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Abstract— In many application domains, navigation of un-
manned aerial vehicles (UAVs) requires a planar flight to
move along a desired path or to track a moving object under
uncertain conditions. In this paper, we propose a robust control
approach for quadrotor UAVs performing a nonholonomic-
like navigation with a predefined velocity based guidance law.
Specifically, the quadrotor model is first recast in the framework
of nonholonomic systems, and then an adaptive multiple-
surface sliding mode approach, with suboptimal second order
sliding mode control, is applied. The robustness features of the
proposed approach are discussed and assessed in simulation.

Index Terms— Sliding mode control, unmanned aerial vehi-
cles, nonholonomic systems.

I. INTRODUCTION

UAV applications are nowadays more and more present in
many spheres of human activities, such as civil usage (e.g.,
shipping and delivery, geographic mapping, human health),
agriculture tasks (e.g., plant prevention spray, irrigation
system), or military scope (e.g., surveillance and security),
see [1]. Moreover, UAVs can be categorized depending on
their structure and size. Typically, two main classes can be
considered: the fixed-wing vehicles [2], capable of flying by
using wings, and multi-rotors such as quadrotors [3]. In this
paper, we focus on guidance control of quadrotor UAVs.
The latter are vehicles with a symmetric body frame and
four propellers, whose model is captured by a 6-degrees-
of-freedom mechanical system, with three translational and
three rotational variables, and governed by four inputs corre-
sponding to the propeller rotational speeds. Then, it is clear
that it is an underactuated system. A possible way to control
such a system is to consider only three translational and
one rotational degrees of freedom. However, the resulting
system contains coupled and highly nonlinear dynamics
which can be further affected by parametric uncertainties, or
external disturbances [4], thus requiring appropriate robust
controllers.

The literature on quadrotor UAVs control is indeed wide,
covering many domains, as stabilization, navigation or ob-
stacle avoidance, and many different methodologies are ex-
ploited. The so-called flatness theory is for instance used in
[5] to linearize the quadrotor model by using a feed-forward
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and a feedback scheme. A flatness-based passivity control
is proposed instead in [6], while a flatness based scheme
with model predictive controllers is presented in [7], [8].
Among many others, nonlinear control methodologies based
on adaptive controllers and online model identification are
those discussed in [9] or [10], respectively.

Despite a wide literature, several issues still need to be
investigated, such as requirement of robustness in front
of parameter uncertainties and external disturbances. For
these reasons, sliding mode control looks promising [11].
However, the adoption of sliding mode approaches in rig-
orous and comprehensive fashion requires a preliminary
reformulation of the quadrotor control model depending also
on the application. As an example, the application of the
flatness theory provides a transformation to achieve a linear
system in normal form, eligible to design a sliding mode
controller for trajectory tracking problems, see e.g., [5]. In
[12] the dynamical model of the quadrotor is split into a
fully actuated subsystem and an underactuated subsystem,
and a second order sliding mode with switching surface is
designed. A hierarchical control structure with an inner-outer
loop framework is proposed in [13] to design a continuous
nonsingular terminal sliding mode control, while an adaptive
super twisting in presence of input-delay, model uncertainty
and wind disturbance is adopted in [14].

In this paper, in analogy with [15], we consider the specific
scenario where a nonholonomic-like navigation is required
and the quadrotor flies on a plane as a fixed-wing UAV, as
requested for instance for inspection, indoor navigation or
filming. Therefore, this formation differs from those in [5],
[12]–[14], and inspired by [16], an adaptive multiple-surface
sliding mode control with a suboptimal second order sliding
mode control algorithm [17] is proposed. Instead, differently
from [15], where velocity and acceleration based guidance
strategies are introduced and no disturbances are taken into
account, the objective of this work is to provide a novel
robust approach for the nonoholomic UAV system in order
to follow, in uncertain conditions, a desired velocity based
guidance law, whose design phase is beyond the scope of the
paper. Since the vehicle is assumed to get any configuration
in employing only the heading, the forward or the vertical
motions, the rolling angle is forced to zero and yaw and
pitch control are taken into account relying on a nonholonmic
formulation of the quadrotor model.

The paper is organized as follows. In Section II the
quadrotor model and the navigation problem are discussed.
In Section III the model is recast into the nonholonomic
framework, while in Section IV the proposed sliding mode



approach is presented. Finally, in Section V some simulations
are shown, and some conclusions are drawn in Section VI.

