)
D + η · Adam

(
∇θDF(θ

(k−1)
D , θG); β1, β2

)
(3)

θ∗D (θG) = lim
k→∞ θ

(k)
D (4)

where the updating term Adam
(
∇θDF(θ

(k−1)
D , θG); β1, β2

)
is

determined by the gradient of the loss function F with respect
to θD , and β1 and β2 are the control parameters of Adam [33],
and η is the learning rate, and θ

(k)
D is the optimization result

at the previous k-th gradient descent iteration step, and θ
(0)
D =

θD . The generator parameter is also optimized based on Adam
(Section III):

θG = θG − η · Adam
(
∇θGF(θ

(k)
D , θG); β1, β2

)
(5)

where the updating term Adam
(
∇θGF(θ

(k)
D , θG); β1, β2

)
is

determined by the gradient of the loss function F with respect
to θG . Note that for each updating step of θG (Equation (5)),
there are k updating steps of θ

(k)
D (Equation (3)), because θ

(k)
D

depends on θG .
In 2), to obtain the reconstruction x̂ of data x, it is necessary

to query its latent variable z ∈ Z and, then, to map z into the
data space Xnor by using the generator, x̂ = G(z). According
to [35], the search of zopt imal is treated as an optimization
task, i.e. minz

∥∥x − G(z; θ∗G)
∥∥2. In this work, an auxiliary

auto-encoder is proposed for efficiently minimizing the recon-
struction error:

Lrec
(
x; θE , θ∗G

) = Ex∈Xnor

∥∥x − G(E (x; θE ) ; θ∗G)
∥∥2

(6)

from which we obtain

θ∗E = argmin
θE

Lrec
(
x; θE , θ∗G

)
and zopt imal = E

(
x; θ∗E

)
(7)

where θ∗E is the optimal parameter of encoder E . The encoder
parameter θE is optimized by Adam (Section III):

θE = θE − η · Adam
(∇θE Lrec

(
x; θE , θ∗G

) ; β1, β2
)
. (8)

where the updating term Adam
(∇θE Lrec

(
x; θE , θ∗G

) ; β1, β2
)

is determined by the gradient of the loss function Lrec with
respect to θE . The above gradient-based optimization is typi-
cally applied using a small learning rate and multiple iteration
steps, which leads to a large number of epochs Nepoch [33].

Fig. 1. Overall structure of the anomaly detector.

Note that the Adam is choosed in the GAN and AE because
of its competitive performance in the data reconstruction
experiments presented in [36] with respect to other possible
gradient-based optimization methods (e.g. Stochastic Gradient
Descent (SGD), AdaGrad, RMSProp).

The anomaly score function of pattern x is:
A(x) = �x − x̂�2 = ∥∥x − G(E

(
x; θ∗E

) ; θ∗G)
∥∥2 (9)

If A(x) is larger than a threshold value, Athreshold ,
set considering normal condition data: Athreshold =
maxx∈Xnor A(x) , then x is anomalous, otherwise, x is normal.
The rationale behind the use of a threshold for detecting
anomalies is that the distribution of abnormal condition data
is expected to be significantly different from that of normal
condition data [15]. If the generator were optimal, the optimal
latent variable query zopt imal corresponding to a pattern in
normal condition x, which provides zero reconstruction error,
could be identified. In contrast, if x is a pattern collected in
abnormal conditions, we would expect a large reconstruction
error, because the generator which is trained to reproduce only
normal condition data, cannot cover the region of the space
corresponding to anomaly data. However, the optimization
of zopt imal may suffer from large computational burden as
one needs to perform the optimization task for each x [37].
Therefore, inspired by [37], we propose to use an auxiliary
encoder E to replace the optimization task for efficiently
querying the latent variable [37]. Figure 1 shows the overall
structure of the developed anomaly detection model.

B. AE-GAN Hyper-Parameter Optimization

Although J SD(pG�pXnor ) can be used as an actual objec-
tive to optimize the GAN architecture, its true value cannot
be obtained during GAN training [28]. The generator G
provides in output the probability D(x) that x belongs to
the distribution of the normal condition data. The label y(x)
associated to x is “1” if x ∼ pXnor (x) and “0” if x ∼ pG(x)
is 0, then D is trained to minimize the cross entropy loss:
LBC = −Ex∼pXnor

y(x) log D(x)+(1− y(x)) log (1− D(x))

−Ex∼pG y(x) log D(x)+(1− y(x)) log (1− D(x))

= − [
Ex∼pXnor

log (D(x))+ Ez∼pz log (1− D(G(z)))
]

(10)
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Notice that −LBC is equivalent to the GAN loss F(θD, θG).
According to [28], equation (10) can be written as,

LBC = −
∫

x

[
pXnor (x) log (D(x))

+ pG(x) log (1− D(x))
]

d x (11)

For a given generator G, the identification of the optimal
discriminator D∗(·) that minimizes LBC is equivalent to solve
the differential equation:

∂

∂ D

[
pXnor (x) log (D(x))+ pG(x) log (1− D(x))

] = 0

(12)

whose solution is:
D∗(x) = pXnor (x)

pG(x)+ pXnor (x)
(13)