Notation: The main notation and operators used in the
paper are recalled hereafter. Given a vector x ∈ Rn,
its transpose is x′, while the corresponding unit vector is
indicated as x. Given a matrix P ∈ Rn×n, P > 0 indicates
that it is positive definite. Let s ∈ R be a signal, the function
sign(s) is defined as −1 if s < 0, 1 if s > 0, and [−1, 1] if
s = 0. Moreover, given the signal α ∈ R, let cα := cos(α)
and sα := sin(α).

II. PROBLEM SETTING

In this section, the conventional quadrotor UAV model
is first introduced, and the considered navigation control
problem is formulated.

A. Modelling

In order to introduce the conventional description of the
dynamical model of the quadrotor UAV, a fixed world
reference W , given by the triad xW, yW, zW, and a body
reference frame B, given by the triad xB, yB, zB, are used
(see Figure 1). Frame B is attached to the UAV center
of mass with zB perpendicular to the plane of the rotors
pointing vertically up. Moreover, in the model definition, we
assume that low velocities make the air drag, ground effects
and aeroelasticity negligible, as well as actuator dynamics
is neglected. Additionally, small angles of movement are
assumed.
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Fig. 1. Quadrotor frames and nonholonomic navigation projection.

Now, consider the conventional ZXY Euler convention
with angles φ := [ϕ, θ, ψ]′ to capture the rotation with
respect to the world frame W , while the position of frame
B with respect to W is given by p := [x, y, z]′. Let ω =
[ω1, ω2, ω3, ω4]

′ contain the velocities of rotors having inertia
J , and w := [p, q, r]′ be the rotational velocity such that
the simplification w = [ϕ̇, θ̇, ψ̇]′ holds due to small angles
of movements. Moreover, let WRB be the rotational matrix
between the frames B and W , and S (w) be the skew-
symmetric matrix given by

S (w) :=

 0 −ψ̇ θ̇

ψ̇ 0 −ϕ̇
−θ̇ ϕ̇ 0

 .
Therefore, exploiting the Newton’s and Euler’s equations

of motion, the quadrotor UAV obeys to

mp̈ = −mgzW + WRB(τ1 + τd1)zB

I ẇ = τ 2 + τ d2 − S (w) (I w − JωrzB) ,
(1)

where m and I = diag(Ix, Iy, Iz) are quadrotor mass and
inertia tensor expressed in body frame, respectively, ωr =
−ω1 + ω2 − ω3 + ω4, g is the gravitational constant, while
τ1 and τ 2 are the inputs

τ1 :=

4∑
i=1

Fi, τ 2 :=

 L(F2 − F4)
L(F3 − F1)

M1 +M3 −M2 −M4

 =

τ2τ3
τ4

 ,

with L being the length of each body arm, Fi and Mi,
i = 1, . . . , 4, being thrust forces and reaction moments
provided by propellers. The matched disturbances are instead
indicated as τd1 and τ d2 = [τd2, τd3, τd4]

′. Explicitly writing
the equations in (1), one has

ẍ = (τ1 + τd1)
cψsθcϕ + sψsϕ

m

ÿ = (τ1 + τd1)
sψsθcϕ + cψsϕ

m

z̈ = −g + (τ1 + τd1)
cθcϕ
m

ϕ̈ =
τ2 + τd2
Ix

+ θ̇ψ̇
Iy − Iz
Ix

− J

Ix
θ̇ωr

θ̈ =
τ3 + τd3
Iy

+ ϕ̇ψ̇
Iz − Ix
Iy

+
J

Iy
ϕ̇ωr

ψ̈ =
τ4 + τd4
Iz

+ ϕ̇θ̇
Ix − Iy
Iz

.

(2)

B. Formulation of the navigation problem

In this paper, we are interested in designing a quadrotor
guidance control taking care of the heading, forward and
vertical motions of the UAV. Differently from classical
guidance control with longitudinal and lateral motions, in
other applications, such as object tracking or inspection, a
nonholonomic-like navigation is preferable.