Then, the JS divergence between pG and pXnor is:
J SD(pG�pXnor )

= 1

2
K L(pG� pG + pXnor

2
)+ 1

2
K L(pXnor �

pG + pXnor

2
)

= log 2 + 1

2
Ex∼pG log

(
1− pXnor (x)

pG(x)+ pXnor (x)

)
+1

2
Ex∼pXnor

log
pXnor (x)

pG(x)+ pXnor (x)
(14)

By combining equations (13) and (14), we obtain:
J SD(pG�pXnor )

= log 2+ 1

2

[
Ex∼pG log (1− D∗(x))

+ Ex∼pXnor
log D∗(x)

] = log 2

+ 1

2

[
Ez∼pz log(1− D∗(G(z)))

+Ex∼pXnor
log D∗(x)

] = log 2+ 1

2
F(θ∗D, θG) (15)

where F(θ∗D, θG) is the GAN loss function of generator G at
iteration k. Considering the minimal F(θ∗D, θG), one obtains
that F(θ∗D, θG) ≥ F(θ k

D, θG) from which is possible to derive
log 2+ 1

2F(θ∗D, θG) ≥ log 2 + 1
2F(θ k

D, θG), and, therefore:

log 2 + 1

2
F(θ k

D, θG) = J SDL B(pG�pXnor ) (16)

In this work, we use J SDL B to monitor the convergence of
the GAN training process. In particular, the JS Divergence
(JSD) is bounded in the range [0, ln 2] and when J SDL B

becomes close to 0 a good generator G that is able to
reproducing the ‘true’ distribution is obtained. Thus, GAN
hyperparameters can be further optimized and performance
of generator can be quantified without the use of abnormal
patterns.

The GAN hyper-parameters include the number of hidden
neurons, the number of hidden layers, the size of latent space
in generator, Nz , the iteration steps of discriminator per each
iteration of generator, k, and the number of epochs, Nepoch .
Notice that the encoder module of the AE-GAN shares the
same network architecture with the discriminator module, and
encoder, generator and discriminator are all multiple layers

Fig. 2. The flowchart of variants (a) and (b).

perceptrons with the same number of hidden layers, and each
hidden layer has the same number of hidden neurons.

C. Ensembled Anomaly Detector by AdaBoost Algorithm

The ensembled anomaly detection method based on
AE-GAN is shown in Figure 2. The two main challenges
encountered in the real industrial applications are: 1) the
densities of data distributions are not smooth and 2) high
dimensionality.

With respect to 1), we have found that training GAN
on distributions whose densities are not smooth prevents
J SDL B(pG�pXnor ) from converging (Figure 8). To tackle this
challenge, we add a normally distributed adaptive noise �k(i)
to the k-th feature at the i -th time stamp of the r -th healthy
components, Xr

k(i), then we derive:
X �rk (i) = Xr

k (i)+ �k (i) (17)

with �k (i) ∼ N (
0, σk (i)2) , k = 1, . . . , N f , i = 1, . . . , L

and σk(i) = γ · std
({

Xr
k(i)

}
r=1,...,Nnor

)
+ δ, where the

standard deviation σk(i) is a variable that changes according
to the standard deviation of

{
Xr

k(i)
}

r=1,...,Nnor
, γ ∈ (0,+∞)

is a scaling factor and δ ∈ (0,+∞) is a bias term to
ensure that σk(i) > 0, because Xr

k(i) can be a constant for
r = 1, . . . , Nnor .

The rationale of adding an adaptive noise to the data is
that if the probability distributions pG and pXnor are disjoint
manifolds, then the optimal discriminator D

(
x;θ∗D(θG)

) =
1 for any true data x ∈ Xnor , and is 0 for any generated data
G(z). Therefore, GAN loss F(θ∗D(θG), θG) will be zero [38],
and, as a consequence, the value of J SD(pG�pXnor ) is equal
to ln(2) ≈ 0.69. By adding an adaptive noise N (0, σ 2) to the
data distribution pXnor , we obtain that pG and pXnor are not
disjoint and the gradient of J SD(pG�pXnor ) over θG does not
vanish during the training of GAN.
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Fig. 3. The AE-GAN anomaly detector with variant (a) and (b).

With respect to 2), many industrial application are character-
ized by long-term multivariate time series with a large number
of features N f and long sequences of length L, which makes
the data dimensionality Nx much larger than the number of the
patterns. As a consequence, computation complexity becomes
infeasible. To deal with this problem, we propose to use
non-overlapped sliding time windows which allows splitting
the multivariate time series and treating each time window
as a separate pattern for anomaly detection. Then, AdaBoost
algorithm is adopted to aggregate the anomaly detection results
for each time window. Particularly, this work has developed
two variants: variant a) trains individual AE-GANs for each
time window and variant b) trains one universal AE-GAN
for all time windows. Before the training of AE-GANs and
testing for anomaly detection, the training and test data are
linearly normalized in the range [−1, 1] according to [28].
In the training phase, the adaptive noise is added to the data,
whereas, in the test phase, the adaptive noise is not added to
the data.

Variant a). Let X̃k(i) be the normalized value of the k-th
feature at the i -th time stamp, LW the size of the time window
and Nm = ceil( L

LW
) the number of time windows, the vector

x(m) is defined as x (m) = vec
(
X̃(1+ (m−1) LW : mLW )

)
where vec(·) denotes the matrix vectorization operation, which
stacks the columns of the matrix on top of one another.
Note that the time index interval for the m-th window is
1+ (m − 1) LW : mLW . This work constructs a data set of all
normal condition patterns in window m:

Xnor,m =
{

x1 (m) , . . . , xr (m) , . . . , xNnor (m)
}

(18)

where xr (m) denotes data in the m-th time window collected
from healthy components r = 1, . . . ,Nnor . The proposed AE-
GAN is trained on the data set Xnor,m for each m-th time
window by applying Equations (3)(5)(6); then, the optimal

generator G
(

z; θ∗Gm

)
and encoder E

(
x; θ∗Em

)
for the m-th

time window can be obtained. Finally, the anomaly score
function of the m-th time window is:
Aa (x (m) ;m) = ∥∥x (m)− G

(
E

(
x (m) ;θ∗Em

) ; θ∗Gm

)∥∥2 (19)

The AE-GAN anomaly detector with variant a) is illustrated
in Figure 3a, where Am and Am+1 denote the anomaly score
of the m-th and m+1-th windows, respectively.

Variant b). Let x� (m) denote the concatenation of the
normalized time index in the range [0, 1] and the generic data
of the m-th time window:

x� (m)=
[

1+ (m − 1) LW

L
; vec

(
X̃ (1+(m−1) LW : mLW )

)]
(20)

where symbol ‘;’ represents the vertical concatenation. Note
that the dimension of column vector x� (m) is N f · LW + 1.
This variant constructs the matrix X �nor of size Nnor × Nm

containing all the normal condition patterns, independently
from their time window whose generic element (r, m) is
x�r (m), i.e. the data at m-th window from healthy components
r = 1, . . . , Nnor . The proposed AE-GAN is trained on the data
distribution X �nor by applying Equations (3)(5)(6). Then, the
universal optimal generator G

(
z; θ∗G

)
and encoder E

(
x; θ∗E

)
for all time windows can be obtained and, finally, the universal
anomaly score function Ab

(
x� (m)

)
is:

Ab
(
x� (m)

) = ∥∥x� (m)− G
(
E

(
x� (m) ;θ∗E

) ; θ∗G)∥∥2 (21)

The training of the AE-GAN anomaly detector with variant
b) is illustrated in Figure 3b, where Am denotes the anomaly
score of the m-th window.

The details of the training of the anomaly detectors variants
a) and b) are reported in Algorithm 1. Notice that the order
in which the models are updated are explicitly presented in
the Algorithms 1. For Variant a), Lines 7A-10A correspond
to the GAN model update, i.e., optimization of GAN objective
F(θD, θG); Lines 11A-12A correspond to the AE model
update, i.e. optimization of AE objective Lrec(x; θE , θG).
Similarly, for variant b), Lines 6B-9B correspond to the GAN
model update and Lines 10B-11B correspond to the AE model
update.

In this work, we further extend the proposed AE-GAN to
online detection by adapting the AdaBoost algorithm to the
one-class classification. The objective is to develop an ensem-
ble of anomaly detectors producing anomaly scores in the dif-
ferent time windows. Let function h : A → {−1, 1} denote the
base anomaly detector, where A = [

A1, . . . , Am, . . . , ANm

]T

and Am is the generic anomaly score at the m-th time window
by using AE-GAN with variant a) or b), and −1 repre-
sents normal and 1 represents abnormal. Before applying
AdaBoost ensemble learning, a validation normal condition
dataset {Xv}v=1,...,Nv

is required and the anomaly score Av =[
Av

1, . . . , Av
m, . . . , Av

Nm

]T
, v = 1, . . . , Nv needs to be cal-

culated for obtaining the anomaly score threshold [13]. The
adapted AdaBoost algorithm is showed in Algorithm 2, where
o(m) = [0, . . . , 1(m − th), . . . , 0]T is a one-hot vector of
dimension Nm , in which the m-th element is 1 whereas all
others are 0, Percentilec{·} represents the number in the set
that has a probability c larger than the other numbers: if c = 1,
Percentilec{·} is the maximum in the set, else if c = 0, it is
the minimum in the set. In general, tuning percentile c can
trade off between missed alarms and false alarms: a higher
value of c decreases missed alarms, whereas a lower value of
c decreases false alarms. λ ∼ N (0, 10−10) is a small noise
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Algorithm 1 Training AE-GAN Anomaly Detectors:
variant a) and b)

Common Part:
Input: Normal condition data

{
Xr}

r=1,...,Nnor
.

Initialize: Scaling factor γ and bias term δ for adaptive
noise, time window size LW .