Therefore, having in mind this scenario, we assume the
rolling angle steered to zero by applying a suitable controller
(in whatever appropriate sense, e.g., see [18]), i.e., ϕ = ϕ̇ =
0. As a consequence, the previous model (2) can be written
in a reduced form as

ẍ = τ1
cψsθ
m

+ τd1
cψsθ
m︸ ︷︷ ︸

dx

ÿ = τ1
sψsθ
m

+ τd1
sψsθ
m︸ ︷︷ ︸

dy

z̈ = τ1
cθ
m

+ τd1
cθ
m

− g︸ ︷︷ ︸
dz

θ̈ =
τ3
Iy

+
τd3
Iy︸︷︷︸
dθ

ψ̈ =
τ4
Iz

+
τd4
Iz︸︷︷︸
dψ

.

(3)

Following the same reasoning in [15], we consider now the
following forward linear speed rate, i.e.,

v̇ = τ1
sθ
m
. (4)



Hence, the reduced system (3) becomes

ẍ = v̇cψ+dx, ÿ = v̇sψ + dy, z̈ = τ1
cθ
m

+ dz,

θ̈ =
τ3
Iy

+ dθ, ψ̈ =
τ4
Iz

+ dψ,
(5)

for which the following assumption needs to be introduced.
A1: The disturbance terms dx, dy, dz, dθ and dψ are as-

sumed bounded with known bounds.
Note that the boundedness of the considered disturbances
is reasonable in practice due to the physical nature of the
quadrotor system and of possible torque deviations.

We are now in a position to design the controller to make
the speed of the quadrotor track the desired speed (ẋ⋆, ẏ⋆),
generated by an appropriate guidance law, and with desired
angles ψ⋆ and θ⋆. Note that, in this work, the altitude z will
in turn depend on τ1 and on pitch angle θ.

III. RECASTING THE QUADROTOR MODEL INTO THE
NONHOLONOMIC FRAMEWORK

Before introducing the proposed control approach, we
need to reformulate the quadrotor model into a suitable
nonholonomic framework eligible for the design of the
sliding mode strategy presented in this paper. By adopting a
suitable change of variables, let xℓ := ẋ, yℓ := ẏ, zℓ := ż,
ϑℓ := ψ, and θℓ := θ be the new set of variables, such that
one has

ẋℓ = v̇cϑℓ + dx

ẏℓ = v̇sϑℓ + dy

żℓ = τ1
cθℓ
m

+ dz

θ̈ℓ =
τ3
Iy

+ dθ

ϑ̈ℓ =
τ4
Iz

+ dψ,

(6)

Now, consider further auxiliary state variables given by

x0 := ϑℓ − ψ⋆,

x1 := (xℓ − ẋ⋆)sx0 − (yℓ − ẏ⋆)cx0 ,

x2 := (xℓ − ẋ⋆)cx0 + (yℓ − ẏ⋆)sx0 ,

x3 := zℓ,

x4 := θℓ − θ⋆, x5 = ẋ4,

and the inputs

u0 := ϑ̇ℓ − ψ̇⋆, u1 := v̇,

so that (6) becomes the following nonholonomic system,
ẋ0 = u0

ẋ1 = x2u0 + δ1

ẋ2 = d2u1 + δ2

(7a)

ẋ3 = τ1
cθℓ
m

+ dz (7b){
ẋ4 = x5

ẋ5 = τ3
Iy

+ dθ − θ̈⋆
(7c)

u̇0 =
τ4
Iz

+ dψ − ψ̈⋆, (7d)

where d2 := cψcx0
+sψsx0

is known such that −1 ≤ d2 ≤ 1,
while δ1 := u1(cψsx0 − sψcx0)+ (dx− ẍ)sx0 − (dy− ÿ)cx0 ,
δ2 := (dx − ẍ⋆)cx0 + (dy − ÿ⋆)sx0 − x1u0.

Note that the dynamics of x1 and x3 implicitly depend on
u1, which will be designed as a bounded signal, while the
dynamics in (7c) implies the stabilization of the pitch angle
θ by designing a suitable (in whatever appropriate sense)
controller for the input τ3. Therefore, in the following, let
us focus on the stabilization of the new states x0, x1 and
x2 in (7a). Inspecting the equations, it is clear that, when
the control u0 converges to zero, this makes the system
uncontrollable via u1. To overcome this issue a discontinuous
state scaling [19], which has the capability to not make x0
converge to zero before x1 and x2, is applied, that is z1 := x1

x0

and z2 := x2. The resulting system is

ẋ0 = u0 (8a){
ż1 = u0

z2
x0

+∆1

ż2 = d2u1 +∆2,
(8b)

with ∆i := δi
xn−i
0

being uncertain terms, such that the
following assumption holds.