1 Add adaptive noise and obtain X �r by using Equations (17)
for r = 1, . . . , Nnor

2 Normalize X �r into X̃r in the range [−1, 1] for
r = 1, . . . , Nnor

Variant a):
/* Train AE-GAN for each m-th time window

*/
3A for m = 1, . . . , Nm do
4A Obtain xr (m) for r = 1, . . . , Nnor .
5A Construct set Xnor,m by using Equation (18) and assign

to Xnor .
6A Initialize θD, θG , θE by Xavier Uniform initialization

method [39].
/* Optimize GAN objective */

7A for epoch = 1, . . . , Nepoch do
8A for k = 1, . . . , K do
9A θ

(k)
D =θ

(k−1)
D + η · Adam

(
∇θDF(θ

(k−1)
D , θG );β1, β2

)
10A θG = θG − η · Adam

(
∇θGF(θ

(k)
D , θG );β1, β2

)
/* Optimize AE objective */

11A for epoch = 1, . . . , Nepoch do
12A θE = θE − η · Adam

(∇θE Lrec
(
x; θE , θ∗G

) ;β1, β2
)

13A Assign θ∗Gm
← optimized θG , θ∗Em

← optimized θE and
obtain Aa(x (m) ;m) in Equation (19).

Variant b):
/* Train a universal AE-GAN for all the

time windows */
3B Obtain x�r (m) by using Equation (20) for

m = 1, . . . , Nm , r = 1, . . . , Nnor .
4B Construct set X �nor and assign to Xnor .
5B Initialize θD , θG , θE by Xavier Uniform initialization

method [39].
/* Optimize GAN objective */

6B for epoch = 1, . . . , Nepoch do
7B for k = 1, . . . , K do
8B θ

(k)
D = θ

(k−1)
D + η · Adam

(
∇θDF(θ

(k−1)
D , θG );β1, β2

)
9B θG = θG − η · Adam

(
∇θGF(θ

(k)
D , θG);β1, β2

)
/* Optimize AE objective */

10B for epoch = 1, . . . , Nepoch do
11B θE = θE − η · Adam

(∇θE Lrec
(
x; θE , θ∗G

) ;β1, β2
)

12B Assign θ∗G ← optimized θG , θ∗E ← optimized θE and obtain
Ab(x� (m)) in Equation (21).

term to keep stability in the AdaBoost Ensemble learning,
in particular, avoiding hm (A) = 0.

Considering a AE-GAN network with Nneu hidden neurons,
the number of weight connections between the input x and
the first layer of Encoder E is Nneu × N f × Lw , and the
number of weight connections between the last layer of
Generator G and the output G(z) is N f × Lw × Nneu . As a
consequence, the computational complexity of a single AE-
GAN is 2O(N f · Lw · Nneu ) + O(C), where C is a constant
representing the computational complexity associated to the
input and output weight connections. When all the Nm time

Algorithm 2 AdaBoost Ensemble Learning for Anomaly
Detection

Input: Anomaly score validation set,
V = {Av}v=1,...,Nv

, weak classifier
h : A→ {−1, 1}, percentile c.

Output: Ensembled classifier
H (A)=sgn

(∑Nm
m=1 αm · hm (A)

)
Initialize: Weights of validation set V anomaly scores

w
(1)
1 , w

(1)
2 ,. . .,w

(1)
Nv

set to 1
Nv

, initial error
rate �m , m=1,. . .,Nm set as 1

2 .

/* Train AdaBoost Ensemble model */
1 for m = 1, . . . , Nm do

2 Athreshold,m = Percentilec

{
(Av )T · o(m)

}
v=1,...,Nv

.

3 Obtain classifier
hm (A) = sgn(AT · o(m) − Athreshold,m + λ), with λ
sampled from N (0, 10−10).

4 Obtain error rate
�m =∑

v,1=hm(Av ) w
(m)
v , v = 1, . . . , Nv .

5 Obtain weights of classifier hm , αm = 1
2 ln( 1−�m

�m
) .

6 Update weights
w

(m+1)
v = w

(m)
v eαm ·hm(Av ), v = 1, . . . , Nv .

7 Normalize weights

w
(m+1)
v = w

(m+1)
v∑Nv

v=1 w
(m+1)
v

, v = 1, . . . , Nv .

windows are considered, the total computational complexity
is 2O(Nm · N f · Lw · Nneu )+O(Nm ·C). Note that Lw · Nm is
equal to L and is, therefore, independent from the length of
the time window LW . The second term linearly increases with
the number of windows Nm , but the network computational
complexity O(C) is expected to be small when the time
windows become small and Nm large.

V. CASE STUDY

A. Protocol and Setting

Performance Metrics. The metrics of accuracy, precision,
recall, balanced F-score and the Area Under the receiver
operating characteristic Curve (AUC) are used to evaluate
the performance of the proposed method with respect to the
anomaly detection task. Specifically, the number of normal
condition patterns correctly classified is indicated as true
positive (t p), the number of abnormal condition patterns cor-
rectly classified as true negative (tn), the number of abnormal
condition patterns misclassified as normal as false positive
( f p), the number of normal condition patterns misclassified
as abnormal conditions as false negative ( f n). Accuracy is
defined as the fraction of correctly classified patterns among all
patterns, Accuracy = t p+tn

tp+tn+ f p+ f n . Precision is the fraction
of normal condition patterns correctly classified among the
patterns that are classified as normal, Precision = t p

tp+ f p .
Recall is the fraction of normal condition patterns correctly
classified among the true normal condition patterns, Recall =

t p
tp+ f n . balanced F-score F1 is the harmonic mean of Precision
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and Recall, F1 = 2
1

Precision + 1
Recall

. Receiver Operating Charac-

teristic (ROC) curve is a curve obtained by plotting the recall
against the false positive rate (F P R), F P R = f p

f p+tn . Area
Under the ROC Curve (AUC) is calculated by using an average
of a number of trapezoidal approximations [40].

The range of the performance metrics Accuracy, Precision,
Recall, F-score and AUC for anomaly detection is [0, 1], and
larger value means better performance.

Methods considered for the results comparison. The pro-
posed methods are compared with the following state-of-the-
art anomaly detection methods: OC-SVM [41], AAKR [17],
GMM [42], AE [43], AnoGAN [35], VAE-β [44] and
Deep-SVDD [45]. OC-SVM [41] estimates the support of a
high-dimensional distribution, and a hypersphere is defined
to distinguish the normal and abnormal, the score function
is generated by measuring the “distance” between the margin
of the hypersphere of normal condition data distribution. The
larger the score, the higher probability the pattern is abnormal.
AAKR [17] reconstructs a test pattern as a weighted sum
of normal condition patterns. The weights are obtained by
applying a radial basis function between which measures the
similarities between the test pattern and the normal condition
patterns. Then, the anomaly score is defined by: AAAK R (x) =
�x − x̂ AAK R�2 with x̂ AAK R indicating the AAKR reconstruc-
tion of x. GMM [42] is used to model distribution of the
normal condition patterns. Then, the anomaly score of a test
pattern is defined as AG M M (x) = −p(x; θG M M) where
the likelihood of a test pattern is used. p(x; θG M M) =∑k

i=1 φiN (x;μi ,i ) is the likelihood function, with the
GMM parameters φi indicating the component weight, μi

indicating the mean and i the covariance. This work defines
AG M M (x) = −p(x; θG M M) as the anomaly score function
of GMM. The number of components k is set to 1 for
all case studies. AE for anomaly detection [43] has been
illustrated in Section III-B and it is trained on normal con-
dition data and the reconstruction error �x − x̂�2 is used
for detecting anomalies according to the basic assumption
of reconstruction-based anomaly detection [13]. This work
defines AAE (x) = �x − x̂�2 as anomaly score of AE.
It should be noted that the encoder and generators of AE
and AE-GAN have the same architecture. Also, the setting
of the Adam coefficients β1, β2, batch size Lbatch , learning
rate η, number of epoch Nepoch , is the same for AE and
AE-GAN. AnoGAN for anomaly detection [35] associates an
optimal latent variable zopt imal to a pattern x by minimizing
the reconstruction error. Then, the anomaly score is defined
as AAnoG AN (x) = ∥∥x − G(zopt imal)

∥∥2. It should be noted
that AnoGAN shares the GAN module with the proposed AE-
GAN. Therefore, the parameter settings used for optimizing
the latent variable zopt imal , Adam coefficients β1, β2, learning
rate η, number of epochs Nepoch , are the same as those for
AE-GAN training. VAE-β differs from AE since it encodes
the input data into a multivariate latent distribution, which
is constrained by the Kullback-Leibler divergence between
the parametric posterior and the true posterior [44]. The use
of a VAE-β for anomaly detection requires the training of
the VAE using normal condition data with the objective of

minimizing the sum of the reconstruction error �x − x̂�2 and a
term equal to β ·K L(pG�pXnor ). Then, the anomaly score of a
test pattern is defined by �x − x̂�2. The network architectures
(number of neurons and model layers) and hyperparameters
setting (batch size Lbatch , epoch number Nepoch , learning rate
η and Adam coefficients β1, β2) of the developed VAE-β are
set equal to that of AE and AE-GAN. Deep-SVDD has been
introduced in [45] with the objective of learning a neural
network transformation φ(·;W) from an input space to an
output space properly defined in such a way that normal
patterns fall within a hypersphere of minimum volume. Then,
the anomaly score of a test pattern is defined as the distance
between its projection in the output space and the hypersphere
center. The hyperparameters of the developed Deep-SVDD
have been set equal to those of the encoders of AE and VAE-β.

Section V-B verifies the effectiveness of the proposed
AE-GAN anomaly detector with respect to the comparison
methods OC-SVM, AAKR, GMM, AE, AnoGAN, VAE-β and
Deep-SVDD on a synthetic dataset. Then, in Section V-C,
we consider variants a) and b) of the proposed AdaBoost
ensemble of AE-GANs and we compare their performances
to OC-SVM, AAKR, GMM, AE, VAE-β, Deep-SVDD and six
Adaboost ensembles based on Algorithm 2 and the use of
OC-SVM, AAKR, GMM, AE, VAE-β and Deep-SVDD as base
classifiers respectively, in which each ensembled approach
uses the adapted AdaBoost algorithm to learn an ensembled
anomaly detector for each time window.