A2: All the unknown functions, generally denoted as h(t),
fulfill the Dirichlet conditions [20], i.e., they can be
written into Fourier series in the time interval [0, Ts],
Ts > 0, as

h(t) = w′b(t) + ϵ, (9)

with

w′ := [a0, a1, . . . , aN ] ,

b′(t) :=
[
1, c 2πt

Ts
, s 2πt

Ts
, . . . , c 2Nπt

Ts
, s 2Nπt

Ts

]
,

ϵ :=

∞∑
j=N+1

(
ajc 2jπt

Ts
+ βjs 2jπt

Ts

)
.

Therefore, making reference to A2, for larger value of N
basis functions, any unknown function h(t) can be approxi-
mated as

ĥ(t) = ŵ′b(t), (10)

where ŵ is an estimate of w, and h− ĥ = w′b− ŵ′b+ ϵ,
with ϵ being the approximation error.

IV. PROPOSED MULTIPLE-SURFACE
SLIDING MODE CONTROL

In this section the proposed control approach is introduced.
First, the x0-subsystem (8a) is considered, and then a sliding
mode controller of suboptimal type is designed for the z-
subsystem (8b).

A. Control of the x0-subsystem

Before introducing the control law for the x0-subsystem
(8a), the following assumption has to be introduced.

A3: The initial condition for subsystem (8a) is x0(t0) ̸= 0,
with t0 being the initial time instant.



Note that A3 is instrumental to apply the discontinuous state
scaling in (8) and the case x0(t0) = 0 requires a preliminary
controller to move x0 away from the origin.

By choosing a Lyapunov function as

V0 =
1

2
x20, (11)

substituting (8a), it is possible to verify that V̇0 = u0x0.
Hence, by choosing the control u0 as

u0 = −k0x0, (12)

with k0 > 0, one has V̇0 = −k0x20 < 0, that is x0 is
asymptotically regulated to zero.

B. Multiple-surface design for the z-subsystem

Consider now the z-subsystem (8b) for which we define
the following sliding surfaces

s1 := z1 (13a)
s2 := z2 − α1, (13b)

where α1 is a virtual control designed as

α1 :=
k1s1 + ∆̂1

k0
, (14)

where k1 > 0, and ∆̂1 is the estimate of ∆1 as in (10). The
following result can be proved.

Proposition 1: Given the sliding variable s1 in (13a), and
the dynamics of z1 as in (8b), if A2 holds, and both ϵ1 and
s2 tend to zero, then limt→∞ s1 = 0.

Proof: Consider now a Lyapunov function

V1 =
1

2
s21 +

1

2
w̃′

1Q1w̃1, (15)

with w̃1 = w1 − ŵ1 and Q1 = Q′
1 > 0. Posing ŵ1 :=

Q−1
1 bs1, and exploiting (9), (10), one has

V̇1 = −s1k0z2 + s1∆1 + w̃′
1bs1

= −s1k0(s2 + α1) + s1∆1 − (w1 − ŵ1)bs1

= −k1s21 − k0s1s2 − s1(∆̂1 −∆1)− (w1 − ŵ1)bs1

= −k1s21 − k0s1s2 + ϵ1s1.

Under the assumption A2, with ϵ1 and s2 tending to zero,
the time-derivative is V̇1 = −k1s21 < 0. Hence, one has that
s1 tends asymptotically to zero, which concludes the proof.

At this point, we need to prove that the sliding variable
s2 is steered to zero. Hence, consider now s2 and compute
its time-derivative, i.e.,

ṡ2 = ż2 = d2u1 +∆2 − α̇1

= d2u1 +∆2 −
˙̂
∆1

k0
− k1
k0

∆1 + k1z2

= d2u1 + ∆̄2 + k1z2, (16)

where ∆̄2 := ∆2−
˙̂
∆1

k0
− k1
k0
∆1 is the lumped uncertain term.

The control input u1 is designed as

u1 = ū1 + ũ1, (17)

where ū1 is a stabilizing law given by

ū1 := − 1

d2
(k2s2 +

ˆ̄∆2 + k1z2), (18)

with k2 > 0. The second component ũ1 is instead aimed at
robustifying the whole control as discussed in the following.