B. Synthetic Case

Three synthetic case studies, which will be referred to
as Cone, Two Spheres and Bowl, are considered to verify
the anomaly detection performance of the proposed AE-GAN
anomaly detector on data that mimic the complexity of real
industrial applications. In all three case studies the training set
is formed by 3000 normal condition patterns and the test set
of 643 normal condition patterns and 642 abnormal condition
patterns. Cone patterns are sampled from a 3-D Gaussian
distribution with mean [4, 0, 0] and variance diag(1, 1, 1).
Then, only the patterns inside a cone of bottom radius 2 and
height 3 are kept. Two Spheres patterns are sampled from
two 3-D Gaussian distributions with mean [±4, 0, 0] variance
diag(1, 1, 1). Then, only patterns inside two 3-D spheres,
whose centers are located at [±4, 0, 0] and the radius is 2, are
kept. Bowl patterns are uniformly sampled from a hemisphere
with radius 6 and center point [0, 0, 0].

In all the three case studies, abnormal condition data are
uniformly sampled from a Uniform distribution in the hyper-
cube with a range of [−10, 10] for each dimension. Then, the
patterns within the normal condition region are deleted.

Implementation details. The AE-GAN contains three sub-
networks, namely generator, discriminator and encoder, and
each sub-network is implemented by a Multiple Layer Per-
ceptron (MLP) neural network with two hidden layers. The
GAN module is composed by a discriminator and a generator.
According to [38] and [46], during the model training, for
each iteration of the generator is followed by 5 iterations
of the discriminator. The AE-GAN model architecture is
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Fig. 4. GAN reconstruction of the normal condition data in the three case
studies. (a) Cone, (b) Two Sphere, and (c) Bowl.

Fig. 5. AE-GAN Latent space visualization for test patterns of Manifold
dataset, green denotes normal and red denotes abnormal.

characterized by an encoder, a generator, and a discriminator.
They are all made by two hidden layers of 50 neurons. The
Latent Space Layer acts as output layer of the encoder and
input layer of the generator, and the number of neurons in
the Latent Space Layer is 2 for the Bowl, and 3 for the Cone
and Two Sphere. Also, both Encoder and Generator activate
their hidden layers by Rectified Linear Unit (ReLU) [47],
whereas Discriminator uses Leaky ReLU [48] as activation
function and the leaky rate is set as 0.2. The choice of
using 2 neurons for the Bowl case study is motivated by
the observation that 2 coordinates are enough to describe
the normal condition data, whereas 3 coordinates are needed
in the other case studies. The Adam optimizer is used to
train the GAN (Generator and Discriminator modules) and AE
(Encoder and Generator), setting the learning rate η = 0.0002,
the coefficients β1 = 0.9, β2 = 0.999, the batch size Lbatch =
100 and the number of epochs Nepoch = 1000. The threshold
to detect abnormal conditions is set equal to the maximum
of the anomaly score among the patterns of the train set for
OC-SVM, GMM, AAKR, AE, AnoGAN.

Figure 4 shows that the GAN provides a satisfactory recon-
struction of the distribution of the normal condition patterns
in the three case studies.

Figure 5 shows the latent space followed by AE-GAN
when fed by Manifold patterns. Note that the latent variables
corresponding to normal patterns are located nearly to the core
of the Normal distribution, whereas the abnormal condition
data are widely spread. Since Generator is developed to map
patterns of the latent space into normal condition data, the
distributions between normal and abnormal are disjoint with
the majority of the abnormal conditional patterns that can be
distinguished.

TABLE I

DETECTION PERFORMANCE ON THE SYNTHETIC CASE STUDIES

Table I reports that the AE-GAN provides the most satis-
factory accuracy and F-score in all three case studies. In par-
ticular, it achieves zero false and missed alarms on the Cone.
In the Two Sphere and Bowl case study, although the proposed
AE-GAN method cannot achieve at the same time the smallest
false and missed alarm rates, it provides the most satisfactory
accuracy, and F-score precision and recall scores are always
among the best three. It is, therefore, possible to conclude
that the proposed AE-GAN allows obtaining the best trade-off
between false and missed alarms, which is the key ability
in risk-critical applications such as anomaly detection. Notice
that the state-of-the-art DL methods (VAE-β and Deep-SVDD)
tend to remarkably underperform with respect to the proposed
AE-GAN when applied to the Bowl due to their tendency of
being trapped in local minima when applied to highly curved
surfaces.

C. Anomaly Detection for Automatic
Door in High-Speed Train

Real Industrial Dataset. The real industrial dataset is col-
lected from the automatic door components of high-speed
trains. There is a current sensor (recording tractive force)
and a decoder sensor (recording position) to record the state
during the door opening and closing processes. Due to the
different time of duration to operate the door, the sensor
records for a fixed time of duration, 855 time units, to ensure
that the entire operation process is covered. This real industrial
dataset contains 138 components operated on normal condition
(100 used for training, 20 for validating and 18 for testing),
and 22 components on fault type A and 33 components on
fault type B. This work uses the signals during both the
door opening and closing processes to detect whether the
component is normal or abnormal; so, the start time of door
opening and closing needs to be synchronized to derive a
multivariate time series. Figure 6 shows the example signals of
normal components, where a) is feature #1: open door, current
signal, b) is feature #2: open door, decoder signal, c) is feature
#3: close door, current signal and d) is feature #4: close door,
decoder signal.

This section investigates the effect on the performance of
the size of the time windows, of the adaptive noise and of
using the method in variant a) and b).
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Fig. 6. Examples of signal evaluations in the real industrial dataset.

Fig. 7. J-S divergence and generated data as a function of the time window
size.

Effect of the window size. This paragraph experiments
the effect of different window sizes on the convergence of
J SDL B(pG�pXnor ). In the experiment, the window size LW is
set to 1, 3, 5, 50 time steps, and the normal components signals
at the time window with a starting time of 400 is used to train
the GAN (see details in Equations (18)); the size of latent space
in GAN is set to 4 × LW . During the GAN training process,
J-S divergence at each iteration of the generator optimization
is recorded (see Figure 7). Notice that when the window size
is equal to 50, the input dimension becomes 200 which is large
in comparison to the number of pattern 100. Figure 7 shows
that it causes mode collapse of GAN, which is revealed by
the collapsed generated data that is nothing but randomness
and the non convergence of JS divergence. On the other side,
as the window size gets smaller, J SDL B(pG�pXnor ) gradually
converges close to 0.

Effect of the adaptive noise. This paragraph experi-
ments the effect of adaptive noise on the convergence of
J SDL B(pG�pXnor ). In the experiment, the normal compo-
nents signal at time 460 is used to train the GAN (see
Figure 8b) and the parameters of the adaptive noise that is
added to the data are set as γ = 0.02, δ = 0.001 (see
Equations (17)), and the size of latent space in GAN is set
to 4. During the GAN training process, the J SDL B(pG�pXnor )
at each iteration of the generator optimization is recorded
(see Figure 8a). The experiment shows that the original data
distribution is non-smooth and is the cause of non convergence
of GAN. Also, it verifies that after adding adaptive noise to
the data distribution with non-smooth density, the original

Fig. 8. (a) The effect of adaptive noise on the convergence of J-S divergence,
(b) the normal component data whose distribution has non-smooth density at
time 460.

Fig. 9. Results of the AE-GAN hyper-parameters optimization.

distribution is converted to a smooth distribution, so that
J SDL B(pG�pXnor ) converges to 0 according to Section IV-C.

Effect of using variant a) and b). The methods reported
in Table II and Figure 12 shows that variant a) outperforms
variant b).This is due to the fact that variant b), which develops
a single universal AE-GAN for all windows, is less specific
than variant a), which develops a dedicated AE-GAN for
each time window. Notice, however, that variant b) is more
computationally efficient than a).

Notice that the AE-GAN activation function is ReLU and
the batch size Lbatch is set to 20 in all cases.

Figure 9 shows the optimization results of the
AE-GAN hyper-parameters (the default initial AE-GAN
hyper-parameters are indicated by the solid blackline):
Nepoch = 1000, iteration steps of discriminator for each
iteration step of generator, k = 5, latent space size Nz = 4,
number of hidden layers = 2 and number of hidden
neurons = 200. The normal components signal at time
400 have been used to train AE-GAN. Due to the limited
computing power, the successive greedy search is used
to do the optimization and the order of search is epochs
number, iteration steps of discriminator for each iteration
step of generator, latent space size, number of hidden layers
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TABLE II

F-SCORE ON THE REAL INDUSTRIAL DATASET

Fig. 10. An example of true data distribution and the generated data
distribution produced by the optimal AE-GAN. The true data comes from
the normal components signal at time 400. The experiment shows that the
true data distribution can be nearly perfectly reproduced, which satisfies the
basic prerequisite of GAN-based anomaly detection methods.

and hidden neurons number. The optimization objective is
J SDL B(pG�pXnor ) (Section IV-B), Observing Figure 9 one
can notice that: i) a large epoch number, e.g. larger than
1000, can degrade the JS divergence; ii) too small k makes
GAN training unstable and large value k > 5 degrade the JS
divergence; iii) the larger the latent size, the more stable the
GAN training; iv) the number of hidden layer has less impact
on GAN training than k and the latent size; v) larger hidden
neuron number brings better performance. After training of
AE-GAN with the optimal hyper-parameters, an example of
the generator distribution is shown in Figure 10.

This work compares the proposed AE-GAN with OC-SVM,
AAKR, GMM, AE, VAE-β and Deep-SVDD. AnoGAN is not
compared because it is very computationally intensive when
finding optimal latent variable zopt imal w.r.t. each training and
test patterns. As for the compared methods, this work uses two
strategies. The first is to treat the multivariate time series as the
input data pattern and obtain the anomaly score (Section V-A);
then, the threshold (in Section IV) is set to the maximum value
of the anomaly scores among the training normal patterns.

Fig. 11. Example of base anomaly detectors weight αm of, e.g. AE-GAN
variant (a), at each time step. We observe that the weights of the base anomaly
detectors suddenly drop at time 500, when, interestingly, the value of the
original signal (Figure 6) becomes a constant, which means that the signal
after time 500 is irrelevant to component health monitoring.