Proposition 2: Given the sliding variables s2 in (13b), and
the dynamics of z1 and z2 as in (8b), if A2 holds, and both
ϵ2 and ũ1 are bounded, then s2 is also bounded.

Proof: Consider now a Lyapunov function

V2 =
1

2
s22 +

1

2
w̃′

2Q2w̃2, (19)

with w̃2 = w2 − ŵ2 and Q2 = Q′
2 > 0. Posing ˆ̄∆2 = ŵ′

2b
and ∆̄2 = w′

2b + ϵ2, and letting ˙̂w2 := Q−1
2 bs2, compute

the time-derivative of V2, i.e.,

V̇2 = s2
(
d2u1 + ∆̄2 + k1z2

)
− w̃′

2bs2

= s2
(
d2ū1 + d2ũ1 + ∆̄2 − (w2 − ŵ2)b+ k1z2

)
= s2

(
d2ũ1 − ˆ̄∆2 + ∆̄2 − (w2 − ŵ2)b− k2s2

)
= −k2s22 + s2d2ũ1 + ϵ2s2.

Hence, under the assumption that ũ1 and ϵ2 are bounded,
relying on the concept of input-to-state stability, also s2 is
bounded.

C. Suboptimal sliding mode control signal ũ1
Given the results in the previous subsection, it is now

instrumental to design a suitable bounded control law ũ1 to
steer s2 to zero despite the presence of uncertain terms. In
this case, the natural choice to design a sliding mode control
law is to select the sliding variable as s2 in (13b). Although
the relative degree is 1 and a first order sliding mode control
naturally applies, as evident from (16), a second order sliding
mode is hereafter designed. Let us compute the second-order
time derivative of the sliding variable, i.e.,

s̈2 = d2 ˙̄u1 + d2 ˙̃u1 + ḋ2u1 +
˙̄∆2 + k1(d2u1 +∆2). (20)

Posing σ1 = s2 and σ2 = ṡ2, a second-order auxiliary system
can be introduced, that is

σ̇1 = σ2

σ̇2 = f + d2ν

˙̃u1 = ν,

(21)

where the drift term is given by f := d2 ˙̄u1 + ḋ2u1 +
˙̄∆2 + k1(d2u1 + ∆2), and, by virtue of assumption A1,

the following assumption, required to design the proposed
sliding mode controller, holds.

A4: There exists a known constant f̄ such that the following
inequality holds

|f | ≤ f̄ . (22)

Making reference to [17], the auxiliary control law is
chosen as

ν(t) := −γ sign(d2) sign
(
σ1(t)−

1

2
σ1max

)
, (23)



with γ > 0, and σ1max being the most recent extremal
value such that σ̇1(t) = 0, which can be retrieved by an
estimation mechanism (see, e.g., [21]). The following result
can be proved.

Proposition 3: Given the auxiliary system (21), controlled
via (23), if A4 holds and

γ > max
{
f̄ , 2f̄

}
,

then the auxiliary system trajectory converges to zero in a
finite time t̄ ≥ t0, hence σ1(t) = s2(t) = 0, ∀ t ≥ t̄.

Proof: The proof directly follows from [17].

D. Main results

In this section, the main result considering the navigation
problem in §II-B is stated.

Theorem 4: Consider the subsystem (7a) controlled via
control laws (12) and (17) with (18), (23) and virtual input
(14). If A1, A2, A3 and A4 hold and ϵi ≈ 0, i = 1, 2, then
the trajectories of subsystem (7a) are ultimately bounded.

Proof: The proof directly follows by selecting a Lya-
punov function equal to

V = V0 + V1 =
1

2
x20 +

1

2
s21 +

1

2
w̃′

1Q1w̃1. (24)

Under assumptions A1, A2, A3 and A4, and ϵi ≈ 0, i =
1, 2, the time derivative of V is

V̇ = −k0x20 − k1s
2
1 < 0, (25)

from which x0 and s1 = z1, hence also x1, asymptotically
tend to zero. Then, by virtue of Proposition 3 and control
law (23), s2 is steered to zero in finite time. This implies
z2 = x2 = α1 such that limt→∞ x2(t) = ∆̂1

k0
, which is

bounded, thus concluding the proof.
Note that, as mentioned in §III, the state x4 is steered to

zero, which implies θ = θ⋆, while by virtue of Theorem 4,
if x0 = x1 = 0, it is clear that one in turn has ẏ = ẏ⋆ and
ψ = ψ⋆, while from x2 one has ẋ = ẋ⋆ + ε(u1, ψ

⋆, θ, ÿ),
with ε(u1, ψ

⋆, θ, ÿ) being a bounded function such that
ε(u1, 0, 0, 0) = 0.