The second strategy is similar to the proposed ensembled
anomaly detector with AE-GAN, which uses non-overlapped
sliding time windows (size set to 1) to split multivariate
time series and treat each time window as a separate data
pattern for anomaly detection and obtain the anomaly score
(Section V-A); then, it uses the proposed Algorithm 2 (see
Section IV-C) to obtain the ensembled anomaly detection
result. The ensembled compared methods are referred to as
OC-SVM (Ens), AAKR (Ens), GMM (Ens), AE (Ens), VAE-β
(Ens) and Deep-SVDD (Ens).

Table II compares the anomaly detection results considering
different values of percentile c in Algorithm 2. Notice that
variants a) and b) of the proposed AE-GAN achieve the best
performances for the majority of the considered percentiles.
The best F-score (0.7750) is obtained by variant a) when the
percentile c is set equal to 75%, whereas the best F-score
of variant b) (0.7527) is obtained when c is 85%. Overall,
variant a) is better performing than variant b), since this
latter introduces discrete time into the data space (see Equa-
tion (20)), which makes it difficult for the generator, which
has a continuous data space, to fit the data space containing
discrete times. Notice that GMM has not been applied to
this dataset given the large dimensionality of the data which
makes matrix computation unfeasible and the methods not
based on ensemble of classifiers (OC-SVM, AAKR, AE, VAE-β,
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Fig. 12. Real industrial dataset: ROC curve and AUC of the proposed AE-GAN with variants (a) and (b), and of the methods used for the comparison. The
x axes report the false positive rates and the y axes the true positive rates. In the ablation study, AE-GAN(a-I) is the experiment applying AE-GAN variant
(a) without adding adaptive noise, AE-GAN(a-II) is the experiment applying AE-GAN variant (a) with the mode collapsed generator using window size 50
(see Fig. 7).

Deep-SVDD) which provide in output a single pattern class for
each test pattern, and, therefore do not allow computing the
percentiles of the output distribution.

By using the proposed improved AdaBoost ensemble learn-
ing (Algorithm 2), the F-score and AUC is boosted for nearly
all the compared methods Table II. In order to obtain the
comprehensive anomaly detection performance, we look at the
ROC curve adjusting the percentile c and obtaining the AUC
(Figure 12), which shows that the proposed AE-GAN variant
a) outperforms any other compared methods. Additionally, the
ablation studies AE-GAN (a-I, a-II) whose results are reported
in Figure 12 prove the effectiveness of the proposed strategies:
adding adaptive noise has a more significant impact on the
performance than optimizing AE-GAN hyperparameters. The
interpretation is that the proposed method can address the real
industrial data difficulties, including complex, non-smooth and
manifold distributions.

To deeply analyze the performance of the proposed method,
we construct two test sets from the industrial dataset. Test
Set 1 contains 18 normal condition patterns and 22 anomalous
patterns of fault class A and Test Set 2 contains the same
18 normal condition patterns and 33 anomalous patterns of
only fault class B. The AUC on Test Set 1 is 0.6304 for
AE-GAN(a) and 0.5407 for AE-GAN(b), on Test Set 2 is
0.9474 for AE-GAN(a) and 0.8469 for AE-GAN(b), which
shows the proposed method can better detect the anomalies
of fault class B than A. The reason is that, according to the
original data, data distribution of fault type A is almost the
same with the distribution of normal condition data, whereas
the data distribution of fault type B is clearly distinguishable
from normal condition data.

Advantages: i) Differently from the state-of-the-art meth-
ods, the JS divergence approximation introduced in this
work allows assessing the performance of the GAN and
thus optimize AE-GAN anomaly detector hyperparameters
without the use of true anomalous data; ii) The combina-
tion of the AE-GAN with the Adaboost algorithm allows
automatically filtering the task-related features by assigning
different weights to the base anomaly detectors and providing
interpretable results; iii) The proposed method is capable
of simultaneously addressing the following challenges of
real industrial anomaly detection problems: treating long-term
time series with complex, manifold and non smooth data
distribution.

Disadvantages: i) More hyperparameters to tune dur-
ing optimization of GAN; ii) Although, the inference time
is competitive, the computational effort needed to train the
AE-GAN is larger.

VI. CONCLUSION

In this paper, an AdaBoost ensembled AE-GAN anomaly
detection method based on the use of GAN and AdaBoost
ensemble learning has been proposed for high-speed train
automatic doors where abnormal condition data is not avail-
able. For obtaining the anomaly score, e.g. reconstruction
error, the latent variable corresponding to the data pattern
in GAN needs to be queried and we propose to embed an
auxiliary encoder in front of the generator to avoid local
optimal solutions for data with manifold distribution. Further-
more, we derive the lower bound of Jensen-Shannon diver-
gence between generator distribution and normal condition
data distribution to optimize the AE-GAN hyperparameters.
To overcome real industrial challenges, like 1) the densities
of data distributions are not smooth and 2) high dimension-
ality, we propose to add adaptive noise on data and adapt
the AdaBoost algorithm to integrate AE-GAN base anomaly
detectors which treat each time window separately for anom-
aly detection. Extensive experiments are conducted on both
synthetic and real industrial data sets, which demonstrate that
the proposed ensembled AE-GAN anomaly detection method
outperforms state-of-the-art anomaly detection methods for
long-term multivariate time series.
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