V. SIMULATION TESTS

In this section, the proposed adaptive multiple-surface
sliding mode control strategy is validated in simulation.

A. Scenario

In order to assess the proposal, the model of the
quadrotor captured by system (3) is implemented in
MATLAB-SIMULINK© together with (5) and (7). Moreover,
making reference to the model adopted in [5], the physical
parameters are those reported in Table I, with all the as-
sumptions discussed in §II-A. In the considered navigation
scenario, the quadrotor has to perform a linear motion,
starting at t0 = 0 from coordinates [x(0), y(0), z(0)]′ =
[2.5, 0, 6]′ m and [θ(0), ψ(0)]′ = [ π12 ,−

π
4 ]

′ rad, and such
that

ẋ⋆ =
π

2
m s−1, ẏ⋆ = 0ms−1,

ψ⋆ = 0 rad, θ⋆ = 0 rad.

TABLE I
QUADROTOR PARAMETERS.

m kg 0.5
Ix kgm2 1.5× 10−3

Iy kgm2 1.5× 10−3

Iz kgm2 2.8× 10−3

L m 8.84× 10−2

Furthermore, according to [5], [22], [23], additional low
frequency sinusoidal forces and moments are added as distur-
bance terms, which may stem e.g., from wind or surrounding
magnetic sources that typically act at low frequencies.

In the considered scenario, subsystem (7a) simplifies since
d2 = 1, while δ1 := dxsx0

−dycx0
, and δ2 := dxcx0

+dysx0
−

x1u0. All the simulations have been executed using the
automatic selection solver, fixed-time step equal to 1×10−3 s,
which is consistent with future practical implementation of
the proposal, and a simulation window of 30 s.

B. Controllers design

Making reference to subsystem (7a), the correspond-
ing initial conditions result in [x0(0), x1(0), x2(0)]

′ =
[−π

4 , 0.5, 0.5]
′, while the control parameters are selected as

k0 = 5, k1 = 100, k2 = 200, and γ = 10. Finally, as
mentioned in §III, a suitable controller has been designed
for stabilizing θ to zero. More specifically, letting s be the
Laplace variable, a linear controller Rθ(s) is designed as

Rθ(s) =
0.09Iy(1 + 10s)

1 + 0.1s
.

C. Simulation results

Figures 2 and 3 show the evolution in space of the
quadrotor position p, and the time evolution of the quadrotor
angles θ and ψ, respectively. Moreover, in Figure 2, the
evolution in time of the sliding variable s2 and its derivative
ṡ2 is reported. The behaviour of the control inputs u0 and
u1 is instead given in Figure 4, where one can observe that
u1 is continuous by virtue of the artificial increase of the
relative degree according to (21). This is an important aspect
for practical implementation in order to alleviate chattering
phenomena due to the discontinuity of the control law (23).
Finally, for the sake of clarity, the interval [0,0.5] s of
the time evolution of x0, x1, and x2, converging to zero
according to the main result in §IV-D, is shown in Figure 5.

Fig. 2. Evolution in space of the quadrotor position p (left), and time
evolution of the sliding variable s2 and its derivative ṡ2 (right).



Fig. 3. Time evolution of the pitch and yaw angles θ and ψ.

Fig. 4. Time evolution of control signals u0 and u1.

Fig. 5. Time evolution of states x0, x1, and x2 in the interval [0,0.5] s.

VI. CONCLUSIONS

In this paper, a multiple-surface sliding mode control
approach is proposed to solve a navigation problem for
quadrotor UAVs aimed at emulating a nonholonomic-like
system motion. First, the model of the quadrotor is suitably
recast into a nonholonomic system framework eligible to
design the proposed sliding mode control scheme. Then,
a multiple-surface method is introduced and a suboptimal
second order sliding mode control approach is designed and
discussed. The proposal has the advantage to cope with
uncertainty terms affecting the plant, for instance due to
modelling mismatches and external disturbances. Finally,
simulation results show the validity of the proposed strategy.
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